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Abstract. Earth system models (ESMs) are increasing in
complexity by incorporating more processes than their pre-
decessors, making them potentially important tools for
studying the evolution of climate and associated biogeo-
chemical cycles. However, their coupled behaviour has only
recently been examined in any detail, and has yielded a
very wide range of outcomes. For example, coupled climate–
carbon cycle models that represent land-use change simu-
late total land carbon stores at 2100 that vary by as much
as 600 Pg C, given the same emissions scenario. This large

uncertainty is associated with differences in how key pro-
cesses are simulated in different models, and illustrates the
necessity of determining which models are most realistic us-
ing rigorous methods of model evaluation. Here we assess
the state-of-the-art in evaluation of ESMs, with a particular
emphasis on the simulation of the carbon cycle and associ-
ated biospheric processes. We examine some of the new ad-
vances and remaining uncertainties relating to (i) modern and
palaeodata and (ii) metrics for evaluation. We note that the
practice of averaging results from many models is unreliable
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and no substitute for proper evaluation of individual mod-
els. We discuss a range of strategies, such as the inclusion of
pre-calibration, combined process- and system-level evalua-
tion, and the use of emergent constraints, that can contribute
to the development of more robust evaluation schemes. An
increasingly data-rich environment offers more opportunities
for model evaluation, but also presents a challenge. Improved
knowledge of data uncertainties is still necessary to move
the field of ESM evaluation away from a “beauty contest”
towards the development of useful constraints on model out-
comes.

1 Introduction

Earth system models (ESMs), which use sets of equations to
represent atmospheric, oceanic, cryospheric, and biospheric
processes and interactions (Claussen et al., 2002; Le Treut
et al., 2007; Lohmann et al., 2008), are intended as tools
for the study of the Earth system. The current generation of
ESMs are substantially more complex than their predeces-
sors in terms of land and ocean biogeochemistry, and can
also account for land cover change, which is an important
driver of the climate system through both biophysical and
biogeochemical feedbacks. Yet their coupled behaviour has
only recently begun to be explored.

The carbon cycle is a central feature of current ESMs, and
the representation and quantification of climate-carbon cycle
feedbacks involving the biosphere has been a primary goal of
recent ESM development. ESM results submitted to the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5) simu-
late total land carbon stores in 2100 that vary by as much as
600 Pg C across models with the ability to represent land-use
change, even when forced with the same anthropogenic emis-
sions (Jones et al., 2013). This indicates that there are large
uncertainties associated with how carbon cycle processes are
represented in different models. In addition to these uncer-
tainties in the biogeochemical climate-vegetation feedbacks,
there are considerable uncertainties in the biogeophysical
feedbacks (Willeit et al., 2013).

Robust evaluation of a model’s ability to simulate key car-
bon cycle processes is therefore a critical component of ef-
forts to model future climate-carbon cycle dynamics. Robust
evaluation establishes the confidence which can be placed on
a given model’s projection of future behaviours and states
of the system. However, evaluation is complicated by the
fact that ESMs differ in their level of complexity. To take
the example of land cover, while some models only account
for biophysical effects (e.g. related to changes in surface
albedo), some ESMs also account for biogeochemical effects
(e.g. principally a change in carbon storage following land
conversion). Another example is the representation of nu-
trient cycles. Not all ESMs include nutrient cycles. Current
model projections that do include the coupling between ter-

restrial carbon and nitrogen (and in some cases phosphorus)
cycles suggest that taking nutrient limitations into account
attenuates possible future carbon cycle responses. This is be-
cause soil nitrogen tends to limit the ability of plants to re-
spond positively to increases in atmospheric CO2, reducing
CO2 fertilisation, and, conversely, tends to limit ecosystem
carbon losses with temperature increases, as these also in-
crease rates of nitrogen mineralisation. The reduction in CO2
fertilisation is found to dominate, leading to a stronger accu-
mulation of CO2 in the atmosphere by the end of the 21st
century than is projected by carbon cycle models that do not
include nutrient feedbacks (Sokolov et al., 2008; Thornton et
al., 2009; Zaehle et al., 2010).

Evaluation studies in climate modelling have highlighted
how choice of methodology can significantly impact the
conclusions reached concerning model skill (e.g. Radic and
Clarke, 2011; Foley et al., 2013). Several studies have found
that the mean of an ensemble of models outperforms all or
most single models of that ensemble (e.g. Evans, 2008; Pin-
cus et al., 2008). However, Schaller et al. (2011) demon-
strated that although the multi-model mean outperforms in-
dividual models when the ability to reproduce global fields
of climate variables is evaluated, it does not consistently out-
perform the individual models when the ability to simulate
regional climatic features is evaluated. This highlights the
need for robust assessments of model skill. Model evalua-
tions which use inappropriate metrics or fail to consider key
aspects of the system have the potential to lead to overcon-
fidence in model projections. In particular, the averaging of
results from different models is not an adequate substitute for
proper evaluation of each model in turn.

Developing robust approaches to model evaluation, that is,
approaches which reduce the data- and metric-dependency
of statements about model skill, is challenging for reasons
that are not exclusive to carbon cycle modelling but applica-
ble across all aspects of Earth system modelling. Data sets
may lack uncertainty estimates, significantly reducing their
usefulness for model evaluation. Critical analysis may be re-
quired to reconcile differences between data sets intended to
describe similar phenomena, such as temperature reconstruc-
tions based on different indicators (Mann et al., 2009). Fur-
thermore, there are many metrics in use in model evaluation
and often, the rationale for applying a specific metric is un-
clear. This paper considers these issues, along with strategies
for improvement.

Overview of this paper

Knowledge of the system under observation is essential for
the assessment of model performance (Oreskes et al., 1994).
We therefore begin with a discussion of some challenges as-
sociated with the use ofmodern and palaeodatain model
evaluation. Data validity (Sargent, 2010) is a crucial aspect.
Key issues include uncertainties associated with our under-
standing of the changes captured in each type of record,
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mismatches between available data and what is required for
evaluation, and the challenges of using data collected at a
specific spatial or temporal scale to develop larger-scale tests
of model behaviour.

Next, we considermetrics for model evaluation. Met-
rics are simple formulae or mathematical procedures that
measure the similarity or difference between two data sets.
Whether using classical metrics (such as root mean square er-
ror, correlation, or model efficiency), or advanced analytical
techniques (such as artificial neural networks), to compare
models with data and quantify model skill, it is necessary to
be aware of the statistical properties of metrics, as well as the
properties of the model variables under consideration and the
limitations of the evaluation data sets. Otherwise, there is a
strong potential to draw false conclusions concerning model
skill. Recent attempts to provide a benchmarking framework
for land surface model evaluation indicate a move toward set-
ting community-accepted standards (Randerson et al., 2009;
Luo et al., 2012; Kelley et al., 2012). However, different lev-
els of complexity in ESMs, different parameterisation pro-
cedures and modelling approaches, the validity of data, and
an unavoidable level of subjectivity complicate the task of
identifying universally applicable procedures.

Finally, recommendations for more robust evaluationare
discussed. We note that evaluation can be process-based
(“bottom-up”) or system-level (“top-down”) (Fig. 1). Evalu-
ation can utilise pre-calibration, and/or emergent constraints
across multiple models. A combination of approaches can
increase our understanding of a model’s ability to simulate
processes across multiple temporal and spatial scales.

Consideration will also be given to how key questions aris-
ing in the paper could potentially be resolved throughcoor-
dinated research activities.

2 The role of data sets in ESM evaluation

ESMs aim to simulate a highly complex system. Non-
linearities in the system imply that even a small change in
one of the components might unexpectedly influence another
component (Roe and Baker, 2007). As such, robust model
evaluation is critical to assist in understanding the behaviour
of ESMs and the limitations of what we can and cannot rep-
resent quantitatively. The development of such approaches
to model evaluation requires consideration of many different
data types.

Modern and palaeodata are both used for model eval-
uation, although each kind of data has advantages and
limitations (Table 1). Experimental data provide bench-
marks for a range of carbon cycle-relevant processes
(e.g. physiologically-based responses of ecosystems to
warming and CO2 increase) that cannot be tested in other
ways. However, for processes that are biome-specific, the
limited geographical scope of the relatively few existing
records is problematic. Data sets also exist with more global

Fig. 1.Conceptual diagram of hierarchical approach to model eval-
uation on different spatial and temporal scales.

coverage, documenting changes in the recent past (last 30–
50 yr), but an inherent limitation of these data sets is that they
sample the carbon cycle response to a limited range of varia-
tion in atmospheric CO2 concentration and climate.

