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Garth Holloway (UK) 

On the environmental valuation of catastrophe: revisiting mining 
disasters in the United Kingdom, 1851-1962 
Abstract 

In the context of environmental valuation of natural disasters, an important component of the evaluation procedure lies 
in determining the periodicity of events. This paper explores alternative methodologies for determining such periodici-
ty, illustrating the advantages and the disadvantages of the separate methods and their comparative predictions. The 
procedures employ Bayesian inference and explore recent advances in computational aspects of mixtures methodology. 
The procedures are applied to the classic data set of Maguire et al. (Biometrika, 1952) which was subsequently updated 
by Jarrett (Biometrika, 1979) and which comprise the seminal investigations examining the periodicity of mining disas-
ters within the United Kingdom, during the period 1851-1962. 

Keywords: environmental valuation, catastrophe, mining disasters, United Kingdom, mixtures methodology, robust 
Bayesian inference.  
JEL Classifications: N53, N54, Q54, Q55, C11, C18. 
 

Introduction © 

One important issue overarching many facets of em-
pirical enquiry is the notion of parameter stability – the 
notion that the quantities being estimated are con-
stant throughout subsets of the population from 
which the empirical sample is drawn. Such stability 
and departures from it are important in the context 
of computations of welfare loss. This paper consid-
ers one example of welfare loss where agents are 
subject to changes in the parameter profile govern-
ing data generation. Specifically, the problem at 
hand concerns assessing and comparing welfare 
losses when the number of disasters, and their dura-
tion and frequency across the sample space change. 
Although this aspect of the calculations is only one 
of perhaps many such aspects of loss calculations, it 
is one important dimension. The topic is under-
researched despite advances in recent decades in 
applied statistical procedures that are capable of 
assessing such changes. In the specific context of 
Bayesian empirical inference, the focus of this pa-
per, a number of techniques have been devised that 
permit the parameters generating subsets of the 
sample data to vary. These methodologies include 
the so-called mixture-modeling framework, devel-
oped independently by Lavine and West (1992), 
Diebolt and Robert (1994) among others; and the 
hierarchical methodology showcased in the classic 
paper by Lindley and Smith (1972). The methodol-
ogy that is commonly used in situations in which 
parameters undergo structural change is volumin-
ous. A comprehensive review of that literature lies 
beyond the scope of the present effort. However, the 
multiple-change point model estimator developed 
by Chib (1998), which has remained hitherto unex-
ploited in most agricultural-economic and environ-
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mental-economic settings is a natural candidate 
against which to consider alternative methodologi-
cal formulations. As usual, different methods bring 
with them disadvantages as well as advantages and 
it is useful, instructive, and illuminating to study 
these constructions against one another.  

While our main contribution is to revisit aspects of the 
multiple-change point methodology that we think 
should have wider exposure within the environmental-
economic and agricultural-economic literatures, we are 
also concerned with problematic aspects of the me-
thodlogy. And we wish to illuminate them.  

In the context of disaster management and catastrophe 
calculations, we are fortunate to have available a de-
tailed set of disaster records for mining accidents in the 
United Kingdom, 1851-1962. Not only are the data 
available (Maguire et al., 1952), updated (Jarrett, 
1979) and are therefore amenable to investigation; 
they have been widely examined in previous work 
(Raftery and Akman, 1986; Worsley, 1986; Siegmund, 
1988; Carlin et al., 1992; and Chib, 1998). This makes 
new insights on the same data especially illuminating. 

In the next section of the paper we outline the basic 
ideas related to catastrophe calculation with a ‘mov-
ing-target’ setting. In section 2 we re-examine details 
pertaining to the mining disaster data. In section 3 we 
introduce notation and the basic densities that we use 
throughout the paper. In section 4 we present and 
discuss alternative methodology. In section 5 we 
present robust inference relating to the number of 
data-generating regimes and in section 6 we present 
empirical results. The paper concludes with some 
suggestion for future research.  

1. Simplified catastrophe calculations 

The problem at hand, when considered in its simpli-
fied canonical form, pertains to the computations of 
welfare losses, for which we employ the symbol ‘λ’, 
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in the face of catastrophic disaster, for which we use 
the symbol, ‘δ’. In its simplest setting, we seek to 
compute the usual compensating valuation, which is 
available from comparing the amount of monetary 
income, say, ‘m’ that individuals are willing to re-
linquish, in return for forestalling the disaster. In the 
usual symbolic terms, then, the amount we seek is 
the quantity, ‘ω’ that equates the individual’s utility 
in the absence of disaster with the utility during 
disaster, with quantity ω acting as the so-called 
‘compensation’. In other words, we seek to measure 
the quantity ω that solves 

V(m, λ) = V(m + ω, λ + δ),     (1) 

