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Abstract 

 

This paper examines the lead-lag relationship between the FTSE 100 index and index 

futures price employing a number of time series models. Using ten-minutely observations 

from June 1996 – 1997, it is found that lagged changes in the futures price can help to 

predict changes in the spot price. The best forecasting model is of the error correction 

type, allowing for the theoretical difference between spot and futures prices according to 

the cost of carry relationship. This predictive ability is in turn utilised to derive a trading 

strategy which is tested under real-world conditions to search for systematic profitable 

trading opportunities. It is revealed that although the model forecasts produce 

significantly higher returns than a passive benchmark, the model was unable to 

outperform the benchmark after allowing for transaction costs.  
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1. Introduction  

 

The United Kingdom derivatives markets developed partially in response to the economic 

risk associated with dealing in commodities and financial instruments. Financial market 

deregulation together with computerisation of trading mechanisms in the 1980s have 

sometimes been argued to have lead to rapid fluctuation of interest rates, exchange rates 

and stock prices. High volatility and associated market risk have increased the demand for 

hedging instruments, designed to protect value by transferring risks from one party to 

another. One of the most important hedging instruments is a futures contract.  A futures 

contract is a legally binding agreement to buy or sell a specific quantity of the underlying 

asset at a predetermined date in the future at a price agreed on today. To facilitate trading 

and clearing, futures contracts are standardised in all aspects apart from price. Stock index 

futures have a variety of attractive features for a trader who wishes to trade the share 

portfolio corresponding to the index. Traders frequently take coincident positions in both 

the cash and futures markets, which motivates the body of research investigating the 

relationship between the two price series. In the UK, futures contracts are traded on the 

London International Financial Futures and Options Exchange (LIFFE), the largest 

exchange of its kind in Europe. 

 

Following Tse’s (1995) investigation of the Japanese stock index and associated index 

futures series, this paper models empirically the temporal relationship between the price 

movements of the FTSE 100 futures contact and its underlying asset, the FTSE 100 stock 

index. By employing a number of techniques drawn from time series econometrics, we 
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attempt to establish the model with the best forecasting ability. The issue under 

consideration is whether the FTSE 100 index fully reflects all available information or, 

conversely, whether there are systematic profitable opportunities, which could be exploited 

using a trading strategy.  

 

This study is distinguished from Tse (1995) and other prior work in several ways. First, we 

consider high frequency (ten-minutely) data for the FTSE 100 contract. This compares 

with many previous papers which have used daily or at best hourly observations, or have 

applied their analysis to the American or Far Eastern markets. The use of very high 

frequency (intra-daily) data is of paramount importance for the results of a study such as 

this to be of value to practitioners. It is widely agreed that lead-lag relationships between 

spot and futures markets, if they exist at all, do not last for more than half an hour. Thus a 

statistical analysis using daily data is extremely unlikely to find evidence of lead-lag 

relationships, even if these relationships are present. Second, we extend earlier studies by 

placing additional emphasis on forecasting accuracy and the development of a trading 

strategy to assess whether any relationships that we identify can be used to generate 

trading profits. We consider that this represents a major step forward in the evaluation of 

forecasts produced by time series models. It has been argued in numerous studies (see 

Section 4.5 below for details and references) that the use of statistical forecast evaluation 

metrics often gives little guide as to the utility of employing such forecasts in a practical 

situation (for example, in a policy context or a financial decision). In this paper, we not 

only evaluate forecasts in the traditional mean squared error sense, but we also show how 

the forecasts can be used and thus benchmarked in a practical trading framework. We 
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conjecture that the methodology employed in our paper could have widespread appeal and 

applicability for those interested in employing forecasts from time series models in 

practical situations. In particular, the study should be relevant for financial market 

practitioners who wish to test for exploitable profit opportunities derived from 

econometric forecasts, and for financial economists interested in testing the validity of 

financial market theories such as the efficient markets hypothesis. Thus study represents 

one of only a very small number of papers to assess forecast accuracy on this basis. 

 

The remainder of this paper is organised as follows. Section 2 contains a brief discussion 

of the theory of futures pricing and presents a summary of the relevant literature which has 

sought to test these relationships empirically. Section  3 describes the data, and Section 4 

considers the methodology used in forming the forecasting model and presents the results 

thereof. Section 5 derives a trading strategy based on the best forecasting model, and 

finally, Section 6 concludes. 

 
 

2. The theoretical relationship between spot and futures markets 
 

If the respective markets are free of impediments and are informationally efficient, the 

returns on a spot market index and the associated futures contract should be perfectly and 

contemporaneously correlated and not cross-correlated through time; that is, the prices of 

the stock index and the futures simultaneously reflect new information as it hits the 

market. This constraint is intuitive since otherwise arbitrage opportunities would abound. 

