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We present five new cloud detection algorithms over land based on dynamic threshold
or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer
(AATSR) instrument and compare these with the standard threshold based SADIST
cloud detection scheme. We use a manually classified dataset as a reference to assess
algorithm performance and quantify the impact of each cloud detection scheme on land
surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection
methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score
of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect
cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST
imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the
observations falling within this tolerance when using Bayesian methods (maximum
of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic
thresholds in the tests employed by SADIST can significantly improve performance,
applicable to cloud-test data to be provided by the Sea and Land Surface Temperature
Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014).

Keywords: Cloud Detection; Land Surface Temperature, Satellite Retrieval

1. Introduction

There is increasing interest in exploiting LST for numerical weather prediction and
climate modelling. LST data are also used to understand regional surface energy
balance and impacts on agriculture and floods. Satellite sensors provide LST data
globally at higher spatial and temporal resolution than the sparse in-situ network of
near surface air temperature measurements so are better suited for modelling and
weather prediction purposes. Accurately discriminating cloud features is funda-
mental in LST retrievals as cloud-contaminated brightness temperatures can lead
to large LST uncertainties (Jin and Dickinson, 2002; Simpson and Gobat, 1996).
Undetected cloud can produce LST values as low as 230 K in the absence of snow
or ice conditions (Wan et al, 2004). In other cases, undetected clouds can produce
significantly small LST discrepancies that the cloud top temperature is classified
as a valid LST (Neteler, 2010).

Cloud detection over land is challenging due to small-scale spatial structure and
temporal variations in surface reflectance and emissivity as a function of largely
dynamic vegetation and land cover change (Simpson and Gobat, 1996). Direct

∗Corresponding author. Email: cbulgin@staffmail.ed.ac.uk

1



March 13, 2014 International Journal of Remote Sensing paper˙submission

aerosol effects need to be accounted for which will modify observed brightness
temperatures and top of atmosphere reflectance (Ramanathan et al, 2001; Kauf-
man, Tanre and Boucher, 2002). Traditionally, threshold based methods have been
used to detect cloud over land (Zavody and Mutlow, 1995; Birks, 2007; Frey et
al, 2008; Kriebel et al, 2010; Derrien and Le Gléau, 2011) but these are lim-
ited by the subset of the data on which they are trained and often performance is
compromised under extreme atmospheric conditions or over particular land surface
types (for example snow and desert surfaces). Offline diagnostic tests and previous
studies eg. (Plummer, 2008) have indicated that the limitations in the standard
cloud detection (SADIST) for Along Track Scanning Radiometer (ATSR) instru-
ments are significant false flagging of surface features by the normalised difference
vegetation index and missed cloud if only the gross cloud and thin cloud tests are
applied.

In this paper we examine the performance of the SADIST cloud mask for the
Advanced Along Track Scanning Radiometer (AATSR) instrument in comparison
with newly developed cloud detection techniques. AATSR is a dual view, polar or-
biting instrument with a local equator overpass time of 10.30. It made observations
between 2002-2012 in seven channels centred at 0.55, 0.66, 0.87, 1.6, 3.7, 10.8 and
12 µm spanning the visible and infrared spectrum (ESA, 2007). The first algo-
rithm compared against the SADIST cloud mask is based on the same tests, using
modified thresholds to optimise performance. The second is a restricted Bayesian
approach comparing observed brightness temperatures with probability distribu-
tions derived from radiative transfer model simulations and a local climatology.
The third is a full Bayesian classification scheme previously implemented for cloud
detection over ocean (Merchant et al, 2005; Embury and Merchant, 2012), and
modified for application over land. Our performance assessment is limited to day-
time imagery for which we have a manually classified dataset to use as reference
(Gomez-Chova et al, 2007).

We describe the formulation of each algorithm in detail in Section 2. In Section 3
we use performance metrics to define classification skill with reference to a manu-
ally classified dataset of land-based daytime satellite imagery (Gomez-Chova et al,
2007). We also assess the impact of the cloud detection skill on the retrieved LST
and consider performance as a function of surface biome. We conclude the paper
in Section 4 with a discussion on the confounding factors in cloud detection over
land including land surface type, diurnal variability in surface temperatures and
the presence of aerosol.

2. Cloud Detection Algorithms and Test Data

In this section we discuss the six cloud detection algorithms evaluated in this paper.
The first is the standard method (Birks, 2007) referred to as SADIST, and the
second an adaptation of this using modified threshold tests (UOL CLOUD 2). The
third approach (UOL CLOUD 3) is a restricted Bayesian method using radiative
transfer simulations in the thermal channels. From here on in they will be referred
to as UOL 2 and UOL 3. The final three algorithms are full Bayesian classification
schemes producing a probability of clear sky which can be thresholded to provide
a mask tailored to user requirements. These have been developed independently
to the UOL 2 and UOL 3 algorithms. We consider the Bayesian calculation using
infrared and visible channels individually and then combining the information from
both. From this point onwards these algorithms are referred to as ‘Bayes Thermal’,
‘Bayes Vis’ and ‘Bayes Joint’. Finally we describe the manually classified imagery
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used to assess cloud detection performance.

2.1 Standard ATSR Cloud Detection (SADIST)

The SADIST cloud detection over land is an updated version of the scheme used
over the ocean (Birks, 2007; Zavody and Mutlow, 1995), based on the heritage
of the AVHRR Processing Over Land cLoud and Ocean (APOLLO) cloud mask
(Saunders, 1986). Three tests are applied over land to daytime satellite imagery;
the gross cloud test, the thin cloud test and the visible cloud test.

For the gross cloud test (GCT) a land pixel is flagged as cloud contaminated
if the observed 12 µm brightness temperature is less than a reference value. The
physical basis for this test is that for thick clouds, optical depth at this wavelength
is sufficient to give a cold thermal signature with reference to a clear-sky brightness
temperature. The thresholds for this test are provided in a look-up table (LUT)
of climatological mean surface temperature as a function of latitude and month
(Birks, 2007). These LUTs were constructed from ground station measurements
made between 1961-1990 interpolated onto one degree latitude bands (New et al,
2002).

For the thin cloud test (TCT) the difference between the 11 and 12 µm bright-
ness temperatures are compared to a threshold value as a function of the 11 µm
brightness temperature; if the difference exceeds this threshold the pixel is clas-
sified as cloud. Ice particle absorption and emission are at a maximum at these
wavelengths creating large brightness temperature differences in comparison with
clear-sky conditions (Saunders and Kriebel, 1989). The detection thresholds were
generated by Zavody and Mutlow, (1995) using radiative transfer modelling and
radiosonde data.