In this representation, it is clear that in order to com-
pute ω we must have available the (indirect) utility 
functions of the (representative) individual, V(⋅); the 
amount of money they consume as income, m, the 
level of disaster or ‘loss’, λ, that is present within the 
economy; and the amount by which it is changed by, 
or, ‘δ,’ during a disaster. In practice, the investigator 
has available neither, V(⋅), which may vary through-
out the population of ‘N’ individuals, say, Vi(⋅), i = 1, 
2, .., N; leading us to consider, aggregates, ω = Σi ωi, 
which may vary in a complicated fashion, depending 
upon, the distribution of mi, i = 1, 2, .., N; the distri-
bution of Vi(⋅), i = 1, 2, .., N; as well as the total num-
ber of individuals, N, who comprise the population. 
Despite these complications, it is not unreasonable to 
consider a simplified relationship, between the all-
important quantitites, ω, λ, δ, which are implicitly 
defined by the N conditions  

Σi Vi(mi, λ) = Σi Vi(mi + ωi, λ + δ),    (2) 

The conditions (1) and (2) make very clear that, 
whether we consider the welfare loss of a represent-
ative individual, as we would do in the simplest 
case; or whether we seek to compute the distribution 
of the desired quantities throughout the entire popu-
lation; both quantities, ω, on the one hand, and Σωi 
on the other hand, will depend upon the important 
quantities, yet unknown, λ and δ. 

Our analysis, therefore, and in what follows, will, of 
course depend crucially upon the magnitude of these 
two unknown quantities. We believe, that it is not 
unreasonable to consider a functional relationship, 
that is defined implicitly by the relations (1) and (2), 
and that the amount of money individuals would be 
willing to pay in order to forestall disaster, is mono-
tonically increasing in the level of disaster, θ. In this 
setting, we may write, therefore 

ω = ƒ(δ, λ, m1, m2, .., mN).     (3) 

and assume that the income amount, ω, is a monotoni-
cally increasing function of the level of disaster, δ. So, 
we write, ƒδ ≥ 0, in order to denote this relationship. 

In order to further emphasize the importance of the 
loss amount, ω, the disaster level, δ, and the calcula-
tions that the social accountant should wish to make; 
consider their depiction, graphically, as presented in 
Figure 1. 

 
Fig. 1. Simple conceptual framework for evaluating  

damages over time periods 

In the figure, the amount of loss is depicted vertical-
ly, and the amount of disaster at any given time, is 
also presented vertically. On the horizontal axis, we 
present the time frame over which the calculations 
must be made. This depiction, therefore, has, in 
essence, two important dimensions to the calcula-
tion, namely the vertical level and the horizontal 
level, with each pertaining to important components 
of the welfare calculation. Within the figure, we 
consider two distinct regimes that may have arisen, 
in reality, due to the nature of extreme events, due to 
prolonged periods of minor disaster, and due to pe-
riods of tranquility. We make clear, however, that 
due to the two dimensions of the problem, their 
combinations across time and across loss horizons, 
and their variability across time and event, alterna-
tive loss calculations arise.  

The figure depicts two distinct regimes, which we 
itemize by shaded rectangles, and it also contains 
reference to other points in the two-dimensional 
space. We will return to these points, highlighted by 
red asterisks, subsequently. Presently we simply 
summarize the main points of this section, by stating 
three main conclusions. First, given preferences and 
income, it is conceptually very straight-forward to 
calculate loss, if only we had the individual prefe-
rence relations of the individuals concerned. 
Second, in the absence of such detail, we can con-
ceive of an amount of loss, or a willingness to pay to 
forestall loss, that increases with the magnitude of a 
disaster level. And, third, most importantly, given 
the actual magnitude of loss within any given pe-
riod, the duration and timing of the loss situation, 
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can have very important ramifications for welfare 
loss calculations in the presence of disaster.  

For these reasons, it is highly desirable to have a 
robust facility for the calculation of such amounts, 
which depend crucially on the location and scales of 
key parameters, but also upon the period of duration 
of change in multiple regime settings just as the one 
in which graphics in Figure 1, portray. In this con-
text, a key objective of this paper is to present such 
a formal methodology for estimating the duration 
and the periodicity of disaster. And we explore the 
value of robust methodology for computing regime 
change in the face of disaster, against the backdrop 
of a highly-visited context, for which the data are 
available, namely mining disasters within the United 
Kingdom, 1851-1962. 

2. Revisiting mining disasters in the United 
Kingdom, 1851-1962 

Table 1 (see in Appendix) presents the mining disas-
ter data which we use to explore alternatives to con-
ventional methodology estimating multiple regime 
changes across the sample space. By way of back-
ground, these data were originally collected by Ma-
guire et al (1952), extended and corrected by Jarett 
et al. (1979); have been analyzed by frequentist 
methods by Wosley (1986) and by Siegmud (1988); 
and using the Bayesian approach, by Raftery and 
Akman (1986); then Carlin, Gelfand and Smith 
(1992); and, more recently, by Chib (1995). We 
report the data series in alternative graphical forms 
in Figure 2, Figure 3, Figure 4 and in Figure 5 (see 
Appendix) and we do this for three reasons. First, 
we wish to present to the reader a fairly comprehen-
sive view of the number of disasters over the period, 
both marginally and cumulatively, and some basic 
idea about the way in which the frequency of disas-
ters has evolved over time. Second, some inference, 
although casual and empirical, is available from 
careful examinations of the graphical outputs in the 
figures and this forms the mainstay of more de-
tailed, formal enquiry. Third, we wish to illustrate a 
very important point with respect to the sequencing 
of the data which affects inference greatly and forms 
a natural evolution for the presentation of our inves-
tigation of the statistical basis underlying the num-
ber of mining disasters within the United Kingdom, 
1851-1962. In order to investigate them, some nota-
tion will prove useful. 