The efficient market hypothesis implies that any mispricing which arises, and associated 

arbitrage opportunities, should rapidly be eliminated.  
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The theoretical relationship between a stock index futures price and its underlying asset 

which gives rise to the premise above is known as the cost of carry model (see, for 

example, MacKinlay and Ramaswamy, 1988). It is given by 

F S r d T tt t  exp[( )( )]        (1) 

where Ft is the stock index price quoted at time t, St is the value of the underlying stock 

index, r gives the continuously compounded risk-free rate of return, d is the continuously 

compounded dividend yield, and T is the maturity date for the futures contract.  If (1) is 

transformed into a model in log-returns rather than levels, we obtain 

 f s r dt t  ( )         (2) 

where ft = ln(Ft/Ft-1) and st = ln(St/St-1). Thus upper-case letters are used to denote the 

levels of the series, and lower-case letters are used to denote the log-returns. Equation (2) 

clearly implies that under market efficiency and in the absence of market frictions, futures 

and spot returns should be perfectly contemporaneously related, and in particular, one 

market should not lead the other.  

 

It has been found in many studies, however, that the changes in futures price significantly 

lead those of the spot index. Kawaller  et al. (1987), for example, found, using minute to 

minute data on the S&P 500 futures contract and the corresponding spot index, that 

futures price movements consistently lead the cash index movements by 20 – 45 minutes 

while movements in the stock index rarely affect futures price movements beyond one 

minute. Stoll and Whaley (1990) examined the causal relationship between the spot and 

futures markets, and found that S&P 500 and MM index futures returns tend to lead the 
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stock market returns by about 5 minutes on average, but occasionally as long as 10 

minutes or more, even after the stock index has been purged of infrequent trading effects. 

Chan (1992) argued that the futures price leads the spot to a greater extent when stock 

prices move together under market-wide movements rather than separately as a result of 

idiosyncratic movements, suggesting that the futures market is the main source of market-

wide information. Ghosh (1993) also observed a similar lead-lag relationship for the US 

markets following the use of an error correction model. 

 

Evidence from other markets also postulates a lead-lag relationship – Tse (1995) 

examines the behaviour of prices in the Nikkei index and the corresponding SIMEX 

traded futures contract and found that  lagged changes of the futures price affect the short- 

term adjustments of the futures price. Tang et al. (1992) studied the causal relationship 

between stock index futures and cash index prices in Hong Kong which revealed that 

futures prices cause cash index prices to change in the pre-crash period but not vice versa. 

In the post-crash period, they found that bi-directional causality existed between the two 

variables. 

 

Several papers have investigated the lead-lag relationship of the FTSE 100 index spot and 

futures series. Wahab and Lashgari (1993) studied daily data from January 1988 to May 

1992 using error correction methodology. Their results revealed bi-directional causality 

between spot and futures returns. Abhyankar (1995) analysed hourly returns on the FTSE 

100 from April 1986 to March 1990. It was found that there was a strong 

contemporaneous relationship between spot and futures returns and that futures returns 
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led spot returns by one hour. Abhyankar then investigated the sensitivity of this result to 

variations in transaction costs, good or bad news (measured by the size of returns), spot 

volume and spot volatility. The results revealed that when transaction costs for the 

underlying asset fell (post ‘Big Bang’), the futures lead of the spot index was reduced, 

implying that transaction cost differential is the major driver for the lead-lag relationship. 

It was found that the futures lead over spot was insensitive to variations in spot 

transaction volume. An AR(2)-EGARCH(1,1) model (that is, an autoregressive model of 

order 2 for the conditional mean, and an EGARCH model of order (1,1) for the 

conditional variance) was then fitted to spot and futures returns to give a time series of 

estimated volatilities, and it was observed that during periods of high volatility, futures 

markets led spot market returns. Abhyankar (1998) revisited the relationship using five- 

minute returns for 1992. Leads and lags were then examined by regressing spot returns on 

lagged spot and futures returns, and futures returns on lagged spot and futures returns 

using EGARCH. It was found that the futures returns led the spot returns by 15 – 20 

minutes.    

 

There is clear evidence that the futures price leads the spot price by at least a few minutes 

in most actively traded markets, while for lags of a day the evidence is much weaker. 

These ‘lags’ may be consistent with an absence of arbitrage opportunities if they are 

caused by traders choosing to exploit information in the futures market and the movement 

does not place it outside the arbitrage band, i.e. transaction costs are not exceeded, and 

because the prices at which the shares in the index basket could now trade incorporate the 

new information.  
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But why might such lead-lag relationships exist? From a practical perspective, it is 

generally agreed that the two phenomena of market sentiment and arbitrage trading are 

the major determinants linking stock index futures and the stock market. Conventional 

wisdom amongst professional traders suggests that movements in the futures price should 

reflect expected future movements in the underlying cash price. The futures price should 

quickly reflect all available information regarding events that may affect the underlying 

and respond quickly to new information. The index should respond in a similar fashion, 

but for the index to react to the new information completely the underlying stocks must 

all be revalued, i.e. every constituent stock must re-evaluate the new information and 

adjust accordingly. Because most stocks are not traded constantly every 10 minutes, the 

index will respond to new information with a lag. Consider a trader with news just 

arrived to the market that is bullish – the trader has two options: 

1. Buy underlying stocks of the FTSE 100 index  

2. Purchase FTSE 100 futures 

In this scenario the futures trade can be executed immediately with little initial cash 

outlay, as futures are a levered instrument, compared to trading the actual underlying 

stocks, which would require a greater up-front investment and a probable longer 

implementation time because of stock selection and numerous underlying stock 

transactions. This transaction preference for futures may explain why the lead-lag 

relationship is observed in many markets. Trading futures also has the advantage of  a 

highly liquid market, easily available short positions, low margins, leveraged positions 

and rapid  execution. Such trading would move the futures price first then ‘lead’ the stock 
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index when arbitrageurs respond to the deviations from the cost of carry relationship. 