The visible channel cloud test applies two normalised visible channel indices
to each pixel within a 2D classification scheme (Birks, 2007). The normalised
difference vegetation index (NDVI) and the normalised difference index (NDI) are
calculated using AATSR reflectance:

NDV I =
REF0.87 − REF0.67

REF0.87 + REF0.67
(1)

NDI =
REF0.87 − REF0.55

REF0.87 + REF0.55
(2)

where REFx denotes reflectance in the 0.55, 0.67 and 0.87 µm channels. The
classification scheme uses the NDVI to NDI ratio to define twelve zones representing
different surface types including clear and cloud-covered vegetation, desert and ice
surfaces. A pixel is flagged as cloud if its locus falls within any cloudy zone. The
ATSR standard cloud mask is calculated by collating the results of each cloud flag.
If any one of the flags detects cloud, the pixel is masked. Plummer, (2008) gives an
example of the SADIST cloud mask performance, demonstrating its tendency to
falsely flag clear-sky pixels as cloud and the need to further develop cloud detection
methods for ATSR over land.
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2.2 UOL 2 Threshold Based Cloud Detection

The baseline for this scheme is the SADIST thermal cloud flags and a modified
NDVI mask. The principle difference to SADIST is that UOL 2 exploits infor-
mation extracted from radiative transfer simulations of clear sky radiances in
the AATSR thermal channels to determine enhanced detection thresholds. These
thresholds help to address inadequacies within the existing SADIST cloud screen-
ing whilst allowing consistency with the expected cloud flags to be processed for
the Sea and Land Surface Temperature Radiometer (SLSTR) - the successor to
AATSR (Birks and Cox, 2011).

For the calculation of enhanced thresholds, clear sky radiances are calculated for
the AATSR thermal channels using the fast radiative transfer model RTTOV 10.2
(Hocking et al, 2011) using temperature and water vapour profiles from the Euro-
pean Centre for Medium Wave Forecasting (ECMWF) ERA-Interim analyses (Dee
et al, 2011) as input. Surface emissivity is extracted from the global Co-operative
Institute for Meteorological Satellite Studies (CIMSS) dataset at a spatial resolu-
tion of 0.05◦ (Seeman et al, 2008). These are derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) emissivity product (MOD11) incorporating
wavelengths between 3.6 and 14.3 µm using a baseline fit method to infill spec-
tral gaps between emissivity bands available in MOD11. Here, emissivities for the
AATSR channels are extracted from the dataset and re-gridded onto the ECMWF
grid in the radiative transfer simulation.

To obtain enhanced detection thresholds a uniform random distribution of simu-
lated clear-sky brightness temperatures in the 3.7, 11 and 12 µm channels covering
the entire AATSR mission were averaged onto a global 1◦ latitude-longitude grid
allowing the mean and standard deviation to be calculated. Clear-sky pixels were
identified using the SADIST cloud mask. Similarly, the mean and standard devi-
ation of the brightness temperature differences (11-12 µm, 11-3.7 µm and 3.7-12
µm) were averaged into 1 K bins as a function of brightness temperature from 200
- 310 K. These collectively formed the basis for new cloud detection thresholds for
each of the thermal flags used in the SADIST mask. A description of the UOL 2
flags is given below.

The UOL 2 gross cloud test thresholds were calculated from look-up tables
(LUTs) based on the gridded 12 µm mean brightness temperature (B̄T 12) and
standard deviation (σBT12) in place of the 1◦ latitude means used in the SADIST
algorithm. Using the updated LUT, the detection threshold is calculated as:

Thresh12 = (BT 12(lat,lon) + 3σBT12(lat,lon)) + 2.0 (3)

If the 12 µm brightness temperature is less than this threshold the pixel is flagged
as cloud. The threshold (Thresh12) considers the empirical rule and assumes that
any clear sky pixel should be within 3σ of the mean (expected) clear sky brightness
temperature. Furthermore, a contingency brightness temperature shift of 2 K is
added to maximise detection of the cloud feature (similar to the 2 K limit used in
Plummer, (2008)).

The UOL 2 thin cloud test LUTs were generated using the mean and standard
deviation of the 12 minus 11 µm brightness temperature differences, calculated as
a function of the 11 µm brightness temperature between 200 and 310 K. A pixel
is flagged as cloud if the threshold (Thresh11−12) is exceeded.
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Thresh11−12 = (BT11 − BT12 + (3σBT11−BT12)) (4)

The UOL 2 NDVI cloud flag remains identical to SADIST but incorporates a
clear-sky restoral to minimise false flagging of surface features. The mean clear-sky
11 µm brightness temperature which shows a strong contrast between clouds, land,
coastlines, rivers and lakes is used to re-evaluate any pixel flagged as ‘cloud’ by the
NDVI. If the brightness temperature exceeds the 11 µm threshold (Thresh11) the
pixel is restored to clear-sky.

Thresh11 = BT11 + 2.0K (5)

2.3 UOL 3 Restricted Bayesian Infrared Cloud Detection

The UOL 3 algorithm derives the pixel-level cloud mask using a combination of
simulated brightness temperatures and observational climatology. The approach is
equally valid for both day and night-time retrievals as the cloud masking is inde-
pendent of visible wavelength information. The L1b AATSR data have geolocation
information stored at tie-points every 25 km across-track and 32 km along-track;
these tie-points form the vertices of so-called granules. Expected brightness temper-
atures are simulated from coincident clear-sky profile information for each granule.
As with UOL 2, simulations are performed using RTTOV-10.2. In this context,
coincident clear-sky brightness temperatures in each granule are derived by bilin-
ear interpolation between surrounding ECMWF profile locations and a temporal
interpolation between the 6-hourly analysis fields. The observational climatology
is acquired for each 5x5◦ grid cell for each of the 27 biomes and diurnal conditions
(day/night) required by an offline enhanced LST retrieval algorithm for AATSR
(Ghent, 2012). Inaccuracies in the auxiliary data create large biases and absent
values in the retrieved LST data. As such, the existing auxiliary land cover dataset
has been superseded by a near 1 km variant of the GlobCover classification (Arino
et al, 2007) with a better representation of bare soil classes. The mean and stan-
dard deviations for clear-sky conditions are stored in a LUT (fully described in the
UOL 2 section).

To calculate the clear-sky probability at the pixel location a probability density
function (PDF) assuming a normal distribution is constructed from the simulated
mean brightness temperature for the corresponding granule and the standard de-
viation of the brightness temperature from the observational climatology from the
corresponding 5x5 ◦ grid cell for the given month, biome and diurnal state as shown
in Figure 1. Pixels are identified as cloud if the observed brightness temperatures
are outside the 95% lower confidence limit on any test. For daytime observations,
the cloud flag is set if either the observed 12 µm brightness temperature or 11
minus 12 µm temperature difference fall outside of the 95% confidence levels of the
corresponding simulated PDFs. For night-time observations, the 12 µm brightness
temperature and the 11 minus 3.7 µm differences are used.

For granules where insufficient profile data are available to simulate the expected
brightness temperatures, or where incompatibilities between the atmospheric and
surface states result in an RTTOV error (this only occurs in less than 10−4 of
granules) then the individual pixel cloud flags are instead derived from the UOL 2
cloud masking routines for daytime and from the SADIST cloud masking routines
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for night-time.

