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Abstract 

In order to examine metacognitive accuracy (i.e., the relationship between metacognitive 
judgment and memory performance), researchers often rely on by-participant analysis, 
where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or 
signal detection measures) is computed for each participant and the computed values are 
entered into group-level statistical tests such as the t-test. In the current work, we argue 
that the by-participant analysis, regardless of the accuracy measurements used, would 
produce a substantial inflation of Type-1 error rates, when a random item effect is present. 
A mixed-effects model is proposed as a way to effectively address the issue, and our 
simulation studies examining Type-1 error rates indeed showed superior performance of 
mixed-effects model analysis as compared to the conventional by-participant analysis. We 
also present real data applications to illustrate further strengths of mixed-effects model 
analysis. Our findings imply that caution is needed when using the by-participant analysis, 
and recommend the mixed-effects model analysis. 
 
Key words: metamemory, resolution, multilevel model, generalized linear model, signal 
detection theory, type 1 error 
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 While people often believe that they can accurately predict their later memory 
performance, a large body of research indicates that this is often not the case (e.g., 
Schwartz, Benjamin, & Bjork, 1997; Bjork, Dunlosky, & Kornell, 2013). To examine the 
quality of people’s memory predictions, research on metamemory typically examines 
relative accuracy of metacognitive monitoring (i.e., resolution)—the degree to which a 
person’s metamemory judgments (e.g., judgments of learning; feeling of knowing, etc.) are 
associated with the actual likelihood of correct recall of to-be-remembered items (Nelson 
& Narens, 1990). That is, resolution quantifies whether those items with higher judgments 
are more likely to be recalled on a later test than those items with lower judgments. 
       To date, a number of indices have been proposed to measure the relative accuracy 
of a learner’s metamemory judgments (Benjamin & Diaz, 2008; Gonzalez & Nelson, 1996; 
Maniscalco & Lau, 2012; Masson & Rotello, 2009; Rotello, Masson, & Verde, 2008; 
Schraw, 1995), although the gamma correlation is the most popular and widely used in the 
literature (Nelson, 1984). Each of the proposed measures has both strengths and 
weaknesses, but one a common feature is that they all focus on estimating relative 
accuracy for individual participants. In contrast, surprisingly little attention has been paid 
to the group-level statistical inference of relative accuracy, despite the fact that making 
group-level inferences is usually the primary concern in empirical research (e.g., “Is the 
mean relative accuracy significantly different from chance?” or “Does the mean relative 
accuracy statistically differ between conditions?”).  
 The current article aims to address this under-examined issue of group-level 
analysis of relative accuracy measurement in metamemory research. The organization of 
the article is as follows: First, we begin with a brief review of relative accuracy measures 
proposed in previous literature, and describe how past studies typically make a group-level 
inferences with these measures. We call these traditional, widely-used approaches 
“by-participant analyses”. Second, we argue that, regardless of the specific relative 
accuracy measurement used, the traditional by-participant analysis to make group-level 
inferences could inflate Type-1 error rate. This inflation of Type-1 error rate is produced 
by the presence of random item effects (a topic that will be discussed later in the paper) in 
memory performance, which are common in standard metamemory research. Third, we 
present a mixed-effects model analysis to effectively resolve the inflation of Type-1 error 
rate. Mixed-effects modeling (see Baayen, Davidson, & Bates, 2008; Littell, Milliken, 
Stroup, Wolfinger, & Schabenberger, 2006; Raudenbush & Bryk, 2002; Searle, Casella, & 
McCulloch, 1992) has become increasingly popular in various fields of psychology, but 
remains less common within experimental psychology. Our work serves as one of the first 
attempts to highlight the importance and usefulness of this approach in the context of 
metamemory research. Fourth, we report a set of simulation studies with a variety of 
experimental designs to quantify the danger of the traditional by-participant 
analysis—Type 1 error rate inflation, sometimes to an extraordinary degree (e.g., 
30%)—and to illustrate the effectiveness of the mixed-effects model analysis. Finally, we 
apply mixed-effects modeling to actual data to further clarify the strengths of this 
approach.  

Measuring Relative Accuracy of Metamemory Monitoring 
 In a typical metamemory experiment, participants study and make metamemory 
judgments (e.g., judgments of learning; JOLs) for each to-be-remembered item during the 
course of studying, and are later asked to recall these items. Researchers then obtain 
relative accuracy measures to quantify the degree to which the participants’ metamemory 
judgments (i.e., the predictor variable) predict their actual recall performance (i.e., the 
criterion variable). While metamemory judgments are typically continuous (e.g., rate your 
likelihood of later recall this item on a scale of 0 to 100%) or ordinal polychotomous (e.g., 
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rate the likelihood of later recall on a scale of 1 to 7), memory performance is mostly 
dichotomous (i.e., the item is either recalled or not). Different numerical measurements 
have been proposed to summarize relative accuracy, and fall, broadly speaking, into one of 
three families: Gamma, signal detection, and correlation. 
Gamma Family 
 In a very influential paper, Nelson (1984) proposed that the gamma coefficient (G; 
Goodman & Kruskal, 1954) as the best measurement of relative accuracy (see also Nelson, 
1986, 1996; Schwartz & Metcalfe, 1994). The gamma coefficient is a nonparametric 
measurement of association between two binary or ordered variables. To compute the 
gamma coefficient from a set of K items, all K(K-1)/2 item pairs are categorized into 1) 
concordant pairs, where the ordering between the two items on the predictor variable is 
consistent with the ordering of the same two items on the criterion variable (i.e., when a 
recalled item is given a higher judgment than an unrecalled item), 2) disconcordant pairs, 
where the ordering between the two items on the predictor variable is opposite from the 
ordering of the same two items on the criterion variable, and 3) tied pairs, where the 
ordering on the predictor or the criterion variable is tied (i.e., the two items have the same 
value either on the predictor, the criterion variable, or both). Designating the total numbers 
of concordant item pairs, disconcordant pairs, and tied pairs as C, D, and T [i.e., K(K-1)/2 
= C + D + T], G is defined as 