Palaeoclimate evaluation is an important test of how
well ESMs reproduce climate changes (e.g. Braconnot et
al., 2012). The past does not provide direct analogues for
the future, but does offer the opportunity to examine cli-
mate changes that are as large as those anticipated dur-
ing the 21st century, and to evaluate climate system feed-
backs with response times longer than the instrumental pe-
riod (e.g. cryosphere, ocean circulation, some components
of the carbon cycle).

2.1 Modern data sets

Evaluation analysis can benefit from modern data sets, to test
and constrain components within ESMs in a hierarchical ap-
proach (Leffelaar, 1990; Wu and David, 2002). Recent ini-
tiatives in land and ocean model evaluation and benchmark-
ing (land: Randerson et al., 2009; Luo et al., 2012; Kelley et
al., 2012; Dalmonech and Zaehle, 2013; ocean: Najjaret al.,
2007; Friedrichs et al., 2009; Stow et al., 2009; Bopp et al.,
2013) give examples of suitable modern data sets for model
evaluation and their use in diagnosing model inconsistencies
with respect to behaviour of the carbon cycle. These include
instrumental data, such as direct measurements of CO2, and
CH4 spanning the last 30–50 yr, measurements from carbon
flux monitoring networks, and satellite-based data of various
kinds (Table 1).

Due to their detailed spatial coverage and high temporal
resolution, satellite data sets offer the potential to explore the
representation of processes in models in detail, and to reveal
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Table 1.Summary of key data types for evaluation.

Type of
data

Description Examples Advantages Limitations

Modern
last
30–50 yr

In situ instrumental
data

Atmospheric CO2,CH4. Direct observations of key
variables, known uncertain-
ties.

Local observations.

Experimental data Controlled environments
(e.g. Phytotrons and
glasshouses).

Field experiments (e.g. Free
Air Carbon dioxide Enrich-
ment – FACE).

Provides new situations
against which to test model
behaviour, such as repre-
senting ecosystem-scale
responses to combined
environmental drivers.

Large-scale field experiments
generally do not provide infor-
mation across all biomes.

Interpretation of experiments
may be ambiguous.

Model-derived type I Satellite-based data. Excellent spatial and/or
temporal resolution.

Lack full data-model independency,
as data is model-derived (radiative
transfer model converts radiation
measurements into the parameter of
interest).

Inconsistent documentation of
errors and uncertainties.

Model-derived type II C-fluxes up-scaled data
(e.g. MTE-MPI data set).

“Data-model” conceptual
correspondence.

Lack fully data-model indepen-
dency, as data is model-derived.

Inconsistent documentation of
errors and uncertainties.

Palaeo Reconstructions based
on interpretation of
biological or geo-
chemical records.

Measurements of
concentrations and
isotopic ratios from
ice cores.

Tree-ring data sets.

Pollen and plant macrofos-
sil data (e.g. BIOME 6000).

Ice cores, e.g. Law Dome,
EPICA.

Tests ability to capture
behaviour of the system
outside modern range.

Signal is large compared to
noise.

Site-specific records (except for
long-lived greenhouse gases),
synthesis required to produce
global estimates.

Variable temporal resolution
necessitates appropriate selection
of data to address, e.g. rapid
changes.

Inconsistent documentation of
errors and uncertainties.

compensating errors in ESMs. One of the main concerns is
the lack of full consistency between what we can observe
with different satellite sensors (e.g. top of the atmosphere re-
flectance) and what models actually simulate (e.g. net pri-
mary productivity). The lack of full independence between
the data and the model is also an issue that often affects such
comparisons. Satellite data are typically model-processed
(type 1, Table 1), with some sort of model used to transform
the direct measurements of the satellite into other parameters
of interest. If, for example, a radiative transfer model is used
to estimate the atmospheric or surface state from measured
radiances, then there will likely be similarities between the
functions used for the retrieval and those used in a climate
model. This is not a major problem if the data are used in an

informed way, and indeed it presents opportunities (e.g. the
estimated surface variable can be compared with a modelled
variable without the model radiative transfer functions being
involved). Statistical and change detection retrievals rely not
on physical models but on statistical links between variables
or on a modulation of the satellite signal. These two types of
retrievals sometimes use model data for calibration but are
otherwise independent of models. Statistical models in par-
ticular are not only useful to evaluate specific parameters in
a model, but can also be used to perform process-based eval-
uations.

Uncertainty estimates are not always provided or propa-
gated during the retrieval process. Nevertheless, modern data
sets are a very rich data source with a number of useful
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applications. For example, robust spatial and temporal infor-
mation emerging from data can be used to rule out unreason-
able simulations and diagnose model weaknesses. Satellite-
based data sets of vegetation activity depict ecosystem re-
sponse to climate variability at seasonal and interannual time
scales and return patterns of forced variability that can be
useful for model evaluation (Beck et al., 2011; Dahlke et al.,
2012), even if bias within the data set is greater than data-
model differences (e.g. Fig. 2).

Ecosystem observations, such as eddy covariance mea-
surements of CO2 and latent heat exchanges between the
atmosphere and land, and ecosystem manipulation studies,
such as drought treatments and free air CO2 enrichment
(FACE) experiments, provide a unique source of informa-
tion to evaluate process formulations in the land compo-
nent of ESMs (Friend et al., 2007; Bonan et al., 2012; de
Kauwe et al., 2013). Manipulation experiments (e.g. FACE
experiments: Nowak et al., 2004; Ainsworth and Long, 2005;
Norby and Zak, 2011) are a particularly powerful test of
key processes in ESMs and their constituent components, as
shown by Zaehle et al. (2010) in relation to C-N cycle cou-
pling, and de Kauwe et al. (2013) for carbon-water cycling.
It should be expected that models would be able to repro-
duce experimental results involving manipulations of global
change drivers such as CO2, temperature, rainfall, and N ad-
dition.

The application of such data for the evaluation of ESMs is
challenging because of the limited spatial representativeness
of the observations, resulting from the lack of any coherent
global strategy for the placement of flux towers or experi-
mental sites, and the high costs of running these facilities.
Upscaling monitoring data using data-mining techniques and
ancillary data, such as remote sensing and climate data, pro-
vides one possible means to bridge the gap between the spa-
tial scale of observation and ESMs (Jung et al., 2011). How-
ever, this can be at the cost of introducing model assump-
tions and uncertainties that are difficult to quantify. Further-
more, such upscaling is near impossible for ecosystem ma-
nipulation experiments, as they are so scarce, and rarely per-
formed following a comparable protocol. More and better-
coordinated manipulation studies are needed to better con-
strain ESM prediction (Batterman and Larsen, 2011; Vicca
et al., 2012). Hickler et al. (2008), for example, showed that
the LPJ-GUESS model produced quantitatively realistic net
primary production (NPP) enhancement due to CO2 eleva-
tion in temperate forests, but also showed greatly different
responses in boreal and tropical forests, for which no ade-
quate manipulation studies exist. These predictions remain
to be tested.

The interpretation of experiments is not unambiguous be-
cause it is seldom that just one external variable can be al-
tered at a time. To give just one recent example, Bauerle et
al. (2012) showed that the widely observed decline of Ru-
bisco capacity (Vc,max) in leaves during the transition from
summer to autumn could be abated by supplementary light-

Fig. 2. Original fAPAR time series from a selected region (after
Dahkle et al., 2012).©American Meteorological Society. Used with
permission.

ing designed to maintain the summer photoperiod, and con-
cluded thatVc,max is under photoperiodic control, asserting
that models should include this effect. However, their treat-
ment also inevitably increased total daily photosynthetically
active radiation (PAR) in autumn. On the basis of the infor-
mation given about the experimental protocol, these results
could therefore also be interpreted as showing that seasonal
variations inVc,max are related to daily total PAR.

This example draws attention to a key principle for the use
of experimental results in model evaluation, namely that such
comparisons are only valid if the models explicitly follow
the experimental protocol. It is not sufficient for models to
attempt to reproduce the stated general conclusions of exper-
imental studies. The possibility of invalid comparisons can
most easily be avoided through the inclusion of experimen-
talists from the outset in model evaluation projects. This was
the case, for example, in the FACE data-model comparison
study of De Kauwe et al. (2013).

