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The observation-error covariance matrix used in data assimilation contains contributions
from instrument errors, representativity errors and errors introduced by the approximated
observation operator. Forward model errors arise when the observation operator does
not correctly model the observations or when observations can resolve spatial scales that
the model cannot. Previous work to estimate the observation-error covariance matrix for
particular observing instruments has shown that it contains significant correlations. In
particular, correlations for humidity data are more significant than those for temperature.
However it is not known what proportion of these correlations can be attributed to
the representativity errors. In this article we apply an existing method for calculating
representativity error, previously applied to an idealised system, to NWP data. We calculate
horizontal errors of representativity for temperature and humidity using data from the
Met Office high-resolution UK variable resolution model. Our results show that errors of
representativity are correlated and more significant for specific humidity than temperature.
We also find that representativity error varies with height. This suggests that the assimilation
scheme may be improved if these errors are explicitly included in a data assimilation scheme.
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1. Introduction

In data assimilation, model states are combined with observations,
making use of their associated error statistics. These are included
in the assimilation scheme in the background- and observation-
error covariance matrices. The observation-error covariance
matrix can be split into three components. One contains
information on the instrument error, one describes the error in
the observation operator, and the third contains information on
the representativity error (RE), also known as representativeness
or representivity error. We follow Daley (1991, 1993) and define
the RE as the error that arises when the observations resolve
spatial scales that the model cannot. The RE and the error in the
observation operator can be combined into a single error known as
the forward model error (Harris and Kelly, 2001; Sherlock et al.,
2003) or forward interpolation error (Lorenc, 1986). In more

†The copyright line for this article was changed on 28 February 2014 after
original online publication.

recent literature (Cohn, 1997; Liu and Rabier, 2002; Janjic and
Cohn, 2006), the term RE has been used to describe the forward
model error. However we use the definition given by Daley
(1993) as in this paper we focus on calculating the error caused
by the misrepresentation of small scales. The instrument error is
determined for specific instruments under a set of test conditions
by the instrument manufacturer or from in-orbit calibration data.
Pre-processing the data may also introduce errors, which may
often be greater than the instrument noise. These errors may
be included either in the instrument error or in the observation
operator error, where they contribute to the forward model error.

Previous work has shown that observation error statistics are
correlated for certain observation types (Bormann et al., 2002,
2010; Stewart et al., 2009, 2012; Bormann and Bauer, 2010) and
it has been suggested that part of the correlation comes from
RE rather than the instrument error or errors in the observation
operator (Stewart, 2010; Weston, 2011). Until recently it has
been assumed that it is too expensive to include correlated
observation error matrices in assimilation schemes and that it is
only feasible to use a diagonal observation error covariance matrix.

c© 2013 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal
Meteorological Society.
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The effect of correlated error is reduced by using techniques
such as observation thinning (Lahoz et al., 2010) or superobbing
(Daley, 1991), and variance inflation (Whitaker et al., 2008; Hilton
et al., 2009). Calculation are also simplified by assuming that the
observations errors are the same at each model level (Dee and
Da Silva, 1999). Efforts are being made to find methods of
reducing the cost of using correlated observation error matrices
(Healy and White, 2005; Fisher, 2005; Stewart, 2010; Stewart
et al., 2013). Once these methods are in place it will be important
to have accurate estimates of the covariance matrices, as these are
required to obtain the optimal estimate from any data assimilation
system (Houtekamer and Mitchell, 2005; Stewart et al., 2008). It
is therefore important to understand how to estimate RE.

Despite the difficulties in calculating correlated error, there
have been some attempts. The Hollingsworth and Lönnberg
(1986) method has been used to calculate the statistics of the inno-
vations. A method proposed by Desroziers et al. (2005) makes
use of information from the first guess and analysis departures
and yields an approximation to the observation error covariance
matrix. Once the innovation statistics or the observation error
covariances have been calculated, the background and/or instru-
ment error terms can be subtracted to leave an approximation
of forward model error for specific observing instruments.
Other methods (Daley, 1993; Liu and Rabier, 2002) assume that
observations can be written as a projection of a high resolution
model state on to observation space with the RE being the
difference between this high-resolution projection and the model
representation of the observation. Many of these approaches
yield a static approximation of RE, but Janjic and Cohn (2006)
show in theory that it is state dependent and correlated in time.

