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� We formulate and analyse a nonlinear ODE model of the SREBP2 pathway.
� The mathematical model exhibits stable limit cycles under certain parameter conditions.
� Negative feedbacks in the SREBP2 pathway may help regulate cholesterol homeostasis.
� Our model provides a more accurate formulation of genetic regulation using nonlinear ODEs.
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a b s t r a c t

Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of
the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the
development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential
equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic
regulatory pathway in a hepatocyte. The mathematical model includes a description of genetic
transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main regulator of cholesterol synthesis.
Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback
formulation. Parameterised with data from the literature, the model is used to understand how
SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis
shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or
monotic behaviour under certain parameter conditions. In light of our findings we postulate how
cholesterol homeostasis is maintained within the cell and the advantages of our model formulation are
discussed with respect to other models of genetic regulation within the literature.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

As an essential constituent of the plasma membrane of mamma-
lian cells, cholesterol is used for the maintenance of both membrane
structural integrity and selective permeability (Simons and Iknonen,
2000). However, superfluous cholesterol levels result in cellular
toxicity (Yeagle, 1991; Tabas, 1997; Tangirala et al., 1994). Insufficient
cholesterol causes cytotoxicity via compromised membrane structure.

Furthermore cellular cholesterol metabolism is a key modulator of
plasma cholesterol, with the management of plasma hypercholester-
olaemia at the cornerstone of population cardiovascular disease
management (Grundy et al., 2004). It is therefore crucial that
intracellular cholesterol levels are strictly regulated. Cellular choles-
terol homeostasis, the property to maintain cholesterol concentration
to within narrow ranges, results from a balance of three mechanisms:
efflux, influx and biosynthesis.

Understanding the mechanisms which regulate cellular choles-
terol content is vital to understanding pathology associated with
sub- and supra-optimal cell and blood cholesterol concentrations.
These levels are dependent on both the balance between dietary
cholesterol intake and de novo synthesis of cholesterol within cells.
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The low density lipoprotein receptor (LDLR) protein forms part
of the lipoprotein metabolic pathway responsible for the clearance
of cholesterol from the circulation (Brown and Goldstein, 1979;
Goldstein et al., 1985). Biosynthesis of cholesterol is a multistep
reaction in which the rate-limiting step is the reduction of 3-
hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) in the reaction
catalysed by the enzyme HMG-CoA reductase (HMGCR).

Over accumulation or excessive depletion of free cholesterol
within the cell is prevented by a negative feedback loop that
responds to elevations or depressions in intracellular cholesterol.
This feedback loop exerts the majority of its control by regulating
the synthesis of the two key proteins: HMGCR and LDLR. In brief,
when the intracellular cholesterol level is low, both LDLR and
HMGCR synthesis are activated, thereby increasing the influx of
cholesterol via the LDLR pathway, and the biosynthesis of choles-
terol in the cell. If conversely there are high cholesterol levels in
the cell, synthesis of LDLR and HMGCR declines.

There has been much research conducted into the response of
cell cholesterol to dietary intake, with the dietary fatty acid
composition rather than cholesterol intake reported to have a
greater impact on circulating cholesterol concentrations. In parti-
cular, partial replacement of saturated fat with either monounsa-
turated (found in olive oil) or n-6 polyunsaturated (found in
vegetable oils such as sunflower oil) fatty acids have been
associated with significant reductions in both total and LDL-
cholesterol concentrations (Mensink et al., 2003; Micha and
Mozaffarian, 2010). Dietary fat composition is considered to
influence circulating cholesterol concentrations via effects on
hepatic cholesterol synthesis and the expression of genes involved
in circulating LDL-cholesterol metabolism (Xu et al., 1999).

Previous mathematical modelling has included compartmental
models of the lipoprotein metabolic pathway (Knoblauch et al.,
2000; Packard et al., 2000; Adiels et al., 2005) and dynamic
models of lipoprotein metabolism in conjunction with the LDLR
pathway (August et al., 2007; Wattis et al., 2008). Of particular
note in these dynamic models is the lack of explicit representation
of the cholesterol biosynthesis reaction and as a consequence, the
interplay between cholesterol biosynthesis, the LDLR uptake of

lipoprotein cholesterol and cholesterol mediated negative feed-
back is not fully appreciated.

The cholesterol biosynthetic pathway is already the basis of the
most common form of pharmaceutical treatment for high plasma
cholesterol levels. HMGCR inhibitors, more commonly known as
statins, act as competitive inhibitors of the HMGCR enzyme. By
inhibiting the biosynthesis of cholesterol, statins deplete intracel-
lular cholesterol concentration and promote the synthesis of both
HMGCR and the LDLR, thereby increasing the uptake of lipopro-
teins (and plasma cholesterol) via the LDLR. It is recognised that
individual response to statin treatment varies widely. Genetic
variation in HMGCR has been associated with a diminished lipid
lowering response (Chasman et al., 2004; Krauss et al., 2008),
suggesting that the cholesterol biosynthetic pathway plays an
important role in the control of plasma cholesterol levels.

However, relatively little modelling has been conducted to
investigate the qualitative behaviour of the processes which
govern de novo cholesterol synthesis at a genetic level, which
may provide a better understanding of such phenomena. The
mathematical model presented in this paper will examine the
underlying genetic mechanisms governing cholesterol biosynth-
esis as a first step towards elucidating the dynamics of this
pathway.

The paper is organised as follows. In Section 2 the biological
processes which describe the genetic regulation of cholesterol
biosynthesis are reviewed. Following this, the mathematical model
is derived in Section 3 and details of model parameter values
obtained from the literature are summarised in Section 4. Model
analysis is undertaken in Sections 5–7 and the results are sum-
marised and discussed in Section 8.

2. Regulated expression of cholesterol biosynthetic genes

A major point of control of the cholesterol biosynthetic path-
way occurs at the level of gene expression in response to cellular
cholesterol levels, as shown in Fig. 1. The insolubility of choles-
terol dictates that it cannot directly influence a genetic response.

Fig. 1. Genetic regulation of cholesterol biosynthesis by SREBP-2. Hepatocytes synthesise HMGCR mRNA which in turn is translated into the enzyme HMGCR. HMGCR
catalyses the synthesis of cholesterol which in turn influences its own transcription rate by interacting with the transcription factor SREBP; the transcription rate increases
when cholesterol is low in the cell and declines when cholesterol is high. (SRE – sterol regulatory element; MH – HMGCR mRNA; C – cholesterol).
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The critical role in controlling the expression of a range of genes
involved in the regulation of cellular lipid homeostasis falls to the
three isoforms of the SREBP family of transcription factors, SREBP-
1a, SREBP-1c and SREBP-2. In particular, the SREBP-2 isoform is
relatively specific to regulating the expression of many enzymes
involved in cholesterol biosynthesis (Brown and Goldstein, 1997).

SREBPs exist normally in a tight complex with the SREBP
cleavage activating protein (SCAP) within the endoplasmic reticu-
lum of cells. SCAP consists of two domains, one of which is
responsible for the association with SREBP. The other domain
contains a region known as the sterol sensing domain (SSD). When
the cellular cholesterol concentration becomes depleted, SCAP
escorts SREBP to the Golgi apparatus of the cell, where it under-
goes sequential cleavage by proteases. The net effect of this is to
liberate the transcription factor, nuclear SREBP which can then
enter the cell nucleus (Eberlé et al., 2004). Here it binds to a
regulatory binding site (a short sequence of DNA) on the promoter
region of the target gene known as the sterol regulatory element
(SRE) and activates its transcription (Soutar and Knight, 1990).