This example also illustrates a general challenge for the
modelling community. One response to new experimental
studies is to increase model complexity by adding new pro-
cesses based on the ostensible advances in knowledge. How-
ever, we advise a more critical and cautious approach, em-
ploying case-by-case comparisons of model results and ex-
periments, rather than general interpretation of experiments,
to reduce the potential for ambiguities and avoid unneces-
sary complexity in models. Such an approach would prevent
the occurrence of overparameterisation, the implications of
which have been explored by Crout et al. (2009).

2.2 Palaeodata

The key purpose of palaeo-evaluation is to establish whether
the model has the correct sensitivity for large-scale pro-
cesses. Models are typically developed using modern ob-
servations (i.e. under a limited range of climate conditions
and behaviours), but we need to determine how well they
simulate a large climate change, to assess whether they can

www.biogeosciences.net/10/8305/2013/ Biogeosciences, 10, 8305–8328, 2013
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capture the behaviour of the system outside the modern
range. If our understanding of the physics and biology of
the system is correct, models should be able to predict past
changes as well as present behaviour.

Reconstructions of global temperature changes over the
last 1500 yr (e.g. Mann et al., 2009) are primarily derived
from tree-ring and isotopic records, while reconstructions
of climates over the last deglaciation and the Holocene
(e.g. Davis et al., 2003; Viau et al., 2008; Seppä et al., 2009)
are primarily derived from pollen data, although other biotic
assemblages and geochemical data have been used at individ-
ual sites (e.g. Larocque and Bigler, 2004; Hou et al., 2006;
Millet et al., 2009). Marine sediment cores have been used
extensively to generate sea-surface temperature reconstruc-
tions (e.g. Marcott et al., 2013), and to reconstruct different
past climate variables (see review in Henderson, 2002) re-
lated to ocean conditions. For example,δ13C is used in re-
constructions of ocean circulation, marine productivity, and
biosphere carbon storage (Oliver et al., 2010). However, the
interpretation of these data is often not straightforward, since
the measured indicators are frequently influenced by more
than one climatic variable (e.g. the benthicδ18O measured in
foraminiferal shells contains information on both global sea
level and deep water temperature). Errors associated with the
data and their interpretation also need to be stated, as while
analytical errors on the measurements are often small, errors
in the calibrations used to obtain reconstructions tend to be
much bigger. Therefore the incorporation of measured vari-
ables such as marine carbonate concentrations (e.g. Ridgwell
et al., 2007),δ18O (e.g. Roche et al., 2004) orδ13C (e.g. Cru-
cifix, 2005) as variables in models is an important advance,
because it allows comparison of model outputs directly with
data, rather than relying on a potentially flawed comparison
between modelled variables and the same variables recon-
structed from chemical or isotopic measurements.

Ice cores provide a polar contribution to climate response
reconstruction, as well as crucial information on a range of
climate-relevant factors. For example, responses to forcings
by solar variability (through10Be), volcanism (through sul-
fate spikes), and changes in the atmospheric concentration
of greenhouse gases (e.g. CO2, CH4, N2O) and mineral dust
can be assessed. CH4 can be measured in both Greenland
and Antarctic ice cores. CO2 measurements require Antarctic
cores, due to the high concentrations of impurities in Green-
land samples, which lead to the in situ production of CO2
(Tschumi and Stauffer, 2000; Stauffer et al., 2002). For the
last few millennia, choosing sites with the highest snow ac-
cumulation rates yields decadal resolution. The highest res-
olution records to date are from Law Dome (MacFarling
Meure et al., 2006), making these data more reliable, par-
ticularly for model evaluation (e.g. Frank et al., 2010). Fur-
ther work at high accumulation sites would provide reas-
surance on this point. Over longer time periods, sites with
progressively lower snow accumulation rates, and therefore
lower intrinsic time resolution, have to be used. Through

the Holocene (last∼11 000 yr) (Elsig et al., 2009), and the
last deglaciation, i.e. the transition out of the Last Glacial
Maximum (LGM) into the Holocene (Lourantou et al., 2010;
Schmidt et al., 2012), there are now high-quality13C /12C of
CO2 data available, as well as much improved information
about the phasing between the change in Antarctic tempera-
ture and CO2 (Pedro et al., 2012; Parrenin et al., 2013), and
between CO2 and the global mean temperature (Shakun et
al., 2012) .

Compared to the amount of effort spent on reconstructing
past climates and atmospheric composition, comparatively
few data sets provide information on different components
of the terrestrial carbon cycle. Nevertheless, there are data
sets – synthesised from many individual published studies
– that provide information on changes in vegetation distri-
bution (e.g. Prentice et al., 2000; Bigelow et al., 2003; Harri-
son and Sanchez Goñi, 2010; Prentice et al., 2011a), biomass
burning (Power et al., 2008; Daniau et al., 2012), and peat ac-
cumulation (e.g. Yu et al., 2010; Charman et al., 2013). These
data sets are important because they can be used to test the
response of individual components of ESMs to changes in
forcing.

The major advantage of evaluating models using the palae-
orecord is that it is possible to focus on times when the sig-
nal is large compared to the noise. The change in forcing at
the LGM relative to the pre-industrial control is of compa-
rable magnitude, though opposite in direction, to the change
in forcing from quadrupling CO2 relative to that same con-
trol (Izumi et al., 2013). Thus, comparisons of palaeoclimatic
simulations and observations since the LGM can provide a
measure of individual model performance, discriminate be-
tween models, and allow diagnosis of the sources of model
error for a range of climate states similar in scope to those ex-
pected in the future. For example, Harrison et al. (2013) eval-
uated mid-Holocene and LGM simulations from the CMIP5
archive, and from the second phase of the Palaeoclimate
Modelling Intercomparison Project (PMIP2), against obser-
vational benchmarks, using goodness-of-fit and bias metrics.
However, as is the case for many modern observational data
sets (e.g. Kelley et al., 2012), not all published palaeorecon-
structions provide adequate documentation of errors and un-
certainties, and there is a lack of standarisation between data
sets where such estimates are provided (e.g. Leduc et al.,
2010; Bartlein et al., 2011). Reconstructions based on ice or
sediment cores are intrinsically site-specific (except for the
globally significant greenhouse gas records), therefore many
records are required to synthesise regional or global distri-
bution patterns and estimates (Fig. 3). Community efforts to
provide high-quality compilations of already available data
(e.g., Waelbroeck et al., 2009; Bartlein et al., 2010) make
it possible to use palaeodata for model evaluation, but an
increase in the coverage of palaeoreconstructions is still re-
quired to evaluate model behaviour at regional scales.

Unfortunately, most attempts to compare simulations and
reconstructions using palaeodata have focused on purely
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Fig. 3. Examples of global data sets documenting environmental conditions during the mid-Holocene (ca. 6000 yr ago) that can be used
for benchmarking ESM simulations. In general, these are expressed as anomalies, i.e. the difference between the mid-Holocene and mod-
ern conditions:(a) pollen-based reconstructions of anomalies in mean annual temperature,(b) reconstructions of anomalies in sea-surface
temperatures based on marine biological and chemical records,(c) pollen and plant macrofossil reconstructions of vegetation during the
mid-Holocene,(d) charcoal records of the anomalies in biomass burning, and(e) anomalies of changes in the hydrological cycle based on
lake-level records of the balance between precipitation and evaporation (after Harrison and Bartlein, 2012). (Reprinted from Harrison, S. P.
and Bartlein, P.: Records from the Past, Lessons for the Future, in: The Future of the World’s Climate, edited by: A. Henderson-Sellars and
K. J. McGuffie, 403–436, Copyright© 2012, with permission from Elsevier.)

qualitative agreement of simulated and observed spatial
patterns (e.g. Otto-Bliesner et al., 2007; Miller et al.,
2010). There has been surprisingly little use of metrics for
palaeodata-model comparisons (for exceptions see e.g. Guiot
et al., 1999; Paul and Schäfer-Neth, 2004; Harrison et al.,
2013). This situation probably reflects problems in devel-
oping meaningful ways of taking uncertainties into account
in these comparisons. Quantitative assessments have gener-
ally focused on individual large-scale features of the climate
system, for example the magnitude of insolation-induced in-
crease in precipitation over northern Africa during the mid-
Holocene (Joussaume et al., 1999; Jansen et al., 2007), zonal

cooling in the tropics at the LGM (Otto-Bleisner et al., 2009),
or the amplification of cooling over Antarctica relative to the
tropical oceans at the LGM (Masson-Delmotte et al., 2006;
Braconnot et al., 2012). Comparisons of simulated vegetation
changes have been based on assessments of the number of
matches to site-based observations from a region (e.g. Harri-
son and Prentice, 2003; Wohlfahrt et al., 2004, 2008). Obser-
vational uncertainty is represented visually in such compar-
isons, and only used explicitly to identify extreme behaviour
amongst the models. Nevertheless, the recent trend is towards
explicit incorporation of uncertainties and systematic model
benchmarking (Harrison et al., 2013; Izumi et al., 2013).
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3 Key metrics for ESM evaluation

Many metrics have been proposed (Tables 2–4), and the
choice of an appropriate metric in model evaluation is crucial
because the use of inappropriate metrics can lead to overcon-
fidence in model skill. The choice should be based on the
properties of the data sets, the properties of the metric, and
the specific objectives of the evaluation. Metric formalism –
that is, the treatment of metrics as well-defined mathematical
and statistical concepts – can help the interpretation of met-
rics, their analysis, or their combination into a “skill-score”
(Taylor, 2001) in an objective way.

