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ABSTRACT

A multithickness sea ice model explicitly accounting for the ridging and sliding friction contributions to
sea ice stress is developed. Both ridging and sliding contributions depend on the deformation type through
functions adopted from the Ukita and Moritz kinematic model of floe interaction. In contrast to most
previous work, the ice strength of a uniform ice sheet of constant ice thickness is taken to be proportional
to the ice thickness raised to the 3/2 power, as is revealed in discrete element simulations by Hopkins. The
new multithickness sea ice model for sea ice stress has been implemented into the Los Alamos “CICE” sea
ice model code and is shown to improve agreement between model predictions and observed spatial
distribution of sea ice thickness in the Arctic.

1. Introduction

Sea ice models describe melting and freezing (ther-
modynamics) and movement and deformation of the
ice cover (dynamics) in response to atmospheric and
oceanic forces. Model simulations reveal the impor-
tance of sea ice dynamics to the climate system. For
example, in comparing simulations of Arctic sea ice
volume with submarine gathered data, Hilmer and
Lemke (2000) concluded that better models of sea ice
dynamics are required to improve understanding of the
interannual variability and discern the true climate sig-
nal. In this paper, we focus on sea ice stresses resulting
from deformation of the ice cover.

The sea ice cover is formed from floes that are of
approximately convex polygonal shape, have lateral di-
mension of between 100 m and 5 km, and are several
meters thick. Sea ice deformation occurs through the

relative motion of sea ice floes: under local divergence,
sea ice floes can separate to form linear regions of open
water called leads; in local shear, floes can slide along
their common edges; and in local convergence, floes
can break up to form linear regions of rubble piled
above and below the ice cover along floe edges known
as pressure ridges. Typically floe-scale deformation in-
volves ridging and sliding or opening and sliding, but all
types of deformation are usually present in any region
containing a collection of floes.

During pressure ridging, the ice cover first breaks in
flexure into blocks and the ridging stress is determined
by the work required to move the ice blocks against
gravity and ridging friction to form a pressure ridge.
When floes slide past each other, the sliding stress is
determined by friction between the floe edges. The fric-
tional stress is normally taken to be independent of the
rate of deformation so that the cumulative sea ice stress
is independent of strain-rate magnitude. Since the work
done in forming pressure ridges or sliding of floes past
each other is irreversible, sea ice rheological behavior is
considered to be plastic.

Since ridging redistributes ice among different thick-
nesses whereas sliding does not, the redistribution of
ice thickness depends upon the relative amount of sea
ice deformation realized through ridging as compared
with sliding (and opening). The resultant sea ice stress
used in a model of sea ice dynamics also depends upon
the relative amounts of ridging, sliding, and opening as
the stresses involved in these types of deformation dif-
fer. The relative amounts of ridging and sliding depend
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upon the type of deformation of the ice cover; for ex-
ample, more sliding of floes past each other occurs in
pure shear than in pure divergence.

Most sophisticated sea ice codes treat the ice within a
grid cell to be distributed between several thickness
categories and implement a parameterization for the
ridging work fraction introduced by Flato and Hibler
(1995). A particular feature of this parameterization is
that it implies the absence of sliding friction in pure
convergence, while discrete simulations (Hopkins 1996;
Ukita and Moritz 2000) show that the irregular shape of
floes leads to significant interfloe sliding in this case.

Sea ice models require an expression relating sea ice
strength (maximum stress in compression) to the thick-
ness of the ice that is being deformed. Most sea ice
models either set the ice strength to be proportional to
the potential energy change in forming a pressure ridge,
in which case the strength is proportional to ice thick-
ness squared, or treat the strength to be proportional to
ice thickness, adopting a parameterization due to
Hibler (1979). However, sophisticated discrete element
simulations of the pressure ridging process (Hopkins
1998) suggest that the ridging force is actually propor-
tional to the thickness of the ice being ridged to the 3/2
power.

In this paper, we introduce a new model of sea ice
stress and thickness redistribution that realistically
treats the relative fraction of ridging to sliding defor-
mation and treats ridging stresses as being proportional
to the thickness of the ice being ridged to the 3/2 power.

The paper is divided as follows: In section 2, we
briefly summarize classical thickness distribution
theory before presenting equations for the ridging, slid-
ing, and opening strengths of a nonuniform sea ice
cover. In section 3, we present the theory for the con-
struction of a yield curve using the principle of minimi-
zation of maximum shear stress for a nonuniform sea
ice cover. The specific functional forms for the depen-
dence of ridging and sliding strength upon ice thickness,
and examples of how they affect the yield curve, are
discussed in section 4. In section 5, we describe the
inclusion of our new physics into the Los Alamos
“CICE” sea ice model code and present simulation re-
sults that suggest the new model of sea ice stress and
thickness redistribution more accurately accounts for
the observed variation of ice thickness across the Arctic
Ocean. In section 6, we present a summary of our work
and our main conclusions.

2. Sea ice redistribution and strength of a
nonuniform sea ice cover

Before we begin our development, it is useful to de-
fine some common notation that will be used through-

out. We denote tensors by boldface symbols and define
the first and second invariants of the two-dimensional,
horizontal stress and strain-rate tensors � and �̇
through their principal values, the first of which is the
largest,

�I �
1
2
��1 � �2� �

1
2

�ii, ��� �
1
2
��1 � �2� ��1

2
�*ij�*ij,

�1�

�̇1 � �̇1 � �̇2 � �̇ii, �̇II � �̇1 � �̇2 ��2�̇*ij �̇*ij, �2�

where an asterisk denotes the traceless part of a tensor;
for example, �* � ��I1 � �. An alternative, useful
pair of strain rate invariants are

|�̇| ���̇I
2 � �̇II

2 , � � arctan� �̇II

�̇I
�, �3�

where �, being a measure of the ratio of shear to diver-
gence, defines the strain rate type, and

�̇I � |�̇| cos�, �̇II � |�̇| sin�. �4�

Throughout the paper we will refer to a yield-curve
aspect ratio as the ratio of its maximum shear stress to
the maximum pressure, which is normally less than
unity. The standard elliptic yield curve used by Hibler
(1979) would have an aspect ratio of 1/2.

a. Evolution of sea ice thickness distribution

We briefly recapitulate the essential elements of the
classical theory of ice thickness distribution (Thorndike
et al. 1975), which is necessary for our further develop-
ment. If ice type is identified by its thickness h (nor-
malized by 1 m) only, the state of the sea ice cover can
be described by the ice thickness distribution function
g(h), defined such that the fractional area of ice with
thickness in the range h to h � dh is given by g(h)dh.
Under pure convergence of a unit area of sea ice, dur-
ing a time 	t, only the fractional area Ar(	t) is broken
up to form ridges (consisting of sails and keels). The
ridging participation function 
r(h) [where max(
r) �

r(0) � 1] is the fraction of ice of thickness h that ridges
so that 
r(h)g(h) is the nonnormalized distribution of
ice in Ar and the normalized distribution is

ar�h� �
�r�h�g�h�

�
0

�

�r�h��g�h�� dh�

. �5�

The ridging participation function reflects how the plas-
tic deformation work done during a deformation of the
ice cover is minimized by distributing the deformation
among different ice thicknesses for a particular sea ice
state: Although the work done in a deformation of the
ice cover is a minimum if only the thinnest ice deforms,
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this is usually not possible without also deforming the
surrounding thicker ice. The standard choice of the
ridging participation function is

�r � max��1 �
G�h�

C1
�, 0� G�h� � �

0

h

g�h�� dh�,

G � C1 �6�

(Thorndike et al. 1975), where only the thinnest frac-
tion C1 of the ice cover is ridged (typically C1 is set to
0.15). The proportion of the ice ridged within the frac-
tion C1 gradually decreases from 1 to 0 as the thickness
approaches the thickest ice available for ridging.
Adopting the above participation function, the normal-
ized distribution function of ice participated in ridging,
(5), becomes

ar�h� � max�2g�h�

C1
�1 �

G�h�

C1
�, 0�, C1 � G�h*�,

�7�

where h* is the upper limit of the ice thickness affected
by ridging.

