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A b s t r a e t - - A  model of species migration is presented which takes the form of a reaction-diffusion 
system. We consider special limits of this model in which we demonstrate the existence of travelling 
wave solutions. These solutions can be used to describe the migration of cells, bacteria, and some 
organisms. © 2000 Elsevier Science Ltd. All rights reserved. 
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1 .  I N T R O D U C T I O N  

Travelling waves arising in reaction-diffusion systems are a wel l -documented and striking phe- 

nomenon.  A par t icular ly  good reference is [1] with more biological examples to be found in [2]. 

In this paper,  we present a simple model  of how cells, bacteria,  and other  organisms (hereafter,  

collectively referred to  as 'species') may  migrate,  based on a reaction-diffusion-chemotaxis sys- 

tem, which is a slight generalisation of the model  presented in [3]. We perform some simple 

asympto t i c  analysis and demons t ra te  the existence of bo th  waves tha t  s imul taneously  diffuse 

nnd t rans la te  and waves tha t  t ransla te  wi thout  (:hanging shape. For a par t icular  choice of the 

chemotact ic  response function, closed form solutions are obtained.  The  analysis provides insights 

into the  manner  in which a generic species migrates  and has many  direct applications to the 

migra t ion of, for example, a populat ion of nematodes  moving th rough  soil [4], p reda tor -prey  

interact ions [5], endothelial  cell migrat ion during angiogenesis [6,7], and cancer cell invasion of 

sur rounding  tissue [8]. 

2 .  M O D E L  O F  S P E C I E S  M I G R A T I O N  

We adopt  a simple model  of species behaviour:  in the  absence of any relevant external  stimuli, 

the species move randomly;  the presence of an a t t r ac t an t  (chemical) gradient  provides a direc- 
t ional bias to this mot ion and the  species, on average, move up the a t t r ac t an t  gradient.  The  
sys tem we consider is a special case of t ha t  determined by Keller and Segel [9] and we work in 
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one spatial dimension only. The system we s tudy is 

ot - Ox < Ox)  - ~  x(a)~ , (i) 

-57 - 5-x \ O x )  -S<:n. (2) 

In these equations, a is the a t t rac tant  concentration and n is the species population density, 
both  being functions of position x and time t. The parameter  Da is the diffusion coefficient 

of the a t t rac tant ,  Dn is the diffusion coefficient or random motility of the species, X is the 
chemotactic response function, and K is the take-up rate. The chemotactic response (the second 
term of (1)) describes how the motion of the species becomes directionally biased in the presence 
of the a t t rac tan t  gradient, i.e., the species preferentially moves up any a t t rac tant  gradient. The 
take-up rate t (  is a measure of how much a t t rac tant  is consumed or degraded by the species. 

These equations are supplemented with the boundary conditions 

On Oa 
Dn-~-~x - Xn~x = O, (x  ---+ :J=oo), (3) 

Oa 
D~x x = 0, (x --+ J=oo), (4) 

and the initial data  
n = g(x ) ,  a = h (x ) ,  ( t = 0 ) .  (5) 

In the next two sections, we consider special limits of our model in which we can make analytical  
progress in demonstrat ing the existence of travelling wave solutions. 

3. STRONG ATTRACTANT DIFFUSION AND NO TAKE-UP 

We first consider the implications of strong a t t rac tant  diffusion (Da large) and no take-up, 

K = 0. We assume tha t  the a t t rac tant  has already reached a steady-state profile and all tha t  

remains is to determine the response of the species to this profile. The equations tha t  we consider 
are thus (1), (3), and (5) with 

x ( a ) ~  -+ ~(x). (~) 

We cannot make analytical progress without making further assumptions. The first si tuation 

we consider is tha t  in which 7 = O(1) and Dn = ~D, where D = (9(1), and 0 < c << 1, thus, the 
diffusion of the species is weak relative to the chemotaxis. This allows us to use the asymptot ic  
method of multiple scales. We introduce two separate time-dependencies into the species density 

n = n ( x , %  T) ,  where 7- = t is the timescale associated with chemotaxis and T = ~t is the 
slower timescale of species diffusion. We now pose an asymptot ic  expansion in terms of the small 

parameter  e, 

n = n ( X , T , T ; c )  = n o ( x , T , T )  + e n l ( x , ~ ' , T )  + . . . .  (7) 

Working to (9(1), we have 
Ono 0 
0 - 7  + ('Trio) = 0. (8) 

Using the method of characteristics, we change variables fi'om {% x} to {~-, s}, where x = (9(T-- S) 
and O is the solution of dx = 0'(x) (see [10]). The coordinate s is the t ime since passing x -- 0. 
In these coordinates, we rewrite (8) as 

(o) 
(~n0) = 0, (9) 

8 
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w h e n c e  

no(x,T,T) = A(s,T) 7(x) (lO) 

Expression (10) tells us that  the profile no translates on the timescale of r with speed 7 whilst 
simultaneously changing its shape on the slower timescale T. 