The use of metrics draws on the mathematical con-
cept of “distance” (d(x,y)), expressed in terms of
three characteristics: separation:d(x,y)= 0←→ x = y,
symmetry: d(x,y)= d(y,x), and the triangle inequality
d(x,z)d(x,y)+ d(y,z). The two data sets could be two
model outputs, where the metric is used to measure how sim-
ilar the two models are, or one model output and one refer-
ence observation data set, where the metric is used to evaluate
the model against real measurements. Three levels of metric
complexity can be identified, relating to the state-space on
which to apply the distance:

– Level 1 – “comparisons of raw biogeophysical vari-
ables”. Here the distance generally reflects errors
and provides assessment of model performance where
there is a reasonable degree of similarity between the
model and reference data set (such as climate variables
in weather models).

– Level 2 – “comparisons of statistics on biogeophysical
variables”. Here the distance is measured on a statisti-
cal property of the data sets. This is particularly useful
for models that are expected to characterise the statis-
tical behaviour of a system (e.g. climate models). This
level is appropriate for most of the biophysical vari-
ables simulated by ESMs.

– Level 3 – “comparisons of relationships among bio-
geophysical variables”. Here, the distance is diagnos-
tic of relationships related to physical and/or biological
processes and this level of comparison is therefore use-
ful for understanding the behaviour of two data sets.

At all levels of metric complexity, the metric needs to be
both synthetic enough to aid in understanding the similari-
ties and differences between the two data sets, and to be un-
derstandable by non-specialists in order to facilitate its use
by other communities. Next, the particular uses, advantages,
and limitations of metrics in each level of metric complexity
will be discussed.

3.1 Metrics on raw biogeophysical variables

Level 1 metrics are the most widely used. The distance mea-
sures the discrepancies between two data sets of a key bio-

geophysical variable. Discrepancies can be measured at site
level or at pixel level for gridded data sets, and thus such
comparisons can be used for model evaluation against sparse
data, such as site-based NPP data (e.g. Zaehle and Friend,
2010), eddy-covariance data (e.g. Blyth et al., 2011), or at-
mospheric CO2 concentration records at remote monitoring
stations (e.g. Cadule et al., 2010; Dalmonech and Zaehle,
2013). Where there is sufficient data to make the calcula-
tion meaningful, comparisons can be made against spatial
averages or global means of the biogeophysical variables.
Comparisons can also be made in the time domain because
climate change and climate variability act on Earth system
components across a wide range of temporal scales. The dis-
tance can thus be measured on instantaneous variables or on
time-averaged variables, such as annual means. Many dis-
tances, summarised in Table 2, can be considered to measure
these discrepancies.

The Euclidean distance (Eq. 1) is the most commonly used
distance. It is more sensitive to outliers than the Manhattan
distance (Eq. 2). Both of these distances assume that direct
comparisons of the data can be made. Some examples are
reported in Jolliff et al. (2009), where the Euclidean distance
is used to evaluate three ocean surface bio-optical fields.

In the case of the weighted Euclidean distance (Eq. 3), a
weight is associated with each variable. This is useful for
various reasons: (1) normalisation against a mean value pro-
vides a dimensionless metric and allows comparisons to be
drawn between data sets with different orders of magnitude;
(2) the weighting can take account of uncertainties in the ref-
erence data set (e.g. instrumental errors in an observational
data set, or uncertainty in a model ensemble); and (3) this
type of metric can be useful when the data have a different
dynamical range. For example, in a time series of Northern
Hemisphere monthly surface temperature, the variability is
different for summer and winter, and it makes sense to nor-
malise the differences by the variance.

The Chi-square “distance” (Eq. 4) is related to the Pear-
son Chi-square test or goodness-of-fit, and differs from previ-
ous distances discussed here as it measures the similarity be-
tween two probability density functions (PDFs), rather than
between data points. It is particularly useful if the focus of the
analysis is at the population level. Distances on PDFs are de-
fined, in this paper, to be Level 2 metrics, but the Chi-square
distance can be used when the geophysical variables are sup-
posed to have a particular shape (e.g. an atmospheric profile
of temperature). Equation (5) can also be used, in particular
to facilitate the symmetry property of distances.

The Tchebychev distance (Eq. 6) can be used, for example,
to identify the maximum annual discrepancy in a climatic
run. It can be useful if the focus is on extreme events.

The Mahalanobis distance (Eq. 7) is particularly suitable
if variables have very different units, as each one will be nor-
malised by its variance, and/or if they are correlated with
each other, since the distance takes these correlations into ac-
count. High correlation between two data sets has no impact
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Table 2.Summary of Level 1 metrics (x,y represent points whileD1, D2 are data sets).

Metric Equation Suitability

Euclidean distance d (x,y)=

√
n∑

i=1
(xi − yi)

2 (1) More sensitive to outliers compared to the Manhattan distance.
Like the Manhattan distance, it also supposes that direct com-
parisons of the variables can be made.

Manhattan distance d (x,y)=
n∑

i=1
xi − yi (2) Implicitly supposes thatx andy are comparable, so is not suited

to mixed variables (e.g. variables with different units).

Weighted Euclidean
distance

d (x,y)=

√
n∑

i=1
wi(xi − yi)

2 (3) Uncertainty in the reference data set, such as instrumental errors
in an observation data set, or model uncertainty in a model en-
semble, can be accounted for using a model efficiency metric:
e.g.wi =

1
σ2

i

whereσi =uncertainty.

Chi-squared “distance” d (x,y)=

√
n∑

i=1

1
2

(xi−yi )
2

yi

d (x,y)=

√
n∑

i=1

1
2

(xi−yi )
2

xi+yi

(4)

(5)

Measures how similar two PDFs (probability distribution
functions) are. Particularly useful if the focus of the analysis is
at population level. Alternatively Eq. (5) can be used to facilitate
the symmetry property of distances.

Tchebychev distance d (x,y)=
max

i
(|xi − yi |) (6) Useful for extreme events, or maximum annual discrepancy in

a climatic run.

Mahalanobis distance d (x,y)=

√
(x− y)T A−1(x− y)

whereA−1
= covariance matrix

of x or y.

(7) Particularly useful ifx or y include coordinates with very diffe-
rent units (each one will be normalised by its variance), if they
are correlated one with each other (since the distance takes into
account these correlations), and for combination of multiple
sources of information.

Normalised mean error 1
E

∑
e

(D1,e−D2,e)

D̄1D̄2
whereE is the total number of
samples inD1 andD2.

(8) Applies the distance over the entirety of two data setsD1 andD2.

on the distance computed, compared to two independent data
sets. This distance is directly related to the quality criterion
of the variational assimilation and Bayesian formalism that
optimally combines weather forecast and real observations.
This criterion needs to take into account the covariance ma-
trices and the uncertainties of the state variables.

Interesting links can be established between metrics and
the operational developments of the numerical weather pre-
diction centres. The Mahalanobis distance is well suited for
Gaussian distributions (meaning here that the data/model
misfit distribution follows a Gaussian distribution with co-
variance matrixA, e.g. Min and Hense, 2007). General
Bayesian formalism can be used to generalise this distance to
more complex distributions. The Mahalanobis distance and
the more general Bayesian framework are particularly suit-
able to treat several evaluation issues at once, such as the
quantification of multiple sources of error and uncertainty in
models or the combination of multiple sources of information
(including the acquisition of new information). For instance,
Rowlands et al. (2012) use a goodness-of-fit statistic similar

to the Mahalanobis distance applied to surface temperature
data sets.