The transfer function �(h1, h2) defines the area of ice
of thickness h2 produced by ridging of a unit area of ice
of uniform thickness h1. Thus the area of deformed ice
produced after ridging of a unit area of thickness h1 is
�
0 �(h1, h2) dh2 and the total deformation (fractional
decrease in area) is �
0 �(h1, h2) dh2 � 1.

The function � is defined to be the rate of change of
area of ice of thickness h within a nonuniform sea ice
cover per unit convergent deformation, so the change
of area of ice of thickness h during time 	t in a unit area
of sea ice is

	t
�h� | �̇I | � Ar��ar�h� � �
0

�

��h�, h�ar�h�� dh��.

�8�

The fact that all redistribution of ice thickness in pure
convergence is realized through ridging is expressed by

�
0

�


�h� dh � �1, �9�

so, integrating (8), the sea ice area undergoing ridging
deformation is seen to be

Ar � | �̇I |	t��
0

��ar�h� � �
0

�

��h�, h��ar�h�� dh��dh���1.

�10�

Elimination of Ar from (8) and (10) determines the
change of area of ice of thickness h per unit deforma-
tion in pure convergence as


�h� �

�ar�h� � �
0

�

��h�, h�ar�h�� dh�

1 � �
0

� �
0

�

��h�, h��ar�h�� dh� dh�

. �11�

The evolution of the ice thickness distribution is given by

dg

dt
� 
 � Fl � g� �̇I �

�f

�h� �12�

(Thorndike et al. 1975), where d/dt is the material time
derivative, � is the ridging redistribution function, f is
the vertical freeze/melt rate, and Fl is the lateral freeze/
melt rate (added by Hibler 1980). The sea ice redistri-
bution function � accounts for the amount of ridging
and opening as a function of the deformation,


 � | �̇ | ��r���
 � ��h��o����, �13�

where �r(�) and �o(�) describe the relative amount of
deformation realized through pure convergence-type
ridging and pure divergence-type opening, respectively.
In other words, �r(�) is the fraction of ice area lost
during a unit deformation of a particular type described
by �. This is equal to unity when pure convergence is
considered, � � �. Similarly, �o(�) is the fraction of
open water area created during a unit deformation of a
particular type described by �, which is unity for pure
divergence, � � 0. The function �(h) is 2 times the
Dirac delta function, so defined that �(h) � 0, �h � 0,
and �
0 �(h) dh � 1. As � describes only mechanical ice
redistribution, by neglecting all thermodynamics effects
and integrating (12) over all ice thicknesses we obtain

�
0

�


�h� dh � �̇I. �14�

Similar integration of (13) and accounting for (4), (9),
and (14) produces the standard relationship between
the opening and ridging modes (Thorndike et al. 1975),

�0 � �r � cos�. �15�

The particular form of �r used in this work will be
discussed later on.

b. Ridging, sliding, and opening ice strengths of a
nonuniform sea ice cover

During sea ice deformation ridging, sliding, and
opening occur simultaneously. Their contributions vary
with the deformation type: for example, more sliding
occurs in shear than in compression. The importance of
a particular type of interfloe motion on the work done
is described by its strength. The ridging ice strength Pr

can be defined as the work necessary to produce ridges
in a unit convergence of a unit area of sea ice. Since
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ridging of an ice cover with a range of ice thicknesses is
not uniformly distributed over all thicknesses, the ridg-
ing ice strength Pr is given by the integral of the ridging
strengths of single ice thicknesses P*r (h) weighted by
their fractional areas undergoing ridging:

Pr �
Ar

�̇I	t �0

�

P*r �h�ar�h� dh

�

�
0

�

P*r �h�ar�h� dh

1 � �
0

� �
0

�

��h�, h��ar�h�� dh� dh�

, �16�

where the final expression was obtained using (10).
With the assumption that no lead opening occurs in
pure convergence, the single-layer ice strength, P*r (h),
is given by the work necessary to ridge a unit area of ice
into thicknesses h� areally distributed as �(h, h�) di-
vided by the convergence magnitude, 1 � �
0 �(h, h�) dh�.

The sliding ice strength Ps of a nonuniform ice cover
can be treated in a similar fashion to that in ridging. Let
us denote by P*s (h) the work done by frictional sliding
along floe–floe boundaries in a unit sliding deformation
of ice of thickness h. Sliding deformation rate | ḋ | is
defined as the sliding velocity integrated over all floe
edges in a unit sea ice area (Moritz and Ukita 2000).
For a fixed deformation rate | �̇| the sliding rate changes
as the flow type changes. This is described by introduc-
tion of the sliding mode �s(�) such that | ḋ | � �s(�) | �̇ | .
Sliding work increases with the floe thickness, and thus
it is natural to introduce a sliding participation function,
analogous to the ridging participation function, that
models the preferential sliding of thinner ice floes in
shear, 
s(h) [where max(
s) � 
s(0) � 1]. The relation
between 
r and 
s depends on the relation between the
ridging and sliding ice strengths: If the ridging and slid-
ing ice strengths are proportional, then one would ex-
pect that 
r � 
s, whereas if the sliding ice strength
increases less rapidly with ice thickness than the ridging
strength does, one would expect there to be more
thicker ice involved in sliding than in ridging. The frac-
tion of ice area undergoing sliding deformation is given
by As � �
0 
s(h)g(h) dh, and the normalized ice thick-
ness distribution is

as�h� �
�s�h�g�h�

�
0

�

�s�h��g�h�� dh�

. �17�

As no sliding occurs out of this active area, the sliding
rate in it is | ḋs | � | ḋ | /As. The cumulative work of slid-
ing per unit sliding deformation is given by

Ps �
1

| ḋ |
�

0

�

P*s �h� | ḋ
s |Asas�h� dh � �

0

�

P*s �h�as�h� dh.

�18�

Note that the same result is obtained if 
s(h) describes
not the difference in the ice fraction undergoing sliding,
but the difference of the sliding-rate magnitude be-
tween different ice thicknesses when the entire sea ice
area undergoes sliding. In this case as(h) would describe
the relative distribution of sliding among different ice
thicknesses and the last integral in (18) would deter-
mine the cumulative work arising through it.

We can treat ice strength in opening Po of a nonuni-
form ice cover in the same way as strength in ridging
and sliding. The work performed in a unit pure diver-
gence deformation of an ice cover of a uniform thick-
ness h is defined to be P*o(h), which describes the con-
tribution of tensile stress due to lead formation. We
introduce an opening participation function 
o(h)
[where max(
o) � 
o(0) � 1] so that the fractional area
undergoing the opening deformation is Ao � �
0

o(h)g(h) dh, and the mean strain rate in this region is
�̇I /Ao. The normalized opening ice thickness distribu-
tion is

ao�h� �
�o�h�g�h�

�
0

�

�o�h��g�h�� dh�

. �19�

The cumulative work per unit deformation under di-
vergence due to sea ice opening then takes the form

Po � �
0

�

P*o�h�ao�h� dh. �20�

3. Sea ice yield curve from the deformation power
of a nonuniform layer of sea ice

a. Underlying theory for a uniform sea ice layer

Rothrock (1975) related the rate of doing plastic
work by deformation of a unit-thickness sea ice cover to
the work done by ridging. Ukita and Moritz (1995,
2000) and Moritz and Ukita (2000, hereinafter UM),
generalized this approach by including the contribution
to plastic work from sliding so that the rate of doing
plastic work in deformation is given by

�I�̇I � �II�̇II � |�̇ | �P*r �r��� � P*s �s����, �21�

where the stress and strain-rate principal axes are
aligned. The ridging and sliding modes, �r and �s, de-
termine how much ridging and sliding are produced
during sea ice deformation. Moritz and Ukita (2000)
determined the ridging and sliding modes using kine-
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matic considerations: The deformation of a region con-
taining a collection of randomly oriented polygonal
floes was interpolated and rotated along the floe edges
in the region so that the deformation perpendicular to
the floe edges (ridging/opening) and parallel to the floe
edges (sliding) could be calculated. The ridging and
sliding modes that we will be using throughout the pa-
per, calculated by UM, are depicted in Fig. 1. (Note that
� � 0 in pure divergence, � � �/4 in uniaxial extension,
� � �/2 in pure shear, � � 3�/4 in uniaxial contraction,
and � � � for pure convergence.)