Futures prices thus may provide a sentiment indicator for changes in stock prices and 

hence the FTSE 100 index which result when investors who are unable or unwilling to 

utilise futures incorporate that same information into their cash market transactions.  It is 

also possible that cash index price changes lead changes in the futures price as the value 

of the index represents a subset of the information that affects futures prices. 

Alternatively stated – if the index were to decline or rise for whatever reason, the price 

change might induce a change in sentiment that would be reflected in subsequent declines 

or increases in the futures price. As long as the basis lies within the no arbitrage trading 

range, changes in market sentiment would affect both the futures price and the index in 

the same direction. (The ‘basis’ refers to the absolute difference between the futures and 

spot price and must be maintained within arbitrage bounds determined by equation (1), 

i.e. the futures to cash price differential normally falls within boundaries determined by 

financing costs and dividend yield. The relationship can be characterized for the futures 

price at time t (
tF ) and the index price at time t (St) as 

                                      e F S eL t t t U t, ,( )    

where tLe ,  = lower bound of the no arbitrage trading range at time t and tUe ,  = upper 

bound of the no arbitrage trading range at time t. In situations where the bound is 

breached, arbitrageurs would be able to make riskless profits until the prices traded back 

within the no-arbitrage band).  To summarise, in practice the cost of carry model is often 

violated, and such discrepancies are usually explained by reference to transaction costs, 

infrequent trading of some index stocks and time delays in computing the index. 
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3. The data 

A stock index tracks the changes in the value of a hypothetical portfolio of stocks. The 

percentage increase/decrease in the value of a stock index is equivalent to a weighted 

average change in the value of the underlying stocks over the equivalent time period, 

where the weights are determined by market capitalisation. The FTSE 100, or ‘Footsie’ as 

it is affectionately known, started trading on 31 December 1983. It comprises the 100  

UK companies quoted on the London Stock Exchange with the largest market 

capitalisation, accounting for 73.2% of the market value of the FTSE All Share Index as 

at 29 December 1995 (Sutcliffe,1997). FTSE 100 futures contracts are quoted in the same 

units as the underlying index, except that the decimal is rounded to the nearest 0.5, the 

reason for this is that the minimum price movement (known as tick) for the futures 

contract is  £12.50, i.e. a change of 0.5 in the index. The price of a futures contract 

(contract size) is the quoted number (measured in index points) multiplied by the contract 

multiplier, which is £25 for the contract. There are four delivery months: March, June, 

September and December. Trading takes place in the three nearest delivery months 

although volume in the ‘far’ contract is very small. Each contract is therefore traded for 

nine months.  FTSE 100 futures contracts are cash-settled as opposed to physical delivery 

of the underlying. All contracts are marked to market on the last trading day which is the 

third Friday in the delivery month, and the positions are deemed to be closed. For the 

FTSE 100 futures contract, the settlement price on the last trading day is deemed to be an 

average of minutely observations between 10:10AM and 10:30AM rounded to the nearest 

0.5.  
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The data employed in this study comprises 13,035 ten-minutely observations for all 

trading days of the FTSE 100 index (St) in the period June 1996 – 1997, provided by 

FTSE International. The FTSE 100 futures prices (Ft) were provided by LIFFE (covering 

the same sample period), and represent the closest actual transaction price preceding the 

spot observation, precluding any bias of the futures contract leading the spot index. Note 

that the FTSE 100 index is calculated every one minute but the futures transaction prices 

are not uniformly spaced through time. We circumvent this problem by taking an average 

of the last quoted bid and ask prices available during that ten-minute period. (Similarly, 

the FTSE index prices employed are mid-point quotes rather than transactions prices to 

avoid statistical anomalies associated with bid-ask bounce). The ‘near’ futures contract is 

used (for details of contract months refer to Appendix A) and is rolled over to the next 

contract on the tenth of the contract maturity month. The first reason for switching 

contracts at this point is trading volume considerations, i.e. the closest contract will 

generally be the most liquid contract which is essential as time series tests require the 

most frequent return observations possible. The second reason is slightly more complex 

and is determined by the converging relationship (diminishing basis) between the spot 

and futures price as expiry of the futures contract approaches. 

 

The relationship considered in this paper is the long run equilibrium between St and Ft. 

By rolling over the futures contract on the tenth of the contract expiry month, the effects 

of the convergence will be removed. Due to the non-synchronous opening hours of the 

respective exchanges (the London Stock Exchange is open 8:30 – 16:30. LIFFE floor 
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trading takes place from 8:35 – 16:10 then APT (Automated Pit Trading) continues from 

16:32 – 17:30) the 16:10 (Ft) observation corresponds with 16:20 and 16:30 St 

observations. The last trade in the APT (Automated Pit Trading on LIFFE) corresponds 

with the 8:30 St observation for the following trading day. The annualised dividend yield 

for the FT 30 index is used as a proxy for the FTSE 100 yield. The monthly average of 

the three-month UK T-bill yield is used as a proxy for the risk-free rate. Both the 

dividend yield and UK T-bill observations are obtained from Datastream International.  