Work has been carried out (Stewart et al., 2009, 2012; Stewart,
2010; Bormann and Bauer, 2010) to calculate estimates of the
full observation error covariance matrix. They show that the
observation-error covariance matrices for observing instruments
such as IASI (Infrared Atmospheric Sounding Instrument),
AMSU-A (Advanced Microwave Sounding Unit-A), HIRS (High-
Resolution Infrared Sounder) and MHS (Microwave Humidity
Sounder) contain significant correlations. In particular, the
correlations for the humidity channels are more significant
than those for temperature. The calculated matrices contain
contributions from the instrument error, the observation operator
error and the RE. Due to the complex nature of observation error
statistics, it is not known what portion of the error is RE. As
humidity fields contain smaller-scale features than temperature
fields, it is possible that it is the RE that contributes to the more
significant error correlations.

In this article, we calculate horizontal REs using a method
described by Daley (1993) and Liu and Rabier (2002). In Liu and
Rabier (2002), the RE is calculated for a simple idealized system.
Here we apply the Liu and Rabier (2002) method to real NWP
data. We calculate the RE for temperature and humidity data
over the UK. We consider the structure of RE to help understand
whether significant correlations found in the work of Stewart
(2010) and Stewart et al. (2009, 2012) can be attributed to RE.
We investigate whether RE is more significant for humidity than
temperature, and whether one approximation of RE error is
suitable for all pressure levels.

In section 2 we describe the method used for calculating RE.
We then describe the model and available data in section 3. Our
experimental design is given in section 4 and we present our
results in section 5. Finally we give conclusions in section 6.

2. Forward model error

2.1. Definition of forward model error

Forward model error,

εH = y − H(xm), (1)

is the difference between the noise-free observation vector, y, of
length p and the mapping of the exact model state vector, xm, of
length Nm into observation space using the possibly nonlinear
observation operator H. The noise-free observation vector is a
theoretical construct that represents an observation measured by
a perfect observing instrument, i.e. with no instrument error. It
is related to the actual measurement via the equation

yo = y + εI, (2)

where yo is the observation vector and εI is the unbiased
instrument error.

The covariance of the forward model error E[(εH − εH)(εH −
εH)T] = RH , where the overbar ·· denotes the mean, is included
in the observation-error covariance matrix R = RH + RI, where
RI = E[εIεIT

] is the instrument-error covariance matrix. As
explained in section 1, forward model error is here defined as
the sum of the error in the observation operator and the RE. In
this study, because the observations are simulated, we are able
to set the error in the observation operator to zero, and so the
RE becomes the only source of forward model error. To calculate
the REs in this article, we use a method defined by Daley (1993)
and Liu and Rabier (2002). In this method it is assumed that the
observations can be written as the mapping of a high-resolution
state into observation space, and that the model state xm is a
truncation of this high-resolution state.

2.2. Forward model error on a 1D domain

We restrict our calculations to the 1D periodic domain of length
L = 2aπ , where a is a constant which determines the length of
the domain, and assume that the observation operator H is linear.
It is assumed that the high-resolution state x(r) at position r can
be expressed as a Fourier series truncated at wave number K. At
N points on the physical domain, −aπ ≤ r ≤ aπ , the function
values x(rj), j = 1, . . . , N, can be expressed in matrix form as

x = F̂x , (3)

where x̂ is a vector of length M = 2K + 1 of spectral coefficients
and F is a Fourier transform matrix of dimension N×M. In this
work a number of Fourier matrices are used to calculate forward
model error. A Fourier matrix F of size m×n has elements

Fj,k = exp

(
2i kjπ

m

)
, (4)

where j = 1, . . . , m and k = 1, . . . , n.
The model representation of the actual state is a wave-number-

limited filter of the high-resolution state, x̂m = T̂x where T is a
truncation matrix which truncates the full spectral vector x̂ to
the analysed spectral vector x̂m. The model representation of the
actual state can be expressed as

xm = Fmx̂m, (5)

where x̂m is a vector of length Mm = 2Km + 1 of spectral
coefficients and Fm is a Fourier transform matrix of dimension
Nm×Mm with elements defined as in Eq. (4) but with no terms
with wave number higher than Km. The variables to be analysed
are the Fourier spectral coefficients from −Km to Km, Km < K.