3. Notation 

By way of notation we use lower-case Greek and 
Roman numerals to reference scalar quantities, use 
emboldened lower-case symbols to reference vec-
tors and use emboldened upper-case symbols to 
reference matrix quantities. Thus, let θ ≡ (θ1, θ2, .., 

θN)′ denote a vector of parameters of interest, where 
‘′’ denotes the ‘transpose’ of the column vector θ; 
π(θ) denotes the prior probability density function 
(pdf) for θ; and π(θ|y) the posterior pdf for θ; where 
y ≡ (y1, y2, .., yN)′ denotes data. Frequently, we ref-
erence the data generating model ƒ(y|θ), which is 
the likelihood function when viewed as a function 
of θ and, sometimes, make use of variants of the 
ƒ(⋅|⋅) notation in order to reference particular proba-
bility density functions. Occasionally we find it 
useful to reference just the variable part of the den-
sity (integrating constant excluded) in which case 
we use the symbol ‘∝’ to denote ‘is proportional 
to.’ In view of the prior-to-posterior conjugacy 
shared by each model that we consider, we adopt 
the notational convention employed by Drèze and 
Richard (1983) wherein postscripts indicated ‘o’ 
reflect prior information and postscripts indicated 
‘*’ reflect posterior information; accordingly ƒ(θ|θo) 
≡ π(θ) and ƒ(θ|θ*) ≡ π(θ|y). Using, generically, ‘x,’ 
as their argument, the several pdfs that we apply 
are, respectively, the Dirichlet distribution ƒD(x|℘) 
≡ Γ(Σi αi) × Πi Γ(αi)-1 ×Πi

iα i-1, x ∈ [0, 1], where 
Γ(⋅) denotes the gamma function as described for 
example in Mood et al. (1972, p. 534); the Multi-
nomial distribution ƒM(x|℘) ≡ N! × Πi (xi!)-1 × Πi℘

ix
, 

xi = 0, 1, 2, .., N; the Poisson pdf, ƒP(x|λ) ≡ exp(-λ) 
× λx × (x!)-1, where x = 0, 1, 2, … ; and, finally, the 
Gamma pdf ƒG(x|r, λ) ≡ λ × Γ(r) × (λx)r-1 × exp(-λx), 
where x satisfies x ∈ (0,+∞].   

4. Methods 

Our major focus is the change-point methodology 
developed previously by Chib (1995), which is a 
very powerful unconstrained method for assessing 
the extent of regime change within a time series 
such as the one we are interested in considering here 
and which is portrayed, in alternative forms, within 
the figures (Figure 2-Figure 5). It’s basis, however, 
is the well-known Markov-switching model, which 
has been used extensively to study persistence in 
economic time series. However the starting point for 
both models is the basic mixtures model which has 
been popularized substantially with the advent of 
the Gibbs sampler (Gelfand and Smith, 1990). Be-
fore introducing, briefly, these three alternative me-
thodologies, it is useful to investigate the properties 
of the basic data generating entity which provides 
the fulcrum in empirical investigation. This is the 
Poisson density. 

4.1. Poisson analysis of the mining disaster data. 
The Poisson probability density function is a single-
parameter density function for the counts in which 
the expected number of mining disasters but also 
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their variance are equal to the value of the parameter 
‘λ’. In this context, we sometimes ask, in Bayesian 
investigations, whether there exists a conjugate situ-
ation, in which both the prior pdf and the posterior 
pdf have the same functional form. It transpires that 
the conjugate distribution for the Poisson data gene-
rating model is the Gamma distribution. Simply put, 
we can view the posterior distribution of the Poisson 
sampling or data-generating process as emanating 
from the Gamma prior distribution for the number 
of coal-mine disasters; combine it with the Poisson 
sampling process; and generate a Gamma posterior. 
Thus the Gamma prior and the Gamma posterior do 
indeed satisfy this property of conjugacy. In particu-
lar, if we allow ourselves to consider that the ran-
dom sampling process evolves according to the 
steps λ ~ ƒG(λ|αo,βo), y ~ ƒP(y|λ), we arrive at λ ~ 
ƒG(λ|y,α*,β*), when, combined through Bayes rule. 
Thus, the two forms λ ~ ƒG(λ|αo,βo), on the one 
hand and λ ~ ƒG(λ|α*,β*), on the other hand are in-
deed from the same conjugate family, and it remains 
to specify the precise relationship between the pa-
rameters αo and βo within the prior process λ ~ 
ƒG(λ|αo,βo); and α* and β* within the posterior 
process λ ~ ƒG(λ|α*,β*) within the posterior. It oc-
curs that the respective relations  

α* ≡ αo + Σi yi,       (4) 

and  

β* ≡ βo + N,         (5) 

evolve. And when applied to the mining disaster 
data in table 1, we find that the posterior distribu-
tion, depicted in Figure 4 evolves. In order to sum-
marize matters, because the posterior distribution 
for λ is in the Gamma form, which has a well de-
fined mean, E{λ} = α*/β*, and a well-defined va-
riance Var{λ} = α*/β*