In the presence of replete cellular sterol concentrations, cho-
lesterol binds directly to the SSD of SCAP. This causes a conforma-
tional change in SCAP which results eventually in the anchoring of
the SCAP–SREBP complex to the endoplasmic reticulum (ER)
membrane (Yang et al., 2002). This process is responsible for the
retention of the SCAP–SREBP complex within the ER. Transcription
of the target genes declines.

In the context of the HMGCR gene, when a cell0s cholesterol
levels are low, the SCAP–SREBP complex is active and free to move.
In such a state SREBP is formed and is able to reach the nucleus
and activate HMGCR mRNA transcription and thus HMGCR synth-
esis, increasing the cholesterol concentration in the cell by
upregulating its synthesis. If, conversely, there are high cellular
cholesterol levels, then SCAP–SREBP is unable to move and
effectively inactive. Consequently both HMGCR mRNA transcrip-
tion and HMGCR translation decrease, and cholesterol synthesis is
reduced.

In a simplified model of the gene expression response to
cellular cholesterol concentration, the system can be seen as an
end product negative feedback loop system, in the manner of the
mathematical models of expression developed by, for example,
Goodwin (1963, 1965) and Griffith (1968). In such models, the
response of the gene is directly dependent upon the concentration
of cholesterol. A very low level of cholesterol will provoke a large
response in the synthesis of HMGCR enzyme, and vice-a-versa.
Theoretically, this results in a considerable range over which the
model allows cholesterol concentration to vary. This is, however,
uncharacteristic of the homeostatic property which the physiolo-
gical system possesses, and which ensures that cellular cholesterol
can only fluctuate within a narrow range of values, to avoid the
cytotoxicity associated with extreme values.

The addition of the SREBP transcription factor function models
the underlying biological mechanism, and also introduces com-
plexity to the negative feedback loop in the form of an activator
function which is suppressed by accumulation of an end product.
In the following section a model of this interaction between SREBP
and cholesterol, and the effect on gene expression are presented.

3. The model

The interactions characterising cellular cholesterol homeostasis
and its regulation by transcription factors are many, and a full
model of all variables and reactions is not necessarily pragmatic.
Furthermore, the number of parameter values required will
increase with complexity. Previous models have shown that

excessive simplification can fail to reproduce dynamics which
have been observed in experimental settings.

As an example, the work by Wattis et al. (2008) models non-
lipoprotein cholesterol influx to the cell as proportional to the
difference between cell cholesterol concentration and a predeter-
mined ideal equilibrium value; this produces the correct dynamics
for cell cholesterol response. An interesting consequence of this
formalism, though, is that intracellular cholesterol concentration
in the model reaches equilibrium rapidly (on a timescale of the
order of minutes) after an influx of lipoprotein cholesterol to the
cell. However, experimental results suggest that this may not be
the case, with changes in intracellular cholesterol concentration
occurring on timescales of 12–24 h (Liscum and Faust, 1987;
Liscum et al., 1989). This suggests that not enough complexity is
included here to capture the longer term dynamics of cholesterol
synthesis at the level of the HMGCR gene.

A further requirement is that the system must respond natu-
rally in the absence or presence of cholesterol as opposed to only
acting reasonably under certain circumstances. For example, in the
work of August et al. (2007), all cholesterol in the cell is assumed
to be derived from lipoprotein sources. Whilst this reproduces the
required qualitative behaviour under the conditions whereby
extracellular lipoprotein is present, in the case where this is zero,
the intracellular cholesterol level falls to zero, which is physiolo-
gically fatal for the cell.

The work presented in this paper is focused on formulating and
analysing a nonlinear ordinary differential equation (ODE) model
of the SREBP-2 cholesterol biosynthesis pathway. The goal of the
work is to understand cholesterol regulation via the negative
feedback between SREBP-2 transcription and cholesterol and to
what extent this affects the steady-state cholesterol levels of the
cell. In doing so we hope to more accurately capture cellular
regulation of cholesterol and be able to understand it in the wider
context of dietary cholesterol intake.

3.1. Mathematical model formulation

In this section we derive a system of nonlinear ODEs to describe
the genetic regulation of cholesterol biosynthesis by SREBP-2 as
summarised in Fig. 2.

The binding of SREBP-2 to the gene, subsequent transcription
and translation to HMG-CoA mRNA and production of HMGCR and

Fig. 2. The genetic regulation of cholesterol production by SREBP-2. The HMGCR
gene G is transcribed at a rate μm to produce HMGCR mRNA M . This is translated at
a rate μh into the HMGCR enzyme H . HMGCR then goes on to catalyse the reaction
creating the metabolite cholesterol C at a rate μc . This process is under the control
of the transcription factor SREBP S which acts as a transcriptional activator for the
pathway. Under conditions where cholesterol C is in excess S forms an inactive
complex with C and transcription of the target gene declines. HMGCR mRNA,
HMGCR and cholesterol are degraded at rates δm , δh and δc , respectively.
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cholesterol can be described by the reaction equation

ð1Þ

Here x is the number of molecules of S required to bind to G to
produce a functional effect. This binding reaction has an association
rate κ1 and a dissociation rate κ �1. M is transcribed at a rate μd and H

is translated at a rate μh. The creation of C occurs at a rate μc . δm, δh

and δc are respectively the degradation rates of M, H and C.
Similarly the binding of cholesterol to active SREBP-2 to form

an inactive complex which down-regulates the transcription of
cholesterol (negative feedback) is given by

SþyC ⇄
κ 2

κ � 2

S : yC; ð2Þ

where y is the number of molecules of C required to bind to S to
cause inactivation. This binding reaction has an association rate κ2

and a dissociation rate κ �2.
We note two important biological concepts arising from the

physiological mechanism of gene expression or protein synthesis,
which will affect the form of the ODEs (Alberts et al., 2008)
describing Eqs. (1) and (2).

(i) ½G : xS� represents the concentration of DNA in an active state,
which is able to undergo transcription. During transcription,
activated DNA is copied by the action of an enzyme to produce
mRNA. This process does not deplete ½G : xS�.

(ii) Protein is synthesised from mRNA via the action of ribosomes.
Following protein synthesis, mRNA detaches from the ribo-
some and the mRNA is free to participate in further synthesis
reactions until it is degraded according to its half-life. There-
fore, the synthesis of the enzyme, H, does not affect the
concentration of M. That is, synthesis of H will not deplete M.

The governing ODEs equations are derived by application of the
law of mass action to the biochemical reactions (1) and (2) which
gives

dg
dt

¼ κ �1sb�κ1s
xg ; ð3Þ

ds
dt

¼ xκ �1sb�xκ1s
xg�κ2c

ysþκ �2cb; ð4Þ

dsb
dt

¼ �κ �1sbþκ1s
xg ; ð5Þ

dm
dt

¼ μdsb�δmm; ð6Þ

dh
dt

¼ μhm�δhh; ð7Þ

dc
dt

¼ μchþyκ �2cb�δcc�yκ2c
ys; ð8Þ

dcb
dt

¼ κ2c
ys�κ �2cb; ð9Þ

with initial conditions

gð0Þ ¼ g0; sð0Þ ¼ s0; sbð0Þ ¼ 0; mð0Þ ¼m0;

hð0Þ ¼ h0; cð0Þ ¼ c0; cbð0Þ ¼ 0; ð10Þ
where in the above system of equations, we use the following
notation in which square brackets denote concentration: g ¼ ½G�,
s ¼ ½S�, sb ¼ ½G : xS�, m ¼ ½M�, h ¼ ½H�, c ¼ ½C� and cb ¼ ½S : yC�.