In order to determine how the profile depends upon T, we must work to O(Q. From (7)-(10) 
and elementary calculus, we obtain 

10A 1 ( 0 )  D I ( 0 )  1 ( 0 )  A_. (11) 

8 T 7- 

In order to maintain the asymptoticness of the expansion of n to T = ord (1), the quantity (7nl) 
nmst be kept bounded as r increases. This is achieved by setting the right-hand side equal to 

0A (1/7) b-~' Thus, A must satisfy the differential problem 

I O A _ I O 2 A  3 0 ( 1 ) O A  1 0 2 ( 1 )  
DOT 72 0s--Z +-~-~s ~7 -~s +-~'~sTs2 -~7 A, (12) 

subject to A --~ 0 as x --~ +co, with initial data A(s,O) = g(E)(-s))7(O(-s)).  Unfortunately, 
further progress along these lines is not possible without a knowledge of the functional form 
of 7- It is possible, however, for constant D, to determine a condition on 7 for which the species 
population will dissipate as it translates; a sufficient condition is given by 

207  9 [ 0 7 ,  2 / ' ~  02"Y<0, fo ra l l s ,  (13) 
7 O s 8 \ / -~s  - O s - - - 7 -  

provided that  7 is sufficiently continuous. This condition is obtained by Taylor expanding (12) 
about an arbitrary s, transforming the resultant differential problem with constant coefficients 
into the canonical diffusion problem, and applying the strong maximum and minimum principles, 
see, for example, [11,12]. 

If 7 is, to leading order in e, the constant 7o, then (12) reduces to a simple diffusion equation 
and the solution is given by no = A(x - 70T, T)/%. This profile simultaneously translates with 
constant speed 7o and diffuses. 

We now abandon the case of weak species diffusion and consider the consequences of constant 7- 
In this case, we may exploit the following property. The solution to problem (1),(3),(5) is given 
by 

n = ¢ ( z  - 7 t ,  t ) ,  (14)  

where/p(x, t) is the solution of the corresponding problem in which 7 ~ 0. 
If D,, is a constant Do, then ¢ may be found in terms of the fi'ee-space Green's function, and 

thus, 

~ -oo exp -4---D~ g(s) as, (15) 

where we have used the well-known solution to the canonical diffusion equation in an unl)ounded 

domain (see, for example, [11]). 

In the case of porous-media type diffusion Dn = Don m, where Do and m are positive, real 

constants. We. may exploit a weak similarity solution described in [I] to ut = /k(uP), p > 0. 

Stretching the timescale and using (14), we may write a solution to our problem as 

n l a x  

n ( x ,  t)  = 

L\--D~-ot ] °°-2(m+l)(m+2) \ Dot J -7t)2) 
0] , (16) 
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Figure 1. A travelling wave solution to the chemotaxis-diffusion equation with Fick- 
ian diffusion. 

where a0 is a positive and real constant of integration. Since this solution has compact support, 
it clearly satisfies our requirements at infinity, though we abandon dependence upon ore" initial 

data. 
In Figure 1, we plot solution (15) with Do = 1, '7 = 1, and the initial data  chosen to be a Dirac 

delta function, g ( x )  = 5(x). Clearly, the profiles diffuse and translate with speed "7. 

4.  W E A K  A T T R A C T A N T  D I F F U S I O N  

We now turn our attention to the case in which the at t ractant  diffusion is weak or alternatively 
becomes bound to a substrate, e.g., during angiogenesis, fibronectin secreted by endothelial cells 
binds to the local extracellular matrix and does not diffuse [13]. In the analysis of weak diffusion 
of species in the preceding section, we alleviated the singular nature of the (9(1) approximation 
by determining an evolution equation from the (9(e) analysis. In this section, however, we shall 
work only to leading order. The effect of this is to ignore diffusion in the at t ractant  equation (see 
reasons above). The reaction-diffusion system we consider is (1) and 

0a 
- Kn, (lr) 