2 , we know immediately, the 
form of the posterior distribution for λ, once we 
specify parameters for the prior pdf. The prior pdf 
parameters we employ are αo ≡ 1 and βo ≡ 1. We use 
the principal, throughout this paper to apply weak 
but proper priors, and, so, consider, then to maintain 
the values αo ≡ 1 and βo ≡ 1, throughout the entire 
analysis. In this way results are comparable and 
unaffected by changing the prior. Using these prior 
density values in the formulae in (4) and (5) we can 
compute that the posterior mean of the Poisson pa-
rameter is E{λ|y} = 1.70 and the posterior variance 
is Var{λ|y} = 0.02. And these ‘location’ and ‘scale’ 
metrics are evident in Figure 4. We discuss Figure 
5, subsequently. 

The conjugate Gamma-Poisson-Gamma sampling 
model is used throughout the remainder of the pa-
per, and we now ask, specifically, the nature of the 

distribution of the parameter and whether any 
change has occurred over the sample period. In or-
der to examine this phenomena, we will analyze the 
data again using the Chib (1995) change-point me-
thodology, which is essentially a special case of the 
Markov-switching methodology and is, in turn, a 
special case of the more general, though simpler, 
finite mixtures methodology. For this reason, we 
consider, in turn, the basic mixtures methodology 
and its estimating algorithm; the Markov-switching 
methodology; and, finally, the multiple change-
point methodology. 

4.2. Finite-mixtures methodology. The basic and 
fundamental finite mixtures methodology evolves 
from considering that the data y1, y2, .., yN are a se-
quence of random generations from one component, 
say component ‘k,’ of a mixture of Poisson densities 
where we assume that each density arises naturally 
as it does in the single-regime case, just covered, but 
that the data are drawn with unknown probabilities 
ω1, ω2, ..,  ωK, in the sample space. If we assume, 
also that each probability is itself the product of a 
draw from a Dirichlet prior distribution, and then 
augment the observed data likelihood with unknown 
and unobservable classification data, a convenient 
formulation arises, wherein, following a fairly well-
trodden path (Lavine and West (1992), Diebolt and 
Robert (1994), Chib (1995), among others) we are 
then able to exploit convenient mathematical prop-
erties of the model which lend themselves to a very 
straight-forward Gibs sampling algorithm consisting 
of the steps: 

Conditional on classification and component specific 
Poisson parameters, say, λ1, λ2, .., λK, when K re-
gimes exits, draw the mixing weights from a Dirichlet 
distribution; conditional upon the mixing weights and 
the value of the Poisson parameters draw the classi-
fication data from a Multinomial distribution; and, 
third, conditional on the classification data and the 
mixing weights, draw the parameters λ1, λ2, .., λK, 
from their component specific data. 

Under normal circumstances the algorithm is very 
robust and leads to robust estimates of the un-
knowns and allows one to draw inferences about the 
unknown parameters governing the independent 
regimes. Numerous applications exist within the 
literature and reviewing it lies beyond the scope of 
our investigation. One very useful and instructive 
presentation is Dellaportas (1998). 

4.3. Markov-switching methodology. The Markov 
switching methodology is a very small modification 
of the basic finite mixtures algorithm, in which, 
unlike that basic algorithm, the data are not treated 
as fully independent, or ‘exchangeable’ across the 
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sample space. The algorithm essentially differs in the 
draw for the mixing weights which now follow a Mar-
kov process. However, in conjugate settings, such as 
the present one, the steps are essentially the same. In 
particular we have the following steps evolving: 

Conditional on classification and component specif-
ic Poisson parameters, say, λ1, λ2, .., λK, when K 
regimes exits, draw the mixing weights from a Mar-
kov distribution which, for identification purposes is 
time-homogeneous, irreducible and aperiodic; con-
ditional upon the mixing weights and the value of 
the Poisson parameters draw the classification data 
from a Multinomial distribution; and, third, condi-
tional on the classification data and the mixing 
weights, draw the parameters λ1, λ2, .., λK, from 
their component specific data. 

An example of the algorithm is presented in the work 
of Chib (1996). 

4.4. Multiple-change-point methodology. The 
change-point model is a special case of the Markov 
switching model in which the Markov regime for the 
mixing weights is forced to move in a single direction 
throughout the sample, for t = 1, t = 2, t = 3, … and so 
on. It consists of an algorithm that is almost identical 
to the Markov model, with the inclusion of this basic 
restriction on the switching across regimes. Conse-
quently, the change-point methodology is now easily 
developed based on its roots in the finite mixtures 
methodology and in the Markov-switching setting. 

Let ‘m’ denote the number of change-points permit-
ted by the investigator. Following Chib (1998), let 
Yn ≡ {y1, y2, .., yn} denote a time series such that the 
density of yt given Yt-1 depends on some parameter 
ξt whose value changes at unspecified points in time 
Τ ≡ {τ1, τ2, .., τm} and remains constant otherwise 
where τ1 > 1 and τm < n. With ‘m’ so-called ‘break-
points’, the setup is: 

1 1

2 1 2
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,
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m m m

m m
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if t n

θ τ
θ τ τ

ξ
θ τ τ
θ τ

−

+

≤⎧
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⎪
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      (6) 

In terms of the basic mixtures and Markov-
switching algorithms, there are two additional quan-
tities that need to be estimated, namely the probabili-
ty of remaining in the present regime, or ℘ ≡ 
{℘1,℘2, .., ℘m-1, ℘m}, and the sequence of states S 
≡ {s1, s2, .., sn} throughout the time series.  