The coefficient x in the first term of Eq. (4) reflects that the
dissociation of one active DNA complex releases x molecules of
unbound transcription factor. The coefficient x in the second term
of Eq. (4) states that the creation of one active DNA complex
requires up to x DNA binding sites.

The number of genes within a cell is constant so adding Eqs.
(3) and (5) leads to

dg
dt

þdsb
dt

¼ 0 ) gðtÞþsbðtÞ ¼ g0; ð11Þ

on using the initial conditions (10). We now assume that Eq. (5)
reaches equilibrium rapidly (quasi-steady-state approximation)
such that

dsb
dt

� 0; ð12Þ

and using Eq. (11) we have

κ1s
xðg0�sbÞþκ �1sbC0; ð13Þ

which upon rearranging gives

sbC
g0s

x

κ x
mþs x ; ð14Þ

where

κm ¼ ðκdÞ1=x ¼ ðκ �1=κ1Þ1=x: ð15Þ
Here κd is the dissociation constant for the reaction between S and
G.

We further observe that adding Eqs. (4), (5) and (9) gives

d
dt
ðsþsbþcbÞ ¼ ð1�xÞð�κ �1sbþκ1s

xgÞ; ð16Þ

¼ ð1�xÞdsb
dt

: ð17Þ

Under the quasi-steady state assumption of Eq. (12) together with
the initial conditions (10) we find that

d
dt
ðsþsbþcbÞ � 0; ð18Þ

) sþsbþcb ¼ s0: ð19Þ
Also under the approximation (12) we see that sbCsbð0ÞC0. This
is a valid assumption if we consider that the concentration of
binding sites for a particular transcription factor on one particular
gene is extremely small compared to the concentration of free
transcription factor available in the cell, i.e. sboos. We then
obtain the following equation from (19):

sþcbCs0: ð20Þ
Finally we assume that the binding reaction between S and C

reaches equilibrium rapidly such that

κ2c
ys�κ �2ðs0�sÞC0: ð21Þ

Rearranging this result gives

s ¼ s0
1þðc=κ cÞy

ð22Þ

in which we define the constant κ c such that

κ c ¼ ðκ sÞ 1=y ¼ ðκ �2=κ2Þ1=y; ð23Þ
where κ s is the dissociation constant for the reaction between S

and C.
Using Eqs. (14), (20) and (22) to eliminate Eqs. (3)–(5) and (9)

from the system equations (3)–(9) we obtain the reduced system

dm
dt

¼ μm

1þ κmð1þðc=κ cÞyÞ
s0

� �x�δmm ¼ f ðm;h; cÞ; ð24Þ
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dh
dt

¼ μhm�δhh ¼ gðm;h; cÞ; ð25Þ

dc
dt

¼ μch�δcc ¼ jðm;h; cÞ; ð26Þ

with the initial conditions

mð0Þ ¼m0; hð0Þ ¼ h0 and cð0Þ ¼ c0: ð27Þ
Here μm ¼ μdg0 where μm is the maximal rate of transcription.

Non-dimensionalisation: Before proceeding to a complete ana-
lysis of the model, Eqs. (24)–(26) are non-dimensionalised. Time is
scaled with respect to the synthesis rate of m such that

τ¼ μht; ð28Þ
where τ represents the non-dimensional time. The remaining
variables are rescaled with respect to the concentration of total
transcription factor, s0, such that

m¼m
s0
; h¼ h

s0
; and c¼ c

s0
: ð29Þ

This non-dimensionalisation leads to

dm
dτ

¼ μm

1þðκmð1þðc=κcÞyÞÞx
�δmm¼ f ðm;h; cÞ; ð30Þ

dh
dτ

¼m�δhh¼ gðm;h; cÞ; ð31Þ

dc
dτ

¼ μch�δcc¼ jðm;h; cÞ; ð32Þ

with the initial conditions

m0 ¼
m0

s0
; h0 ¼

h0

s0
; c0 ¼

c0
s0
; ð33Þ

where the non-dimensional parameters are given by

μm ¼ μm

μhs0
; μc ¼

μc

μh
; κm ¼ κm

s0
;

κc ¼
κ c

s0
; δc ¼

δc

μh
; δh ¼

δh

μh
; δm ¼ δm

μh
: ð34Þ

The non-dimensional parameter values are summarised in Table 2.

4. Parameter estimation

A summary of the model parameter values is provided in
Table 1 with details on how each was derived from the experi-
mental literature given in Appendix A. Wherever possible data
elicited from human liver cells (Hep G2) have been used. However,
it has not been possible to determine all required parameters in
this manner. In some cases the model parameters do not have a
direct physiological counterpart since the biological processes
occurring have been simplified in the mathematical modelling to

reduce complexity; in others, the parameter value is not custo-
marily measured in the required units, not least because of the
difficulty in isolating the biosynthesis pathway. In these instances
underlying biological principles have been used to estimate a
realistic value, and to ensure that the model operates within a
plausible physiologic domain.

5. Model analysis

In this section and continuing in Sections 6 and 7 we discuss
the existence of steady-states of Eqs (30)–(32) and their stability.

5.1. Fixed point analysis

The steady states of equations (30)–(32) are given by the
solution of

0¼ μm

1þðκmð1þðcss=κcÞyÞÞx
�δmmss; ð35Þ

0¼mss�δhhss; ð36Þ

0¼ μchss�δccss; ð37Þ
where mss, hss and css are the steady state values of m, h and c
respectively. Using Eqs. (36) and (37), Eq. (35) can be written as

αcss 1þ κm 1þ css
κc

� �y� �� �x
 !

�μm ¼ 0; ð38Þ

where

α¼ δmδhδc
μc

: ð39Þ

Expanding, we find that the steady states are given by the solution
of the polynomial equation of degree ðxyþ1Þ,
β
γx
cyxþ1
ss þ xβ

γðx�1Þc
yðx�1Þþ1
ss

þ⋯þxβ
γ
cyþ1
ss þðαþβÞcss�μm ¼ 0; ð40Þ

Table 1
Summary of model parameter values. Details of parameter derivations are given in Appendix A.

Parameter Description Dimensional value

μm HMGCR transcription rate 5.17�105 molecules ml�1 s�1

μh HMGCR translation rate 3.33�10�2 s�1

μc Cholesterol synthesis rate 4.33�10�2 s�1

δm HMGCR mRNA degradation rate 4.48�10�5 s�1

δh HMGCR degradation rate 6.42�10�5 s�1

δc Cholesterol utilisation rate 1.20�10�4 s�1

κm SREBP-2-HMGCR gene dissociation constant Oð1013Þmolecules ml�1

κ c SREBP-2-Cholesterol dissociation constant Oð1014Þmolecules ml�1

x Molecules of SREBP-2 binding to gene 3
y Molecules of cholesterol binding to SREBP-2 4

Table 2
Non-dimensional parameter values.