We define the observations by

y(ro) =
∫ aπ

−aπ
x(r) w(r − ro) dr. (6)

Here the observations are defined as if they have been measured
at point ro by a remote-sensing instrument. The choice of
the weighting function w(r) determines the type of observing

c© 2013 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society
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instrument. Writing Eq. (6) in spectral space allows us to write
the p error-free observations as

y = FpWx̂, (7)

where Fp is a p×M Fourier transform matrix and W is a M×M
diagonal matrix with elements ŵk, the spectral coefficients of the
weighting function w(r). FpW is an exact observation operator in
spectral space. The measurement vector yo is given by

yo = FpWx̂ + εI. (8)

The model representation of the observations is given by

ym = Fm
p WmT̂x , (9)

where Fm
p is the Fourier matrix with elements defined as in

Eq. (4). Wm is a Mm×Mm diagonal matrix with elements ŵk, the
spectral coefficients of the weighting function w(r). This method
assumes that the low-resolution model is a truncation of the
high-resolution model. This allows forward model error to be
considered in the perfect model case. It also allows us to exactly
specify the observation operator so our forward model errors
consist only of errors of representativity.

To obtain an equation for forward model error, we assume
the observation operator is linear and substitute the definitions
of observations, Eq. (7), and model representation of the
observation, Eq. (9), into Eq. (1) to give

εH = FpWx̂ − Fm
p WmT̂x . (10)

The expectation operation, denoted E[.., ..], is applied to give
the forward model error covariance matrix,

RH = (FpW − Fm
p WmT)̂S(FpW − Fm

p WmT)∗, (11)

where Ŝ = E[(̂x − x̂)(̂x − x̂)∗] is the spectral covariance matrix
for the high-resolution state and ∗ denotes the complex conjugate
transpose. The spectral covariance of the high-resolution state, Ŝ,
contains information on how different wave numbers are related.
It can be calculated using

Ŝ = F∗SF, (12)

where F is a Fourier transform matrix and
S = E[(x − x)(x − x)∗] is the covariance matrix of the high-
resolution state in physical space.

We now have an equation which can be used to calculate the
RE covariance matrix for data on a periodic domain.

The method has been used previously to study the variance
of forward model and RE for a simple static 1D system (Liu
and Rabier, 2002) and there are limitations in using this method
when applying it to NWP data. The method requires a periodic
domain and assumes that the covariance of the state is isotropic
and homogeneous, making it more applicable when calculating
horizontal RE. The assumption that the truth is given by a high-
resolution model is likely to cause an underestimate of RE as
there will be scales which exist in the exact state, but which are
not captured by the high-resolution model. Finally the method
gives only a time-averaged estimate of forward model error.

Despite the limitations of this method, it is suitable to aid
our understanding of the nature and structure of horizontal RE.
Before using the method, we must define the weighting matrices
to be used and describe how the spectral covariance of the
high-resolution state can be calculated.

3. The model and data

In this study we calculate horizontal RE for both temperature and
the log of specific humidity over the UK. The calculation of RE by
the method of Liu and Rabier (2002) assumes that the actual state
can be taken from a high-resolution model. As our actual state
we take data from the Met Office UK variable resolution (UKV)
model. The UKV model is a variable-resolution model that covers
the UK. The model has a fixed regular grid on the interior with
1.5 km square grid boxes. The regular grid is surrounded by a
variable-resolution grid where grid boxes smoothly increase in
size to 4 km. For this study we consider two sets of data, previously
used in Pavelin et al. (2009). The data cover sub-domains, each of
450 km×450 km (300×300 grid points with 1.5 km grid boxes),
of the UKV model. The lateral boundary conditions for the 1.5 km
models are taken from a 4 km grid-spacing regional model which
is nested in the 12 km model which covers the North Atlantic and
Europe (NAE). The boundary conditions blend into the 1.5 km
model field over a transition zone of 10 km (Pavelin et al., 2009)
and we therefore exclude from our study the data in this region.

Since we are considering RE, it is also necessary to ensure
that the model spectra have fully adjusted to the higher spatial
resolution. This is not fully understood for this suite of models.
However qualitative measures of the distance it takes convection
to spin up due to features advecting in from the boundaries
are given in Lean et al. (2008), Tang et al. (2012) and Kendon
et al. (2012). We remove further data from the boundary so that
approximately 30 km are removed in total. We expect the 1.5 km
model to be spun up from the 4 km boundary conditions by this
distance, although this would not be guaranteed for a rapidly
changing synoptic situation.

In this work we calculate RE using the assumption that the
model state is a truncation of high-resolution data. For the
majority of our experiments, we chose a truncation factor which
gives a model grid spacing equivalent to the grid spacing which is
used in the Met Office NAE model. The Met Office NAE model
has a grid spacing of 12 km (in midlatitudes) and covers Europe
and the North Atlantic.