One fundamental contribution of Chib (1998) is to 
show that these two quantities are easily simulated 
by sampling from two additional steps setting m = 1, 

2, …n, respectively. Step 1: Draw ℘j, j = 1, 2, .., m, 
from π(℘j|) ∝ ƒβ(℘j|a + nii, b+1), where parameters 
‘a’ and ‘b’ evolve from the natural conjugate prior 
pdf π(℘j) ≡ ƒβ(℘j|a, b) and nii denotes the total 
number of one-step transitions from state ‘i’ to state 
‘i’ within the sample. Step 2: Draw st, t = 1, 2, .., n, 
from π(st|⋅) ∝ ƒb(st|p) with probability p(st = k|Yt, Θ, 
℘) ∝ p(st = k|Yt-1, Θ, ℘) × ƒ(yt|Yt-1, θk), where ƒ(⋅) 
here denotes the sampling distribution for the data,. 

Chib’s (1998) multiple change-point methodology is 
attractive for at least four reasons. First, the ‘new’ 
change-point methodology overcomes the problem 
of dimensional intractability arising from the fact 
that the state vector, S ≡ (s1, s2, .., sT)′ can have as 
many as MT paths, where T denotes the number of 
observations in the time series and M denotes the 
number of alternative states. Second, unlike pre-
vious approaches, the ‘new’ methodology does not 
require the investigator to constrain the probabilities 
of change to be constant at each point in time 
(Chernoff and Zacks, 1964) or that the joint distribu-
tion of the parameters is exchangeable and is indepen-
dent of the change points (Yao 1984). Third, the new 
methodology is completely general, deriving posterior 
distributions for the state variables and the probabili-
ties of a change at any particular point in time that are 
functionally independent of the sampling distribution. 
The latter feature bestows upon the new methodology 
a considerable degree of robustness and makes possi-
ble extensions of the basic framework that enables the 
spirit of enquiry to be targeted to a highly varied set of 
sampling structures.  

5. Robust inference about the number of data 
generating regimes 

One key feature shared by each of the three settings 
considered thus far (and one that is also relevant to 
the basic Poisson setting) is the assumption concern-
ing the number of mixture components, or the integ-
er value, ‘M’. Indeed careful re-examination of the 
algorithms above sees that they are in fact each de-
pendent on the value M. In realistic sample settings, 
however, the investigator will usually have incom-
plete information about the number of regimes and 
it is desirous, therefore, to estimate M. Several al-
ternatives exist, but one which is potentially desir-
ous, namely Chib (1995) is problematic, due to the 
fact that the ‘labels’ within the mixing regimes are 
not identifiable.  

This situation has received some considerable atten-
tion in the literature of late, and is covered rather 
comprehensively in Berkhof, van Mechelen and 
Gelman (2003) and the literature cited therein. The 
basic problem arises as follows. Within any mix-
tures setting, there arise M! modes which must be 
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evaluated during estimation. Not only during esti-
mation is this problematic, but also when one wish-
es to evaluate the evidence in favor of a particular 
model and therefore one needs to estimate the all-
important marginal likelihood, as in Chib (1995).  

The latter aspect of estimation is particularly troub-
lesome when it is necessary to determine the num-
ber of regimes to which the finite mixtures, Markov-
switching or multiple-change-point methods are 
applied. We conjecture that this is almost always the 
case. And it is unsurprising that attempts have been 
made to develop methodology, alternative metho-
dology, for this specific purpose. 

Initial work on estimating the number of mixing 
components evolves from the notion of ‘reversible-
jump’ MCMC (Markov Chain Monte Carlo) me-
thods as availed by Green (1995). This approach has 
proven quite robust in a variety of settings outside 
of the mixtures genre. However a key contribution 
in the evolution of technique is the seminal paper by 
Green and Richardson (1997) where they show, 
specifically how the number of mixtures can be 
determined in principal, and in applications. The 
Green and Richardson (1997) approach has now 
become quite standard in recent years and is usually 
referred to under the general umbrella of ‘adaptive 
MCMC.’ The term ‘adaptive’ arises because the 
dimensional space of the unknown quantities is ad-
justed – both reduced and expanded – endogenous-
ly, throughout the sampling chain. This aspect of the 
estimation is particularly noteworthy.  

Complications in storage, in post sample processing 
and in collating the output of the MCMC sample 
arise and, generally speaking, lie above and beyond 
the demands in the typical finite mixtures metho-
dology (Lavine and West, 1992; Diebolt and Robert, 
1994; Chib, 1995; Dellaportas, 1998). Within these 
applications the number of components to the mix-
ture are fixed. It serves to emphasize that these 
computations are performed under the conditional 
assumption of a fixed number of mixture compo-
nents.  