The plastic yield curve was derived by UM using an
assumption that a value of �I corresponds to such � that
minimizes the shear stress found from simple rear-
rangement of (21),

�II �
1

sin�
�P*r �r��� � P*s �s��� � �I cos�� �22�

[where we have used (4)] so that the yield curve is given
by the locus of points

{�I, min
�

�II��I, ��}. �23�

b. Development of the theory for a nonuniform sea
ice cover

The ridging and sliding modes �r and �s determined
by UM were found from kinematic considerations con-
cerning floe geometry for an ice cover of uniform thick-
ness. We adopt the same ridging and sliding modes for
an ice cover consisting of ice of various thicknesses, as
this does not affect the kinematic arguments used by
UM. The participation functions account for the con-
centration of deformation into the thinner ice. The rate
of doing plastic work per unit sea ice deformation of a
nonuniform sea ice cover is similar to that given by (21)
(work per unit time) divided by the strain rate magni-
tude | �̇ | ,

�I cos� � �II sin� � Pr�r��� � Ps�s��� � Po�o���,

�24�

where we have added a term that accounts for work
done in opening and used the multilayer ice strengths
for ridging, sliding, and opening given by (16), (18), and
(20), respectively.

In a similar manner to Wilchinsky and Feltham
(2004), we consider ridging, sliding, and opening stress
contributions normalized per unit ice strength sepa-
rately and these are determined by

�I
r cos� � �II

r sin� � �r���, �II
r � min

�
�II

r ��I
r, ��,

�25�

�I
s cos� � �II

s sin� � �s���, �II
s � min

�
�II

s ��I
s, ��,

�26�

�I
o cos� � �II

o sin� � �o���, �II
o � min

�
�II

o ��I
o, ��.

�27�

The word “normalized” is used to accentuate their in-
dependence of the sea ice thickness. The solutions
{�r

I(�), �r
II(�

r
I)}, {�s

I(�), �s
II(�

s
I)} have been calculated nu-

merically, and polynomial approximations are given in
the appendix. The yield curve contribution from ridging
and sliding and their polynomial interpolations are pre-
sented in Fig. 2 using �r and �s calculated by UM and
presented in Fig. 1. The direction of the strain rate for
each of the yield curves is normal to the yield curve,
departing from normality slightly on the left branch of
the sliding contribution yield curve (which we believe is
due to numerical errors in data approximation). We
treat the flow law for the separate ridging and sliding
yield curves to be normal.

FIG. 1. Ridging mode �r(�) (solid line) and sliding mode �s(�)
(dashed line) as found by Ukita and Moritz (2000) for a Poisson
distribution of cracks.

FIG. 2. The normalized ridging and sliding stress contributions �r

and �s (solid) and their polynomial approximations (dashed).
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We introduce the tensor

�a��̇� � Pr�
r��̇� � Ps�

s��̇� � Po�o��̇�, �28�

where �r(�̇), �s(�̇) and �o(�̇) are the normalized ridg-
ing, sliding, and opening stress tensors determined by
(25)–(27). Since the principal axes of the stresses and
strain rate coincide, we can write

�I
a � Pr�I

r � Ps�I
s � Po�I

o �29�

and (provided the largest principal values of �r, �s, and
�o belong to the same axis)

�II
a � Pr�II

r � Ps�II
s � Po�II

o . �30�

The definition of �a and (29) and (30) imply that �a

satisfies (24). Furthermore, since �a
I(�) is a monotone

function with �a
I(0) � 0 and �a

I(�) � �I(�) � 0, for a
particular value of �I satisfying �a

I(�) � �I � 0, we can
find �0 such that �I � �a

I(�0). This allows us to write

�II �
1

sin�
�Pr��r � �I

r��0� cos�� � Ps��s � �I
s��0� cos��

� Po��o � �I
o��0� cos��� �31�

and we rewrite the yield curve (23) as

��I
a��0�, min

�
�Pr�II

r ��, �I
r��0�� � Ps�II

s ��, �I
s��0��

� Po�II
o ��, �I

o��0����. �32�

As �r
II[�, �r

I(�0)], �s
II[�, �s

I(�0)] and �o
II[�, �o

I (�0)] are
minimized by � � �0, the yield curve for the full solution
of (23) and (24) is given by the locus of points

��I
a, min

�
�II

a ��I
a, ���. �33�

Since both � and �a satisfy the plastic work equation
(24) and the principle of shear stress minimization (23),
it follows that � � �a.

Since �o � �r � cos �, we can write (27) as

��I
o � 1� cos� � �II

o sin� � �r���, �34�

so, at a point on the yield curve, �o
I � 1 � �r

I, �
o
II � �r

II,

�o��̇� � 1 � �r��̇�, �35�

and the normalized yield curve for opening is deter-
mined by that for ridging. This means that the general
sea ice stress expression (28) can be written in terms of
the ridging and sliding stress contributions only,

���̇� � Po1 � �Pr � Po��
r��̇� � Ps�

s��̇�. �36�

4. Ice thickness dependence of ridging and sliding
strengths

Up to this point, we have not considered the particu-
lar dependence of the ice strengths in ridging and slid-
ing of a uniform ice layer upon the ice thickness. Sev-
eral functional forms for the dependence of ridging ice
strength on ice thickness have been used in the past.
Rothrock (1975) related ice strength in convergence to
the change in potential energy involved in forming a
pressure ridge (and keel). This led Overland and Pease
(1988), Holland (2001), and Wilchinsky and Feltham
(2004) in their single-ice-layer models to set the ridging
ice strength proportional to h2. This approach produces
the multilayer ice strength in the form

Pr
R � CfCp�

0

�


h2 dh, Cp � 1�2��i ��w�b��w � �i�,

�37�

where b is gravitational acceleration, and Cf accounts
for the frictional ridging (Hopkins 1994) and is usually
taken to be 17 (Flato and Hibler 1995). Another sea ice
strength formula in current use for both two-layer and
multilayer sea ice models is a linear relation between
ridging ice strength and the mean thickness proposed
by Hibler (1979),

Pr
H � P*He�CH�1�C�, �38�

where H is the mean ice thickness, C is the relative area
covered in sea ice, and P* and CH are parameters, with
typical values of P* � 5000–27 500 N m�1 and CH � 20.

When only one crack in sea ice is considered, then
the ridging and sliding forces determine the corre-
sponding ice strengths. Discrete element simulations by
Hopkins (1998) carried out for a particular set of ma-
terial parameters reveal that a pressure ridge forms by
growth of the sail until a buckling threshold is reached.
The force necessary to increase sail height is deter-
mined by pushing a train of blocks over the sail surface,
which, for the adopted values of material parameters, is
equal to 7300h3/2L1/2 N m�1, where L is the length of
lead ice pushed into the ridge. The next phase starts
when this force reaches the buckling force, 95 400h3/2 N
m�1, which happens always at the same L � Lf � 107.7
m. Although in the context of a continuum sea ice dy-
namics model, it is difficult to determine which stage of
ridge building is occurring; it is noteworthy that both
ridging forces are proportional to h3/2.

The choice of a specific transfer function �(h, h�)
adopted in a continuum sea ice model may not neces-
sarily correspond to the transfer function recovered
from a discrete element simulation and so we now con-
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sider how a particular choice of the sea ice transfer
function may affect the ice strength. We consider the
transfer function �(h, h�) introduced by Hibler (1980)
that corresponds to the buildup of a ridge of triangular
shape: uniform ice is redistributed between 2 times the
thickness of the ice being ridged and a maximum ridge
thickness of 2�H*h,

��h, h�� �
1

2�H* � h�
, 2h � h� � 2�H*h.