2.4 Bayesian Thermal Channel Cloud Detection

The infrared only Bayesian cloud detection is an extension of the methodology
successfully employed in cloud detection over the ocean for the ATSR instruments
(Merchant et al, 2005; Embury and Merchant, 2012). The derivation of the
Bayesian cloud classification scheme is described more fully in Merchant et al,
(2005) and here we describe the algorithm only briefly, focusing on the modifica-
tions made to apply the algorithm over land surfaces.

The Bayesian calculation gives a probability of clear sky P (c|yo, xb), given the
observation vector (yo) and prior knowledge of the background state (xb).

P (c|yo, xb) = [1 +
P (c̄)P (yo|xb, c̄)

P (c)P (yo|xb, c)
]−1 (6)

where c and c̄ denote clear and cloud conditions respectively. P (c) and P (c̄) are
the prior probabilities of clear and cloudy conditions which are set to fixed values
of 0.1 and 0.9. We use nadir view observations and the 11 and 12 µm channels only
as these can be used for both day and night-time cloud detection.

P (yo|xb) is the probability of the observations given the background state. For
clear conditions, the probability density function (PDF) is assumed to be Gaussian
and we use the fast forward model RTTOV 11 beta version (Hocking et al, 2013)
to simulate clear sky brightness temperatures. For this study we have updated
the RTM to version 11 as this edition now includes the ability to simulate visible
channel radiances (discussed further in Section 2.5). Brightness temperature sim-
ulations between RTTOV 10.2 and RTTOV 11 are found to be consistent. The
clear-sky probability P (yo|xb, c) is defined as:

P (yo|xb, c) =
e(−1

2∆yT (HT BH + R)−1∆y

2π|HT BH + R|0.5
(7)

where HT BH is the error covariance in the background state and the R matrix
contains the observation noise and forward modelling uncertainties.

The radiative transfer model (RTM) uses numerical weather prediction (NWP)
data from the ECMWF ERA-Interim Reanalysis dataset as input, defining both
surface properties and the atmospheric profile. The model is run at a spatial reso-
lution of 20 km latitude by 25 km longitude and the brightness temperatures are
interpolated to the pixel location from the four surrounding profiles. Skin temper-
ature is used as the prior surface temperature with an error estimate of 3.5 K to
account for diurnal variability.

Surface emissivity is defined using the UWIREMIS database which interfaces
with the RTTOV 11 model. These data are provided as a function of latitude,
longitude, month and viewing geometry, based on MODIS data between 2003 and
2009 (Borbas and Ruston, 2010). These are provided at a spatial resolution of
0.1◦ and are used to correct the interpolated brightness temperatures at the pixel
location.

The GTOPO30 digital elevation map (Gesch and Greenlee, 1996) is a global
composite of land surface topography and is used to make a correction to the
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background surface temperature at the pixel location using the dry adiabatic lapse
rate. In the Bayesian calculation, this discrepancy between the surface temperature
at the pixel location and the profile location is incorporated in the surface temper-
ature tangent linear for propagation into the brightness temperature probability
density function (PDF).

For cloudy conditions, the PDFs are calculated empirically and ingested as look-
up tables (LUTs). These LUTs are generated from the entire AATSR mission,
based on the SADIST cloud screening and then iterated using the Bayesian cloud
detection over the ocean. No textural component is used in the Bayesian calcula-
tion over land as clear-sky brightness temperatures are more spatially heteroge-
neous than over ocean surfaces. When assessing algorithm performance we place
a threshold of 0.1 on the clear-sky probability to generate a binary cloud mask.
The fact that this is a value where the classification works well suggests that there
is a bias towards underestimating the clear-sky probability. This is likely to be
the result of greater uncertainties in the prior NWP data used to model clear-sky
radiances over land (compared to over ocean where we use a threshold of 0.9). We
would expect that as these terms are refined, a more intuitive threshold will be
appropriate.

2.5 Bayesian Visible Channel Cloud Detection

We pilot visible only cloud detection over land using the 0.6, 0.8 and 1.6 µm
channels, developing cloudy PDFs using the pixels defined as cloud in the manually
classified dataset (described fully in Section 2.7). The PDF dimensions are the three
visible channel reflectances ranging from 0-1.2 with a bin size of 0.04. Due to the
limited number of pixels available to populate the PDF, no segregation is made
with respect to solar zenith angle. Figure 2 shows a two dimensional representation
of the visible channel PDFs for each pair of constituent dimensions. The PDFs show
the greatest reflectance in the 0.8 µm channel. The ‘blocky’ appearance of the PDF
is the result of the input data volume limiting the data resolution.

For clear scenes we use RTTOV 11 to model the top of atmosphere (TOA) re-
flectance for the three visible channels. The surface reflectance in the RTM is spec-
ified using the bidirectional reflectance distribution function (BRDF) atlas (Vidot
and Borbas, 2012). This is constructed in a similar way to the UWIREMIS atlas at
a monthly temporal resolution and 0.1◦ spatial resolution. Surface BRDF is speci-
fied for all wavelengths between 0.4-2.5 µm as a function of latitude and longitude.
We interpolate the atmospheric component of the TOA surface reflectance to the
pixel location and correct for the local pixel BRDF.

For the visible channels we also use the manually classified dataset to define
clear-sky pixels to calculate a bias correction for the RTM. For each clear-sky
pixel we take the difference between the observed and modelled TOA reflectance
and average these differences as a function of biome (see section 2.3 for a full
description of the biome data). This bias correction is then applied to the TOA
reflectance prior to the Bayesian calculation. We also use these data to calculate
the error covariance between the observation minus model differences as a function
of biome for each channel combination. This error covariance calculation accounts
for both forward model error and the observation noise and is used to define the
R-Matrix in the clear-sky PDF calculation (equation 7).

The probability of negative reflectance is strictly zero, but the PDF always has
some non-zero probability in this unphysical domain, and sometimes this can be
significant for example over dark surfaces such as lakes under low wind speeds or
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forests. It is necessary, therefore, to renormalise the Gaussian distribution so that
the integrated probability over the positive domain is unity. For computational
speed, this is done approximately, focussing on the dimension in which the most
significant unphysical probabilities are observed. To do this we intersect the PDF
at the zero reflectance line in each dimension and calculate the fraction of the
PDF (fx) that crosses into unphysical values. For the dimension with the greatest
fraction, the remaining PDF is multiplied by the probability sealing factor (αx)
using:

αx =
1

1 − fx
(8)

We use a threshold of 0.1 to generate a binary cloud mask consistent with the
Bayes Thermal algorithm and uncertainties in modelling surface reflectance.