 

4. Econometric analysis, methodology and results 

4.1. Cointegration and error correction 

The market efficiency arguments alluded to previously imply that the spot and futures 

prices should never drift too far apart, suggesting that a cointegrating relationship might 

be appropriate, following Ghosh (1993). In this paper, we employ the Engle–Granger 

(1987) single equation technique rather than the Johansen (1988) systems method due to 

the simplicity of the former, and the fact that there are only two stochastic variables (the 

spot and futures prices), and hence there could be at most one cointegrating vector. The 

cointegrating regression, if such a cointegrating relationship exists, would be given by 

ln lnS Ft t  0 1        (3) 

Cointegration between the stock index and index futures prices requires that both series 

be of the same order of nonstationarity, and that a linear combination of the two series is 

reduced to stationarity. We employ the standard augmented Dickey Fuller tests (Dickey 

and Fuller, 1979; Fuller, 1976) to test for nonstationarity. To anticipate the findings of the 

paper, we do indeed find, as expected, that the log-price series for the spot and the futures 
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market are I(1). We then use the Engle–Granger two-step methodology for testing for 

cointegration between the log of the spot and futures prices. If cointegration exists 

between the two series, then the Granger representation theorem states that there is a 

corresponding error correction model (ECM). The ECM for the spot and futures prices 

can be expressed as 

   l S z S Ft t i t i i t t

j

s

i

r

ln  ln ln     



    0 1

11

   (4) 

where  ln   lnz S Ft t   0 1  are the residuals from the first stage regression of the log-

levels (the equilibrium correction term). 

 

Table 1 presents descriptive statistics for the log-levels and log-returns of the constructed 

time series, together with the results of the Dickey Fuller tests. To ascertain that Ln(St) 

and Ln(Ft) are I(1) remembering that, by definition, cointegration necessitates that the  

variables be integrated of the same order, DF tests are performed for both log-price series. 

The results are detailed in panel B of Table 1. The results are highly conclusive, and as 

anticipated, the log-levels are I(1) and taking first differences in constructing the returns 

induces stationarity. This conclusion is not altered by augmentation of the test using up to 

20 lags of the dependent variable. The results from these tests are not shown due to space 

constraints.  

 

The next step in the Engle–Granger methodology is to estimate a regression of the log-

levels, and to test its residuals for stationarity. Results from estimating the potentially 

cointegrating term, and equation (3) are displayed in panels A and C of Table 2 
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respectively. As one would expect, there is a very strong relationship between Ln(St) and 

Ln(Ft) evidenced by a slope coefficient of almost 1. In order to determine if the variables 

are actually cointegrated, the cointegration regression residuals ( zt ) are retained and 

tested for nonstationarity. There is clear evidence of rejection of the null hypothesis of a 

unit root in these residuals, and we therefore conclude that there indeed exists a 

cointegrating relationship (see panel B of Table 2). Next, the error correction model is 

fitted by using the residuals from the cointegrating regression, lagged one period, and by 

selecting the optimum number of lags of st and ft, using Schwarz’s Bayesian Criterion 

(denoted SBIC, Schwarz, 1978). SBIC selected one lag of each of ft and st for inclusion in 

the ECM. (Again, the values of SBIC for each of the candidate models are not shown due 

to space constraints). The results of the fitted ECM are displayed in panel C of Table 2. 

All regressors are significant except the coefficient on the constant, indicating that 

changes in the spot index depend on the cointegration error as well as lagged changes in 

the spot index and futures price. The coefficient estimates of  ft-1 and st-1 agree in sign.  

 

The positive coefficient on ft-1 implies that the spot index moves in the direction of the 

previous movement of the futures price, underlining the price discovery role of the futures 

market for the spot market.  This result confirms Abhyankar’s (1998) finding of a lead-

lag relationship between FTSE 100 spot and futures of 5 to 20 minutes, detailed 

previously in the literature review. For a higher number of lags of ft and st the coefficients 

on the regressors were all negative for st-k, and positive and of an approximately equal 

size for ft-k. This suggests that the two are effectively cancelling each other out and that 

the extra lags might be spurious. The coefficient on zt1  is negative, suggesting that if st 
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is large relative to the equilibrium relationship at time t-1, then it is expected to adjust 

downwards during the next period.    