Parameter Description Nondimensional
value

μc Cholesterol synthesis rate 1.30
μm HMGCR transcription rate 1.90�10�10

δm HMGCR mRNA degradation rate 1.35�10�3

δh HMGCR degradation rate 1.93�10�3

δc Cholesterol utilisation rate 3.60�10�3

κm SREBP-2-HMGCR gene dissociation
constant

1.00�10�4

κc SREBP-2-cholesterol dissociation constant 1.00�10�3
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where β¼ ακxm and γ ¼ κyc . As all parameters are positive, we may
apply the results of Descartes0 Rule of Signs which states that the
number of positive real roots of the system is either equal to the
number of variations of signs in the coefficients of Eq. (40) or less
than this by an even integer (Murray, 2002). As there is only one
sign change in the sequence of coefficients Eq. (40), the system has
only one positive real root, and therefore only one physiologically
valid fixed point.

5.2. Fixed point stability

We now consider the stability of this fixed point by investiga-
tion of the eigenvalues of the linearised Jacobian matrix J of the
system equations (30)–(32). The Jacobian is given by

J¼
f m f h f c
gm gh gc
jm jh jc

2
64

3
75¼

�δm 0 �ψ
1 �δh 0
0 μc �δc

2
64

3
75; ð41Þ

with

ψ ¼
xyμmκ

x
mc

y�1
ss 1þ css

κc

� �y� �x�1

κyc 1þκxm 1þ css
κc

� �y� �x
 !2 : ð42Þ

We note that ψZ0 as all parameter values are positive and that
cssZ0 for physiologically valid parameter ranges.

Calculation of the eigenvalues of J requires the solution of the
equation

detðJ�λIÞ ¼ 0; ð43Þ
where λ are the eigenvalues to be found and I is the identity
matrix. Evaluation of Eq. (43) leads to the characteristic equation,

λ3þðδmþδhþδcÞλ2
þðδmδhþδmδcþδhδcÞλ
þðδmδhδcþμcψ Þ ¼ 0; ð44Þ

which has three roots, the eigenvalues λ1, λ2 and λ3. Firstly we
note that ψZ0 ensures all coefficients of Eq. (44) are positive and
thus by Descartes’ Rule of Signs there can be no purely positive
real eigenvalues. There are then two cases for the roots of (44),
either three negative real eigenvalues or one negative real eigen-
value and a pair of complex conjugate eigenvalues.

The fixed point is stable if and only if the real parts of λ1, λ2 and
λ3 are negative. To determine for which conditions this occurs, we
apply the Routh–Hurwitz Stability criteria to Eq. (44) (Murray,
2002). Routh–Hurwitz0s criteria applied to a cubic equation of the
form

λ3þa2λ
2þa1λþa0 ¼ 0

are satisfied if and only if a040, a140, a240 and a1a2�a040.
That is, the necessary and sufficient condition for the roots of
Eq. (44) to have negative real part requires

δmþδhþδc40; ð45Þ

δmδhþδmδcþδhδc40; ð46Þ

δmδhδcþμcψ40; ð47Þ

ðδmþδhþδcÞðδmδhþδmδcþδhδcÞ
�ðδmδhδcþμcψ Þ ¼ ρðδm; δh; δcÞ40: ð48Þ

Since all parameters are positive and real, conditions (45)–(47)
hold. Thus the stability of the roots is dependent on condition (48).
The possible dynamic behaviour of the system can be summarised
as follows.

Case I: ρðδm; δh; δcÞ40. Here all real parts of all eigenvalues are
negative. In this case the steady state is stable. This stable steady
state may arise in one of two ways: (i) Case Ia: where all
eigenvalues are real and negative. This will result in a stable node,
where the concentrations of mRNA, protein and cholesterol will
tend monotonically to a steady state; and (ii) Case Ib: where one
eigenvalue is real and negative and two eigenvalues are complex
conjugates with negative real part. In this case the fixed point is a
stable spiral and the concentrations of mRNA, protein and choles-
terol will demonstrate oscillatory convergence to a steady state.

Case II: ρðδm; δh;δcÞ ¼ 0. By substituting this value of ðδmδhδcþ
μcψ Þ into Eq. (44), we now have the characteristic equation given
by

λ3þγ1λ
2þγ2λþγ1γ2 ¼ 0;

ðλþγ1Þðλ2þγ2Þ ¼ 0;

where we have γ2 ¼ ðδmδhþδmδcþδhδcÞ and γ1 ¼ ðδmþδhþδcÞ.
Therefore the characteristic equation has two conjugate roots λ1;2
on the imaginary axis and one negative real eigenvalue λ3 given by

λ1;2 ¼ 7 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδmδhþδmδcþδhδcÞ

p
; ð49Þ

λ3 ¼ �ðδmþδhþδcÞ ð50Þ

one negative real eigenvalue and two pure imaginary eigenvalues.
The existence of two conjugate eigenvalues on the imaginary axis
means that the stability of the equilibrium cannot be directly
determined; this case is discussed in detail in Section 6.1.

Case III: ρðδm;δh; δcÞo0. Here one eigenvalue is real and
positive and two eigenvalues are complex conjugates with positive
real part. In this case the steady state is unstable, implying that
end product concentration would grow unboundedly. This case is
biologically infeasible and hence we ignore it for the remainder of
this paper.

6. Fixed point stability – variation of μc

The eigenvalues of Eq. (44) can move between each case under
the variation of system parameters. As an example we consider the
effect of varying μc on the system dynamics. This parameter may
be varied so that a pair of complex conjugate eigenvalues can
either move into the negative real half plane (a stable focus
equilibrium) or into the positive real half plane (an unstable focus
equilibrium). The point where the eigenvalues cross the imaginary
axis (Case II) occurs at a critical value of μc denoted by μn

c . At this
point a unique, closed periodic orbit may bifurcate locally from the
equilibrium as it changes stability. The isolated, closed trajectory is
known as a limit cycle and causes oscillatory behaviour. This
phenomenon is called a Hopf bifurcation (Guckenheimer and
Holmes, 1983) and its existence dictates that the concentrations
of m, h and c will oscillate.

6.1. Hopf bifurcation existence

According to the Hopf bifurcation theorem (Guckenheimer and
Holmes, 1983), a bifurcation occurs for a critical value μc ¼ μn

c , for
which the following two conditions are fulfilled, at the equilibrium
point ðmss;hss; cssÞ:

1. The matrix J has two complex eigenvalues

λ2;3 ¼ θðμcÞ7 iωðμcÞ;
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in some neighbourhood of μn
c and for μc ¼ μn

c these eigenvalues
are purely imaginary, that is,

θðμn

c Þ ¼ 0 and ωðμn

c Þa0:

This non-hyperbolicity condition is a necessary condition for
the Hopf bifurcation.

2. The relation described by

dθðμcÞ
dμc

����
μc ¼ μn

c

a0;

holds in some neighbourhood of μn
c . This is a sufficient condi-

tion for the Hopf bifurcation and is also known as the
transversality or Hopf crossing condition. It ensures that the
eigenvalues cross the imaginary axis with non-zero speed and
thus ensures that the crossing of the complex conjugate pair at
the imaginary axis is not tangent to the imaginary axis. If this is
not the case we may observe, for example, the occurrence in
which the eigenvalues move up to the imaginary axis and then
reverse direction without crossing.