2.6 Bayesian Joint Cloud Detection

For the joint Bayesian cloud detection we combine the infrared and visible channels
to calculate the clear-sky probability using the 0.6, 0.8, 1.6, 11 and 12 µm channels.
We assume independence between the thermal and visible channel probabilities
calculating the probability of the observations given the background P (yo|xb) as:

P (yo|xb) = P (yo
V IS |xb)P (yo

IR|xb) (9)

where the ‘IR’ and ‘VIS’ subscripts denote thermal infrared and visible chan-
nels respectively. For cloud we use the long-term thermal PDFs with the newly
developed visible PDFs. For consistency we use a threshold of 0.1 on the clear-sky
probability to generate a binary cloud mask although typically the probabilities
are much higher when information from both the infrared and visible channels are
included.

2.7 Manually Classified Test Data

Testing the relative performance of competing cloud detection algorithms is dif-
ficult in the absence of a perfect classifier. Some testing datasets have been de-
veloped using expert classification to provide reference data for a limited number
of scenes. We use one such dataset generated during the development of a syner-
gistic AATSR and MERIS cloud detection algorithm (Gomez-Chova et al, 2009)
hereafter referred to as the ‘manual mask’.

The classification process is semi-automatic, identifying pixel clusters on the ba-
sis of brightness at the visible and near-infrared wavelengths, water vapour and
oxygen absorption features, whiteness and the normalised difference vegetation in-
dex (NDVI) (Gomez-Chova et al, 2007). These clusters are then manually classified
by expert inspection to provide a binary cloud mask that can be used as a refer-
ence dataset, which represents our best understanding of the image classification
for each scene.

The manual mask is applicable to co-located AATSR and MERIS images on a
reduced resolution merged grid but is provided with a mapping of the AATSR
pixels to the reduced grid. This is then used to construct a full resolution AATSR
cloud mask for twenty-one scenes which forms the basis of all the performance
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tests described in Section 3. The twenty-one scenes cover five principle locations:
Tomsk in Russia, Ouagadougou in Burkina Faso, Mongu in Zambia, Abracos Hill
in Rondonia, Brazil and Cart Site in Oklahoma.

3. Cloud Detection Algorithm Comparison

3.1 Performance Statistics

In this section we assess the performance of each cloud detection algorithm across
twenty-one test scenes. These cover a range of latitudes (tropics, mid-latitudes),
biomes (vegetated, bare soils, rivers, lakes as described in Table 2) and cloud types
(opaque and semi-transparent). For each scene we calculate the performance of
each cloud detection algorithm relative to the manual mask using the following
statistical measures: the percentage of perfect classification (PP), the hit rate (HR),
the false alarm rate (FAR) and the true skill score (TSS) (Bengtsson and Hodges,
2005; Mackie et al, 2010). PP is the percentage of all pixels correctly classified as
either cloud or clear, the HR is the percentage of cloud pixels correctly identified,
the FAR is the percentage of clear pixels erroneously flagged as cloud and the TSS
for cloud detection is the HR minus the FAR.

Before presenting the overall performance statistics we consider two detailed
case studies which exemplify some of the classification problems relating to each
algorithm. The first, shown in Figure 3 is over Ouagadougou on 21st January 2003
which highlights issues with the classification of cloud edges and cloud shadow.
The top six panels show the performance of the six cloud detection algorithms with
reference to the manual mask. In this case the SADIST, UOL 2, UOL 3 and Bayes
Vis algorithms all miss the cloud edges. In the Bayes Thermal, Bayes Joint and
to a lesser extent in UOL 3, flagging of cloud shadow is evident. A surface feature
is also flagged by the SADIST algorithm in the bottom left corner of the image.
Diagnostic maps giving a performance breakdown for the individual SADIST tests
(not shown here) indicate that the NDVI is prone to grossly over-flagging clear-sky
pixels as cloud and that the gross cloud test and thin cloud test can often miss
significant amounts of cloud. In this example the Bayes Thermal and Bayes Joint
algorithms perform best.

Figure 4 shows the second case study over Mongu, Zambia on 19th July 2003.
Here we have a thick cloud feature to the bottom right of the scene and a thin
cloud feature in the top left. This scene is also affected by aerosol, most clearly
seen in the false colour image to the centre and top right of the image. Here we see
a typical case of SADIST over-flagging (Plummer, 2008). Some of this may be due
to the presence of aerosol but other regions are surface features, for example rivers.
In UOL 2 a lot of this over-flagging has been eliminated although some rivers are
still erroneously flagged as cloud. All algorithms show some over-flagging around
the thin cloud to the left of the image. UOL 3 and Bayes Thermal both pick out a
feature with a thermal signature to the left of the image centre which in the false
colour image looks like aerosol. The Bayes Thermal also over-flags other regions
in the top right hand side of the scene which may be aerosol and surface features
in the bottom left of the image (the possible reasons for which are discussed in
Section 4). In the Bayes Vis some surface features are also identified. The surface
feature over-flagging is less prevalent in the Bayes Joint but still evident.

A number of inter-related factors will affect the performance of the cloud detec-
tion including the presence of aerosol, cloud type and land surface type (biome)
which we discuss in more detail in Section 4. Here we present the performance
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statistics across all scenes and then recalculate the statistics by subdividing the
scenes according to the background aerosol optical depth (AOD) taken from
MODIS daily AOD fields (Acker and Leptoukh, 2007). These L3 data at 1x1◦

resolution are extracted over each scene domain and provide an indication of the
average aerosol loading over the region on the given day. Attempts are not made to
match observations at a pixel level as coincident L2 data are not always available.
We classify ‘clear scenes’ as those with an AOD < 0.3, those with a low aerosol
concentration with AOD between 0.3 - 0.4, and those with a high aerosol load with
an AOD greater than 0.4. Table 3 shows the total number of clear and cloud pixels
falling into each classification demonstrating that a significant number of pixels are
included in each class.

Table 4 shows the performance statistics for all scenes. These clearly demonstrate
the problems with the SADIST cloud detection algorithm which typically flags
surface features as cloud giving the highest FAR (16.82 %) and the lowest TSS
(69.27 %). The UOL 3 and Bayes Joint algorithms achieve significantly higher
TSS’s (77.93 % and 77.63 % respectively). The Bayes Joint algorithm has a higher
FAR (10.82 %) than the UOL 3 (5.87 %) but also has a higher hit rate (88.45 %
compared with 83.80 %). The UOL 2 algorithm using the modified thresholds from
the standard mask also shows a significant improvement on SADIST with a TSS
of 76.69 %.

Considering only the ‘clear scenes’ with AOD < 0.3 we see the best performance
from all algorithms. UOL 3 has the highest TSS (78.31 %) closely followed by
UOL 2 and Bayes Joint with TSS’s of 77.74 % and 77.43 % respectively. The
SADIST cloud mask over-flags surface features with a FAR of 17.34 % (also giving
a high HR of 89.83 %). Bayes Thermal also has a tendency to over-flag with an
FAR of 12.7 %. The hit rates for Bayes Thermal and Bayes Joint are 87.06 and
86.51 % respectively. Bayes Vis has the lowest hit rate at 79.38 %.

