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Abstract—A model of species migration is presented which takes the form of a reaction-diffusion
system. We consider special limits of this model in which we demonstrate the existence of travelling
wave solutions. These solutions can be used to describe the migration of cells, bacteria, and some
organisms. (© 2000 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

Travelling waves arising in reaction-diffusion systems are a well-documented and striking phe-
nomenon. A particularly good reference is [1] with more biological examples to be found in [2].
In this paper, we present a simple model of how cells, bacteria, and other organisms (hereafter,
collectively referred to as ‘species’) may migrate, based on a reaction-diffusion-chemotaxis sys-
tem, which is a slight generalisation of the model presented in {3]. We perform some simple
asymptotic analysis and demonstrate the existence of both waves that simultaneously diffuse
and translate and waves that translate without changing shape. For a particular choice of the
chemotactic response function, closed form solutions are obtained. The analysis provides insights
into the manner in which a generic species migrates and has many direct applications to the
migration of, for example, a population of nematodes moving through soil [4], predator-prey
interactions [5], endothelial cell migration during angiogenesis {6,7], and cancer cell invasion of
surrounding tissue [8}.

2. MODEL OF SPECIES MIGRATION

We adopt a simple model of species behaviour: in the absence of any relevant external stimuli,
the species move randomly; the presence of an attractant (chemical) gradient provides a direc-
tional bias to this motion and the species, on average, move up the attractant gradient. The
system we consider is a special case of that determined by Keller and Segel [9] and we work in
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one spatial dimension only. The system we study is
on 0 on 0 . Oa
-2 p =Z=)_= el
ot Oz ( "6&6) oz (X(a)"ax> ’ (1)
da 0 da
—=—{D,— ) — Kn.
ot Oz ( 6:5) " 2)

In these equations, a is the attractant concentration and n is the species population density,
both being functions of position z and time ¢. The parameter D, is the diffusion coeflicient
of the attractant, D, is the diffusion coefficient or random motility of the species, x is the
chemotactic response function, and K is the take-up rate. The chemotactic response (the second
term of (1)) describes how the motion of the species becomes directionally biased in the presence
of the attractant gradient, i.e., the species preferentially moves up any attractant gradient. The
take-up rate K is a measure of how much attractant is consumed or degraded by the species.
These equations are supplemented with the boundary conditions

on da
"G xn—a—x =0, (x > +o00), (3)
Dag—; —0,  (z— +o0), @
and the initial data
n=g{z), a=h(z), (t =0). (5)

In the next two sections, we consider special limits of our model in which we can make analytical
progress in demonstrating the existence of travelling wave solutions.

3. STRONG ATTRACTANT DIFFUSION AND NO TAKE-UP

We first consider the implications of strong attractant diffusion (D, large) and no take-up,
K = 0. We assume that the attractant has already reached a steady-state profile and all that
remains is to determine the response of the species to this profile. The equations that we consider
are thus (1), (3), and (5) with

da

x(a)% — y(z). (6)

We cannot make analytical progress without making further assumptions. The first situation
we consider is that in which v = O(1) and D,, = €D, where D = O(1), and 0 < € < 1, thus, the
diffusion of the species is weak relative to the chemotaxis. This allows us to use the asymptotic
method of multiple scales. We introduce two separate time-dependencies into the species density
n = n{z,7,T), where 7 = t is the timescale associated with chemotaxis and T = et is the
slower timescale of species diffusion. We now pose an asymptotic expansion in terms of the small
parameter e,

n=n(z,7,T;¢) = no(z,7,T) + eny(z,7,T) +--- . (7)

Working to O(1), we have

8n0 13] _
5 T %(’mo) =0 (8)

Using the method of characteristics, we change variables from {7, z} to {7, s}, where z = ©(7—3)
and © is the solution of 2 = ~(z) (see [10]). The coordinate s is the time since passing z = 0.
In these coordinates, we rewrite (8) as

(35) o) =0 ©)
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whence

nolz,7,T) = (10)
Expression (10) tells us that the profile ng translates on the timescale of r with speed + whilst
simultaneously changing its shape on the slower timescale T.