Modifications that require the so-called ‘detailed-
balance’ condition to prevail are especially complex 
in the Richardson and Green (1997) approach. ‘De-
tailed balance’ is the condition that enables the 
MCMC chain to regress and navigate within the 
parameter space but also within the space of dimen-
sions of the unknowns defining the parameter space. 
One crucial issue arises within the context of mix-
tures methodology in the adaptive sampling genre. 
The issue is how to expand and contract the mixing 
weight parameters when the chain wishes to con-
tract or expand across the components space. An 

alternative methodology, which is built directly 
upon extensions of the Richardson and Green 
(1997) methodology, handles this issue in a particu-
larly appealing manner and appears to suffer less 
complexity due to a refinement of the likelihood 
used in estimation. The approach is presented in 
Stephens (2000), about which, it is noted: 

Richardson and Green present a method of perform-
ing Bayesian analysis of data from a finite mixture 
distribution with an unknown number of compo-
nents. Their method is a Markov Chain Monte Carlo 
(MCMC) approach, which makes use of the “revers-
ible jump” methodology described by Green. We 
describe an alternative MCMC method which views 
the parameters of the model as a marked (point) 
process, extending methods suggested by Ripley to 
create a Markov birth-death process with an appro-
priate stationary distribution. Our method is easy to 
implement , even in the case of data in more than 
one dimension, and we illustrate it on both univa-
riate and bivariate data. There appears to be consi-
derable potential for applying these ideas to other 
contexts as an alternative to more general reversi-
ble-jump methods and we conclude with a brief 
discussion of how this might be achieved (Stephens, 
2000, p. 40). 

It is particularly noteworthy that, in closing, Ste-
phens (2000, p. 67) lays out the extension of the 
finite mixtures settings in order to model a multiple 
change-point situation. However, to our knowledge, 
such an algorithm has yet to be applied in any em-
pirical setting. 

Our endeavor is eventually to apply the full change-
point methodology on the coal mine disaster data, 
for which a first step is to consider the closely re-
lated issue of the number of components in the basic 
finite mixtures setting. In what follows, we investi-
gate, through application of the Stephens (2000) 
approach, the number of components existing in the 
coal-mine disasters dataset collected for the United 
Kingdom, 1851-1962.  

6. Empirical models and results 

The empirical models implemented are a simplified 
version of the model applied by Chib (1995) to es-
timate finite mixtures in the aurora borealis, and 
Chib (1998), who applies the standard change-point 
methodology on the coal-mine data we employ. The 
reader is referred to Chib (1995) and Chib (1998) 
for computational details, but the algorithms pro-
ceed, essentially, as outlined, at least superficially, 
above, in the methods section. Draws, only from, 
respectively, Multinomial, Gamma and Dirichlet 
distributions are all that are required, and it is quite 
straight-forward to initiate simple Gibbs sampling 
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algorithms for our purpose. Additional details are 
available from the author upon request as are the 
computer codes used to produce all of the results we 
are about to digest. 

One issue arising in the context of change-point 
investigations, which is important, is the sequence 
of observations within the sample. In time-series 
applications there is of course a very natural se-
quence. This situation does not arise in settings in 
which the observations are independent and arise as 
random draws throughout the time series that is 
draws from a pre-specified number of mixtures 
components. This point is particularly noteworthy 
when the issue of marginal likelihood computation 
as in Chib (1995) arises. In this context, the way in 
which the algorithm is extended can lead to proble-
matic findings as the following analysis illustrates. 

Recalling that Figures 2 through 5 (see Appendix) 
present alternative description of the coal mine dis-
aster data. In Figure 2 we presented the coal-mine 
disasters as a bar chart and in Figure 3 we presented 
the cumulative distribution of the disasters over 
time. From Figure 1 we observe a highly varied 
pattern of scatter of disasters during the period 
1851-until about 1892 and then a decline and a rise 
again and then eventual decline. This pattern of 
sequencing throughout the series is evident from the 
cumulative perspective in Figure 3 where we en-
counter a fairly steep rise in accumulation during the 
1851-1892 period followed by a lessening in steep-
ness of rise and then by a flattening in the accumula-
tions. It is evident at least from this casual empirical 
evidence that there may be changes in the underly-
ing components of the coal-mine series and that 
change-point investigation is required. 

A start point for such analysis is to identify what the 
data suggest if they are combined and estimated as a 
single regime. This is undertaken as above, where 
we detail that the conjugate Gamma posterior for the 
all-important Poisson parameter, yields an expected 
value and variance estimate corresponding to the 
location and sale report as evidence by Figure 5. 
The posterior distribution is in fact centered at the 
mean which is 1.70 and the variance is around 0.02. 