 

4.2. ECM-COC –The cost of carry theory model 

Following Tse (1995), a second ECM is formed utilising the cost of carry relationship. As 

detailed in equation (1), the futures price is given by the spot index plus the cost of carry 

compounded continuously. The estimated cointegrating relationship is now given by 

 ln   ln  ( )( )z S F r d T tt t t       0 1 2      (5) 

with equation (4) still constituting the full error correction model. zt  is tested for 

nonstationarity and the ECM is fitted as previously. The advantage of this cointegrating 

equation over the standard one is that it makes use of the theoretical relationship which 

might lead the spot and futures price to diverge from one another. The results from 

estimating this cointegrating relationship are given in Table 3. As can be seen, the 

coefficient estimates are extremely similar to those observed in the previous case, and the 

cointegrating regression residuals are indeed stationary. The cost of carry term is 

significant in the cointegrating regression, and the coefficient values in the cointegrating 

regression are slightly modified when we allow for the expense involved in financing a 

spot position in the asset. 

 

4.3. An ARMA model 

In order to form a benchmark for comparison to the ECM models estimated previously, 

an ARMA model is estimated (with st as the dependent variable since prediction of the 

spot series is the modelling motivation). An ARIMA(p,q) model is a univariate time 
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series modelling technique, where p denotes the number of autoregressive terms, q the 

number of moving average terms. The ARMA model is expressed as 

 s s u ut i t i j t j
j

q

i

p

t    


  0
11

      (6) 

Again the SBIC criterion (Schwarz, 1978) is utilised and suggests that only one 

autoregressive lag and no moving average lags are optimal. For completeness, the results 

are reported in Table 4.  

 

4.4. VAR model 

An unrestricted vector autoregressive model (VAR) is also estimated for the spot and 

futures prices, the purpose being to consider the additional explanatory and forecasting 

power of the cointegrating term in the ECM. The equation of the VAR which has the spot 

returns as dependent variables may be expressed as 

 s s f vt i t i j t j
j

q

i

p

t    


  0
11

      (7) 

A multivariate extension of SBIC (see, for example, Enders, 1995, p.315) is used to 

determine the appropriate number of lags, and this once again selects a lag length of one 

for the variables. The coefficient estimates and their associated t-ratios are given in Table 

5. 

 

4.5. Out of sample forecasting accuracy 

One step ahead forecasts for the returns on the spot index st are created utilising the 1040 

ten-minutely observations for May 1997 which were not included in the original sample. 

(Since the out of sample period used covers a historically very “bullish” month, with 
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prices rising during that month by more than average, the use of a longer run of data out 

of sample would be desirable. However, this would impose very considerable extra 

computational burdens. In any case, since we are not interested in the performance of our 

trading rules per se, but rather in their performance relative to a passive benchmark, the 

use of a bullish out of sample month should not bias the results in favour of our models. 

In fact, if anything, since the passive strategy involves being long the index for the whole 

period, and our trading strategies imply being out of the index for a part of the time, a 

rising market would represent a harsher relative test for our rules than a static or falling 

one). These forecasts are then compared to the actual returns, with the forecast accuracies 

being evaluated on the standard statistical criteria of root mean squared error (RMSE), 

and mean absolute error (MAE). (For a description of these forecast evaluation metrics 

and their relative merits, see Brooks (1997)). The results illustrate that all the models 

perform reasonably well, with no single model being substantially more accurate than 

another, although interestingly, all three statistical criteria give the same ordering of 

model accuracies. The ARMA model is the least accurate followed by the VAR, which 

has two implications. First, forecasting accuracy can be improved by using the lead-lag 

relationship between the spot and futures markets rather than simply using information 

contained in the univariate spot series alone. Second, forecast accuracy can be further 

improved by making use of the long-term relationship between the spot and futures 

market in an error correction model, rather than using a model in pure first differences 

(ARMA and VAR), which by definition will lose any long-term properties of the data. 

(Another possible approach to modelling long range dependencies in asset returns is via 

fractionally integrated (ARFIMA) models (see, for example, Hosking, 1981)). The star 
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performer is ECM-COC: the error correction model based on the cost of carry theory. It 

predicts the correct direction of movements of the spot index 68.75% of the time and 

minimises both the RMSE and MAE. The direction forecasts are of particular interest in 

this case, since it has been suggested  (Gerlow et al., 1993) that the accuracy of forecasts 

according to traditional statistical criteria may give little guide to the potential 

profitability of employing those forecasts in a market trading strategy, so that models 

which perform poorly on statistical grounds may still yield a profit if used for trading, and 

vice-versa. Models which can accurately forecast the sign of future returns, or can predict 

turning points in a series have been found to be more profitable (Leitch and Tanner, 

1991). Therefore in the next section, we attempt to derive a profitable trading strategy 

utilising the ECM-COC model, which provided the highest proportion of correct 

direction forecasts. 

 

5. Forming a trading strategy based on statistical forecasts 

As previously outlined, one motivation for this study is to develop a profitable trading 

strategy based on the best of the models estimated above: ECM-COC. The model is used 

in a variety of trading strategies and compared to a passive investment in the FTSE 100 

index. The trading strategies will be stress-tested by considering the size of transactions 

costs and the effect of their inclusion.  

 

 5.1. Strategy description 

The trading period is the same as the forecasting period used above, i.e. from May 1 – 

May 30 1997. The ECM-COC model yields ten-minutely one step ahead forecasts. The 
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trading strategy involves analysing the forecast for the spot return, and incorporating the 

decision dictated by the trading rule. It is assumed that the original investment is £1000. 