We present here distances between two points, possibly
multivariate. Some metrics use these distances and have been
defined over the two whole data setsD1 andD2. For exam-
ple, the Normalized Mean Error (NME) is a normalisation
of the bias between the two data sets (Eq. 8). Several other
distances exist in the literature that have been applied in dif-
ferent scientific fields and that are not listed here (e.g. Deza
and Deza, 2006). However most of these distances are par-
ticular cases or an extension of the preceding distances.

3.2 Metrics on statistical properties

Level 2 metrics, summarised in Table 3, use statistical quan-
tities estimated for two data setsD1 andD2. Some of the
metrics presented in the previous section can then be applied
to the selected statistics. For instance, the PDF can be es-
timated for both data sets and the Chi-Square distance can
be used to measure their discrepancy. For example, Anav et
al. (2013) compared the PDFs of gross primary production
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Table 3.Summary of Level 2 metrics.

Metric Equation Suitability

Chi-squared distance See Eq. (4). For PDFs of two data sets (e.g. observed and modelled data).

Kullback–Leibler
divergence

d(p ‖ q)= ∫p(x)
p(x)
q(x)

(9) For PDFs of two data sets,p andq.

Variance Depends on application. Suitable if long observational record is available.
Use the diagnostic that best suits the application.

(GPP) and leaf area index (LAI) from the CMIP5 model sim-
ulations with two selected data sets.

The Kullback–Leibler divergence (Eq. 9) is based on in-
formation theory and can also be used to measure the simi-
larity of two PDFs. The Kolmogorov–Smirnov distance can
be used when it is of interest to measure the maximum dif-
ference between the cumulative distributions. Tchebychev or
other distances acting on estimated seasons are also consid-
ered here to be Level 2 metrics, since the seasons are statis-
tical quantities estimated onD1 andD2 (although very close
to level 1 raw geophysical variables). Similarly the distance
can operate on derived variables from the original time se-
ries as decomposed signals in the frequency domain. Cadule
et al. (2010), for example, analysed model performance in
terms of representing the long-term trend and the seasonal
signal of the atmospheric CO2 record.

The variance of data and model is often used to formulate
metrics for the quantification of the data-model similarity.
In coupled systems, the use of a metric based on distance
can become inadequate; the metric no longer facilitates def-
inite conclusions on the model error, because it includes an
unknown parameter in the form of the unforced variability.
Furthermore, when applied to spatial fields, as variance is
strongly location-dependent, a global spatial variance can be
misleading. Gleckler et al. (2008) proposed a more suitable
model variability index which has been applied to climatic
variables, but is also highly applicable to several of the bio-
geophysical and biogeochemical variables simulated by land
and ocean coupled models, and thus relevant to the carbon
cycle. The metric can also focus on extreme events, with the
distance acting on the percentile, assuming that the length of
the records is sufficient to characterise these extremes.

3.3 Metrics on relationships

Level 3 metrics, summarised in Table 4, focus on relation-
ships. The aim here is to diagnose a physical or a biophys-
ical process that is particularly important, such as the link
between two variables in the climate system. Various “rela-
tionship diagnostics” have been used, and are summarised in
Table 4.

The correlation between two variables is a very simple and
widely used metric; it satisfies the need to compare the data-

model phase correspondence of a particular biogeophysical
variable. In this case parametric statistics such as the Pear-
son correlation coefficient (Eq. 10), or non-parametric statis-
tics such as the Spearman correlation coefficient, are directly
used as a metric. This is particularly used to evaluate the cor-
respondence of the mean seasonal cycle of several variables,
from precipitation (Taylor, 2001), to LAI, GPP (Anav et al.,
2013), and atmospheric CO2 (Dalmonech and Zaehle, 2013).

The sensitivity of one variable to another can be estimated
using simple to very complex techniques (Aires and Rossow,
2003). It can be obtained by dividing concomitant perturba-
tions of the two variables using spatial or temporal differ-
ences (Eq. 11), or by perturbing a model and measuring the
impact when reaching equilibrium. The first approach can be
used to evaluate, for example, site-level manipulative exper-
iments to estimate carbon sensitivity to soil temperature or
nitrogen deposition in terrestrial ecosystem models (e.g. Luo
et al., 2012).

From the linear regression of two variables the slope or
bias can be compared forD1 or D2 (Eq. 12). The slope is
very close to the concept of sensitivity, but sensitivities are
very dependent on the way they are measured. For example,
sensitivity of the atmospheric CO2 to climatic fluctuations
may depend on the timescales they are calculated on (Cadule
et al., 2010). An alternative, when more than two variables
are involved in the physical or biophysical relationship under
study, is a multiple linear regression (Eq. 13), or any other
linear or nonlinear regression model such as neural networks.
See, for example, the results obtained at site-level by Moffat
et al. (2010).

Pattern-oriented approaches use graphs to identify partic-
ular patterns in the data set. These graphs aim at capturing
relationships of more than two variables. For example, in
Bony and Dufresne (2005), the tropical circulation is first
decomposed into dynamical regimes using mid-tropospheric
vertical velocity and then the sensitivity of the cloud forcing
to a change in local sea surface temperature (SST) is exam-
ined for each dynamical regime. Moise and Delage (2011)
proposed a metric that assesses the similarity of field struc-
ture of rainfall over the South Pacific Convergence Zone in
terms of errors in replacement, rotation, volume, and pat-
tern. The same metric could be applied to ocean Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) satellite-based fields
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Table 4.Summary of Level 3 metrics.

Metric Equation or method Suitability

Pearson correlation
coefficient

ρx,y =
cov(x,y)

σxσy
(10) Very simple – measures only correlation, not the causality.

Assumes data are normally distributed.

Sensitivity 1x
1y

From empirical increments or
model experiments.

(11) Simple technique – univariate only.
Does not consider possible interactions and non-linearities.

Linear regression For two variablesa andb,
a = c · b+ d

wherec = slope andd = bias.
(12)

Very simple.
Can become multivariate but has linear limitation.
Provides “coincidence” information, not causality information.

Sensitivity
(more advanced)

e.g. multiple linear regression
a = C ·B + d

whereB is now a vector of
bio-geophysical variables.

e.g. nonlinear model such as
neural network.

(13)
Nonlinear model that provides access to threshold, interactions
and saturation behaviours.
The metric can then be defined as the percentage of variance ofa

explained byB in the data and in the model.
Still not causal.

Pattern-oriented
approaches

Various methods. Very process oriented, but requires a good understanding a priori
of what needs to be examined.

Clustering algorithms e.g. K-means, self-organising maps
Uses a similarity distance, similar
to level 1 metric.

Ideal for obtaining a limited set of prototypes, describing the
variability of the data sets as much as possible.

in areas where particular spatial structures emerge. These
powerful techniques could be more widely applied to eval-
uating ESM processes.

Clustering algorithms have been used to obtain weather
regimes based only on the samples of a data set. For ex-
ample, Jakob and Tselioudis (2003) and Chéruy and Aires
(2009) obtained cloud regimes based on cloud properties
(optical thickness, cloud top pressure). The same methodol-
ogy can be used inD1 andD2 and the two sets of regimes
can be compared. The regimes can also be obtained on one
data set and only the regime frequencies of the two data
sets are compared. Abramowitz and Gupta (2008) applied
a distance metric to compare several density functions of
modelled net ecosystem exchange (NEE) clustered using the
“self-organising map” technique.

It is often difficult to use a real mathematical distance to
measure the discrepancy between the two “relationship di-
agnostics”. Although very useful for understanding differ-
ences in the physical behaviour, the simple comparison of
two graphs (forD1 andD2) is not entirely satisfactory since
it does not allow combination of multiple metrics or defini-
tion of scoring systems. In this paper, it is not possible to
list all the ways to define a rigorous distance on each one
of the relationship diagnostics that have been presented: Eu-
clidean distance can be used on the regression parameters or
the sensitivity coefficients, or two weather regime frequen-
cies can be measured using confusion matrices (e.g. Aires
et al., 2011). The distance needs to be adapted to the rela-

tionship diagnostic. The most limiting factor to this type of
approach for ESM evaluation is that the relationship obtained
might be not robust enough (i.e. statistically significant), or
not easily framed within a process-based context.