�39�

From this, a ridge formed from a uniform sea ice layer
of thickness h has a fractional area of (1 � �H*/h)�1.
For ice of thickness h � 1 the fractional ridge area is
estimated as 0.1 when H* � 100 (Hibler 1980) and 0.2
when H* � 25 (the standard value in the Los Alamos
CICE code). In his analysis, Hibler assumed the aspect
ratio of ridges to be constant, which means that the
angle between the ridge surface and the vertical, �, is
also constant. In this case, since a keel is typically 5.5
times the sail (Sisodiya and Vaudery 1981), the sail
height is about 2�H*h/6.5. The component of the
force of gravity perpendicular to the sail surface per
unit length of the sail, that is, the normal traction, is
given by  hb sin�, where b is the acceleration due to
gravity. This determines the frictional force acting on
the train of blocks, of length L, that are pushed into the
ridge as ! hb sin�L, where ! is the coefficient of ice
friction. Since the sail surface length is about 2�H*h/
(6.5 cos�), the work done by moving the train of ice
blocks over the sail surface is estimated (as not all
blocks move along the whole surface) as (2/6.5)L! b
tan�h3/2b�H*. Since the ridge area is small in com-
parison with the ice sheet consumed in its formation,
the fraction of the ridged ice is effectively unity, which,
in turn, determines a unit ridging deformation. There-
fore the work per unit ridging deformation, which is the
ridging ice strength, is given by

P*r � 0.3��b tan��H*h3�2. �40�

(The inequality arises because we considered the maxi-
mum ridge height, whereas not all ridges will reach this
height and so the ridging work would be less.) If we
assume that the ice friction coefficient !, accounting for
both dry and wet friction, does not depend on the ridge
form, then the ridging ice strength in similar triangular
ridges is affected only by the parameters � and H*. In
particular, for the same ridge aspect ratio (� � const),
the ridging ice strength is proportional to �H*. When
all parameters in (39) are fixed, we can unite the con-
stants not altered in the model of redistribution into
one to write

P*r � �h3�2, �41�

where the constant of proportionality " cannot exceed a
value determined by the ice buckling force, which for a
particular set of material parameters was found by
Hopkins (1998) to be 95 400 N m�1. Thus, the ridging
ice strength calculated using the transfer function (39)
is proportional to h3/2 in agreement with the discrete
element approach.

We now consider the sliding strength. If sliding along
a floe edge was always accompanied by ridging along
the edge, then the sliding force could be related to the
ridging force by a frictional law, P*s � !P*r , where ! is
the coefficient of friction of ice, which we will assume to
be constant. In reality, sliding need not be accompanied
by ridging so that typically the normal stress exerted
across a sliding floe edge can be less than that deter-
mined by the ridging force.

This may be modeled by adopting the relationship

P*s � kP*r , �42�

where the value of the constant k differs from that of !
in order to account for lower sliding friction and which
can be determined by comparing model results with
observations. Use of the parameter k (rather than !)
enables the dynamical characteristics of floe motion,
not captured by the simple kinematic model of UM, to
be partly accounted for. In particular, as can be seen
from (22), if P*s � !P*r is used, then a decrease of the
ice friction coefficient would lead to a decrease in the
ratio of sliding power to ridging power whereas dy-
namic, discrete element modeling by Hopkins (1996)
revealed the exact opposite: a decrease of the coeffi-
cient of friction implies that less energy is required to
slide floes than to ridge them in some places, which
leads to a higher amount of sliding and, consequently, a
higher deformation power due to sliding. Despite such
a difference in treating the sea ice deformation power
as a function of the coefficient of friction, the partition
into ridging and sliding power given by the simple ki-
nematic model of UM and (42) reproduces the partition
calculated with the dynamic model of Hopkins (1996)
reasonably accurately, as can be seen in Fig. 3. From
(41) and (42), we assert that the sliding ice strength of
a uniform layer is given by

P*s � k�h3�2. �43�

No clear understanding, and therefore no common
agreement, have yet been attained by sea ice research-
ers as to the role of the opening strength (tensile
strength) in sea ice models. Laboratory-scale experi-
ments show that the tensile strength is about 1/10 of the
compressive strength (Schulson and Nickolayev 1995).
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On the other hand, in situ measurements during the Sea
Ice Mechanics Initiative (SIMI) experiment, for ex-
ample, Lewis and Richter-Menge (1998), recorded ten-
sile stresses of around 75 kPa, whereas compressive
stresses were around 25 kPa. The same typical com-
pressive stresses were recorded during the Surface Heat
Budget of the Arctic Ocean (SHEBA) field experiment
(Richter-Menge et al. 2002). Even though the tensile
strength is small, it may play a role in areas of low
tensile wind force. A nonzero tensile strength is known
to cause instabilities (Gray 1999) that can be both nu-
merical and mechanical. Here we aim at studying how
the adopted yield curve shape, ridging strength, and
ridging rate will affect the sea ice evolution. The im-
portance of tensile strength would require a separate
study, and thus in the following analysis, for the pur-
poses of clarity, we neglect any contribution to ice
strength from opening deformation, that is, P*o � 0.

Let us consider the yield-curve shape sensitivity to
variation in k. Adopting (43) for the sliding frictional
ice strength means the ratio of the ridging force at two
different ice thicknesses is equal to the similar ratio of
the sliding force, P*r (h1)/P*r (h2) � P*s (h1)/P*s (h2).
Therefore, we assume that the change of the fractions
of the sea ice involved in ridging and sliding depends
upon ice thickness in the same way so that 
r � 
s

and ar � as. In this case the relative contribution from
sliding and ridging to the rate of doing plastic work is
given by

Ps

Pr
� k�1 � �

0

� �
0

�

��h�, h��ar�h�� dh� dh��
�44�

and, for a fixed k, this ratio depends only upon the ice
thickness distribution. Equation (44) identifies the de-

gree to which the sea ice yield-curve shape varies
when the ice thickness distribution changes. The vari-
ability of this ratio is determined by the term �
0 �
0 �(h�,
h)ar(h�) dh� dh, which is the area of the ridges formed
by ridging of a unit area of ice. The latter was estimated
to be 0.1 for H* � 100 for the transfer function (39), so
the ice strength ratio variability is estimated as 0.1k,
which, given k � 1, is not greatly significant.

Here, we present an example yield curve calculation
using (33), (41), and (43) for a particular ice thickness
distribution. We considered a smooth approximation of
an ice thickness distribution inferred from submarine
measurements of draft in May 1987 within two regions:
Zone A extends from the North Pole to 85°N and Zone
B extends from 85° to 82°N across the north of Green-
land (Fig. 6 in Wadhams 1987). The ice thickness dis-
tribution in Zone A was derived from a 600-km profile.
No data are available on the length of profile in Zone B.

The draft-to-thickness conversion factor was taken as
1.126 (Comiso et al. 1991) and the smoothed thickness
distribution function g(h) appropriate for both these
regions is shown in Fig. 4. The normalized yield curve
(36) with the normalized ridging and sliding contribu-
tions described in the appendix and ice strengths (41)
and (43) are shown in Fig. 5 with k set to 0.2, 0.6, and
1. Also shown in Fig. 5 is the elliptic yield curve of
Hibler (1979) with aspect ratio equal to 1/2. For k � 0.6
and 1, the shear strength of our yield curve is greater
than two times larger than that of the elliptic curve.

A number of yield curve shapes have been proposed
by sea ice modelers (see Fig. 6). The most widely used
is an elliptic one (Hibler 1979). As an aggregation of ice
floes resembles a granular material, Tremblay and
Mysak (1997) used a Mohr–Coulomb-type triangular
yield curve. A sine-wave yield curve was obtained by
Bratchie (1984) studying inelastic floe collision. An ice-

FIG. 3. The fraction of the rate of work going into ridging and
sliding using the UM kinematic model with k � 0.45 and the
dynamic model of Hopkins (1996) with ! � 0.8.