The returns are cumulative, and if the holding in the index is zero, the investment earns 

the risk free rate, and the amount invested in both the index and the risk free rate 

increases or decreases with total wealth. 

 

5.1.1. Liquid trading strategy 

This trading strategy involves trading on the basis of every positive predicted return and 

making a round trip trade, i.e. a purchase and sale of the FTSE 100 stocks every ten 

minutes that the return was predicted to be positive by the model. If the return was 

predicted to be negative by the model, no trade was executed and the investment earns the 

risk-free rate. (Although we are imposing the restriction that all transactions are neutral or 

long the index so that no short sales are permitted, this is not unrealistic since short 

positions in equities are expensive to maintain). 

 

5.1.2. Buy and hold strategy 

This strategy attempts to reduce the amount of transaction costs by allowing the trader to 

continue holding the index if the return at the next predicted investment period is 

positive. Rather than make a round trip transaction for each period, the trader leaves the 

position open until the returns are predicted to become negative.   
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5.1.3. Filter strategy – Better predicted return than average 

This strategy involves purchasing the index only if the predicted returns are greater than 

the average predicted positive return (there is no trade for negative returns therefore the 

average is only taken of the positive returns). This strategy differentiates itself  from the 

previous rules in the sense that the trader has become more selective in which trades 

he/she executes, i.e. a filter rule is utilised. This strategy has a filter of 0.000956%, which 

is the average ten-minutely in-sample return. If the trader trades on the basis that the 

predicted return is greater than the filter, the trader will continue to hold the index until 

the predicted return is negative, i.e. the buy and hold strategy introduced previously is 

used. 

 

5.1.4. Filter strategy – Better predicted return than first decile 

This strategy is essentially identical to the above trading strategy, but the difference is that 

rather than utilize the average as previously, only the predicted returns in the first decile 

are traded on. In this scenario, the filter is 0.0026%. 

 

 

5.1.5. Filter strategy – High arbitrary cut off 

An arbitrary filter is imposed of 0.0075%, which will only flag returns that are predicted 

to be extremely large. 

 

5.2.  Risk adjustment 
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The incremental risk adjustment incurred by making additional trades is almost non-

existent and relates to counterparty or transaction risk. Because the alternative or control 

strategy involves investing passively in FTSE 100 index (rather than investing in a bond), 

the inherent risk of holding the security is approximately equal. One may even argue that 

the trading strategies have slightly less risk because for some portion of the time the 

holding of the risky asset (FTSE 100 index) is zero.   

 

5.3. Transaction costs 

Typical transaction costs for a round trip (purchase and sale) of the FTSE 100 index are 

detailed in Table 7. As one would expect, transacting in the futures market is 

considerably cheaper than in the spot market, since the index itself does not exist as an 

entity but rather one must buy and sell the components of the index individually. 

 

5.4. The trading profits: Champagne or Cola? 

The returns for the trading strategies detailed above are illustrated in Table 8. Examining 

the results reveals that the model can generate significant profits in the absence of 

transaction costs. May 1997 was an extremely bullish month for the FTSE 100 evidenced 

by the high returns even from a passive investment. The most profitable trading method is 

the ‘liquid trading strategy’ which yields a 15.62% return for the month compared with 

4.09% benchmark passive strategy. If transaction costs are included in the returns, none of 

the active trading strategies can outperform the benchmark passive strategy. With 

maximum returns of 0.25% per transaction observed using the ‘filter III’ trading strategy, 

compared with transaction costs of 1.7% (total transaction cost for purchasing and 
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subsequent selling of the underlying stocks of the FTSE 100 index) make the trading rules 

ineffective. In fact, all of the trading rules except the passive buy-and-hold make 

substantial losses due to the transactions costs involved in the large number of trades. 

However, as the major bias in the forecast period is positive returns, the model may 

outperform the index in a bear market when timing of trades is equally important. 

 

To add an additional touch of reality to the analysis, we allow for 10 minutes of 

“slippage” time. This term is used to indicate that, if a forecast is made now, it will 

typically take at least a few minutes for a resulting buy/sell signal to be executable in the 

markets. So a trading signal derived from the model is assumed to be executed 10 

minutes later, and the return calculated over the following 10 minutes. The trading profits 

allowing for slippage are also given in Table 8. The clear picture emerging is that the 

profitability of the rules is further eroded after allowing time for transactions to be 

executed; this is entirely plausible for it is likely that the value of exploiting short-term 

deviations of the spot and futures prices from their long-term equilibrium values will not 

last long. 

 

To summarise, the forecasting model proves to be good at predicting the returns of the FTSE 100 

index, but cannot generate excess returns net of transactions costs and after allowing for 

reasonable slippage time. But could the model still have a useful application in the financial 

markets? We would argue “yes” for the following reasons. First, major investment banks that are 

active equity market makers in the FTSE 100 would have significantly lower transaction costs. 