For low aerosol loadings (AOD 0.3 - 0.4) we see a reduction in the overall perfor-
mance of all algorithms. Bayes Joint has the highest TSS (73.38 %) and SADIST
the lowest (49.83 %). In all cases the FAR falls but the HR is also much lower.
Bayes Joint has the highest hit rate (79.47 %) but for UOL 3 this falls to 66.22 %.
The MODIS daily Angström exponent fields (Acker and Leptoukh, 2007) indicate
that in these scenes the aerosol is predominantly in the coarse mode. Coarse mode
aerosols such as dust are likely to reflect incoming solar radiation and may have
a week cooling thermal signature. If the aerosol overlays the cloud it may change
its apparent thermal and visible channel properties (as viewed from space) making
it more difficult to detect. Overall cooling of the scene may lead to colder surface
features such as rivers being less likely to be flagged, reducing the FAR.

For high aerosol loadings (AOD > 0.4) we see a tendency for all algorithms to
over-flag. SADIST and the Bayes Thermal algorithms are most affected with FAR’s
of 30.28 % and 31.8 % respectively, although all algorithms have a FAR close to or
exceeding 20.0 %. The HR also increases significantly showing the tendency of the
cloud detection algorithms to flag everything in the presence of aerosol. The TSS
scores typically fall between the clear scene and low aerosol loading values.

3.2 LST Impacts

Imperfections in the cloud detection algorithm applied to the offline enhanced
LST dataset (Ghent, 2012) will result in spatial sampling uncertainties in the
retrieved surface temperatures. At a pixel level, missed cloud will lead to a cloud
contaminated LST, usually colder than the true surface temperature, whilst false
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flagging of surface features will lead to a loss of data. Many data users will re-grid
the full resolution data at a coarser spatial resolution where these uncertainties
need to be correctly propagated. For missed cloud, a spatially averaged LST is
likely to be colder than the true value, whilst for falsely flagged surface features
the spatially averaged LST may be either warmer or colder depending on the
surface temperature and biome of the pixels excluded and the extent of the false
flagging.

No attempts have been made previously to physically quantify the spatial sam-
pling uncertainty on LST due to errors in cloud detection over land. Here we take
a first look at this problem using the manually masked LST field as our reference
dataset. For each of the test scenes, we divide the image into 3x3 pixel boxes across
which we take the average LST for all pixels classified as ‘clear’ by the algorithm
tested. We then calculate the difference between the results from the manually
masked data field and the tested algorithm. In order for a comparison to be made,
at least three of the nine pixels used in each box have to be classified as clear. If
less than three ‘clear’ pixels are available for one of the two cloud masks compared
then the 3x3 pixel box is classed as ‘over-flagged’ (if the manual mask has three or
more clear pixels) or ‘under-flagged’ (if the manual mask has less than three clear
pixels). The target accuracy for AATSR LST retrievals during the day is 2.5 K
globally (Llewellyn-Jones et al, 2001) so we impose a tolerance of plus or minus 2
K on the LST difference between the manually classified data and the tested algo-
rithm. This tolerance is generous as other sources of uncertainty (instrument noise,
a priori information and retrieval error) are likely to sum to around 1 K (personal
communication, Darren Ghent). For those boxes where the LST difference exceeds
the 2 K tolerance but both algorithms have sufficient clear-sky pixels available, we
label these as ‘large uncertainties’ which would not be acceptable given the target
accuracy.

Table 5 provides a summary of these results, again subdivided into categories de-
termined by aerosol loading. Considering ‘all’ cases first we find that all algorithms
increase the percentage of LST retrievals falling within the 2 K tolerance compared
to SADIST. For UOL 2, UOL 3, Bayes Vis and Bayes Joint this is an increase of be-
tween 5-6.5 % in the total number of pixels with the highest percentage for UOL 3
(92.0.2 %). The large uncertainties for the SADIST mask are 0.71 % of boxes,
falling to 0.31 % for the Bayes Joint algorithm. Boxes classified as ‘over-flagged’
or ‘under-flagged’ will also introduce a spatial sampling uncertainty. Overall, the
differences between opaque cloud temperatures and surface temperatures are likely
to be larger than the differences between surface temperatures across neighbouring
biomes (in the case of falsely flagged pixels), although for semi-transparent cloud
inter-biome differences could be greater. The preference in terms of LST retrievals
is probably over-flagging (within reason as this also indicates a loss of data). We
find that Bayes Joint gives the lowest under-flag percentage (2.11 % compared with
3.22 % for UOL 3). Both SADIST and Bayes Thermal have a significant problem
with over-flagging (10.86 % and 10.49 % of boxes respectively).

For more pristine conditions where AOD < 0.3 the percentages of boxes within
the 2 K tolerance are slightly higher for all algorithms. UOL 3 has the highest
percentage (92.89 %) closely followed by Bayes Joint (91.68 %), UOL 2 (91.36
%) and Bayes Vis (91.07 %). Bayes Thermal and Bayes Joint have the fewest
number of boxes with large uncertainties (0.25 % and 0.27 % respectively). Bayes
Joint has a lower under-flag percentage compared to UOL 3 (2.58 % and 3.55 %
respectively), but the UOL 3 over-flag percentage is lower (3.16 % compared with
5.47 %). SADIST has a high percentage of over-flagged boxes (11.03 %) but the

11



March 13, 2014 International Journal of Remote Sensing paper˙submission

lowest under-flag percentage (1.91 %) due to its tendency to grossly over-flag.
For AOD values between 0.3-0.4 we see a slight increase in the number of boxes

falling within the 2 K tolerance due to the reduction in the false alarm rate, despite
the corresponding fall in the hit rate. The highest percentages are for UOL 3 and
UOL 2 (94.6 % and 94.17 % respectively). The over-flag percentage drops for all
algorithms with UOL 2 having the lowest value (0.6 %). The coincident fall in the
hit rate seen in the performance statistics is reflected in the increased under-flag
percentage. Bayes Joint is most resilient to this with an under-flag value of 2.33 %
whilst for SADIST this reaches 5.14 %.

For AOD > 0.4 we see a reduction in the number of boxes falling within the 2 K
tolerance. SADIST values fall from 86.59 % in the AOD < 0.3 case to 79.12 %. With
the exception of Bayes Thermal which is very sensitive to the presence of aerosol,
all other algorithms still outperform SADIST. Bayes Vis is the least affected by
aerosol with 88.36 % of boxes falling within the 2 K tolerance compared with 91.07
% for AOD < 0.3 The large uncertainty percentage is highest for SADIST (1.02
%) and more than 50 % lower for all other algorithms with a minimum of 0.31 %
for Bayes Joint. Bayes Joint has the lowest under-flag value (0.45 %) and SADIST
the highest (1.37 %) indicative of significant over-flagging in all algorithms. Bayes
Thermal and SADIST have the highest over-flagging values (19.9 % and 18.5 %
respectively) and Bayes Vis the lowest (9.91 %).