FIG. 4. Mean ice thickness distribution within regions A and B
of the Arctic as described by Wadhams (1987) in May 1987. Zone
A extends from the North Pole to 85°N, and Zone B extends from
85° to 82°N across the north of Greenland.
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cream-cone yield curve was originally adopted by Coon
(1972), who considered the analogy of sea ice with a
granular soil. Laboratory experiments produced similar
results (Schulson and Nickolayev 1995) that have been
used for larger-scale modeling, for example, Hibler and
Schulson (2000). Yield curves of a similar droplet shape
have been produced by considering floe collision (Shen
et al. 1987), applying the method of characteristics
(Pritchard 1988), discrete element simulation (Hopkins
1996), and studying the effect of the presence of two
leads (Hibler and Schulson 1997). Although ice-cream-
cone and Mohr–Coulomb-type yield curves are used in
large-scale Arctic simulations (Armstrong et al. 2003;
Heil and Hibler 2002), the most commonly used yield
curve still remains an elliptic yield curve. Depending on
a particular value of the parameter k, the yield curve
shape used here can change from that determined by
only ridging (k → 0), which is more similar to a sine-
wave shape, to that determined by sliding (k → 
),
which has a shape of an imperfect ice cream cone. The
sea ice dynamics are determined not only by the yield
curve shape but also the flow rule.

5. Simulations of the Arctic sea ice cover

We have incorporated our new model of sea ice rhe-
ology into the Los Alamos CICE sea ice model code
(version 3.0, freely available online at http://
climate.lanl.gov/Models/CICE/), which describes both
the thermodynamic and dynamic evolution of the sea
ice cover. A full description of the Los Alamos CICE
sea ice model code is contained in the user manual
(Hunke and Lipscomb 2001). To incorporate our new
sea ice rheology, we changed the sea ice strengths for

ridging and sliding, now given by (43); changed the area
loss rate due to ridging, which is now given by | �̇ |�r(�);
and inserted a new routine for calculating sea ice stress.
The sea ice stress calculation was modified to include
our sea ice rheology, but following Hunke and Dukow-
icz (1997) we introduced artificial elasticity. Elasticity
was included not to describe any physical effect, but to
make use of an efficient, explicit numerical algorithm
used to solve the full sea ice momentum balance. We
represent the plastic sea ice rheology in standard, re-
duced Reiner–Rivlin form:

� � ���̇�1 � 2���̇��̇*, �45�

where �̇* is the traceless part of the strain rate and
plasticity is ensured by homogeneity of the scalar coef-
ficients # and $ with respect to strain rate magnitude of
order zero and minus unity, respectively. The scalar
coefficients, interpreted as viscosities, are given by

� � �I����̇��, � � �II����̇����̇II, �46�

where �%(�), �%%(�%) are given by (29) and (30) and
�r,s

I (�), �r,s
II (�r,s

I ) are represented through the polyno-
mial approximations given in the appendix. The elastic–
viscous–plastic rheology is given by

T
��

�t
� � � ���̇�1 � 2���̇��̇*, �47�

where T is an elastic relaxation time scale and we have
written a partial time derivative instead of an objective
corotational time derivative because the advectional
terms are relatively small (Hunke and Dukowicz 1997).
In the case of an elliptic yield curve with aspect ratio
1/ea, the above model becomes identical with the elas-
tic–viscous–plastic (EVP) model of Hunke and Duko-
witz (1997) if the elastic relaxation time for the isotro-
pic part of the stress �% is taken to be e2

a times that for

FIG. 6. Some yield curve shapes used in sea ice modeling. The
proposed yield curve is plotted for k � 1.

FIG. 5. The normalized yield curves found using the ice thick-
ness distribution within regions A and B for k � 0.2 (solid), k �
0.6 (dashed), and k � 1 (dotted–dashed), as well as the elliptic
yield curve with an aspect ratio equal to 1/2 (dotted).
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tension and shear stresses. An explicit time-stepping
algorithm was implemented into the Los-Alamos CICE
sea ice code

T
�̂ � �

�te
� �̂ � ���̇�1 � 2���̇��̇*, �48�

where &te is the elastic subcycling time step and the
stress value at the end of the time step is identified by
a caret. For zero strain rate the viscosity coefficients are
not determined. In this case, we assume that, when the
deformation has stopped, the stress remains the same.

The modified Los Alamos CICE sea ice model was
run in stand-alone mode with external forcing data
identical to that adopted by Miller et al. (2005). In par-
ticular, 40-yr European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis (ERA-40)
data were used to impose 6-hourly 10-m winds, snow-
fall, longwave and shortwave radiation, and daily 2-m
temperatures were adopted from the Polar Exchange at
the Sea Surface (POLES)/International Arctic Buoy
Programme (IABP) data. The oceanic heat flux was
calculated from a mixed layer model, while the ice–
ocean drag was found from the temporally constant,
but spatially varying, ocean currents of Zhang et al.
(1998). The model was run on a rotated latitude–
longitude grid with 1° resolution and was spun up for 10
years using 1980 forcing repeatedly, after which it simu-
lated Arctic sea ice from 1980 to 2001. The sea ice
thickness distribution function was represented through
the open water fraction and nine ice thickness catego-
ries of varying size with higher resolution for thinner
ice. The modified routine for calculating sea ice stress
showed slightly less accuracy than the standard elastic–
viscous–plastic rheology with an elliptic yield curve and
it was necessary to choose a subcycle time step &te of 36
s instead of the standard 90 s.

a. Comparison between observed and modeled ice
thickness

Several model runs were performed and the predic-
tions of sea ice thickness were compared with two
datasets: European Remote Sensing Satellite (ERS) al-
timeter-derived ice thickness for the months of Novem-
ber to April between 1993 and 2001 below 81.5°N
(Laxon et al. 2003; Miller et al. 2006) and the ice draft
derived from digitally recorded upward-looking sonar

draft data from nine U.S. and U.K. submarine cruises
between 1987 and 1997, described in Rothrock et al.
(2003). The areas covered by ERS and the submarine
cruises are shown in Figs. 7a and 7b. The submarine
cruise drafts are given in terms of their mean values
averaged over linear segments of 10–50 km.

The model simulations differed in two main respects:
(i) sea ice rheology, with either the EVP model with
elliptic yield curve with aspect ratio of 1/2 (denoted
“Hibler”) or the rheology presented in this paper (de-
noted “Present”); (ii) ice strength, for which three pa-
rameterizations of ridging strength were tested: the
strength law of Rothrock (37) (denoted “Rothrock”),
the strength law of Hibler (denoted “Hibler”), and the
strength law presented in this paper (16), (18), and (43)
(denoted “Present”). When the Hibler or Rothrock
ridging ice strengths were used with the Present rheol-
ogy, the sliding ice strength was determined from (44).
The Present ice strength was not used together with an
elliptic yield curve since the nonmodified CICE code
was used for the Hibler (elliptic) yield curve. The ridg-
ing ice strength constants ", P*, and Cf given in Table 1
were set to provide the best match with the ERS-de-
rived ice thickness data in winter 2001/02, and the frac-
tion of sliding to ridging strength k was set to 0.6 except
where otherwise stated. The rheology and ice strength
combinations are identified by pairs in parentheses,
where the first term identifies rheology and the second
term identifies ridging strength; for example, (Present,
Hibler) means that the rheology described here was
used together with the Hibler ice strength formula.