Referring to the transaction costs outlined above, a market maker has the potential to reduce 
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transaction costs to 0.5%.  This may enable the development of viable trading strategies utilising 

the models constructed in this paper. Second, the model provides a very good indicator for entry 

times into the market for traders interested in high frequency transacting. (A complicating factor, 

however, is that optimal entry timing for each individual stock which comprises the FTSE 100 is 

likely to be different. It could be possible to generate new results in a similar fashion for 

individual stocks which have traded futures contracts, but simply employing our timing rules on 

the individual stocks, where the rules were generated for the index, could lead to sub-optimal 

timing decisions for a large number of the components). Third, transaction costs are continuously 

under pressure  - there may be a time in the future when the model is able to generate average 

returns in excess of transaction costs. (Although, of course, lower transactions costs would imply 

that index arbitrageurs would have more opportunities to trade profitably, implying that such 

arbitrage opportunities would quickly disappear). Fourthly, although the FTSE 100 consists of 

100 stocks, the actual index movers are the larger capitalised stocks and it may therefore be 

possible to form a reasonable proxy for the index comprising, say, ten of the largest stocks (an 

index “tracker”), thereby reducing transaction costs by approximately 90%. Finally, as markets 

for the largest stocks become ever more liquid, and trading mechanisms become increasingly 

automated, it is possible that slippage times will be reduced, enabling the trading rules to be 

actioned sooner after they are determined. 

 

6. Conclusions 

 

This paper has investigated the lead-lag relationship between the FTSE 100 index and 

futures prices, and has attempted to derive a profitable strategy from this relationship. It 

was confirmed, as one might expect, that the futures returns lead the spot returns. The 
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predictive power of futures returns supports the hypothesis that new market-wide 

information disseminates in the futures market before the spot market with arbitrageurs 

trading across both markets to maintain the cost of carry relationship. This is intuitive as a 

consequence of the reduced transaction costs and other associated benefits of trading in 

the futures market as opposed to the spot.  

 

The best model in terms of predictive ability is the cost of carry error correction model 

(ECM-COC), which predicts the correct direction of the spot returns 68.75% of the time. 

In the absence of transaction costs, and using the ‘buy and hold’ strategy derived from 

this model, a monthly return of 15.62% is obtained compared with a monthly return of 

4.09% for the passive benchmark. However, ECM-COC is unable to outperform the 

benchmark after the introduction of transaction costs. Although transaction costs and 

slippage times preclude a viable trading rule based on the model at the present time, there 

are potential circumstances for utilising the results such as optimum timing for trades or 

by a trader with significantly lower transaction costs such as a market maker.  

 

 

Acknowledgments 

 

The authors are grateful to an Associate Editor and to two anonymous referees of this 

journal for useful comments on an earlier version of this paper. We would also like to 

thank FTSE International and to LIFFE for providing the necessary data; the usual 

disclaimer applies. 

 

 



   24 

 

References 

 
Abhyankar, A. (1998). Linear and nonlinear Granger causality: Evidence from the UK stock 

index futures market, Journal of Futures Markets, 18(5), 519-540. 

 

Abhyankar, A. (1995). Return and volatility dynamics in the FTSE-100 stock index and stock 

index futures markets, Journal of Futures Markets, 15(4), 457-488. 

 

Brooks, C. (1997). Linear and nonlinear (non-) forecastability of daily sterling exchange rates, 

Journal of Forecasting, 16, 125-145. 

 

Chan, K. (1992). A further analysis of the lead-lag relationship between the cash market and stock 

index futures market, Review of Financial Studies, 5(1), 123-152. 

 

Dickey, D.A., & Fuller, W.A. (1981). Likelihood ratio statistics for autoregressive time series 

with a unit root, Econometrica, 49(4), 1057-1072. 

 

Enders, W. (1995). Applied Econometric Time Series, New York: John Wiley & Sons. 

 

Engle, R.F., & Granger, C.W.E. (1987). Cointegration and error correction: Representation, 

estimation and testing, Econometrica, 55, 251-76. 

 

Fuller, W.A. (1976). Introduction to Statistical Time Series, New York: John Wiley &Sons. 

 

Gerlow, M.E., Irwin, S.H., & Liu, T-R. (1993). Economic evaluation of commodity price 

forecasting models, International Journal of Forecasting, 9, 387-397. 

 

Ghosh, A. (1993). Cointegration and error correction models: Intertemporal causality between 

index and futures prices, Journal of Futures Markets, 13, 193-198. 

 

Hosking, J.R.M. (1981). Fractional differencing, Biometrika, 68, 165-176. 

 

Johansen, S. (1988). Statistical analysis of cointegration vectors, Journal of Economic Dynamics 

and Control, 12, 231-254. 

 

Kawaller, I.G., Koch, P.D., & Koch, T.W. (1987). The temporal price relationship between S&P 

500 futures and the S&P 500 index, Journal of Finance, 42(5), 1309-1329. 

 

Leitch, G., & Tanner, J.E. (1991). Economic forecast evaluation: Profit versus the conventional 

error measures, American Economic Review, 81(3), 580-590. 

 

MacKinlay, A.C., & Ramaswamy, K. (1988). Index-futures arbitrage and the behaviour of stock 

index futures prices, Review of Financial Studies, 1, 137-158. 

 

Schwarz, G. (1978). Estimating the dimension of a model, Annals of Statistics, 6, 461-464. 