0t 

subject to the boundary conditions (3). Our solution will be found to be independent of initial 
data. We now show that  this system exhibits a travelling wave solution in the variable z = x - at ,  
with the solution degenerate in the speed a. Looking for the solution { n ( z ) ,  a(z)} reduces the 
above system to 

- a d z  - dz  \ dz  - x ( a ) n - ~ z  ' (18) 

da 
a--~z z = K n .  (19) 

In the case in which Dn = Do, a constant, we find, after a number of elementary operations, that  

a log da[ 1 /  da 
- D o  z =  ~z - -~o g ( a ) -~z d Z + a l ' (20) 



Travelling Waves 7 [ 

where o l  is a constant of integration. \Ve shall assume a chemotactic response fimction of the 
term 

X0 (91) X -  (~ + a)r ,  .- 

where )~0, /3, and r are real and positive constants. This implies that  the strength of the chcmo- 
t:;~ctic response weakens as the concentration of attractant increases. The biological arguments 
for this form of the chemotactic response function can I)e found in [14], appropriate values for 
the parameter r are 1 and 2. 

4.1. T h e  Case  r ¢; 1 

With (21), we may write (20) as 

a d aza e x p ( 1  X0 (~ i_ a)_r-i 1) _~_ O.1, (22) 
- -  D----~z = l o g  - log Do - r  + 1 

After manipulations and integration, we obtain 

~hexp -~00 - - l + r  /901-- - rJ  F - l ~ - r ' / ) 0  1 - ~ r  J +or,2, (23) 

where 

r[h,  z] = t~ -~e  - t  dt (24) 
z 

is the incomplete Gamma fimction and ~2 is a constant of integration. Equation (23) gives an im- 
plicit relationship between a and z, from which n(z) can be obtained using (19). Further progress 
requires the use of numerical root-finding techniques to solve the transcendental equation (23). 
Numerical experiments reveal that  noninteger r gives rise to complex solutions a and n, which 
~re unrealistic. 

4.2. T h e  Case  7" = 1 

In this case, (20) yields 

C~ 
log ad~ log (¢] + a) x°/D° + oh. D--~z = 

]f X0 ¢ Do, then this equation may be integrated to obtain 

flom which (with redefined constants of integration 0-1, ~2), we obtain 

( (it. "~ "~ 1/(-x°/Dn+I) 
+ <, ,  e x p  - 

and, from (19), 

,,,(~) _ . / K  ( c~ 
- , t o / D o  + 1 - E  O'1 

If X0 = Do, then (25) can be integrated to obtain 

a(z) = exp (0-2 + 0-1 exp 

(~5) 

+ 0-2, (26) 

(27) 

(2s) 

(29) 
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Figure 2. Travelling wave solution to the coupled attractant-species system. 

and (Oz) ( (Oz)) 
D0 K exp -D00 exp 0 2 -~- 0"1 e x p  - - ~ 0 0  " (30) 

These equations, (27),(28) and (29),(a0), describe travelling wave solutions with fixed shape 

translat ing in the positive x direction with speed ~. In Figure 2, we plot the solutions (27) 

and (28) for the parameter  values 0"2 = 1, 0., = 1, c~ = 2, Do = 1, X0 = 2, fl = 0, and K = 1. 
The shape of the profile is independent of t ime and clearly shows a propagating pulse of species, 

which consume or degrade the at t ractant .  Increasing Do causes the region of appreciable change 

in the species and a t t rac tant  density to widen, while increasing X0 causes the crest in the species 

density to move to the right. 

5.  D I S C U S S I O N  

We have introduced a model of species migration and examined some of its interesting features. 
In the case of strong a t t rac tant  diffusion, we have presented two travelling wave solutions which 
diffuse as they translate for the case in which the chemotactic response is constant (an analysis 

which is extended to a bounded domain in [3]). In the case of weak a t t rac tan t  diffusion, we 
have presented closed-form solutions of travelling waves for a family of chemotactic response 
functions. The leading order behaviour of these waves is to translate without change of shape; 
this is a good model of a pulse of species translating whilst degrading an a t t rac tan t  and is 
part icularly appropriate  in the context of general invasion theory where one is interested mainly 
in the activity at the wave-front. This is the case where a population of nematodes is a t t racted to 
a root tip and the results obtained in Figure 2 are more realistic and an improvement on previous 
modelling a t tempts  (cfi [4]). Although the solutions we have presented are directly applicable to 
the evolution of a population of nematodes,  they clearly have more general application. 
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