In terms of the evolution of the mean ice thickness
over the area covered by the ERS data, all models per-
formed similarly with only slight differences in different
years, Fig. 8. Usually models employing the Hibler ice
strength produced lower mean ice thickness in 1996–99.
The differences between model configurations is more
pronounced when the spatial distribution of the mean
ice thickness over the same area is compared, Fig. 9.
Here, it is seen that the combination of rheology and ice
strength presented in this paper (Present, Present) per-
formed better than the other configurations. In particu-
lar, there is much greater difference between the mea-
sured and modeled ice thickness for ice thicknesses
smaller than 2 m when the Hibler rheology is used, or
the Present rheology with the Hibler or Rothrock ice
strengths. When the Present rheology is used then the

→

FIG. 7. Spatial plots for the (first column) time-average observed data, (second column) (Present, Hibler) model
bias, and (third column) (Hibler, Hibler) model bias. (a) The ERS ice thickness data, (b) submarine-derived ice
drafts, and (c) and (d) Polar Pathfinder ice speeds and velocity angles (with respect to 90° lon).
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largest difference at the peaks is produced using the
Hibler ice strength, while the smallest difference is pro-
duced using the Present ice strength. Computations
show that an increase of the ice strength leads to a shift
of the peaks to the left, corresponding to a smaller
mean ice thickness and vice versa. The peak shape de-
pends on the rheology and ice strength formula used,
which is especially evident for the Hibler rheology with
the Hibler and Rothrock ice strengths. As the data and
model ice thickness over the entire observed domain
were used to fit the model parameters in Table 1, the
model–data discrepancy around the peak area and the
small and large thickness arms are correlated: An un-
derestimation of the ice thickness around the peak is
accompanied by an overestimation of the ice thickness
in the arms. Furthermore, as the tops consist of several
local maxima, the positions of the highest peaks do not
coincide.

Scattergrams of the monthly ice thicknesses averaged
over the observed area are shown in Fig. 10 with the
linear interpolations shown by the dashed lines. Here
again the Present model produces a better fit than the
others.

The statistics of the model results are presented in
Table 2. The correlation, denoted as “Cor,” is the spa-
tial correlation: it is calculated by considering the cor-
relation of the monthly ice thickness over all grid points
covered by observations at a particular month and then
averaging all such monthly correlations with regard to
time. The root-mean-square difference (RMSD) is
found similarly by calculating a square root of the mean
of the squared difference between the observed and
modeled monthly data over all grid points covered by
observations at a particular month, and then averaging
all such monthly RMSD values with regard to time.
Bias is given as the mean difference between the model
and observation ice thicknesses. From this, more rigor-
ous, comparison we see that the best fit is given by the
model using the Present rheology and Hibler ice
strength.

To analyze the difference between the spatial thick-
ness distribution produced by different models in more
detail, we consider the submarine-measured ice drafts.
As was shown by Rothrock et al. (2003), model runs
using a viscous plastic sea ice rheology with an elliptic
yield curve with aspect ratio of 1/2 poorly described the
spatial ice thickness distribution obtained from U.S.
and U.K. submarine cruises between 1987 and 1997. To
make such a comparison with our model runs we used
the submarine-derived ice drafts averaged over 2° bins
of latitude (Miller et al. 2005). The results of the model
runs and the observations are presented in Fig. 11. Gen-
erally the new, Present, rheology describes the spatial
ice draft pattern better, although there is no significant
difference between using the ridging strength of Roth-
rock or that presented in this paper. All results using
multithickness ice strengths are characterized by a
prominent ice draft increase south of 74°N. It is notable
that all model configurations predicted ice concentra-
tions (averaged over all cruises) of less than 80%
around 75°N, whereas in all other latitudes it was more

FIG. 8. Temporal evolution of the basin mean ice thickness during winter determined from ERS observations: (a) the Present
model and (b) that using the Hibler rheology and ridging strength law in the CICE model. The vertical lines are the error bars.

TABLE 1. Model parameters ", P*, and Cf chosen to optimize
the model fit with ERS data as k changes. Pr.ls.shear is Present
less shear.

Rheology
Ice

strength k
"/95 400
(N m�1) Cf

P*
(kN m�1)

Present Present 0.2 0.5 — —
Present Present 0.6 0.4 — —
Present Present 1 0.327 — —
Present Rothrock 0.6 — 7.2 —
Present Hibler 0.2 — — 14
Present Hibler 0.6 — — 11.5
Present Hibler 1 — — 9.7
Pr.ls.shear Hibler 0.2 — — 13.4
Hibler Hibler — — — 8
Hibler Rothrock — — 8.5 —
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that 90%. As the ice strength depends on the open
water fraction, we checked if a change of C1 (the frac-
tion of the ice cover undergoing deformation) im-
proved the comparison with observations. It was found
that increasing C1 from its standard value of 0.15 to 0.3
increased the discrepancy around 73°N and decreasing
C1 to 0.1 made no noticeable difference. Using the rhe-
ology presented in this paper with the Hibler represen-
tation of ice strength led to the closest match between
model predictions and observations.

A sensitivity study was performed to study the influ-
ence of the ratio of sliding to ridging strength, that is,
the parameter k, on the model predictions. As the yield
curve shape and size varies as k changes, fitting the
ERS data requires choosing different ", P*, and Cf for
different values of k, presented in Table 1. In Fig. 12,
we show a comparison of model predictions of the
mean ice draft with the drafts derived from the subma-
rine data reported in Rothrock et al. (2003) for k set
equal to 0.2, 0.6, and 1. The change of k did not produce
any significant effect on the spatial distribution of the
mean ice draft. From Fig. 2 it is clear that, even if the
sliding strength is neglected entirely, k → 0, the yield

curve aspect ratio is still more than 1.3 times that of the
standard elliptic yield curve with an aspect ratio of 1/2.

The statistical characteristics for these data are given
in Table 2, where all data are given by considering the
draft values over all measurements. Again, the model
with the proposed rheology and Hibler ice strengths
produced the lowest RMSD and the highest correla-
tion.

Miller et al. (2005), who used the CICE sea ice model
code (version 3.0), showed that an increase of the shear
strength of sea ice can lead to a better spatial ice draft
distribution as compared with the submarine data in
Rothrock et al. (2003). This was achieved using an el-
liptic yield curve with a reverse aspect ratio of ea �
�0.5. Although better agreement with the submarine
data was achieved, adopting such a high shear-stress
yield curve (e.g., when ea � �0.5) implies significant
tensile stress that is not believed to be appropriate for
sea ice. In addition to its direct effect on the momentum
balance, the increase of the shear strength using the
high-shear-stress elliptical yield curve affects the ice
draft distribution through the ridging rate determined
from the Flato and Hibler (1995) parameterization

FIG. 10. Scattergrams of the modeled vs ERS-observed monthly mean ice thickness for (a) the Present model, (b) Present rheology
with Hibler ice strength, and (c) the (Hibler, Hibler) model. The dashed line shows the linear best fit. The vertical lines are the error
bars.

FIG. 9. The PDF of mean ice thickness over the area of thickness observations obtained using ERS given by the (a) Present and
(b) Hibler (elliptic) rheological models with different ice strength formulas.
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[their (23) with Cs ' 0]. As the yield curves that we
calculate in our model of sea ice rheology, based on the
ridging and sliding modes of UM, have a higher shear
stress than that given by the elliptic curve of Hibler, this
may explain why the Present model produced a better
match with the submarine observations. To investigate
if it is the higher shear stress or more realistic descrip-
tion of the ridging and sliding modes in our model that
leads to better agreement with observations, we per-
formed a model run with k � 0.2 and the Hibler ice
strength but artificially decreased the shear stress of our
yield curve by a constant factor to ensure that its aspect
ratio is 1/2, identified as “Present less shear” on plots
and “Pr.ls.shear” in tables. The results presented in Fig.
13 show that, indeed, although the model performed
worse than that with the original nonmodified yield

curve, it still produced a better fit with observations
than the elliptic curve with the same aspect ratio. This
implies that the Present model produces a better match
with the submarine observations not only because it
ensures a higher shear stress than that of the elliptic
yield curve, but also because it describes the ridging–
sliding energetics in a more physical way.

b. Comparison between observed and modeled ice
velocity

Gridded, monthly mean ice motion vector fields from
the Polar Pathfinder Daily 25-km EASE-Grid Sea Ice
Motion Vectors dataset (Fowler 2003) were used to
validate the modeled sea ice motion. Daily gridded ve-
locity fields were first created (Fowler 2003) by opti-

FIG. 11. Ice draft spatial distribution averaged over U.S. and
U.K. submarine cruises from 1987 until 1997. The model results
are labeled by rheological model and ice strength type.

FIG. 12. Sensitivity of model predictions of ice draft to a change
in the parameter k and the observations of ice draft obtained by
averaging over U.S. and U.K. submarine cruises from 1987 until
1997.