 

Stoll, H.R., & Whaley, R.E. (1990). The dynamics of stock index and stock index futures returns, 

Journal of Financial and Quantitative Analysis, 25, 441-468. 

 



   25 

 

Sutcliffe, S. (1997). Stock Index Futures: Theories and International Evidence, second edition, 

London: Thomson Business Press. 

 

Tang, Y. N., Mak, S. C., & Choi, D. F. S. (1992). The causal relationship between stock index futures 

and cash index prices in Hong Kong, Applied Financial Economics, 2, 187-190. 

 

Tse, Y.K. (1995). Lead-lag relationships between spot index and futures price of the Nikkei stock 

average, Journal of Forecasting, 14, 553-563. 

 

Wahab, M., & Lashgari, M. (1993). Price dynamics and error correction in stock index and stock 

index futures markets: A cointegration approach, Journal of Futures Markets, 13, 711-742. 

 



   26 

 

Appendix - Empirical results 
 

 

 

 

Table 1: Descriptive statistics and DF tests for nonstationarity.   

Panel A: Summary statistics for log-price data 

  Ln Ft  Ln St 

Observations 

Sample mean  

Variance         

Skewness  

Kurtosis 

11995 

8.299 

0.003 

0.008 

-1.158 

11995 

8.302 

0.003 

-0.059 

-1.082 

 

Panel B: Test for non-stationarity on log-price series 

Dickey Fuller statistic -0.133 -0.734 

Panel C: Summary statistics for returns data 

 st Ft 

Observations 

Sample mean  

Variance         

Skewness  

Kurtosis 

11994 

1.400e-05           

4.805e-07 

-5.159 

191.019             

 

11994 

1.500e-05 

1.032e-06 

-1.430            

37.720              

 

Panel D: Test for nonstationarity on returns data 

Dickey Fuller statistic -84.997  -114.180 
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Table 2: Tests for cointegration and the fitted ECM for st 

Panel A:  Cointegrating regression 

Coefficient estimated 
 0  

 1  

Coefficient value 

0.135 

0.983 

t-ratio 

26.374 

1600.165 

Panel B:  DF test of cointegration errors  

Dickey Fuller statistic   -14.7303 

Panel C:  Estimated error correction model  

Coefficient estimated 

0  

  

1  

1  

Coefficient value 

9.671e-06 

-8.339e-01 

0.180 

0.131 

t-ratio  

1.608 

-5.130 

19.289 

20.495 

 

 

 

Table 3: Tests for cointegration and fitted ECM for st  

Panel A:  Cointegrating regression 

Coefficient estimated 
 0  

 1  

 2  

Coefficient value 

0.109 

0.933 

0.010 

t-ratio 

20.803 

1298.127 

10.389 

Panel B:  DF test of cointegration errors  

Dickey Fuller statistic   -14.9627 

Panel C:  Estimated error correction model  

Coefficient estimated 

0  

  

1  

1  

Coefficient value 

1.278e-05 

-7.207e-03 

0.169 

0.138 

t-ratio  

1.608 

-4.361 

16.940 

21.030 

 

 

Table 4: Fitted ARMA model for st 

Coefficient estimated 
0  

1  

Coefficient value 

8.635e-06 

0.249 

t-ratio 

0.057 

28.095 
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Table 5: Coefficient estimates for unrestricted VAR 

Coefficient estimated 

0  

1  

1  

Coefficient value 

9.663e-06 

0.176 

0.136 

t-ratio  

1.605 

18.945 

21.321 

 

Table 6: Comparison of out of sample forecasting accuracy 

 ECM ECM-COC ARIMA VAR 

% correct 

direction 

67.690% 68.750% 64.360% 66.800% 

RMSE 4.382e-04 4.350e-04 4.531e-04 4.510e-04 

MAE 0.426 0.426 0.438 0.438 

 

 

Table 7: Estimated round trip transaction costs 

 Asset 

FTSE100 

 Spot (%) Futures (%) 

Bid-ask spread 0.80 0.083 

Stamp duty 0.50 0.000 

Commission (twice) 0.40 0.033 

Total cost 1.70 0.116 

Source: Sutcliffe (1997) 
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Table 8: Trading strategy returns based on ECM-COC forecasts 

 

Trading 

strategy 

Return ( £ ) Monthly 

return ( % ) 

{annualised} 

Return (£) 

with slippage 

Monthly 

return ( % ) 

{annualised} 

with slippage 

 

Number of  

trades 

Passive 

investment 

1040.920 4.090   

{49.080}            

1040.920 4.090   

{49.080}            

1 

Liquid 

trading 

1156.210 15.620 

{187.440} 

1056.380 5.640 

{67.680} 

583 

Buy and hold 1156.210 15.620 

{187.440} 

1055.770 5.580 

{66.960} 

383 

Filter I 1144.510 14.450 

{173.400} 

1123.570 12.360 

{148.320} 

135 

Filter II 1100.010 10.000 

{120.000} 

1046.170 4.620 

{55.440} 

65 

Filter III 1019.820 1.980 

{23.760} 

1003.230 0.320 

{3.840} 

8 

 