3.3 False Alarm Rate Analysis

The false alarm rate (FAR) gives a direct measure of each algorithms ability to cor-
rectly identify cloud over a range of surface types and here we analyse performance
as a function of biome. For each scene, the percentages of clear-sky pixels falsely
flagged as cloud are calculated for four different biomes: urban areas, water bodies
(including lakes and rivers), mosaic vegetation and bare soils (including mixed bare
ground and entisols) as defined by the biome classification in the enhanced LST
retrieval algorithm (Ghent, 2012). Only scenes in which there are more than 50
pixels for the given biome are included in the analysis.

Figure 5 shows that over the urban and artificial surfaces the behaviour of the
SADIST cloud mask is most inconsistent covering the full range of possible FARs.
With the exception of Tomsk on 12th August 2004 (scene 17), the Bayes Vis
algorithm has a higher FAR than the Bayes Thermal algorithm showing that the
change in surface reflectance is more significant than changes in emissivity for urban
areas. The Bayes Joint, UOL 2 and UOL 3 algorithms consistently outperform the
SADIST classification over this biome. For some scenes the FAR for UOL 2 is as
much as 60 % lower than SADIST showing the benefit of the clear-sky restoral
test. For Cart Site on 5th June 2006 (scene 6) there is high aerosol loading and all
algorithms have a high FAR ranging between 45-60 %.

For waterbodies (lakes and rivers) we find in the scenes not affected by heavy
aerosol loading the SADIST FAR is typically around 50 %. The Bayesian algorithms
often don’t perform as well as the UOL 2 and UOL 3 algorithms, likely due to the
same reasons described above where water bodies are not adequately represented in
the surface emissivity and reflectance atlases. For scenes affected by high coarse or
mixed mode aerosol loading (Cart Site on 5th June 2006 - scene 6) all algorithms
give high false alarm rates over waterbodies. For those where fine mode aerosol
dominates (Mongu on 17th September 2003 - scene 15, and Tomsk on 23rd June
2005 - scene 18) the FAR is generally not as high.

We present a single vegetation class for comparison with bare soil areas com-
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prising of 50-70% grassland, shrubland and forest and 20-50 % cropland. Over this
biome we find that the SADIST false alarm rate tends to be more consistent but
generally higher than the other algorithms (between 20-40 %) with the exception
of in the presence of significant coarse mode aerosol where all algorithms have a
higher FAR. False alarm rates for Bayes Joint, UOL 2 and UOL 3 are generally
between 0-10% although Bayes Joint is occasionally higher if there is a problem
with either the Bayes Vis or Bayes Thermal classifications.

Over bare soils fewer pixels are available so the results are harder to interpret
but are included as a comparison against vegetated surfaces. Cloud detection over
desert surfaces is a particularly difficult problem due to the high surface reflectance
and large diurnal variation in surface temperature. FARs for all algorithms are
below 40% in all but the aerosol affected scene (Ouagadougou on 15th July 2003 -
scene 12), but the relative performance of each algorithm is mixed with SADIST
often having lower values than the other algorithms. This analysis suggests that
the UOL 3 and Bayes Joint algorithms outperform SADIST most significantly over
urban and vegetated surfaces in the twenty-one scenes considered.

4. Discussion

In this paper we considered the impact of three key variables on cloud detection
algorithm performance and the subsequent spatial sampling uncertainties in LST
introduced by imperfect image classification. Cloud type, aerosol loading and land
surface cover all affect performance and different algorithms respond in different
ways to changes in these variables. We find that all six algorithms are less effective
at discriminating between cloud and clear observations in the presence of aerosol.
Performance is dependent on aerosol loading and is also likely to be affected by
aerosol size, composition and altitude. Ideally for LST retrieval, masking algorithms
should include an aerosol flag as undetected aerosol will exhibit a thermal signature.
For low aerosol loadings where LST retrieval is made, the brightness temperature
perturbation should be accounted for within the algorithm.

The UOL 2 and UOL 3 algorithms both work on a definition of ‘clear-sky’. High
aerosol loadings modify the observed brightness temperatures and top of atmo-
sphere reflectance so that these no longer represent clear-sky conditions leading to
increased flagging of pixels not containing cloud. For the Bayesian algorithms both
clear and cloudy PDFs are represented in the calculation. The cloudy PDFs used
in the Bayes Thermal classification are likely to contain some aerosol pixels flagged
as ‘not clear’ increasing the likelihood of flagging aerosol as cloud. The Bayes Vis
algorithm which does not include any aerosol pixels in the cloudy PDF as these
are generated using the manually masked data shows the best performance under
high aerosol loading. Aerosol may also have a smaller impact on top of atmosphere
reflectance than brightness temperature explaining the increased performance of
Bayes Vis relative to the other algorithms under these conditions.

Under high aerosol loading, for the Bayes Joint and UOL 3 algorithms which
have the best cloud detection performance overall, less than 86% of observations fall
within the 2 K tolerance imposed here on LST measurements. Further development
is necessary to improve classifier performance under these conditions due to large
increases in the false alarm rate. For UOL 3 there is the potential to include aerosol
loadings in the radiative transfer simulations; and indeed this is intended for future
evolution of this scheme. The Bayesian classifier can be developed into a multiway
classifier as has been successfully trialled over high latitude sea-ice regions for
AATSR (Bulgin et al, 2013) and over land for the SEVIRI instrument (Mackie,
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2009). Inclusion of fine and coarse mode aerosol classes could significantly improve
image classification.

Cloud detection performance is also affected by cloud type. Cloud edges and
semi-transparent clouds are consistently difficult for cloud detection algorithms to
identify and the Bayes Joint results in Section 3 show the value of using information
at both visible and infrared wavelengths in these regions. For the Bayesian schemes,
cloud detection in these regions could be improved with the development of new
land based PDFs derived from multiple years of ATSR observations. The Bayes
Joint results presented here are competitive using existing ocean based and proof
of concept PDFs so improvement would be expected from the development of
land based PDFs which include thin clouds and cloud edges over land surfaces.
The UOL 2 and UOL 3 algorithms do not explicitly include cloud information so
detection of semi-transparent cloud or cloud edges falling within the tail of the
clear-sky distribution is difficult.

Biome also has an impact on the ability of the cloud detection algorithm to cor-
rectly identify clear-sky scenes. Although limited by the number of pixels available,
and complicated by seasonal changes in land surface cover, the biome analysis in
Section 3 gives some insight into algorithm performance over different land cover
types. For the Bayes Thermal, Bayes Vis and Bayes Joint classifications, urban
areas and waterbodies are unlikely to be well resolved in the surface emissivity and
reflectance atlases used in the simulation of clear-sky observations, as these have
a global resolution of 0.1◦ latitude and longitude (approximately 10 km2 at the
equator).