We notice that the first condition has already been shown to
hold at the critical value μn

c , given by the solution of

μn

c ¼
ððδmþδhþδcÞðδmδhþδmδcþδhδcÞ�δmδhδcÞ

ψ
;

where ψ is given by Eq. (42), together with the equation determin-
ing the equilibrium value of css for μn

c :

ðcssÞyxþ1

ðκyc Þx
þx

ðcssÞyðx�1Þþ1

ðκyc Þx�1 þ⋯þx
ðcssÞyþ1

ðκyc Þ

þ 1
κxm

þ1
� �

css�
μm

κxmδmδhδc

� �
μn

c ¼ 0:

From the results of Case II we know that at this value of μn
c the

characteristic polynomial Eq. (44) has two purely imaginary roots
7 iωðμn

c Þ, given in Eqs. (49) and (50), where

ωðμn

c Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδmδhþδmδcþδhδcÞ

p
a0: ð51Þ

To show that the second condition holds we use the Implicit
Function Theorem. For each μcAR and the corresponding system,
Eqs. (30)–(32), define

kðμc; λÞ ¼ pðλÞ;

as a function of two variables μc and λ, where pðλÞ is the
characteristic polynomial of the system equations (30)–(32)
defined by Eq. (44).

Let the complex eigenvalues λðμcÞ ¼ θðμcÞ7 iωðμcÞ be the roots
of the characteristic polynomial. Hence, for these eigenvalues we
have

kðμc; λðμcÞÞ ¼ 0; ð52Þ

where this represents an implicit function of two variables μc and
λ. The Implicit Function Theorem tells us that we may define μc as
a function of λ near the point ðμn

c ; λðμn
c ÞÞ, and the derivative of this

function is given by

dλ
dμc

ðμn

c Þ
����
μc ¼ μn

c

¼ � ∂k
∂μc

� �
∂k
∂λ

� ��
j
μc ¼ μn

c

;

, 
ð53Þ

providing

∂k
∂λ

a0:

We begin by computing the derivative of the function
kðμc; λðμcÞÞ with respect to λ, and evaluating this at the critical

point μn
c . Thus we have,

∂k
∂λ

ðμc; λÞ
����
ðμc ;λÞ ¼ ðμn

c ;7 iωðμn
c ÞÞ
;

¼ 3λ2þ2ðδmþδhþδcÞλ
þðδmδhþδmδcþδhδcÞ

��
ðμc ;λÞ ¼ ðμn

c ;7 iωðμn
c ÞÞ;

¼ 3ð7 iωðμn

c ÞÞ2þ2ðδmþδhþδcÞð7 iωðμn

c ÞÞ
þðδmδhþδmδcþδhδcÞ:

Simplifying in conjunction with the fact that ω2ðμn
c Þ ¼ ðδmδhþ

δmδcþδhδcÞ from Eq. (51), we obtain

∂k
∂λ

¼ �2ω2ðμn

c Þ72iðδmþδhþδcÞωðμn

c Þa0: ð54Þ

Furthermore, from the characteristic polynomial Eq. (44), we
have

∂k
∂μc

ðμc; λÞ
����
ðμc ;λÞ ¼ ðμn

c ;7 iωðμn
c ÞÞ

¼ψ ; ð55Þ

where, we have previously noted that ψZ0. However, in the case
ψ¼0, the Jacobian matrix becomes

J¼
�δm 0 0
1 �δh 0
0 μc �δc

2
64

3
75;

which is lower triangular and hence has three negative real
eigenvalues given by the entries of the leading diagonal, specifi-
cally �δm; �δh and �δc . This violates the requirement of condi-
tion 1 that the matrix J has two complex eigenvalues. Therefore we
can conclude that in the case of a Hopf bifurcation, ψa0 and we
need only be concerned with the strict inequality ψ40.

Eqs. (54) and (55) together with Eq. (53) yield

dλ
dμ

ðμn

c Þ ¼
1

2ωðμn
c Þ

ψ
�ωðμn

c Þ7 ið1þδhþδcÞ

� �
:

Upon the rationalisation of the denominator of this complex
fraction we obtain

dλ
dμc

ðμn

c Þ ¼
1

2ωðμn
c Þ

�ωðμn
c Þψ

ω2ðμn
c ÞþðδmþδhþδcÞ2

 !

þ i
2ωðμn

c Þ
8ψ ðδmþδhþδcÞ

ω2ðμn
c ÞþðδmþδhþδcÞ2

 !
;

and since ψ40,

dθðμcÞ
dμc

����
μc ¼ μn

c

¼Re
dλ
dμc

ðμn

c Þ
� �

¼ 1
2

�ψ
ω2ðμn

c ÞþðδmþδhþδcÞ2

 !
o0;

and the second condition of the Hopf theorem is fulfilled. Thus we
have proved the existence of a Hopf bifurcation at the critical value
μc ¼ μn

c .

6.2. Hopf bifurcation stability

Just as the steady states of a system may be stable or unstable,
the limit cycle which branches from the fixed point in a Hopf
bifurcation may also be stable or unstable. A stable limit cycle
occurs if the Hopf bifurcation is supercritical whereas an unstable
limit cycle is the product of a subcritical bifurcation.

At a subcritical bifurcation a unique and unstable limit cycle,
which exists for μcoμ�

c , is absorbed by a stable spiral equilibrium.
The equilibrium becomes unstable for μc4μ�

c ; in this case diver-
ging oscillations and therefore unbounded growth in the evolution
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of variables is seen. In a supercritical bifurcation the equilibrium
point prior to the Hopf bifurcation is a stable spiral, and concen-
trations of mRNA, protein and cholesterol display oscillatory decay
before reaching a steady state value. At the bifurcation point
μc ¼ μ�

c , a limit cycle is born. At this point the equilibrium changes
stability and becomes unstable. For μc4μ�

c , this becomes a unique
and stable small amplitude limit cycle; here the concentrations of
mRNA, protein and cholesterol exhibit stable oscillations.

As the limit cycle is stable, any small perturbation from the
closed trajectory causes the system to return to the limit cycle
resulting in self sustained oscillations in concentrations of mRNA,
protein and cholesterol within the region of some equilibrium
value. Thus, as the occurrence of a supercritical Hopf bifurcation
will result in behaviour which is analogous to the physiological
process of homeostasis, it is necessary to determine the stability of
the Hopf bifurcation. This analysis was undertaken as follows.

Numerical solutions to Eqs. (30)–(32) were obtained using
MATLAB (MATLAB, 8.0.0.783, The MathWorks Inc., Natick, MA,
2012) and the characteristics of system bifurcations and limit
cycles were explored using the MATLAB numerical continuation
toolbox Matcont (Dhooge et al., 2003). The basic principle of this
toolbox is to consider a system of ODEs

dx
dt

¼ f ðx;μÞ xARn; μAR1; ð56Þ

with an equilibrium point at ðx0;μ0Þ. The principle of numerical
continuation requires finding a solution curve s of f ðx0;μ0Þ ¼ 0
with sð0Þ ¼ ðx0;μ0Þ which describes how the equilibrium point
varies. The curve s is traced by means of a predictor-corrector
algorithm and bifurcations along s are detected using a suitable
test function which changes sign at the bifurcation point.