We note that this conclusion is the same one that an 
investigator would arrive at using the entire sample 
and processing the data sequentially. And we note 
that this outcome is independent of the order in 
which the data are processed. Therefore, consider 
the alternative orderings of the disaster data as in 
Table 2 and in Figure 5. In Table 2 we present three 
such orderings, the first comprising the natural or-
dering of the time series; the second comprising the 
time series in reverse order; and the third compris-

ing the time series in an indeterminate of inference 
about the all-important Poisson parameter ‘λ’ when 
these transitions are processed in these three, respec-
tive orderings. The answer is portrayed in the three 
distinct series plotted in Figure 5. In the first case, 
the natural case, in which the time series are 
processed in natural order, we arrive at the series 
plotted in red. There is evidence of an initial oscilla-
tion; followed by a period of increase; stability; and 
then a gradual decline in the estimates; culminating 
in the eventual point estimate corresponding with 
the midpoint of the density projected in Figure 4. 
We note, in passing, that methodology exists for 
making gradual switching regression and is availa-
ble and has been used to model gradual structural 
changes in meat demand (Moschini and Meilke, 
1997), in the classical context; and in production 
settings (Tsurumi et al., 1986), in Bayesian settings. 
We focus attentions, however, on the standard 
change point and mixtures methodologies. Thus, 
from sequentially updating the Poisson parameter, 
we conclude that there has been a gradual decline in 
disasters from about the first 40 observations within 
the sample. 

In contrast, focusing upon the blue line in Figure 5, 
we observe initial oscillation with a gradual increase 
in trend; rising steeply towards the end of the series 
until, at the last observation, expectations coincide 
with the midpoint of the posterior mean reported in 
Figure 4. 

And, when the data are ordered randomly, we ob-
serve the trend much akin to one we expect to ob-
serve in a single regime setting. Thus, the question 
arises about the number of regimes prevailing in the 
data generating environment and the manner in 
which they are processed. In the first and second 
settings there is clear evidence of regime switching, 
but in the third there is not. Thus, how many re-
gimes evolve from formal analysis? 

Figure 6 provides an answer to this question using 
the Stephens (2000) methodology. It is worth men-
tioning that in order to implement the Stephens me-
thod one important user-supplied piece of informa-
tion must be incorporated into the estimation 
process. This piece of information is the so-called 
‘birth rate’ at which new mixtures components are 
created. The figure depicts the posterior probabili-
ties assigned to alternative sets of mixture compo-
nents with the darker shade denoting a birth rate of 
‘1’ the midrange shade depicting a birth rate of ‘2’ 
and the lighter shade depicting a birth rate of ‘3.’ 
The probabilities suggest a fairly even split between 
probabilities placed on the mixture components ‘2’ 
and ‘3’ with negligible mass deposited elsewhere. 
And we conclude, therefore, that there is fairly ro-
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bust evidence to support the conclusion that the 
number of components underlying the mining disas-
ter data is around two or three. 

Another issue arising, which follows logically and 
naturally from the first, is how to classify the obser-
vations into the separate regimes. This concern is 
especially interesting due to the results of previous 
work where Chib (1998) and others seems to find 
fairly strong support that a significant structural 
change occurred within the data series at or around 
time period 41, which coincides with the year 1892. 
They find two regimes governed by Poisson para-
meter posterior mean (standard deviation) values of 
λ(1) = 3.119 (0.286) and λ(2) = 0.957 (0.120), respec-
tively. In order to investigate this finding in more 
detail, we implement a ‘label-free’ procedure, in 
which the classifications are permitted to roam 
throughout the sample and we classify the various 
observations as coinciding with one or other of the 
two-component, or three-component regimes, run-
ning separate MCMC chains in each case. The pro-
cedure with which we produce classification is a 
subtle matter circumventing the problem – the over-
arching dilemma confronting ‘classification’ – that 
‘labeling’ which is prima facie necessary in a classi-
fication exercise generates most problematic find-
ings. It is outlines, briefly, in Holloway (2013) and 
lies beyond the scope of present interests.  

Turning now to the classification of the time series 
and its importance for the over-arching loss calcula-
tions, the reader is returned to Figure 1. In the fig-
ure, the values of the loss calculations using the 
Chib (1998) methodology are compared and con-
trasted with those derived under the Stephens (2003) 
method. The former are depicted by the shaded, 
enclosed area and the latter by the scatter entries (in 
red) superimposed on the former. We make two 

observations in conclusion. First, a significant dif-
ference in regime selection components governing 
the coal-mine disaster data appears to exist. Second, 
it leads to considerable bias in welfare loss calcula-
tions in the face of disaster. 

Concluding comments 

This study highlights the usefulness, versatility and 
general dexterity of an extremely robust methodolo-
gy for assessing structural change in time series but 
more generally, parameter stability in a wide variety 
of data generating settings. The methodology is the 
endogenous regime determination point process 
developed by Stephens (2000). It remains underuti-
lized in applied environmental settings. Our results 
and examples in the simple illustrations presented 
here suggest that the procedure should have broader 
exposure. Further work with the change-point me-
thodology presented within this paper is likely to 
yield robust inferences in a variety of setting that are 
of fundamental importance to statistical enquiries 
within environmental economics. 
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Table 1. Coal mining disasters in the United Kingdom, 1851-1962 