There are also some uncertainties associated with the NWP data used for Bayes
Thermal, Bayes Joint and UOL 3 . In some cases the surface temperatures at the
NWP tie points from which the simulated brightness temperatures are interpolated
may not be representative of the surface temperature in the pixel to be classified,
if the biome is significantly different. The Bayesian scheme includes a surface tem-
perature correction for altitude in the surface temperature tangent linear after
interpolating simulated brightness temperatures from the four surrounding NWP
profile locations. For the UOL 3 algorithm linear interpolation is used but this will
be changed to polynomial interpolation in future development work to reduce in-
terpolation errors. Surface temperature data are also linearly interpolated in time,
which will not capture the peak of the diurnal cycle (typically between 1300-1400
hours (Jin and Dickinson, 1999)) as they are available at 1200 and 1800 hours.

The comparisons presented here are limited to a small number of scenes (although
comprising a larger total number of pixels than evaluated in previous studies) and
further work is needed to fully assess algorithm performance globally. Analysis has
also been limited to daytime imagery only, for which the reference dataset was
available. Manual classification of satellite imagery to provide a reference dataset
under night-time conditions is more difficult but comparisons could be made against
in-situ data. These in-situ data could also be used to asses the long-term impact
of each cloud detection algorithm on the retrieved LST.

5. Conclusions

For LST retrieval purposes, the Bayes Joint and UOL 3 cloud detection algorithms
consistently outperform the SADIST scheme with significantly improved true skill
scores. Under clear sky conditions these algorithms give smaller spatial uncertain-
ties in retrieved LST than threshold based methods and Bayes Joint misses the
fewest cloud pixels. Probabilistic based methods for cloud detection show the most
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potential for correctly classifying images under extreme conditions including very
wet or very dry atmospheres, snow/desert surfaces and biomes with large diurnal
variability in surface temperature and both are recommended for future develop-
ment. UOL 2 also shows significant improvements on the SADIST cloud detection
scheme with the use of dynamic thresholds although is limited in extreme con-
ditions by the difficulties of setting threshold values for the tests. It is however
important in the context of data from the Sea and Land Surface Temperature Ra-
diometer (SLSTR) due to be launched on the Sentinel 3 mission [estimated 2014]
as the same cloud flags will be provided in the L1B data as those available for the
ATSR instruments.

Evaluation of cloud detection algorithm performance is of critical importance
to the development of LST data with low uncertainties from spatial sampling er-
rors and is currently restricted by availability of perfectly classified data to use
as a reference. To rigorously test cloud detection algorithms we recommend the
development of a more extensive independent test database not used for algorithm
development. Simpson, Schmidt and Harris, (1998) used a large test dataset to
identify residual clouds in brightness temperature and reflectance data, in clear-sky
scenes using different cloud detection algorithms over ocean, but this did not in-
clude a reference cloud mask. Cloud detection over land and ocean surfaces needs
to be considered separately and the ‘best’ cloud detection is currently achieved
by expert inspection. Although time consuming, this is advantageous to cloud de-
tection development and essential for satellite retrievals with weather and climate
applications. The test database should include observations covering a range of
atmospheric conditions, cloud types, aerosol loading, biomes, solar and viewing
geometry and include tools to analyse cloud detection performance.
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Table 1. Details of the manually classified scenes used as reference data to calculate cloud detection algorithm performance

Scene Number Location Region Date Latitude Bounds Longitude Bounds Abs. Orbit No. AOD

(1) Abracos Hill Brazil, S. America 06/06/2004 -13.03 - -8.7 -64.57 - 59.28 11858 < 0.3
(2) Abracos Hill Brazil, S. America 26/05/2005 -12.92 - -8.75 -64.54 - -59.29 17369 < 0.3
(3) Cart Site Oklahoma, N. America 09/08/2004 34.45 - 38.86 -101.18 - -94.61 12776 0.3-0.4
(4) Cart Site Oklahoma, N. America 16/05/2005 34.43 - 38.84 -101.19 - -94.62 16784 < 0.3
(5) Cart Site Oklahoma, N. America 25/07/2005 34.42 - 38.84 -101.19 - -94.63 17786 < 0.3
(6) Cart Site Oklahoma, N. America 05/06/2006 34.42 - 38.82 -101.18 - -94.62 22295 > 0.4
(7) Cart Site Oklahoma, N. America 08/10/2007 34.57 - 38.81 -101.14 - -94.63 29309 < 0.3
(8) Ouagadougou Burkino Faso, Eq. Africa 28/11/2002 11.15 - 13.97 -2.43 - 2.57 03897 0.3-0.4
(9) Ouagadougou Burkino Faso, Eq. Africa 01/12/2002 11.22 - 14.38 -3.85 - 1.23 03941 0.3-0.4
(10) Ouagadougou Burkino Faso, Eq. Africa 02/01/2003 11.15 - 13.98 -2.43 - 2.57 04398 0.3-0.4
(11) Ouagadougou Burkino Faso, Eq. Africa 21/01/2003 11.1 - 14.27 -3.16 - 1.92 04670 0.3-0.4
(12) Ouagadougou Burkino Faso, Eq. Africa 15/07/2003 11.23 - 14.18 -3.12 - 1.9 07176 > 0.4
(13) Mongu Zambia, South Africa 15/01/2003 -16.95 - -12.62 18.57 - 23.95 04583 0.3-0.4
(14) Mongu Zambia, South Africa 09/07/2003 -16.92 - -12.76 18.58 - 23.91 07088 < 0.3
(15) Mongu Zambia, South Africa 17/09/2003 -16.9 - -12.74 18.57 - 23.91 08090 > 0.4
(16) Tomsk Siberia, Russia 03/06/2004 54.21 - 58.84 80.01 - 89.8 11810 0.3-0.4
(17) Tomsk Siberia, Russia 12/08/2004 54.16 - 58.78 79.99 - 89.76 12812 < 0.3
(18) Tomsk Siberia, Russia 23/06/2005 54.13 - 58.74 79.97 - 89.72 17321 > 0.4
(19) Tomsk Siberia, Russia 06/10/2005 54.16 - 58.78 80.0 - 89.77 18824 < 0.3
(20) Tomsk Siberia, Russia 21/09/2006 54.26 - 58.72 80.05 - 89.73 23834 < 0.3
(21) Tomsk Siberia, Russia 02/08/2007 54.15 - 58.76 79.99 - 89.75 28343 < 0.3

Table 2. Dominant biomes for each of the locations represented by the reference data.

Location Dominant Biome

Abracos Hill Broadleaved evergreen and/or semi-deciduous forest and mosaic croplands.
Cart Site Grassland, mosaic vegetation, mosaic forest and rainfed croplands.

Ouagadougou Bare areas and grassland.
Mongu Grassland, broadleaved deciduous forest, shrubland and mosaic cropland.
Tomsk Needleleaved deciduous or evergreen forest, mosaic cropland, sparse vegetation, mosaic vegetation and rainfed croplands.