4 A framework for robust model evaluation

Robust model evaluation relies on a combination of ap-
proaches, each informed using appropriate data and metrics
(Fig. 4). Calibration and, ideally, pre-calibration (Sect. 4.2.2)
must first be employed to rule out implausible outcomes, us-
ing data independent of that which may be subsequently used
in model evaluation. Then, evaluation approaches must be a
combination of process-focussed and system-wide, to ensure
that both the representation of processes and the balance be-
tween them are realistic in the model. Optionally, the results
of different model evaluation tests can be combined into a
single model score, perhaps for the purposes of weighting
future projections. When employed as part of a multi-model
ensemble, the simulation can also contribute to the calcula-
tion of emergent constraints, which can then be used in sub-
sequent model development (Sect. 4.3.3).

4.1 Recommendations for improved data availability
and usage

The increasingly data-rich environment is both an opportu-
nity and a challenge, in that it offers more opportunities for

www.biogeosciences.net/10/8305/2013/ Biogeosciences, 10, 8305–8328, 2013



8316 A. M. Foley et al.: Evaluation of biospheric components in Earth system models

Fig. 4. Schematic diagram of model evaluation approaches, with
optional approaches indicated by dashed lines.

model validation but requires more knowledge about the gen-
eration of data sets and their uncertainties in order to de-
termine the best data set for evaluation of specific process
representations. While improved documentation of data sets
would go some way to alleviating the latter problem, there is
scope for improved collaboration between the modelling and
observational communities to develop an appropriate bench-
marking system, that evolves to reflect new model devel-
opments (such as representing ecosystem-scale responses to
combined environmental drivers) not addressed by existing
benchmarks.

4.1.1 Coordinating data collection efforts

A key question for both the modelling and data communi-
ties to address together is how well model evaluation re-
quirements and data availability are reconciled. There is an
ongoing need for new and better data sets for model eval-
uation: data sets that are appropriately documented and for
which useful information about errors and uncertainties are
provided. The temporal and spatial coverage of data sets also
needs to be sufficient to capture potential climatic pertur-
bations, a point that is illustrated in the evaluation of ma-
rine productivity. Modelling studies offer conflicting evi-
dence of the behaviour of this key variable in controlling
marine carbon fluxes and exchanges of carbon with the at-
mosphere under a changing climate (e.g. Sarmiento et al.,
2004; Steinacher et al., 2010; Taucher et al., 2012; Laufkötter
et al., 2013), therefore model evaluation is essential. Recent
compilations of observations of marine-productivity proxies
give us a reasonably well-documented picture of qualitative
changes in productivity over the last glacial-interglacial tran-
sition (e.g. Kohfeld et al., 2005), and in response to Heinrich
events (e.g. Mariotti et al., 2012). These data sets are being
used to evaluate the same ESMs used to predict changes in
NPP in response to climate change (e.g. Bopp et al., 2003;
Mariotti et al., 2012), and these studies show reasonable

agreement. On more recent timescales, remote sensing ob-
servations of ocean colour have been used to infer decadal
changes in marine NPP. Studies show an increase in the ex-
tent of oligotrophic gyres over 1997–2008 with the SeaWiFS
data (Polovina et al., 2008). However, on longer timescales,
and using Coastal Zone Color Scanner (CZCS) and SeaWiFS
data sets, analysis yields contrasting results of increase or de-
crease of NPP from 1979–1985 to 1998–2002 (Gregg et al.,
2003; Antoine et al., 2005). Henson et al. (2010) have shown,
based on a statistical analysis of biogeochemical model out-
puts, that an NPP time series of∼40 yr is needed to detect
any global-warming-induced changes in NPP, highlighting
the need for continued, focused data collection efforts.

4.1.2 Maximising the usefulness of current data in
modelling studies

Modelling studies should be designed in a manner that makes
the best use of the available data. For example, equilibrium
model simulations of the distant past require time-slice re-
constructions for evaluating processes relating to the car-
bon cycle. These reconstructions rely on synchronisation of
records from ice cores, marine sediments, and terrestrial se-
quences, to take account of differences between forcings and
responses in different archives, which is a significant effort
even within a particular palaeo-archive, let alone across mul-
tiple archives. Yet the strength of palaeodata is precisely that
it offers information about rates of change, and such informa-
tion is discarded in a time-slice simulation. For that reason,
the increasing use of transient model runs to simulate past
climate and environmental changes is a particularly impor-
tant development.

There is also an increasing need for forward modelling to
simulate the quantities that are actually measured, such as
isotopes in ice cores and pollen abundances. Ice core gas con-
centration measurements are unusual because what is mea-
sured is what we want to know, and is a variable that ESMs
yield as a direct output. This is not generally the case, nor
are all model setups easily able to simulate even the trace-gas
isotopic data that are available from ice. A corollary is that
we need to recognise the difficulty of trying to use palaeo-
data to reconstruct quantities that are essentially model con-
structs, for example inferring the strength of the meridional
overturning circulation (MOC) from the231Pa /230Th ratio in
marine sediment cores (McManus et al., 2004). In the latter
context, direct simulation of the231Pa /230Th ratio is neces-
sary to deconvolute the multiple competing processes (Sid-
dall et al., 2005, 2007).

4.1.3 Using data availability to inform model
development

Model development should also focus on incorporating pro-
cesses that, at least collectively, are constrained by a wealth
of data. Notable examples are processes such as those
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governing methane (CH4) emissions (e.g. from wetlands and
permafrost) and the removal of methane from the atmosphere
(e.g. via oxidation by the hydroxyl radical and atomic chlo-
rine). There are four main observational constraints on the
CH4 budget with which we can evaluate the performance
of ESMs: the concentration, [CH4]; its isotopic composi-
tion with respect to carbon and deuterium,δ13CH4 andδD

(CH4); and CH4 fluxes at measurement sites. We have no nat-
ural record of CH4 fluxes so their use in ESM evaluation is
limited to the relatively recent period in which they have been
measured, though measurements of CH4 fluxes at specific
sites can be used to verify spatial and seasonal distributions
of CH4 emissions inferred from tall tower and satellite mea-
surements of [CH4], by inverse modelling. However, a range
of [CH4], δ13CH4, andδD (CH4) records are available, span-
ning up to 800 000 yr in the case of polar ice cores, which can
be used to evaluate the ability of ESMs to capture changes to
the CH4 budget in response to past changes in climate. The
variety of climatic changes we can probe, from large glacial-
interglacial changes spanning thousands of years to substan-
tial changes over just a few tens of years at the beginning
of Dansgaard–Oeschger events, and still more rapid, subtle
changes following volcanic eruptions, enables us to evaluate
the ability of ESMs to capture both the observed size and
speed of changes known to have taken place. The comple-
mentary natures of the [CH4], δ13CH4, andδD (CH4) con-
straints is key to ESM evaluation. Each CH4 source and sink
affects these three constraints in different ways. As such, sce-
narios that explain only one set of observations can be elimi-
nated. For instance, an increase in CH4 emissions from trop-
ical wetlands, biomass burning, or methane hydrates could
explain an increase in [CH4], but of these only an increase in
biomass burning emissions could explain an accompanying
enrichment inδ13CH4. Of course, more than one factor can
change at a time, but the key point is that the most rigorous
test of ESM performance utilises all three constraints and,
therefore, ESMs should track the influence of each source
and sink.

4.2 Recommendations for model calibration

4.2.1 Key principles of model calibration

Model evaluation is closely linked to model calibration.
ESMs contain a large number of (sometimes poorly con-
strained) parameters, resulting from incomplete knowledge
of certain processes or from the simplification of complex
processes, which can be calibrated in order to improve
model behaviour. In general, model calibration should fol-
low a number of fundamental guiding principles. The prin-
ciples detailed here are mostly based on the discussion in
Petoukhov et al. (2000) for the CLIMBER-2 model.

First, parameters which are well constrained from obser-
vations or from theory must not be used for model calibra-
tion. Normally it would be physically inappropriate to mod-

ify the values of fundamental constants, for example, or use
a value for a parameter which is different from the accepted
empirical measurement just to improve the performance of
the model.

Second, whenever possible, parameterisations and sub-
modules should be tuned separately against observations
rather than in the coupled system. In the case of parame-
terisations, this ensures that they represent the physical be-
haviour of the process described rather than their effect on
the coupled system. The same principle should be applied as
far as possible to the individual sub-modules of any ESM to
make sure that their behaviour is self-consistent and to fa-
cilitate calibration of the much more complex fully coupled
system.

Third, parameters must describe physical processes rather
than unexplained differences between geographic regions.
It is preferable for the model to represent the physical be-
haviour of the system rather than apply hidden flux correc-
tions.