Year Number of disasters Year Number of disasters 
1851 4 1907 0 
1852 5 1908 3 
1853 4 1909 2 
1854 1 1910 2 
1855 0 1911 0 
1856 4 1912 1 
1857 3 1913 1 
1858 4 1914 1 
1859 0 1915 0 
1860 6 1916 1 
1861 3 1917 0 
1862 3 1918 1 
1863 4 1919 0 
1864 0 1920 0 
1865 2 1921 0 
1866 6 1922 2 
1867 3 1923 1 
1868 3 1924 0 
1869 5 1925 0 
1870 4 1926 0 
1871 5 1927 1 
1872 3 1928 1 
1873 1 1929 0 
1874 4 1930 2 
1875 4 1931 3 
1876 1 1932 3 
1877 5 1933 1 
1878 5 1934 1 
1879 3 1935 2 
1880 4 1936 1 
1881 2 1937 1 
1882 5 1938 1 
1883 2 1939 1 
1884 2 1940 2 
1885 3 1941 4 
1886 4 1942 2 
1887 2 1943 0 
1888 1 1944 0 
1889 3 1945 0 
1890 2 1946 1 
1891 2 1947 4 
1892 1 1948 0 
1893 1 1949 0 
1894 1 1950 0 
1895 1 1951 1 
1896 3 1952 0 
1897 0 1953 0 
1898 0 1954 0 
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1899 1 1955 0 
1900 0 1956 0 
1901 1 1957 1 
1902 1 1958 0 
1903 0 1959 0 
1904 0 1960 1 
1905 3 1961 0 
1906 1 1962 1 

Note: The data are from Maguire et al (1952) corrected by Jarrett (1979). 

Table 2. Year sequences of coal mining disasters in the United Kingdom, 1851-1962 

One Two Three 
1851 1962 1902 
1852 1961 1958 
1853 1960 1961 
1854 1959 1906 
1855 1958 1911 
1856 1957 1857 
1857 1956 1938 
1858 1955 1868 
1859 1954 1945 
1860 1953 1920 
1861 1952 1957 
1862 1951 1941 
1863 1950 1908 
1864 1949 1890 
1865 1948 1947 
1866 1947 1896 
1867 1946 1950 
1868 1945 1879 
1869 1944 1901 
1870 1943 1954 
1871 1942 1858 
1872 1941 1895 
1873 1940 1853 
1874 1939 1891 
1875 1938 1878 
1876 1937 1873 
1877 1936 1910 
1878 1935 1888 
1879 1934 1877 
1880 1933 1919 
1881 1932 1871 
1882 1931 1925 
1883 1930 1948 
1884 1929 1867 
1885 1928 1897 
1886 1927 1881 
1887 1926 1887 
1888 1925 1952 
1889 1924 1883 
1890 1923 1886 
1891 1922 1893 
1892 1921 1955 
1893 1920 1923 
1894 1919 1942 
1895 1918 1860 
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1896 1917 1870 
1897 1916 1889 
1898 1915 1864 
1899 1914 1930 
1900 1913 1935 
1901 1912 1884 
1902 1911 1912 
1903 1910 1900 
1904 1909 1928 
1905 1908 1924 
1906 1907 1936 
1907 1906 1937 
1908 1905 1921 
1909 1904 1856 
1910 1903 1851 
1911 1902 1903 
1912 1901 1940 
1913 1900 1854 
1914 1899 1882 
1915 1898 1909 
1916 1897 1885 
1917 1896 1862 
1918 1895 1880 
1919 1894 1917 
1920 1893 1875 
1921 1892 1944 
1922 1891 1918 
1923 1890 1852 
1924 1889 1929 
1925 1888 1939 
1926 1887 1859 
1927 1886 1943 
1928 1885 1932 
1929 1884 1892 
1930 1883 1899 
1931 1882 1876 
1932 1881 1915 
1933 1880 1872 
1934 1879 1949 
1935 1878 1866 
1936 1877 1913 
1937 1876 1956 
1938 1875 1962 
1939 1874 1927 
1940 1873 1865 
1941 1872 1874 
1942 1871 1934 
1943 1870 1946 
1944 1869 1922 
1945 1868 1916 
1946 1867 1914 
1947 1866 1863 
1948 1865 1855 
1949 1864 1861 
1950 1863 1960 
1951 1862 1931 
1952 1861 1959 
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1953 1860 1904 
1954 1859 1907 
1955 1858 1926 
1956 1857 1864 
1957 1856 1905 
1958 1855 1951 
1959 1854 1953 
1960 1853 1933 
1961 1852 1898 
1962 1851 1869 

 
Fig. 2. Distribution of coal mining disasters in the United Kingdom, 1851-1962 

 
Fig. 3. Cumulative distribution of coal mining disasters in the United Kingdom, 1851-1962 
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Note: The posterior mean is 1.70 and the posterior variance is 0.02. 

Fig. 4. Posterior distribution of the Poisson parameter for the mining disaster data 

 
Note: The lighter shade line depicts the sequence moving through the data in the sequence 1851, 1852, …, 1961. The midrange 
shade line depicts the sequence moving in reverse order through the sample from years 1962, 1961, …, 1852, 1851. The darkest 
shade line depicts the sequence moving through the data in the order presented in the randomly selected order presented in Table 2. 

Fig. 5. Sequential updating of the Poisson parameter through the sample of coal mine disasters in the United Kingdom, 
1851-1962 

 

Notes: The probabilities are reported for three separate birth rates, with the darkest bars depicting birth-rate = 1, the midrange shade 
depicting birth-rate = 2, and the lighter shade depicting birth-rate = 3. 

Fig. 6. Posterior probabilities of the number of mixture components using the Stephens (2000) methodology 
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