3.1. The data available

We use temperature and humidity data over the UK available
for two cases. The first case, Case 1, consists of data from 7
August 2007 at times 0830, 0900 and 0930 UTC on an area over
the southern UK covering 3.04◦W to 3.71◦E and 49.18◦N to
53.36◦N. In this case there were partly clear skies with convection
occurring over the southeast (Eden, 2007). The second set of data,
Case 2, is from 6 September 2008 at 1400, 1430 and 1500 UTC
covering 5.00◦W to 1.20◦E and 52.5◦N to 56.00◦N. In this case
a deep depression tracked slowly eastnortheast across England
(Eden, 2008). The data are available on a 300×300 grid of
latitude and longitude lines at each of 43 pressure levels.

3.2. Creating samples from the data

There are some limitations to the data. Data near the boundary are
contaminated by the boundary conditions taken from the coarser
model. We remove this data at each pressure level by reducing the
grid to a 256×256 mesh centred on the main grid. We need to
sample the data to calculate the covariance matrices for the actual
state. The data we have are available on a 3D gridded domain.
We are interested in calculating RE for individual pressure levels
so for each experiment the data available are 2D; however, we
are calculating RE on a 1D domain. To convert our data to 1D,
we take the individual latitude rows of the data from the 749 hPa
pressure level. We use this level as it is outside the boundary
layer, but should still include the small-scale features which
are relevant when calculating RE. We consider temperature and
natural logarithm (ln) of specific humidity data for each of the

c© 2013 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society
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two synoptic cases. For each synoptic case, we have 256 samples
at three different times and, therefore, we have 768 samples to
calculate the covariance matrices. A covariance calculated with
this number of samples is dominated by sampling error and hence
this is not a sufficient number of samples to calculate an accurate
representation of the required covariances. One way to overcome
this would be to take data from more times. However, this would
reduce the accuracy of the estimated RE at the specified time.
A further problem is that the samples are not periodic, but the
Liu and Rabier (2002) method assumes a periodic domain with a
circulant covariance matrix S. To overcome this and to increase
the number of samples, we detrend and process the data.

3.3. Data processing

To create surrogate samples from each available sample, the data
must be detrended. Detrending gives data on a homogeneous
field; this is required by our chosen method for calculating RE.
Data is detrended by removing a best-fit line using an appropriate
polynomial of order no greater than 3 (Bendat and Piersol, 2011).
It is justifiable to detrend the data as only trends with large
length-scales are removed. All scales which contribute to the
RE still remain. We detrend the 256 latitude samples at each
available time. Different orders of polynomial were considered
for detrending and the lowest-order polynomial which resulted in
homogeneous data was chosen. A linear trend was removed from
the temperature data, and a cubic trend from the natural logarithm
of the specific humidity data. Removing polynomials of higher
order had little effect on the RE results. These detrended data are
now used to create new samples from each existing sample.

The method of Fourier randomization is used to generate
surrogate samples from the same statistical distribution (Theiler
et al., 1992; Small and Tse, 2002). Fourier randomization consists
of perturbing the phase of a set of data to create a new sample
with a different phase, but where each wave number retains the
same power. As the power spectrum of the sample is unchanged,
the linear correlations are preserved. Therefore any choice of
phase shift should result in data with the same covariance. As
the covariance is preserved, we do not expect the choice of phase
shift to affect the results when RE is calculated. Here we calculate
circulant samples, which corresponds to shifting the phase of
the data. This also gives the data the required periodicity. A
circulant sample is created by shifting each element of the sample
one position and taking the final element and making it the
first entry in the sample. Each element can be shifted to each
position, which means a sample with n elements can be used to
create n circulant samples. Therefore creating surrogate samples
increases the number of available samples we have for calculating
the covariance of the high-resolution data. We have available 256
samples at three different times. Creating circulant samples gives
us 65 536 samples at each time, and a total of 196 608 samples
to estimate each of the covariance matrices, which is a sufficient
number of samples.

4. Experiments

4.1. The covariance of the high-resolution data

We calculate the sample covariance matrix, S, of the high-
resolution data using

S = 1

n − 1

n∑
i=1

(xi − x)(xi − x)∗, (13)

where xi is the ith sample vector and x is a mean vector of the
samples. We use this method and the model data to calculate the

Table 1. Variances for the true state at the 749 hPa pressure level.