TABLE 2. Statistical characteristics of the model ice thickness results. The ERS correlation, “Cor,” is a spatial correlation over the
monthly ice thickness at the grid points averaged over all months between 1993 and 2001. The ERS root-mean-square difference,
“RMSD,” is a square root of the spatial mean of the squared difference between the observed and modeled monthly data averaged over
all considered months. The submarine draft statistics are integrated over all cruise draft points (Fig. 7b). The overall mean ERS-derived
ice thickness is 2.72 m. The overall mean submarine-derived ice draft is 2.56 m. RMSD and bias are in meters. Pr.ls.shear is Present less
shear.

Rheology Ice strength k Cor RMSD Bias Cor RMSD Bias

Data source → ERS ERS ERS Sub Sub Sub

Present Present 0.2 0.525 0.888 �0.135 0.674 0.868 �0.381
Present Present 0.6 0.531 0.895 �0.111 0.686 0.839 �0.337
Present Present 1 0.537 0.889 �0.138 0.697 0.82 �0.315
Present Rothrock 0.6 0.518 0.802 �0.181 0.709 0.821 �0.352
Present Hibler 0.2 0.54 0.756 �0.163 0.793 0.662 �0.162
Present Hibler 0.6 0.54 0.76 �0.189 0.808 0.637 �0.14
Present Hibler 1 0.538 0.754 �0.167 0.817 0.621 �0.124
Pr.ls.shear Hibler 0.2 0.526 0.778 �0.182 0.74 0.739 �0.213
Hibler Hibler — 0.53 0.847 �0.198 0.6 0.879 �0.202
Hibler Rothrock — 0.466 0.867 �0.17 0.396 1.06 �0.318
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mally interpolating data from Scanning Multichannel
Microwave Radiometer (SMMR), Special Sensor Mi-
crowave Imager (SSM/I), Advanced Very High Reso-
lution Radiometer (AVHRR), and IABP buoy data,
and then averaged to produce monthly gridded fields
used in this study. We regridded the monthly ice veloc-
ity fields between 1994 and 2001 onto the model grid
using a Gaussian weighting scheme with a maximum
search radius of 100 km. We estimate (Miller et al.
2006) the maximum error in each monthly, grid cell
velocity component to be &monthly � 0.3 cm s�1. Basin-
scale averages over many grid cells further reduce this
error.

The area covered by the observation is shown in Figs.
7c and 7d, where the data for the ice speed and velocity
angle are presented. The velocity angle is calculated
from 90° longitude on the map projected onto a flat
surface used in the CICE code. The statistical data for
the model runs from 1994 to 2001 are given in Table 3

for all months, Table 4 for three winter months Janu-
ary–March, and Table 5 for three summer months July–
September. To calculate the vector correlation (Vec
Cor), we used the magnitude of the vector correlation
coefficient (Kundu 1976) for two vectors written in the
complex space as

�w1w*2�

��w1w*1��w2w*2��
1�2 , �49�

where the angle brackets denote the mean. Also, the
speed time correlation (T-Cor) is shown and represents
the seasonal correlation between the spatially averaged
monthly speed values. Except for the latter, all angle
and speed (Spd) statistics were calculated for every
month separately and then averaged over time.

The effectiveness of the models in terms of the ve-
locity depends on the measure of success considered.
Generally all model vector and seasonal correlations
are better for the winter months (Table 4) than for the
summer months (Table 5), while the difference be-
tween the vector correlation themselves seems not to
be significant. If we consider the whole year data (Table
3), then the vector correlation is the best for the
(Present, Hibler) model, while the seasonal correlation
(T-Cor) is best for the (Hibler, Rothrock) model. How-
ever, the speed bias is always the best for the (Present,
Hibler) model. As the magnitude of speed RMSD com-
pares the model and observed ice speeds at the same
grid points, thereby disregarding the difference due to
advection, the speed RMSD is much larger than the
speed bias, which allows comparison over the whole
region. On average the spatial statistics are better for
the models using the Present rheology.

The temporal and spatial behavior of the models’
velocity is presented in Figs. 14–17. The time evolution
of the whole Arctic speed is given in Fig. 14 for (a)
1-month means and (b) 3-month means. The oscillation

TABLE 3. Statistical velocity characteristics of the model results as compared with Polar Pathfinder. Correlation “Vec Cor” is a spatial
correlation over the monthly ice velocities at the grid points averaged over all months of 1994–2001. Correlation “T-Cor” is a time
correlation over the monthly mean Arctic ice speeds. Speed RMSD is found by considering the spatial mean of the monthly squared
speed differences at grid points and averaging with regard to time. The mean absolute angle difference (|AngleDif|) is in degrees; speed
(Spd) statistics are in centimeters per second. The overall observed mean ice speed is 2.81 cm s�1. Pr.ls.shear is Present less shear.

Rheology Ice strength k Vec Cor Spd RMSD |Angle Dif | Spd bias T-Cor

Present Present 0.2 0.767 2.0 48.7 �0.184 0.603
Present Present 0.6 0.765 2.0 48.8 �0.222 0.604
Present Present 1 0.761 2.01 49.3 �0.28 0.592
Present Rothrock 0.6 0.752 2.06 51.3 �0.155 0.64
Present Hibler 0.2 0.774 1.93 48.8 �0.126 0.607
Present Hibler 0.6 0.773 1.93 48.8 �0.17 0.601
Present Hibler 1 0.771 1.94 48.7 �0.234 0.585
Pr.ls.shear Hibler 0.2 0.783 1.94 49.6 0.285 0.742
Hibler Hibler — 0.781 2.02 54.3 0.603 0.81
Hibler Rothrock — 0.787 2.06 53.0 0.668 0.834

FIG. 13. Sensitivity of model predictions of ice draft to a reduc-
tion in shear strength and the observations of the ice draft ob-
tained by averaging over U.S. and U.K. submarine cruises from
1987 until 1997.
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of 1-month means is quite high, while the 3-month
means show that the (Hibler, Hibler) model overesti-
mates the observed ice speed, although its peaks cor-
relate better than those of the (Present, Hibler) model.
The probability distribution function (PDF) for the ice
speeds for the whole Arctic is shown in Fig. 15 for the
(a) Present rheology and (b) Hibler rheology and dif-
ferent ice strength expressions. Again, as in case of the
mean ice thickness, the proposed rheology (except
when the Rothrock ice strength is used) gives a better
fit than the standard elliptic yield curve. The best fit is,
however, produced by the (Present, Hibler) variation in
contrast to (Present, Present) for the mean Arctic ice
thickness PDF (Fig. 9). Similar PDFs for the velocity
orientation angle are shown in Fig. 16. The Present
rheology either with the Present or Hibler ice strengths
produce the best fit with a slightly better match of these
two produced by (Present, Present). In all other cases
the Angle PDF peak is shifted to the higher negative
angles. The shape of the top is the most closely de-
scribed by the (Present, Hibler) case. In the region of

positive angles all models behave similarly. The scat-
tergram for the monthly Arctic ice speeds are given in
Fig. 17 for the proposed (Present, Present), (Present,
Hibler), and (Hibler, Hibler) models. Although there is
an evident bias of the (Hibler, Hibler) model, it is the
least scattered around the linear fit, reflecting its high
seasonal monthly speed correlation.

6. Concluding remarks

We have introduced a new multithickness sea ice
model explicitly accounting for the ridging and sliding
friction contributions to sea ice stress. Both ridging and
sliding contributions depend on the deformation type
through functions adopted from the kinematic model of
floe interaction of Ukita and Moritz (2000). The model
incorporates the difference in the amount of sliding and
opening deformation in different ice thicknesses
through the introduction of sliding and opening partici-
pation functions, in a similar manner to the ridging de-
scription of Thorndike et al. (1975).

TABLE 5. Statistical velocity characteristics of the model results as compared with Polar Pathfinder. Correlation “Vec Cor” is a spatial
correlation over the monthly ice velocities at the grid points averaged over summer months (Jul–Sep) of 1994 through 2001. Correlation
“T-Cor” is a time correlation over the summer monthly mean Arctic ice speeds. Jul–Sep observed mean ice speed is 2.29 cm s�1.
Pr.ls.shear is Present less shear.