Once the Hopf bifurcation has been detected, Matcont calcu-
lates the stability of the subsequent limit cycle by calculating the
first Lyapunov coefficient or Lyapunov characteristic exponent,
l1ð0Þ, of the dynamical system near the bifurcation point. This
coefficient describes the average rate at which neighbouring
trajectories in the phase space converge or diverge. Specifically,

� l1ð0Þo0 implies that the system is attracted to a stable periodic
orbit and

� l1ð0Þ40 implies that the system is attracted to an unstable
periodic orbit.

In the case of Eqs. (30)–(32) with μc as the bifurcation parameter,
we find that a Hopf bifurcation is predicted to occur at the point
(μ�

c , cn)¼(1.809, 0.011), whose values are the solution of the
simultaneous equations (40) and (48). This bifurcation has a
negative first Lyapunov coefficient which indicates that a stable
limit cycle is produced and the bifurcation is supercritical.

The results of the Hopf bifurication existence and stability
analysis of the governing system of Eqs. (30)–(32) can now be
discussed in the context of cellular cholesterol homeostasis.
Homeostasis is the tendency of a system to regulate its internal
environment by maintaining a stable condition. All homeostatic
mechanisms use feedback inhibition to facilitate a constant level.
Essentially this involves controlling the concentration of a parti-
cular variable within a narrow range in the region of an optimal
value. If this concentration alters, the feedback inhibition pathway
automatically initiates a corrective mechanism which reverses this
change and brings it back towards an equilibrium. In a system
controlled by feedback inhibition, the equilibrium is never per-
fectly maintained, but constantly oscillates about an optimal level.
Thus the existence of the Hopf bifurcation and the consequent
appearance of small amplitude oscillations in the concentrations

of mRNA, protein and cholesterol, are significant in its similarity to
the behaviour of a homeostatic system.

6.3. Illustration of system behaviour

In this section we present numerical solutions to Eqs. (30)–(32)
using the MATLAB stiff differential equation solver ODE15s
(MATLAB, 8.0.0.783, The MathWorks Inc., Natick, MA, 2012) for
various values of μc to illustrate the system behaviour elucidated
in the previous sections. All remaining parameters were held
constant as detailed in Table 1. The parameter μc was varied
between 1.53�10�2 s�1 and 6.46�10�2 s�1 (physiologically
valid limits) to demonstrate the variation of system behaviour
through Cases I to II.

Simulation of Eqs. (30)–(32) starting with the initial value of
1.53�10�2 s�1 shows monotonic non-oscillatory convergence to
a steady state, equivalent to Case Ia as illustrated in Fig. 3.
Continually increasing μc shows the system shifting to Case Ib.
Thus we see oscillatory convergence to a steady-state as shown in
Fig. 4. Still further increases in μc see the system reaching Case II,
where we have pure oscillations in mRNA, HMGCR and choles-
terol; this is illustrated in Fig. 5. The Hopf bifurcation occurs at the
transition from Case Ib to Case II.

Fig. 3. Stable node equilibrium (corresponding to Case Ia) where there are three
negative real eigenvalues; variable concentrations exhibit monotonic convergence
towards a steady state value. All parameters are as in Table 2 except nondimen-
sional μc¼0.462. Nondimensional initial conditions: m(0)¼3.65�10�8, h(0)¼
1.10�10�5 and c(0)¼2.30�10�2. Note that the evolution of HMGCR has been
rescaled to allow for easier comparison.

Fig. 4. Stable spiral equilibrium (corresponding to Case Ib) where there is one
negative real eigenvalue and a pair of complex conjugate eigenvalues with negative
real part; variable concentrations exhibit oscillatory convergence towards a steady
state value. Initial conditions are as in Fig. 3. All parameters are as in Table 2 except
for μc which has been increased 2 fold to μc¼0.923.
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Following the bifurcation, the evolution of the concentrations
of mRNA, HMGCR and cholesterol are purely periodic, with small
amplitude stable oscillations. The period of the oscillations in
Fig. 5 is approximately 16.9 h; further numerical investigations
have revealed that on manipulation of system parameters, the
oscillatory period can vary between approximately 12 and 24 h.

We also find that after μc has passed through its critical Hopf
bifurcation value, no further changes in dynamical behaviour
occur. That is, once the system becomes oscillatory, it remains in
this manner for all μc4μ�

c .

7. Remaining parameter analysis and system behaviour

Further numerical investigation of the governing system of
equations has shown that each of the system parameters, if varied
whilst all other parameters are kept constant, are capable of
inducing a Hopf bifurcation. In the case of synthesis rates, μm

and μc, only one Hopf bifurcation occurs and is supercritical. Any
oscillatory behaviour the system demonstrates is always stable
and these oscillations persist for any parameter value greater than
its critical bifurcation value.

We note, however, that if either the degradation rates,
ðδm; δh; δcÞ, or binding affinities ðκm; κcÞ, are taken to be bifurcation
parameters, qualitatively different behaviour from the case dis-
cussed above is seen. Calculation of the critical values for these
parameters indicates that there are two physiologically valid
points where a Hopf bifurcation may occur.

Examining the case of δc we see that the critical value δn

c for
which a Hopf bifurcation may occur is given by the solution of the
equation

ðδmþδhÞðδn

c Þ2þðδmþδhÞ2δn

c

þðδ2mδhþδmδ
2
h�μcψ Þ ¼ 0; ð57Þ

which is quadratic in δn

c and hence, for the case of two positive real
roots, gives rise to the possibility that there are two Hopf
bifurcation points associated with this parameter. This result in
turn affects the steady-states of css which are determined from

δn

c
ðcssÞyxþ1

ðκyc Þx
þxδn

c
ðcssÞyðx�1Þþ1

ðκyc Þx�1 þ⋯þxδn

c
ðcssÞyþ1

ðκyc Þ

þ δn

c

κxm
þδn

c

 !
css�

μmμc

κxmδmδh

� �
μn

c ¼ 0:

The eigenvalues at this critical point are given by

λ1;2 ¼ 7 i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδhþδcþδhδ

n

c Þ
q

; ð58Þ

λ3 ¼ �ð1þδhþδn

c Þ; ð59Þ
and so the first Hopf bifurcation condition holds. Proceeding in the
manner of the calculation for μn

c , we find

dθðδcÞ
dδc

����
δc ¼ δn

c

¼Re
dλ
dδc

ðδn

c Þ

¼ω2ðδn

c Þþð1þδhÞð1þδhþδn

c Þ�δh
2ðω2ðδn

c Þþð1þδhþδn

c Þ2Þ
40; ð60Þ

and therefore the second condition of the Hopf theorem
also holds.

Here, the unique equilibrium value undergoes two Hopf bifur-
cation points. Before the first of these points, the equilibrium is a
stable spiral. At the first bifurcation point a supercritical Hopf
bifurcation leads to the appearance of a stable periodic orbit (as
the eigenvalues of the system cross the imaginary axis from left to
right). The amplitude of this limit cycle increases initially as δc
increases whilst later decreasing until the second bifurcation point
where the limit cycle disappears (as the eigenvalues of the system
cross the imaginary axis from right to left) and the equilibrium
point becomes stable again. Numerical analysis demonstrates a
negative first Lyapunov coefficient for Hopf bifurcations confirm-
ing their supercriticality. For any value of δc falling between the
two bifurcation values purely oscillatory behaviour is generated,
whilst outside this region only stable non-oscillatory solutions
exist as illustrated in Fig. 6.