Fourth, the number of tuning parameters must be smaller
than the predicted degrees of freedom. However, this is usu-
ally large for ESMs.

Finally, one of the key challenges relating to data used
in ESM evaluation is to what extent ESM development and
evaluation data are independent. In principle, the same ob-
servational data should not be used for calibration and eval-
uation. This is difficult to enforce in practice, however. Even
if the observational data are divided into two parts, with one
part used for calibration and the other for evaluation, for ex-
ample, any mismatch in the evaluation will likely lead to a
readjustment of model tuning parameters, making the evalu-
ation not completely independent of the calibration proce-
dure (Oreskes et al., 1994). Standard leave-one-out cross-
validation techniques divide calibration data sets into mul-
tiple subsets, sequentially testing the calibration on each left-
out subset (in the limit each data point) in turn but in Earth
system modelling the subsets are unlikely to be fully inde-
pendent.

4.2.2 Utilising pre-calibration to constrain implausible
outcomes

The essence of pre-calibration is to apply weak constraints to
model inputs in the initial ensemble design, and weak con-
straints on the model outputs to rule out implausible regions
of input and output spaces (Edwards et al., 2011).

The pre-calibration approach is based on relatively sim-
ple statistical modelling tools and robust scientific judge-
ments, but avoids the formidable challenges of applying full
Bayesian calibration to a complex model (Rougier, 2007).
A large set of model experiments sampling the variability in
multiple input parameter values with the full simulator, here
the ESM, is used to derive a statistical surrogate model or
“emulator” of the dependence of key model outputs on un-
certain model inputs. The choice of sampling points must be
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highly efficient to span the input space and is usually based
on Latin hypercube designs. The resulting emulator is com-
putationally many orders of magnitude faster than the orig-
inal model and can therefore be used for extensive, multi-
dimensional sensitivity analyses to understand the behaviour
of the model. Holden et al. (2010, 2013a, b) demonstrated the
approach in constraining glacial and future terrestrial carbon
storage.

The process is usually iterative, in that a large proportion
of the initial parameter space may be deemed implausible,
but one or more subsequent simulated ensembles can be de-
signed by rejection sampling from the emulator to locate
the not-implausible region of parameter space. The result-
ing simulated ensembles are then used to refine the emulator
and the definition of the implausible space. The final output
is an emulator of model behaviour and an ensemble of sim-
ulations, corresponding to a subset of parameter space that
is deemed “plausible” in the sense that simulations from the
identified parameter region do not disagree with a set of ob-
servational metrics by more than is deemed reasonable for
the given simulator. The level of agreement is therefore de-
pendent on the model and represents an assessment of the
expected magnitude of its structural error (i.e. error due to
choices for how processes are represented and relate to one
another). The plausible ensemble, however, is a general re-
sult for the model that can be applied to any relevant predic-
tion problems, and embodies an estimate of the structural and
parametric error inherent in the model predictions.

Ideally, pre-calibration is a first step in a full Bayesian cal-
ibration analysis. The advantage of the logistic mapping or
pure rejection sampling approach used is that, because no
weighting is applied, a subsequent Bayesian calibration can
be applied to refine the evaluation without any need to un-
ravel convolution effects or the multiple use of constraints.
In practice, however, the pre-calibration step can be suffi-
cient to extract all the information that is readily available
from top-down constraints given the magnitude of uncertain-
ties in inputs and of structural errors in intermediate com-
plexity ESMs.

4.3 Recommendations for model evaluation
methodologies

4.3.1 Process-based (bottom-up) evaluation

Both bottom-up and top-down evaluation are required for
evaluating ESMs: the first approach can give process-by-
process information but not the balance between them; the
second will give the balance but not the single terms. When
bottom-up, process-based improvements can be shown to
have top-down, system-level benefits, then we know our
multi-pronged evaluation has worked.

Bottom-up, process-based evaluation will often require
combinations of data to create the appropriate metrics as it
is more likely to focus on the sensitivity of one output vari-

able to changes in a single input. For example, to assess if
a model has the right sensitivity of NPP to precipitation a
test could be to compute the partial derivative of NPP with
respect to precipitation at constant values of temperature, ra-
diation etc. for both the model and the observations (Rander-
son et al., 2009). This approach requires processing a data
set of, in this case, NPP, to combine it with precipitation data
to derive a relationship. The same NPP data could be com-
bined with temperature data to derive a similar NPP(T ) rela-
tionship. This is much more likely to isolate at least a small
number of processes than simply comparing simulated NPP
to a observational map or time series.

It is also common for model development to focus on spe-
cific features or aspects of the model in order to have faith in
the model’s ability to make projections. For example, climate
modelling centres may focus on the ability of their GCMs to
represent coupled phenomena such as ENSO, or the timing
and intensity of monsoon systems. In this way, bottom-up
evaluation pinpoints important model processes, and helps to
confirm that the model is a sufficiently accurate representa-
tion of the real system, giving the right results for the right
reasons. However, a key limitation of this approach is that
the relevant observations needed to assess a particular pro-
cess may not exist.

Process-based evaluation requires metrics based on
process-based sensitivities, as described in Sect. 3.2. Sensi-
tivity analysis (e.g. Saltelli et al., 2000; Zaehle et al., 2005)
may be useful to determine the parameters and processes to
focus on in a bottom-up evaluation. In this approach, a sim-
ple statistical model is used to represent the physical relation-
ships in the reference data set. A similar model is calibrated
on the model simulations and the complex multivariate and
non-linear relationships can then be compared.

Measuring these sensitivities allows prioritisation of the
important parameters to validate in the model and isolate pro-
cesses not well simulated in the model. For example, Aires et
al. (2013) used neural networks to develop a reliable statis-
tical model for the analysis of land–atmosphere interactions
over the continental US in the North American Regional Re-
analysis (NARR) data set. Such sensitivity analyses enable
identification of key factors in the system and in this exam-
ple, characterisation of rainfall frequency and intensity ac-
cording to three factors: cloud triggering potential, low-level
humidity deficit, and evaporative fraction.

4.3.2 System-level (top-down) evaluation

Top-down constraints tend to focus on whole-system be-
haviour and are more likely to involve evaluation of spa-
tial or time-series data. Typical quantities used for top-down
evaluations include surface temperature, pressure, precipi-
tation, and wind speed maps. Observational data sets exist
for many of these quantities throughout the atmosphere, so
zonal-mean, or 3-dimensional comparisons are also possible
(Randall et al., 2007). Anav et al. (2013) extend this approach
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to assess new biogeochemical outputs of CMIP5 ESMs, such
as distribution and time evolution of carbon stores and fluxes.

The appropriate choice of metrics is important, as dis-
cussed in Sect. 3. A correlation coefficient might seem an
obvious choice to assess the seasonal cycle of a given vari-
able, but a model with the right phase of seasonal cycle but
a magnitude 5 times too big/small would score a high cor-
relation coefficient, while a model with the correct magni-
tude but lagged by just one month would score poorly. To
overcome these limitations of correlation-based metrics, ad-
ditional metrics such as mean error should be included in
the analysis to aid interpretation of the correlation, while lag
errors could first be corrected so that the correlation gives
a more meaningful result. There are also many studies that
have attempted to overcome this issue by presenting sum-
mary statistical metrics for multiple components across mul-
tiple models.

Taylor (2001) is one of the examples where a metric based
on correlation and a distance metric have been developed
as a skill score. Gleckler et al. (2008) use Taylor diagrams
to compare the performance of models in terms of both the
magnitude and phase of the seasonal cycle. Reichler and Kim
(2008) normalise model error variance on a grid-point basis
to come up with a composite score and measure progress in
model skill between generations of IPCC reports. Such scor-
ing systems can be useful to synthesise the results of numer-
ous metric comparisons, but should be used with caution as
they can be hard to interpret – it is not always clear what
model failing has led to a low score. The choice of which
observations to use in the weighting is also subjective.

Model errors will inevitably evolve in time, affecting the
reliability of simulations of future Earth system states. Mea-
suring this type of uncertainty is an extremely difficult chal-
lenge. Presently, the best approach is to use expert judgement
to estimate the growth of errors beyond the known forcing
space, and this logic underpins the large, subjective choice of
input ranges in the precalibration technique. Palaeoclimate
analysis expands the space of forcings applied to the Earth
system, such that possible future states might be more likely
to occur inside the envelope of testable simulations. With
sufficient high-quality data, it would be possible to cross-
validate predictions against extreme past states that stretched
the envelope in the most appropriate way. The Paleocene–
Eocene Thermal Maximum offers perhaps the best oppor-
tunity for this, due to the large difference from current cli-
mate and atmospheric CO2 conditions. An advanced theoret-
ical approach is the “Reification” technique of Goldstein and
Rougier (2009), which allows the error in a given model to
be successively related to more and more accurate models,
but its implementation is very much under development (see
Williamson et al., 2012).