Rheology Ice strength k Vec Cor Spd RMSD |Angle Dif| Spd bias T-Cor

Present Present 0.2 0.734 1.72 56.6 0.714 0.745
Present Present 0.6 0.735 1.71 56.3 0.68 0.742
Present Present 1 0.736 1.7 56.1 0.652 0.738
Present Rothrock 0.6 0.732 1.73 59.2 0.705 0.753
Present Hibler 0.2 0.724 1.72 57.2 0.667 0.726
Present Hibler 0.6 0.727 1.7 56.5 0.642 0.729
Present Hibler 1 0.727 1.68 56.0 0.606 0.724
Pr.ls.shear Hibler 0.2 0.72 1.81 58.6 0.809 0.745
Hibler Hibler — 0.719 1.82 60.1 0.85 0.755
Hibler Rothrock — 0.721 1.81 60.7 0.857 0.762

TABLE 4. Statistical velocity characteristics of the model results as compared with Polar Pathfinder. Correlation “Vec Cor” is a spatial
correlation over the monthly ice velocities at the grid points averaged over winter months (Jan–Mar) of 1994 through 2001. Correlation
“T-Cor” is a time correlation over the winter monthly mean Arctic ice speeds. The Jan–Mar observed mean ice speed is 2.87 cm s�1.
Pr.ls.shear is Present less shear.

Rheology Ice strength k Vec Cor Spd RMSD |Angle Dif | Spd bias T-Cor

Present Present 0.2 0.776 2.18 55.6 �0.58 0.942
Present Present 0.6 0.774 2.19 56.7 �0.601 0.942
Present Present 1 0.769 2.21 59.0 �0.665 0.944
Present Rothrock 0.6 0.767 2.24 59.2 �0.573 0.945
Present Hibler 0.2 0.77 2.15 57.8 �0.481 0.927
Present Hibler 0.6 0.767 2.17 57.7 �0.524 0.928
Present Hibler 1 0.764 2.18 58.3 �0.588 0.929
Pr.ls.shear Hibler 0.2 0.79 2.11 57.3 0.055 0.899
Hibler Hibler — 0.791 2.27 64.1 0.592 0.855
Hibler Rothrock — 0.801 2.34 61.2 0.67 0.872
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In contrast to previous work, the ridging ice strength
of a uniform ice sheet of constant ice thickness was
taken to be proportional to the ice thickness raised to
the power of 3/2, as is predicted in the discrete element
modeling results of Hopkins (1998). The sliding
strength was related to the ridging strength through a
linear relationship motivated by a friction law, but the
proportionality parameter was treated not as a friction
coefficient (which would be true in the case of a purely
kinematic approach) but as a parameterization describ-
ing the relative ridging and sliding deformation power
in a subcontinuum-scale region.

The new multithickness sea ice model for sea ice
stress has been implemented into the Los Alamos
CICE sea ice model code (version 3.0), which involved
generalizing the elastic–viscous–plastic (EVP) rheology
module so that it could use a more general plastic rhe-
ological law. The results of modeling the sea ice cover
over a large region of the Arctic Ocean showed that the
proposed model with either the Hopkins or Hibler ice
strength performed better when the probability distri-
bution function for the ice thickness, ice speed, and ice

velocity angle are considered. However, when compar-
ing model predictions of draft distribution with the sub-
marine observations reported in Rothrock et al. (2003),
the proposed rheology with the Hibler ice strengths
performed better than all other models including the
proposed rheology with the Hopkins ice strengths. Sta-
bility problems of the CICE EVP model utilizing the
Rothrock ice strengths were reported by Hunke and
Lipscomb (2001), which may have contributed to the
discrepancy with the submarine measurements but the
persistent error in the ice draft distribution produced by
all models utilizing multilayer ice strengths suggests this
problem is not stability related and will require further
analysis. The original Hibler model produced the best
result only for the seasonal ice speed correlation.

When the rheology and thickness distribution model
presented in this paper is combined with Hibler’s ice
strength formula, a better agreement between modeled
and submarine-measured ice draft distribution as well
as ice velocities is achieved than is possible using the
standard EVP model. This improvement can be attrib-
uted not only to the higher shear stress given by our

FIG. 14. Temporal evolution of the basin mean ice speed between 1994 and 2001 determined by Polar Pathfinder for the present
model with Hibler ice strengths and the (Hibler, Hibler) model: (a) 1-month means and (b) 3-month means.

FIG. 15. The spatial PDF of ice speed over the Arctic area averaged between 1994 and 2001 for the (a) Present and (b) Hibler
(elliptic) rheological models with different ice strength formulas.
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yield curve [which was shown to have a beneficial effect
when an elliptic curve was used (Miller et al. 2005)], but
also to a more realistic description of the ridging rate
recovered from the kinematic model of Ukita and
Moritz (2000). Improvements to the spatial distribution
of sea ice thickness could be significant for the spatial
distribution of surface air temperature and ocean salin-
ity in coupled models since the heat flux through, and
growth rate of, the ice in winter is a function of ice
thickness. We suggest that the next stage necessary to
improve a multithickness sea ice stress and thickness
redistribution model would require a more detailed
study of the effect of different choices of the ridging
and sliding participation functions.

APPENDIX

Polynomial Expressions for the Normalized
Ridging and Sliding Yield Curves

The solutions {�r
I(�), �r

II(�
r
I)} and {�s

I(�), �s
II(�

s
I)}

to (25) and (26) using the ridging and sliding modes
of Ukita and Moritz (2000), presented in Fig. 3,
were calculated numerically. Here, we present poly-
nomial approximations that interpolated our calcu-
lated results that ensure convexity of the yield
curves. We found the following relations �r

II(�
r
I) and

�s
II(�

s
I):

�II
r � �1.049 93�I

r � 0.051 759 6�I
r2 � 2.047 38�I

r3 � 0.948 869�I
r4,

�II
s � �1.670 85�I

s � 1.513 32�I
s2 � 11.0346�I

s3 � 82.8658�I
s4 � 132.917�I

s5 � 91.4241�I
s6.

The flow law was found to be normal, which implies

tan� �
�̇II

�̇I
� ��d�II

r,s

d�I
r,s��1

and the stress was calculated from the strain rate direc-
tion � as the solution of the nonlinear equation

d�II
r,s

d�I
r,s � � cot�.

The polynomial approximations �r
I(�) and �s

I(�) that
interpolated our calculated results, and ensure convex-
ity of the yield curves, are

FIG. 16. The spatial PDF of ice velocity vector angle with regard to 90° lon over the Arctic area averaged between 1994 and 2001
for the (a) Present and (b) Hibler (elliptic) rheological models with different ice strength formulas.

FIG. 17. Scattergrams of the modeled vs Polar Pathfinder–observed monthly mean ice speed for the (a) Present model, (b) Present
rheology with Hibler ice strength, and (c) (Hibler, Hibler) model. The dashed line is the linear best fit.
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�I
r � 2596.89 � 20 003.9� � 69 046.3�2 � 140 960�3 � 189 140�4 � 175 187�5 � 114 330�6 � 52 593.6�7

� 16 719.3�8 � 3499.64�9 � 434.299�10 � 24.2182�11

for 0.761 045 � � � 2.445,

�I
s � 10.633 � 52.0295� � 85.5367�2 � 47.5057�3

for 0.539 315 � � � 0.712 814, and

�I
s � 60.2245 � 416.679� � 1281.8�2 � 2321.07�3 � 2747.66�4 � 2233.09�5 � 1272.01�6 � 508.152�7

� 139.623�8 � 25.15�9 � 2.6751�10 � 0.127 394�11

for 0.712 814 � � � 3.017 56. (s the yield curves make
acute angles with the axis �I (Fig. 2), the stress values at
the two ends of any of the curves (pure divergence and
pure convergence) correspond to two ranges of �: from
0 to the angle of the normal at the right end (maximum
�I), and from the angle of the normal to � at the left
end (minimum �I).
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