In order to determine how the profile depends upon T, we must work to O(e). From (7)-(10)
and elementary calculus, we obtain

18A+1 0 (n)——Dl 0 1/0\ A ‘ (11)
yor vy 87‘871_ y\Os), v\0s) ~
In order to maintain the asymptoticness of the expansion of n to T' = ord (1), the quantity (yn,)

must be kept bounded as 7 increases. This is achieved by setting the right-hand side equal to
(1 /’y)%ﬁr—l. Thus, A must satisfy the differential problem

104 18%4 38 /1\0A 18% /1
= , (12)

——— + S _ — ——— —
Dar 42852  20s\ %/ Os + 2 0s? \ v2
subject to A — 0 as x — +oo, with initial data A(s,0) = g(©(—$)}¥(©(—s)). Unfortunately,
further progress along these lines is not possible without a knowledge of the functional form
of v. It is possible, however, for constant D, to determine a condition on -y for which the species
population will dissipate as it translates; a sufficient condition is given by

za_v_g(éz>"‘_é2_v_<0

3.2 =0, for all s, (13)

provided that v is sufficiently continuous. This condition is obtained by Taylor expanding (12)
about an arbitrary s, transforming the resultant differential problem with constant coefficients
into the canonical diffusion problem, and applying the strong maximum and minimum principles,
see, for example, [11,12}.

If v is, to leading order in €, the constant 7, then (12) reduces to a simple diffusion equation
and the solution is given by ng = A(z ~ v7,T)/ve. This profile simultaneously translates with
constant speed o and diffuses.

We now abandon the case of weak species diffusion and consider the consequences of constant ~.
Tu this case, we may exploit the following property. The solution to problem (1),(3),(5) is given
by

n= ¢(J’ - ’Yt,t), (14)

where ¢(x,t) is the solution of the corresponding problem in which v — 0.
If D,, is a constant Dg, then ¢ may be found in terms of the free-space Green's function, and

thus,
1 o (z —yt — 8)? )

— expf{ —————— s)ds, (15
Jar Dot /_oo p( Dy 15)
where we have used the well-known solution to the canonical diffusion equation in an unbounded
domain (see, for example, [11]).

In the case of porous-media type diffusion D,, = Dyn™, where Dy and m are positive, real
constants. We may exploit a weak similarity solution described in [1] to uy = A(u?), p > 0.

n(z,t) =

Stretching the timescale and using (14), we may write a solution to our problem as

n(z,t) =
1/m

o 1) M) m me N ) | O
mnax ag — xr — s .
Dot 0T 2m+ 1)(m+2) \ Dot 7 '
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Figure 1. A travelling wave solution to the chemotaxis-diffusion equation with Fick-
ian diffusion.

where oq is a positive and real constant of integration. Since this solution has compact support,
it clearly satisfies our requirements at infinity, though we abandon dependence upon our initial
data.

In Figure 1, we plot solution (15) with Dy = 1, v = 1, and the initial data chosen to be a Dirac
delta function, g(z) = é(z). Clearly, the profiles diffuse and translate with speed .

4. WEAK ATTRACTANT DIFFUSION

We now turn our attention to the case in which the attractant diffusion is weak or alternatively
becomes bound to a substrate, e.g., during angiogenesis, fibronectin secreted by endothelial cells
binds to the local extracellular matrix and does not diffuse {13]. In the analysis of weak diffusion
of species in the preceding section, we alleviated the singular nature of the (1) approximation
by determining an evolution equation from the O(e) analysis. In this section, however, we shall
work only to leading order. The effect of this is to ignore diffusion in the attractant equation (see
reasons above). The reaction-diffusion system we consider is (1) and

da

— = —Kn, 17
5 (17)

subject to the boundary conditions (3). Our solution will be found to be independent of initial

data. We now show that this system exhibits a travelling wave solution in the variable z = z —at,

with the solution degenerate in the speed a. Looking for the solution {n(z),a(z)} reduces the

above system to

dn d dn da
—QE; = E—z_ (Dn-(z; - X(G)RE) s (18)
da
ag- = Kn. (19)