Temperature (K2) ln(Specific humidity)

Case 1 0.6638 0.0812
Case 2 0.1934 0.0178

The original unit for specific humidity is kg kg−1.
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Figure 1. Correlation structure for the true fields of temperature and the natural
logarithm of specific humidity at 749 hPa. Temperature: Case 1 dotted line, Case 2
dot-dash line. Specific humidity: Case 1 dashed line, Case 2 solid line.

covariance matrix of the actual state, S. We use the circulant sam-
ples calculated from the UKV model data to calculate the covari-
ance matrices for the temperature and natural logarithm of spe-
cific humidity fields for both cases. We give the variances in Table
1 and plot a row of each of the correlation matrices in Figure 1.

From Table 1 we see that the variances for Case 2 are smaller
than those for Case 1. When considering the correlations plotted
in Figure 1, we see that the temperature fields have larger
correlations than the natural logarithm of specific humidity.
For Case 1 the temperature correlations are very high; this is
expected since, after detrending, this field is fairly constant. We
also note that the correlations for Case 2 are smaller than the
correlations for Case 1. This is due to the synoptic situation, since
in Case 1 the field is more homogeneous with small-scale features
over a small area of the domain, but in Case 2 the features have
large-scale variations and are less homogeneous.

For the estimates of RE to be exact, we require the correct
covariances of the truth. As our truth we are using data from the
UKV model, and therefore our estimates of the covariances will
only be as accurate as the spectra of the UKV model. As the UKV
does not resolve all the scales in the truth, it is likely that the
estimates of RE given by the Liu and Rabier (2002) method will be
an underestimate. However as the UKV model is representative,
in the characteristics of interest, of a reasonable truth and we are
measuring the loss of information between the low- and high-
resolution models, we can still expect to understand more about
the behaviour and structure of RE.

4.2. The observations

To calculate the RE we require pseudo-observations. We expect
RE to depend on observation type. To calculate these observation
types we use Eq. (7), which requires a weighting matrix. We choose
the weighting matrices in Eq. (11) to correspond to different types
of observing instruments. The elements of the weighting matrix
are the spectral coefficients of the weighting function w(r) which
is used to define observations using Eq. (6). Pseudo-observations
are created from the high-resolution data using three weighting
functions. The weighting functions used here are the same as those
used in Liu and Rabier (2002). Two of the weighting functions
represent remotely sensed observations. One follows a top-hat
(uniform) function with a width of 5 km. The other weighting
function is calculated using a Gaussian curve with a width of

c© 2013 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society
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Table 2. Representativity error (RE) variances for temperature and natural logarithm of specific humidity at 749 hPa for Case 1. The values in brackets compare the
RE variance to the high-resolution data variance.

Experiment Truncation Number of Observation Temperature ln(Specific humidity)
number observations (p) type RE variance (K2) RE variance

1.1 32 32 Direct 4.81×10−3 (0.7%) 1.51×10−3 (1.9%)
1.2 32 32 Uniform 2.71×10−3 (0.4%) 1.08×10−3 (1.3%)
1.3 32 32 Gaussian 8.99×10−4 (0.1%) 3.80×10−4 (0.5%)
1.4 32 16 Direct 4.81×10−3 (0.7%) 1.51×10−3 (1.9%)
1.5 64 64 Direct 2.13×10−3 (0.3%) 4.04×10−4 (0.5%)

Table 3. As Table 2, but for Case 2.

Experiment Truncation Number of Observation Temperature ln(Specific humidity)
number Observations (p) type RE variance (K2) RE variance

2.1 32 32 Direct 2.21×10−3 (1.1%) 7.14×10−4 (4.0%)
2.2 32 32 Uniform 1.30×10−3 (0.7%) 4.84×10−4 (2.7%)
2.3 32 32 Gaussian 3.96×10−4 (0.2%) 1.60×10−4 (0.9%)
2.4 32 16 Direct 2.21×10−3 (1.1%) 7.14×10−4 (4.0%)
2.5 64 64 Direct 1.12×10−3 (0.6%) 2.50×10−4 (1.4%)

20 km. We also consider in situ measurements. For these direct
observations the weighting function w(r) in Eq. (6) becomes a
Dirac delta-function. In this case the diagonal elements ŵ of the
weighting matrix are all unity.

Now we have the appropriate weighting matrices and the
covariance matrices for the high-resolution data at the 749 hPa
pressure level. This allows us to calculate REs for temperature
and natural logarithm of specific humidity. In the next section we
present the results of our experiments.

5. Results

We now carry out a number of experiments to enable us to
understand the nature of RE. The results for experiments carried
out with data from Case 1 are given in Table 2, and for Case 2 in
Table 3.