Table 3. Number of clear and cloud pixels in all scenes and the
breakdown into ‘clear’, ‘low aerosol’ and ‘high aerosol’ scenes

Scene Definition Cloud Pixels Clear Pixels Total Pixels

All 692023 2264737 2957187
AOD < 0.3 378985 1168468 1547880

AOD 0.3 − 0.4 118132 733028 851160
AOD > 0.4 194906 3633241 558147
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Table 4. Performance Statistics for each of the six
cloud detection algorithms with reference to the
manual mask segregated according to aerosol op-
tical depth. ‘PP’ is the percentage of perfect clas-
sification, ‘HR’ is the hit rate, ‘FAR’ is the false
alarm rate and ‘TSS’ is the true skill score.

All PP HR FAR TSS

SADIST 83.86 86.09 16.82 69.27
UOL 2 90.56 84.17 7.49 76.69
UOL 3 91.71 83.80 5.87 77.93
Bayes Thermal 85.55 88.61 15.39 73.22
Bayes Vis 88.17 80.59 9.52 71.08
Bayes Joint 89.01 88.45 10.82 77.63

AOD < 0.3

SADIST 84.42 89.85 17.34 72.52
UOL 2 90.73 85.22 7.48 77.74
UOL 3 92.39 82.81 4.51 78.31
Bayes Thermal 87.24 87.06 12.70 74.36
Bayes Vis 88.45 79.38 8.61 70.77
Bayes Joint 89.84 86.51 9.07 77.43

AOD 0.3 − 0.4

SADIST 86.29 59.16 9.33 49.83
UOL 2 93.68 60.79 1.02 59.77
UOL 3 94.18 66.22 1.31 64.91
Bayes Thermal 87.20 79.32 11.53 67.79
Bayes Vis 89.04 61.62 6.54 55.08
Bayes Joint 91.90 79.47 6.09 73.38

AOD > 0.4

SADIST 78.58 95.10 30.28 64.82
UOL 2 85.33 96.30 20.55 75.75
UOL 3 86.08 96.36 19.44 76.92
Bayes Thermal 78.35 97.25 31.80 65.46
Bayes Vis 86.06 94.45 18.44 76.01
Bayes Joint 82.29 97.66 25.96 71.70

19



March 13, 2014 International Journal of Remote Sensing paper˙submission

Table 5. LST impacts with reference to the manual mask segregated according to
aerosol optical depth.

All 2 K Tolerance Large Uncertainties Over-flag Under-flag

SADIST 85.69 0.71 10.86 2.74
UOL 2 91.01 0.36 5.48 3.15
UOL 3 92.02 0.39 4.37 3.22
Bayes Thermal 87.02 0.32 10.49 2.18
Bayes Vis 90.79 0.49 4.90 3.82
Bayes Joint 90.60 0.31 6.98 2.11

AOD < 0.3

SADIST 86.59 0.48 11.03 1.91
UOL 2 91.36 0.34 5.29 3.02
UOL 3 92.89 0.40 3.16 3.55
Bayes Thermal 88.54 0.25 8.61 2.60
Bayes Vis 91.07 0.45 4.28 4.20
Bayes Joint 91.68 0.27 5.47 2.58

AOD 0.3 − 0.4

SADIST 88.38 0.93 5.55 5.14
UOL 2 94.17 0.34 0.60 4.89
UOL 3 94.60 0.32 0.94 4.14
Bayes Thermal 89.47 0.39 7.73 2.41
Bayes Vis 91.86 0.60 2.73 4.81
Bayes Joint 93.70 0.40 3.57 2.33

AOD > 0.4

SADIST 79.12 1.02 18.50 1.37
UOL 2 85.22 0.47 13.45 0.87
UOL 3 85.68 0.47 12.95 0.90
Bayes Thermal 79.04 0.39 19.90 0.67
Bayes Vis 88.36 0.45 9.91 1.28
Bayes Joint 82.88 0.31 16.37 0.45

Figure 1. For each granule of an AATSR orbit (left) the expected 12 µm brightness temperature is
simulated from coincident profiles. The PDF of observed 12 µm brightness temperatures for each biome-
diurnal condition given the space and time position is also determined (top-right in green). This PDF
is moved so that the mean equals the expected mean for the granule and the new PDF represents the
expected clear-sky conditions (bottom-right in green).
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Figure 2. Proof of concept cloud PDFs for visible channel cloud detection. 2D slices of the 3D PDF are
plotted to show the relationships between the 0.6, 0.8 and 1.6 µm channels.
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Figure 3. Cloud detection algorithm performance over Ouagadougou on 21st January 2003. From left
to right, the top panels show the SADIST, UOL 2 and UOL 3 algorithms. The middle panels the Bayes
Thermal, Bayes Vis and Bayes Joint algorithms, and the bottom panel the biome, 11 µm brightness
temperature and a false colour images from the 0.6, 0.8 and 11 µm channels. The biomes are as follows:
(0) Ocean, (1) Irrigated croplands, (2) Rainfed croplands, (3) Mosaic cropland, (4) Mosaic vegetation, (5)
Closed to open broadleaved/deciduous forest, (6) Closed deciduous forest, (7) Open deciduous forest, (8)
Closed needleleaved forest, (9) Open needleleaved forest, (10) Closed to open mixed forest, (11) Mosaic
forest/shrubland, (12) Mosaic grassland, (13) Closed to open shrubland, (14) Closed to open grassland,
(15) Sparse vegetation, (16) Regularly flooded forest (fresh water), (17) Regularly flooded forest (saline
water), (19) Urban areas, (20) Mixed bare ground, (21) Entisols - Orhents, (22) Shifting sand, (23) Aridisols
- Calcids, (24) Aridisols - Cambids, (25) Gelisols - Orthels, (26) Waterbodies, (27) Permanent snow/ice,
(28) No data.
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Figure 4. Cloud detection algorithm performance over Mongu, Zambia on 19th July 2003. From left to
right, the top panels show the SADIST, UOL 2 and UOL 3 algorithms. The middle panels the Bayes
Thermal, Bayes Vis and Bayes Joint algorithms, and the bottom panel the biome, 11 µm brightness
temperature and a false colour images from the 0.6, 0.8 and 11 µm channels. Please refer to Figure 3
caption for biome definition.
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Biome 19: GC190 Artificial surfaces and associated areas (urban areas >50%)
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Biome 26: GC210 Water bodies (Lakes, rivers, ocean nearshore <50km)
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Biome 4: GC30 Mosaic Vegetation (grassland, shrubland, forest) (50-70%) / Cropland (20-50%)
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Biome 20 & 21: Bare Areas - mixed bare ground (except GC201-205),Entisols and Orthents
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Figure 5. AATSR cloud detection algorithm performance over urban areas, waterbodies, mosaic vegetation
and bare soils biomes. Scene numbers refer to the listing given in Table 1. Light grey shading indicates low
aerosol concentrations (AOD 0.3-0.4) and dark grey shading high aerosol concentrations (AOD > 0.4).
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