4.3.3 The role of emergent constraints in model
evaluation

Emergent constraints (Table 5) can also provide valuable in-
formation for model evaluation, as they convert the extensive
short-timescale information available for the contemporary
period into longer-timescale constraints on the Earth system
sensitivities that are most important for the 21st and 22nd
centuries (e.g. climate sensitivity to CO2, or carbon cycle
sensitivity to climate). Observational data on short timescales
do not relate directly to these sensitivities, and analogue
approaches, which evaluate ESM sensitivity against known
changes in the past, are also limited by observational data,
as the analogue events in Earth’s past are not as well charac-
terised as those in the contemporary period.

Emergent constraints relate some observable aspect of the
contemporary Earth system to a key system sensitivity, us-
ing an ensemble of Earth system simulations (Collins et al.,
2012). The archetypal example of this relates the magnitude
of the snow-albedo feedback to the size of the seasonal cy-
cle in snow cover in the Northern Hemisphere, across more
than twenty GCMs (Hall and Qu, 2006). Since the seasonal
cycle of snow-cover can be estimated from observations, this
model-derived relationship provides a means to convert ob-
servations to a constraint on the size of the snow-albedo feed-
back in the real climate system, for which there is no di-
rect reliable measurement. A similar emergent constraint has
been used to relate the sensitivity of the interannual variabil-
ity in atmospheric CO2 to the loss of carbon from tropical
land under climate change (Cox et al., 2013).

In general terms, such emergent constraint methods build
on the realisation that analysis of short-time fluctuations in
a system can assist in determining the sensitivity of that
system to external forcing (Leith, 1975). Conversely, valu-
able information is unnecessarily lost when taking long-term
trends and ignoring the shorter-timescale variations about
these trends. Such emergent constraints utilise the large dif-
ferences amongst ESM projections to reduce uncertainties
in the sensitivities of the real Earth system to anthropogenic
forcing.

5 Outlook

Although the current generation of ESMs encompass a wide
range of processes, they are likely to become increasingly
complex as processes that are currently being explored in,
for example, dynamic global vegetation models such as bet-
ter representation of nutrient cycles (e.g. Gotangco Castillo
et al., 2012), fire (e.g. Thonicke et al., 2010; Prentice et
al., 2011b; Pfeiffer et al., 2013), permafrost (e.g. Lawrence
et al., 2012; Schaphoff et al., 2013) and wetland dynam-
ics (e.g. Collins et al., 2011), or dust- (e.g. Shannon and
Lunt, 2010), vegetation-climate interactions (Quillet et al.,
2010), and aerosol-climate interactions (Woodage et al.,
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Table 5.Summary of evaluation methodologies.

Type of
evaluation

Description Examples Advantages Limitations

Process-
based,
“bottom-
up”

Looks at rela-
tionships between
variables in a way
that isolates a single
process, or small
number of processes.

NPP vs. precip. (Randerson
et al., 2009).

Magnitude of seasonal
cycle ofTair vs.Tsurf to
evaluate insulation by snow
pack.

Pinpoints important model
processes.

“Right answer for right
reason.”

Easy to interpret, e.g. can
see if response is too big or
too small for a given input.

Only targets a small part of the
model.

Relevant observations may not
exist.

Even when process representa-
tion
is close to perfect, this does not en-
sure overall balance between them
is right.

System-
level,
“top-
down”

Compares large-
scale
model outputs that
emerge from interac-
tions between many
processes within the
model with relevant
observations.

Global patterns of tempe-
rature, precipitation, etc.

Seasonal cycle of
carbon fluxes.

Evaluates end-result,
i.e. quantities that we
actually want the model to
predict.

Assesses overall balance
between many (possibly
finely balanced) processes.

Compensating errors: “Right
answer for wrong reason”.

Hard to interpret as offers no
indication of what is causing an
error and how to fix it.

Multi-
model
emergent
con-
straints

Robust (across mo-
dels) relationship be-
tween a quantity we
can observe and a
future change we
want to predict.

Hall and Qu (2006): sea-
sonal cycle of snow albedo.

Cox et al. (2013): IAV
of tropical carbon fluxes.

No requirement for models
to be right – models might
be wrong on individual
basis regarding magnitude
of response but the rela-
tionship may be robust.

Guides where we want
observational effort.

Relies on “bad” models more than
“good” ones to derive regression.

May get false confidence if
models systematically wrong
(e.g. all lack long-term carbon
release from permafrost).

2010; Bellouin et al., 2011) are incorporated. This growing
complexity has the potential to mask model errors, making
robust evaluation of the model and its components increas-
ingly necessary.

Common to any dynamical system under evaluation,
key challenges include choosing the most important vari-
ables in the system, identifying the fundamental relation-
ships, estimating non-linear and multivariate sensitivities,
and analysing the interactions between processes. We have
outlined how approaches such as pre-calibration and ro-
bust calibration, along with a combination of process- and
system-level evaluation with relevant data, can be used to
characterise model skill. We have also illustrated the use-
fulness of emergent constraints to further refine model out-
comes.

A combination of approaches can greatly increase our un-
derstanding of a model’s ability to realistically simulate pro-
cesses across multiple temporal and spatial scales. For exam-
ple, both locally and globally, the net terrestrial carbon bud-
get fluxes are a small difference between large uptake (pho-
tosynthesis) and release (respiration) terms. Even if each pro-

cess could be modelled with high precision, the net balance
could still be poorly constrained. Hence, single, process-
based tests are necessary but not sufficient. Conversely, ob-
servations of the seasonal cycle or interannual variability of
carbon balance constrain overall terrestrial carbon balance,
but do not provide detail about the processes contributing to
it. It is theoretically possible to simulate the carbon balance
with a number of different combinations of the components;
therefore there is the potential to get the right answer for the
wrong reasons. Different parameter combinations are poten-
tially able to recreate the historical record of atmospheric
CO2 concentration (Sitch et al., 2008; Booth et al., 2012).
Furthermore, some of the most accurate features of climate
simulations (such as the pattern of near-surface temperatures)
are poor predictors of the sensitivity of the terrestrial carbon
balance to increasing CO2. It is thus eminently possible to get
a skilful simulation of the present through the cancellation of
multiple errors. A combination of “bottom-up” constraints
on the processes and “top-down” constraints on the balance
between them is essential, to give confidence that the model
gives the right behaviour for the right reason.
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A key limitation of current model evaluation approaches
is that the widely used statistical measures of sensitivities
are based on “coincident increments”, such as correlations,
not on causality. A very interesting extension of sensitivities
would investigate causal links among the important parame-
ters in the system. Some tentative studies have investigated
measures such as Granger causality; see Notaro et al. (2006)
for an application to vegetation patterns. However, a more
complete framework needs to be used (Pearl, 2009). Due to
the complexity of this type of work, a close collaboration of
climate-carbon cycle scientists and statisticians would be re-
quired.

Model complexity and structure has to be kept in mind
when making comparisons of skill with respect to any
given metric across a range of ESMs. Comparing mod-
els of different complexity could create an artificially large
model spread, that does not reflect current process knowl-
edge. However, comparing only models of similar complex-
ity could lead to underestimation of the true uncertainty in
model projections due to structural similarities between mod-
els and restricted sample size.

Benchmarking models against a set of well-chosen obser-
vations (Sect. 2), and using appropriate metrics (Sect. 3),
should be considered a vital step in any model evaluation.
While individual metrics might be each easily interpreted, a
combination of many different metrics could be a challenge
to interpret, particularly when very different scores in metrics
that measure different aspects of model performance need to
be reconciled. Therefore, while it may be tempting to simply
evaluate the performance of the model against every data set
that can be found (and indeed a “perfect” model should be
able to withstand such a test), if this comes at the expense of
being able to interpret the results then it may be more benefi-
cial to focus on a smaller set of tests which target key model
outputs. This level of discrimination is inevitably an expert
judgement, but is necessary if the field of ESM evaluation is
to move from “beauty contest” to constraint.
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