5.1. Temperature and humidity representativity errors

We first consider how the errors of representativity differ between
the fields of temperature and of natural logarithm of humidity.
We consider the RE for the case where the model has 32 points;
this is a truncation of a factor of eight from the high-resolution
model, which has 256 points. We start by assuming that we have
direct observations. The values of the RE variance are given in
Table 2, Experiment 1.1. We plot in Figures 2(a, b) (solid lines)
the middle row of the RE correlation matrices for temperature
and for natural logarithm of specific humidity from Case 1.

When we compare the variance of RE against the variance
of the actual states, we see that RE is more significant for the
natural logarithm of specific humidity than it is for temperature.
We find that the RE variance for temperature is 0.7% of the
high-resolution temperature variance, whereas the RE variance
for natural logarithm of specific humidity is 1.9% of the high-
resolution natural logarithm of specific humidity variance. When
comparing the variance from this experiment with the same
experiment carried out with Case 2 data (Table 3, Experiment 2.1),
we see that the RE variances are smaller for Case 2. This is expected
as there is less variance in the true fields in Case 2. However, these
experiments show that the RE is more significant in this case, with
RE for temperature being 1.1% of the high-resolution temperature
variance and RE for natural logarithm of specific humidity
being 4.0% of the high-resolution variance. For Case 1 from
Figures 2(a, b) (solid lines) we see that the correlation structure is
similar for both temperature and the natural logarithm of specific
humidity. The correlations rapidly decrease in magnitude as the
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Figure 2. Representativity error correlations between observation centre points
for Case 1 at 749 hPa with truncation to 32 points (12 km resolution) with
every model grid point observed using direct (solid line) and Gaussian-weighted
(dashed line) observations: (a) temperature (b) ln(specific humidity).

separation distance increases. The correlations for the natural
logarithm of specific humidity are slightly larger, and decay less
rapidly than the correlations for temperature.

5.2. Changing the observation type

We now consider what happens where the observations
are defined with a uniform weighting matrix. This uniform
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weighting acts on the temperature and natural logarithm of
specific humidity fields. The variance of the RE is given in Table 2
Experiment 1.2. We see again, as expected, that the RE is more
significant for the natural logarithm of specific humidity than
it is for temperature. We see that the assumption of uniformly
weighted observations has decreased the RE for both fields. This
is as expected as the uniform observations do not capture all the
small scales which the direct observations can. The correlations
are larger than those when direct observations are used (result
not shown). This is because two consecutive observations have
some overlap in physical space. We see from Table 3 that
Experiment 2.2 supports these results as the RE variance is
smaller than that seen in Experiment 2.1.

We now consider what happens where the observations are
defined using a Gaussian-weighting matrix. The results are given
in Table 2 Experiment 1.3 and Table 3 Experiment 2.3. We plot
the middle row of the RE correlation matrices for temperature
and natural logarithm of specific humidity from Case 1 in
Figures 2(a, b) (dashed lines). We find that the error variance
is smaller than when either direct or uniform observations are
assumed. Our Gaussian-weighted observations capture fewer
small-scale features than the direct and uniform observations
and hence the RE variance is smaller as the model captures a
larger proportion of the scales captured by the observations.
From the figures we see that the correlations for the RE calculated
with these Gaussian-weighted observations are larger than the
RE correlations present when direct observations are used. This
is due to the overlapping of the weighting functions in physical
space of nearby observations.

By comparing the experiments with different weighting
functions, we see that the larger the weighting function
length-scale used to define the observation, the lower the RE
variance. Observations defined using weighting functions with
larger length-scales capture fewer spatial scales. Therefore the
difference between a larger length-scale observation and the model
representation of the observation is smaller than a small length-
scale observation and the model representation of the observation.
Hence observations defined using weighting functions with larger
length-scales result in smaller errors of representativity.

5.3. Number of observations

We now consider what happens when we calculate the RE where
fewer direct observations are available. Experiments 1.4 in Table 2
and 2.4 in Table 3 show the error variance where only half
the model grid points have associated direct observations. We
see that having fewer observations available does not alter the
variance of the RE. This is expected as RE applies individually
to each observation and is independent of other observations.
Experiments with uniform and Gaussian observations also
support this conclusion. The Liu and Rabier (2002) method
makes use of the Fourier transform; this leads to regularly spaced
observations over the domain. The method used here leads to a
class of correlation structures for RE which are dependent only
on the distance between observations and not the number of
observations available. We show this in the Appendix. Although
the results in the Appendix are specific to the Liu and Rabier
(2002) method, in general we expect that the RE variance should
not be dependent on the number of available observations.