8. Discussion

We have formulated and solved a deterministic ODE model of
cholesterol biosynthetic regulation by SREBP-2 in a hepatocyte.
The model predicts the existence of oscillatory behaviour within
the system which we believe is important in understanding
cholesterol homeostasis. In the HMGCR system, such a mechanism
means that perturbations may be made to certain system variables
without losing the required concentration within which choles-
terol is allowed to vary to guard against cytotoxicity. Other
advantages to this dynamic mechanism include limiting the time
during which cholesterol concentration is necessarily elevated

Fig. 6. The response of mRNA concentration to variation of δc. A clearly demarcated
region of purely stable oscillatory behaviour is visible between stable steady state
solutions. All parameters are as in Table 2 except for δc which is successively varied
with nondimensional values as indicated. Initial conditions are as in Fig. 3.

Fig. 5. Following the occurrence of a Hopf bifurcation the (now unstable)
equilibrium is attracted to a stable limit cycle. Variable concentrations exhibit
purely oscillatory behaviour; the oscillations are stable. Initial conditions are as in
Fig. 3. All parameters are as in Table 2 except for μc which has been increased
approximately 4 fold to μc¼1.946.
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within the cell in response to increased demand. Furthermore,
controlling cellular cholesterol levels in this manner may incur less
demand on cellular energy supplies than sustained elevation.
Dynamic oscillatory steady-state behaviour allows the system to
vary between upper and lower bounds consistent with an oscilla-
tory homeostatic mechanism (Ghosh and Chance, 1964; Waxman
et al., 1966).

Following the work of Goodwin (1965) and Griffith (1968)
negative feedback regulation of mRNA levels, which are modu-
lated by end product concentration, are often modelled using a
Hill type function such that the

dm
dt

¼ μ
Knþbn

�αm;

where m¼mðtÞ is the mRNA concentration, b¼ bðtÞ is the con-
centration of the end product, μ is the rate of mRNA transcription,
K is the Hill constant, n is the Hill coefficient and α is the rate of
mRNA degradation. Goodwin (1965) and Griffith (1968) showed
that such a system will exhibit oscillations should nZ8. Values of
n greater than approximately 4 are, however, deemed biologically
implausible. In comparison, our mathematical model formulation
has explicitly accounted for the interaction between not only the
transcriber (in this case SREBP-2), but the negative regulation of
the transcriber by the end product (cholesterol). The form of Eq.
(24) accurately accounts for these interactions and allows biologi-
cally realistic values for them to be included in the model
formulation whilst accurately accounting for the system dynamics.

Whilst our mathematical model has been formulated in the
context of cholesterol biosynthesis this specific process of tran-
scription factor regulated gene expression could be applicable to
other pathways regulated by SREBP-2, in addition to the modula-
tion of other lipid regulating proteins by the SREBP-1a and SREBP-
1c isoforms. Further experimental research is necessary to evalu-
ate these mathematical results and to clarify the system behaviour.
However, this model and its analysis may serve as a basis for the
investigation of transcription factor mediated gene expression
dynamics, and furthermore constitute an important component
of the synthetic engineering of biological circuits (Zhang and Jiang,
2010).
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Appendix A. Parameter derivation and estimation

A.1. Determination of synthesis parameters

Information on the rates of transcription and translation are
rarely quantified in terms of mass per unit time, instead these
rates are often measured relative to a control process. Therefore in
order to estimate practical values for these parameters, we
consider the relevant biological mechanisms.

A.1.1. Rate of HMGCR mRNA transcription – μm
In order to produce an estimate for the transcription rate the

assumption that any time delays involved in the initiation of
transcription and promoter clearance are negligible, is made. It is
also assumed that no abortive transcripts are produced. Liver cells
are somatic and therefore the majority are diploid, meaning they

contain two chromosomes and thus normal amounts of DNA.
Ignoring the existence of both tetraploidy and double nuclei that
can be present within some liver cells, we assume all liver cells to
be diploid.

We estimate the rate of transcription in terms of nucleotides
per unit time in a typical mammalian gene. It is possible for a cell
to transcribe 14,000 base pairs in 20 min giving a rate of 12 bases
per second (Darzacq et al., 2007). This value is used to provide a
rough estimate of the rate of transcription, equivalent to the
number of mRNA molecules produced per cell per unit time.

The human HMG-CoA reductase gene is 24,826 bases long
(Goldstein and Brown, 1984). To transcribe one molecule of
primary HMG-CoA reductase mRNA, from one gene, assuming a
rate of 12 bases per second, takes 2068.83 s. We then take into
account that the post transcriptional processing steps of mRNA
cleavage, 50 capping and polyadenylation are rate limiting. A delay
of approximately 30 min has been added to account for this.
Therefore an approximation of the time it takes to transcribe
one molecule of primary HMG-CoA reductase mRNA from one
gene is 3868.83 s. Per gene, this equates to

2:59� 10�4 molecules HMGCR mRNA s�1: ðA:1Þ
Therefore one gene can synthesise 2.59�10�4 molecules of HMG-
CoA reductase mRNA per second. Taking diploidy into account
there are 5.17�10�4 molecules HMG-CoA reductase mRNA being
synthesised per cell per second.

Given an average cell volume of 1pl (1�10�12 l¼1�10�9 ml),
the required approximate rate of HMGCR transcription is given by

μm ¼ 5:17� 10�4 molecules s�1

1� 10�9 ml

¼ 5:17� 105 molecules ml�1 s�1: ðA:2Þ

A.1.2. Rate of HMGCR protein translation – μh
To calculate an estimate of the rate of translation the following

assumptions are made. Firstly, any effects caused by the transport
of mRNA from the nucleus to its localisation in the cytoplasm are
ignored. Also ignored are the effects of protein folding on tran-
scriptional regulation as well as biochemical interactions amongst
proteins. Finally any time delays in the elongation phase of protein
synthesis are considered to be negligible.

The in vivo estimate from Slobin (1991) suggests that the
translation rate for eukaryotic cells is 6 amino acids per second,
where one amino acid is encoded by 3 nucleotides or bases. Many
ribosomes can translate the same mRNA molecule simultaneously
(Granner and Weil, 2006). Because of their large size, ribosomes
cannot attach to mRNA any closer than 35 nucleotides apart. This
detail allows estimation of the rate of transcription, equivalent to
proteins synthesised per unit time from mRNA.

A human HMG-CoA reductase mRNA transcript contains 4475
bases (Goldstein and Brown, 1984). For one ribosome to transcribe
one molecule of HMG-CoA reductase protein, from one HMG-CoA
reductase mRNA, assuming a translation rate of 6 amino acids
per second, where three bases code for one amino acid, takes

4475 amino acids
18 amino acids=s

¼ 248:61 s: ðA:3Þ

Taking into account that the rate limiting step in translation is the
initiation of the process itself, a delay of approximately 60 min is
added. This gives the approximation that each ribosome takes
3848.61 s to translate one molecule of HMG-CoA reductase from
HMG-CoA reductase mRNA. Then per ribosome, this equates to

1 molecule
3848:61 s

¼ 2:598� 10�4 molecules s�1: ðA:4Þ
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Thus, 2.598�10�4 molecules of HMG-CoA reductase protein may
be synthesised per second per ribosome.