In the case in which D,, = Dy, a constant, we find, after a number of elementary operations, that

da

dz

1

—_/X(a)%dzﬁLal,. (20)

— 2 =l
D,° "% Do

0
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where o7 is a constant of integration. We shall assume a chemotactic response function of the
form
X = _Xo (21)
(B+a)” ‘
where yg, §, and r are real and positive constants. This implies that the strength of the chemno-
tactic response weakens as the concentration of attractant increases. The biological arguments
for this form of the chemotactic response function can be found in [14], appropriate values for

the parameter r are 1 and 2.

4.1. The Case r # 1
With (21), we may write (20) as

. 22
e + 0] (22)

_1__ Xo —r+1

g d_a‘ —log

After manipulations and integration, we obtain

/(1=r7) —14r
o _(a/Do) /1 xo ! 1 1 (B+a) M xo .
7 “X‘)( DOZ> T i <D01—r o R e

where

o
T(h, 2] = / th=le=tdt (24)

is the incomplete Gamma function and o3 is a constant of integration. Equation (23) gives an im-
plicit relationship between a and z, from which n(z) can be obtained using (19). Further progress
requires the use of numerical root-finding techniques to solve the transcendental equation {23).
Numerical experiments reveal that noninteger r gives rise to complex solutions a and 7. which
are unrealistic.

4.2. The Caser =1

In this case, (20) yields

2 d L
—Diozzlog Zd%\_log (B + )Xo/ Po| 15y (25)
1f xo # Dy, then this equation may be integrated to obtain
(B + a)~Xxo/Potl _X0 g ——D—gol exp e, + oy (26)
D() &3 D() '

from which (with redefined constants of integration o1, 03), we obtain

o 1/{(=xo/Da+1)
a(z) = (02 + 01 exp <—D—z)> -, (27)
0

and, from (19),

a/K a o a xo/(Do—xo)
n(z) = —M% (2 _2. 2+ oyoxp (| ——z S(28
0= s (e (-57)) (e (57 o

If xo = Do, then (25) can be integrated to obtain

a(z) = exp (ag + 01 exp (—-S-;)) -5 (29)
0
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Figure 2. Travelling wave solution to the coupled attractant-species system.

and
2

n(z) = —Z—;% exp (——,%z) exp <02 + 01 exp (—ba—oz)) . (30)

These equations, (27),(28) and (29),(30), describe travelling wave solutions with fixed shape
translating in the positive z direction with speed . In Figure 2, we plot the solutions (27)
and (28) for the parameter values o9 =1, 01 =1, =2, Dy =1, x0 =2, =0, and K = 1.
The shape of the profile is independent of time and clearly shows a propagating pulse of species,
which consume or degrade the attractant. Increasing Dy causes the region of appreciable change
in the species and attractant density to widen, while increasing o causes the crest in the species
density to move to the right.

5. DISCUSSION

We have introduced a model of species migration and examined some of its interesting features.
In the case of strong attractant diffusion, we have presented two travelling wave solutions which
diffuse as they translate for the case in which the chemotactic response is constant (an analysis
which is extended to a bounded domain in [3]). In the case of weak attractant diffusion, we
have presented closed-form solutions of travelling waves for a family of chemotactic response
functions. The leading order behaviour of these waves is to translate without change of shape;
this is a good model of a pulse of species translating whilst degrading an attractant and is
particularly appropriate in the context of general invasion theory where one is interested mainly
in the activity at the wave-front. This is the case where a population of nematodes is attracted to
a root tip and the results obtained in Figure 2 are more realistic and an improvement on previous
modelling attempts (cf. [4]). Although the solutions we have presented are directly applicable to
the evolution of a population of nematodes, they clearly have more general application.
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