5.4. Number of model grid points

We now consider the results when the model has the larger
number of 64 grid points. This is a higher truncation, so the
model should be able to resolve more small-scale features, and
hence we expect the errors of representativity to decrease. We give
the results for experiments with direct observations in Table 2
Experiment 1.5 and Table 3 Experiment 2.5. From these results we
see that the RE variances have decreased. For direct observations
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Figure 3. Representativity error standard deviation with model level height,
for Case 1 with 32 direct observations (every model grid point observed):
(a) temperature, (b) ln(specific humidity).

the RE has been approximately halved. Experiments with uniform
and Gaussian weightings are not shown, but produce results that
also support this conclusion.

5.5. Representativity errors at different model levels

So far we have considered the RE only at the 749 hPa model
level height. We now calculate a RE for each pressure level of the
model. This will allow us to consider the variation of RE with
height. From this we can determine if one realisation of RE would
be suitable at every pressure level, or if it is more appropriate to
use the correct RE for each level.

Before calculating the RE for each model level, we must first
calculate the covariance matrices for the high-resolution data
for temperature and natural logarithm of specific humidity for
each pressure level. We use the same data, but at the correct
pressure level, and the same preprocessing techniques described
in section 3.

We consider the case where we have truncated to 32 grid points
and have 32 direct observations available. We plot the standard
deviation of RE for Case 1 in Figures 3(a) (temperature) and
3(b) (natural logarithm of specific humidity) and for Case 2 in
Figures 4(a) (temperature) and 4(b) (natural logarithm of specific
humidity).

From the figures we see that RE for temperature is more
constant with height than that for the natural logarithm of specific
humidity. The exception to this is in the boundary layer, where
the temperature RE is large. For the natural logarithm of specific
humidity in Case 1, we see a large increase in the RE standard
deviation between 749 and 610 hPa. For Case 2 the largest peak
in RE is seen at 300 hPa. These levels are where cloud is seen and
hence it is at these levels where the small-scale humidity features

c© 2013 The Authors and Crown copyright. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2014)



Representativity Error for the Met Office model

0 0.05 0.1 0.15 0.2 0.25

Standard deviation

P
re

ss
ur

e 
(h

P
a)

0 0.05 0.1 0.15 0.2

0

200

400

(a)

(b)

600

800

1000

0

200

400

600

800

1000

Standard deviation 

P
re

ss
ur

e 
(h

P
a)

Figure 4. As Figure 3, but for Case 2.

exist; this results in the larger RE variances. Finally we consider
how the correlation structure varies with height. We found that
for both temperature and specific humidity at different pressure
levels the correlation structures of the REs were qualitatively
similar to those for the 749 hPa level, as seen in Figure 2. The
difference in variance and minimal difference in correlation
structure can be attributed to the different scales in the true state
which are represented in Ŝ, used to calculate the RE (Appendix,
Eq. (A.4)).

The results show that RE is not constant with height and in
some cases it may be beneficial to have a RE matrix where the
variance varies with height. They also support our conclusions
that RE is strongly case-dependent. Experiments (results not
shown) with uniform- and Gaussian-weighting functions and
truncation to 64 points also show that RE varies with height.

Here we have shown that the horizontal RE varies with height.
We have not considered whether REs are vertically correlated as
it is beyond the scope of this article. Also is not obvious how to
apply the Liu and Rabier (2002) method to vertical data since the
model levels are not equally spaced. Although vertical REs are not
calculated here, we would be surprised if RE is not correlated in
the vertical.

6. Conclusions

In this study we use a method defined in Daley (1993) and Liu
and Rabier (2002) to calculate RE. Previously the method has
been used to investigate RE for a simple system. We adopt a new
approach by applying the method to NWP data. We wished to
investigate whether significant correlations in the observation-
error matrix (Stewart et al., 2009, 2012; Stewart, 2010) could
be attributed to RE, and whether RE is more significant for