Given that the coding region of the HMG-CoA reductase mRNA
is 4475 nucleotides long and a ribosome can attach every 35
nucleotides, 127.85 ribosomes can attach per mRNA molecule.
Therefore, per HMG-CoA reductase mRNA molecule,

2:598� 10�4 molecules s�1 ribosome�1

� 127:85 ribosomes

¼ 3:32� 10�2 molecules s�1; ðA:5Þ
that is, there are 3.32�10�2 molecules of HMG-CoA reductase
protein being synthesised per second. We thus take

μh ¼ 3:32� 10�2 s�1

as an approximation of the rate of HMGR translation.

A.1.3. HMGCR activity – μc
The value of 52 pmol mevalonate formed per minute per mg

protein for HMGCR activity in human liver microsomes is taken
directly from Tanaka et al. (1982). This must now be converted into
a turnover number for HMGCR which is the maximum number of
substrate molecules that an enzyme can convert to product per
mole of catalytic site of the enzyme per unit time. The activity of
an enzyme is the moles of substrate converted per unit time and is
a measure of the quantity of active enzyme present. The specific
activity is the activity of an enzyme per mg of total protein, i.e. a
measure of enzyme efficiency.

HMG-CoA reductase is a tetrameric protein, composed of
monomers arranged in two dimers. Each dimer has two active
sites (Istvan et al., 2000) and has a molecular mass¼99,906 Da.
(The Dalton, (Da), (alternatively atomic mass unit) is a unit of mass
used to express atomic and molecular masses. It is defined so that
one mole of a substance with atomic or molecular mass 1 Da will
have a mass of precisely 1 g.)

Therefore the full HMG-CoA reductase molecule is an enzyme
containing 4 active sites with a molecular mass Mr¼2�99,906¼
199,812 Da, i.e. 1 mole HMG-CoA reductase has a mass of 199,812 g.
The reaction catalysed by HMG-CoA reductase is given by

HMG� CoAþ2NADPHþ2Hþ

⟶mevalonateþ2NADPþ þCoASH; ðA:6Þ
which indicates a stoichiometry of one mole mevalonate being
produced from one mole HMG-CoA. (Note all other substrates of this
reaction are assumed to be present in excess).

Segel (1993) suggests that there are approximately 1000
different enzymes in a cell. Thus the moles of enzyme in 1 mg of
protein are equivalent to

1� 10�3g

199;812 g mol�1 � 1000

 !
¼ 5:00� 10�12 mol; ðA:7Þ

and given 4 active sites per HMG-CoA reductase enzyme, there are
2.00�10�11 moles of enzyme active sites in 1 mg of protein. Given
the specific activity of an enzyme, 52�10�12 mol min�1 mg�1,
we have

52� 10�12 mol min�1 mg�1

2:00� 10�11 mol mg�1 ¼ 2:60 min�1: ðA:8Þ

And so, an approximation to the turnover number for HMG-
CoA reductase is given by

μc ¼ 4:33� 10�2 s�1: ðA:9Þ

A.2. Determination of degradation rates – δm, δh and δc

The parameters δm and δh determine the degradation rate of
the HMGCR mRNA, and HMGCR enzyme molecule respectively.
The calculation of these values is based on the half-lives, t1=2, of
the molecules as derived from an exponential decay model. For a
decay constant δ, the rate of degradation of the variable is given by

δ¼ ln 2
t1=2

: ðA:10Þ

Data from Wilson and Deeley (1995) give a half-life of t1=2 ¼ 4:3 h
for HMG-CoA reductase mRNA, measured in Hep G2 cells and so

δm ¼ ln 2
15;480 s

¼ 4:48� 10�5 s�1: ðA:11Þ

Data from Brown et al. (1974) give a half-life of t1=2 ¼ 3 h for the
HMG-CoA reductase protein, measured in human fibroblast cells
and so

δh ¼
ln 2

10;800 s
¼ 6:42� 10�5 s�1: ðA:12Þ

The parameter δc determines the effective loss of cholesterol
from the system as cholesterol does not degrade in a similar
manner to the other species in the system. The value of this
parameter may exhibit significant variation dependent on cellular
conditions. For an initial value to be used in simulation, this
parameter is assumed to be slightly faster than the degradation
rates of protein and mRNA and δc ¼ 1:20� 10�4 s�1 is used.

A.3. Determination of binding affinity parameters – κm and κ c

The parameter defining the binding reaction between SREBP
and the HMGCR gene is κm. As no specific experimental data is
available for the binding affinity between SREBP and the SRE of the
HMGCR gene, we use the results of Yang and Swartz (2011) who
quantify the DNA binding affinity for other regulatory transcrip-
tion factors. Their results provide an estimate of DNA transcription
factor binding affinity in the region of 54.2 nmol; these estimates
are in keeping with the hypothesis that the interaction between
SREBPs and SREs is characterised by relatively high affinity and
low saturation kinetics (Amemiya-Kudo et al., 2002). To convert
these affinities into units of molecules per ml the following
calculation is used.

A binding affinity of 54.2 nmol is equivalent to

54:2� 10�9

1000
moles=ml� NA ðA:13Þ

¼ 3:26� 1013 molecules=ml; ðA:14Þ

and so κm is taken to be Oð1013Þ.
The parameter which describes the binding of cholesterol to

SREBP is κc. Experimental investigations with cholesterol on the
SSD contained in SCAP have revealed difficulty in calculating
kinetic constants for this interaction owing to the insolubility of
both cholesterol and SCAP, and the necessity of performing kinetic
experiments in micelles (Radhakrishnan et al., 2004). Data from
Radhakrishnan et al. (2004) indicates that the binding reaction
between cholesterol and SCAP is saturable and half-maximal
binding occurs at approximately 100 nmol. This value is converted
into units of molecules per ml using the following calculation.
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100 nmol is equivalent to

100� 10�9

1000
moles=ml� NA ðA:15Þ

¼ 6:02� 1013 molecules=ml: ðA:16Þ
and so κc is taken to be Oð1014Þ.

A.4. Binding coefficients – x and y

The work of Vallett et al. (1996) suggests that three binding
locations on the HMGCR gene are available to SREBP and hence
x¼3. Experimental investigations on the SSD contained in SCAP
have revealed its tetrameric nature (Radhakrishnan et al., 2004,
2008). That is, four molecules of cholesterol may bind to a SCAP–
SREBP complex in order to promote inactivation and y¼4.

A.5. Concentration of total transcription factor – s0

In general, transcription factors have low gene expression, and
are therefore present in relatively low concentrations within the
cell (Sanguinetti et al., 2006). Since the SREBP signalling pathway
has been simplified it is necessary to make some assumptions to
obtain an estimate for this value. The majority of cellular choles-
terol is located within the plasma membrane of the cell. Its
concentration is governed by multiple regulatory proteins regu-
lated in the ER which are themselves under the control of a small
regulatory pool of ER cholesterol (Lange et al., 1999). The concen-
tration of transcription factor, s0, is assumed to be of the order of
this concentration, which allows small changes in the cellular
cholesterol pool to be magnified in the transcription factor path-
way. Lange et al. (1999) give an average of 0.45 nmol ER choles-
terol per mg cell protein.

Avogadro0s number ðNA ¼ 6:022� 1023Þ and the assumption
that one cell has approximately 300 pg of cell protein and a
volume of 1 pl (1 mg of cell protein is thus equivalent to
3.3�10�3 ml) produces

s0 ¼
0:45� 10�9 mol� 6:022� 1023 molecules mol�1

3:3� 10�3 ml
;

¼ 8:21� 1016 molecules ml�1: ðA:17Þ
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