the natural logarithm of specific humidity than for temperature.
We calculated and compared REs for temperature and natural
logarithm of specific humidity. To calculate the RE it is necessary
to have an estimate of the covariance of the truth state. Here
this covariance is calculated using data from the Met Office UKV
model. The accuracy of the RE estimates depend on the accuracy
of these covariances and, as the UKV model cannot represent all
the scales in the truth, it is possible that the RE is underestimated.
Experiments using data from the Met Office UKV model showed
that RE was more significant for the natural logarithm of
specific humidity than for temperature. This was determined
by comparing the size of the RE variance with the variances of
the high-resolution states. This suggests that correlations found
in previous approximations of the observation-error covariance
matrix, R, such as those in Stewart (2010) and Weston (2011), are
likely to be RE, at least in part. We calculated RE using data from
two different cases and showed that real data RE is sensitive to
the synoptic situation, which supports claims by Janjic and Cohn
(2006). We also found that, as the number of model grid points
is reduced, the RE increases. This is because, at lower resolution,
the model is not able to resolve as many scales. We also found that
using direct observations gave a higher RE than when uniform-
or Gaussian-weighted observations were used. This is because
the direct observations contain more information on smaller
scales than the uniform- or Gaussian-weighted observations.
Experiments showed that altering the number of observations
used to calculate RE had no effect on the RE variance. We showed
that this method leads to a class of correlation structures which
depends only on the distance between observations and not the
number of observations. We believe that in general the number
of observations should not affect the RE correlation structure
and that the structure is dependent only on the distance between
the available observations. Finally we considered how the RE
standard deviation varied at different pressure levels. We found
that representativity does vary at different pressure levels and this
means that assumptions such as those in Dee and Da Silva (1999),
where errors at different model levels are fixed, may not be suitable
when RE is taken into account. As it becomes more efficient to
use correlated observation errors in data assimilation systems,
good approximations of the observation-error covariance matrix
will be required. Using the method of Liu and Rabier (2002),
we have calculated REs for specific fields and have shown that
errors of representativity are correlated. However further work is
required to determine whether the inclusion of these errors in an
assimilation scheme improves the analysis.
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Appendix

Representativity error variance

Here we show why the RE variance does not alter when calculated
with different numbers of observations. We do this by considering
the calculation of the elements of the RE matrix.

RE is calculated using Eq. (11). The matrices are:

• F with j = 1 . . . p and k = 1 . . . M.
Elements defined as in Eq. (4).

• Fm with j = 1 . . . p and k = 1 . . . Mm.
Elements defined as in Eq. (4).

• W with j = 1 . . . M and k = 1 . . . M.
Elements ŵj when j = k, 0 otherwise.

• Wm with j = 1 . . . Mm and k = 1 . . . Mm.
Elements ŵj when j = k, 0 otherwise.
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• Ŝ with j = 1 . . . M and k = 1 . . . M.
Elements ŝj when j = k, 0 otherwise.

• T with j = 1 . . . Mm and k = 1 . . . M.
Elements 1 when j = k and k ≤ M, 0 otherwise.

First we calculate the elements of A = FW and B = FWT. As
many of the elements are zero, we find that Aj,k = Fj,kWj,j and
Bj,k = Fm

j,kWm
j,j when k ≤ Mm, and 0 otherwise.

Next we calculate elements of C = A − B,

Cj,k =
{

exp
(

2ikjπ
p

)
ŵj Mm < k ≤ M,

0 otherwise.
(A.1)

Now we calculate RH = ĈSC∗. Elements of E = ĈS are
Ej,k = Cj,k̂Sk,k. Finally we calculate RH = EC∗, where ··∗ is the
complex conjugate transpose and ·· is the complex conjugate,

RH
j,k =

M∑
l=0

Ej,lC
∗
l,k, (A.2)

=
M∑

l=1

Cj,l̂Sl,lCk,l, (A.3)

=
M∑

l=1

exp
(

2ijlπ
p

)
ŵl̂slŵl exp

(
−2iklπ

p

)
. (A.4)

We now show that the variance does not change when p
changes. This is the case when j = k; that is,

RH
j,j =

M∑
l=1

exp
(

2ijlπ
p

)
ŵl̂slŵl exp

(−2ijlπ
p

)
, (A.5)

=
M∑

l=1

ŵl̂slŵl. (A.6)

This does not depend on p and hence we do not expect the
variance to change when we use different numbers of observations
to calculate RE.

We now show that the correlation structure depends only
on the distance between observations and not the number of
observations.

Our model has Nm grid points separated by a spacing �x
and we have p observations. The distance between consecutive
observations is Nm�x/p. Suppose we have two observations
separated by a distance d and assume that these are observation j
and observation k. Then we have

d = (j − k)(Nm�x)

p
, (A.7)

and hence

j − k

p
= d

Nm�x
. (A.8)

Substituting this into Eq. (A.4), we obtain

RH
j,k =

M∑
l=1

ŵl̂slŵl exp
{

2ilπ(j−k)
p

}
, (A.9)

=
M∑

l=1

ŵl̂slŵl exp
{

2ilπd
Nm�x

}
. (A.10)

Hence the correlations depend only on the distance between
the observations and not on the number of observations.
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