    
)(

)(

DC

DC
G




            (1) 

 G, like Pearson’s correlation coefficients, takes on values between -1 and 1, with 
values larger than zero indicating a positive association between the predictor and criterion 
variables. Nelson (1984) made several arguments to support the effectiveness of G in 
assessing the relative accuracy of metamemory judgments. Since then, G has been by far 
the most commonly used measurement in metamemory research, although not as 
frequently used in other fields.  
 One feature of Equation 1 is that the tied pairs are completely discarded from the 
computation of G. Some other researchers have proposed to correct the computation of G 
for the presence of ties (for reviews, L. C. Freeman, 1986; Gonzalez & Nelson, 1996). 
Specifically, Kim (1971) suggested adding the number of pairs that are tied only in the 
predictor variable to the denominator of Equation 1. On the other hand, Wilson (1974) 
proposed to add the number of pairs that are tied only in the criterion variable to the 
denominator. Somers (1968) alternatively suggested adding the number of pairs that are 
tied only in the predictor variable or only in the criterion variable (but not in both) to the 
denominator. In this paper, these alternative measures are denoted as Gk, Gw, and Gs, 
respectively (see Gonzalez and Nelson, 1996, for situations where the alternative measures 
are preferred).  
 Benjamin and Diaz (2008) noted that G suffers from interval-level inferences 
because of the boundaries at -1 and 1. That is, they indicated that intervals close to the 
boundary (e.g., G = 0.98 and G = 0.99) and intervals further from the boundary (e.g.,G = 
0.50 and G = 0.51) do not have the same meaning. To address this problem, Benjamin and 
Diaz (2008) proposed an alternative measurement called G*.  
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G* is a simple transformation of G, but does not have lower or upper boundaries.  
Signal Detection Family 
 In cases where metamemory judgments have two categories (typical, for example, 
in research on the “feeling of knowing”; Hart, 1965), the resulting data can be summarized 
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with two numbers: The hit rate (H), which is the probability of saying “yes” to the items 
that are later recalled, and the false alarm rate (F), which is the probability of saying “yes” 
to the items that are later forgotten. This data structure fits well with signal detection 
theory (SDT; Green & Swets, 1966; Macmillan & Creelman, 2005). Indeed, several 
researchers have recommended the application of SDT to assess relative accuracy of 
metamemory judgments (Benjamin & Diaz, 2008; Masson & Rotello, 2009; Rotello et al., 
2008; Swets, 1986; see also (Barrett, Dienes, & Seth, in press; Higham, 2007; Maniscalco 
& Lau, 2012). The SDT-based approach assumes that the perceived memory strength of 
items varies on a single dimensional scale, and metamemory judgments are made based on 
whether perceived memory strength for each item exceeds or falls below a threshold(s). In 
the simplest model, perceived memory strength for recalled and forgotten items is assumed 
to follow two separate normal distributions with equal variance. The accuracy of 
judgments is defined as the distance between these two distributions, which is computed as 
follows:  
    )()(' FzHzd      (3) 
where z is the inverse cumulative normal distribution function with a mean of 0 and a 
standard deviation of 1. When metamemory judgments are made on an ordinal 
polychotomous scale, we can relax the assumption of equal-variance distributions between 
recalled and forgotten items to estimate a more general relative accuracy measure called da 
(Simpson & Fitter, 1973): 

    021
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y

m
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
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where y0 and m represent the y-intercept and slope of the normal deviate isosensitivity 
function (i.e., a linear function that relates z-transformed hit and false alarm rates; see 
Macmillan & Creelman, 2005), which can be estimated from the data. An alternative to da 
was also proposed and called Az (Swets & Pickett, 1982): 
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where   is the cumulative normal distribution function. 
 Several simulation studies indicated that these SDT measures are superior to G in 
certain respects (Benjamin & Diaz, 2008; Masson & Rotello, 2009; Rotello et al., 2008), 
and more recent research has begun employing the SDT measures as alternatives to the 
conventional G (e.g., Luna, Higham, & Martin-Luengo, 2011). An overlooked, but 
potential caution one should employ with the use of SDT measures is that these measures 
posit separate (mostly normal) distributions for target and distractor items, and previous 
simulation studies have generated simulated datasets based on this assumption. In many 
metamemory experiments, however, such as those using JOLs (the main focus of the 
present study), participants study and make metamemory judgments for all studied items; 
there are no distractor items. In these cases, the perceived memory strength for all the 
items is most likely to follow a single normal distribution, rather than a mixture of two 
separate distributions. In these situations, it may not be appropriate to use SDT-based 
accuracy measures to assess relative accuracy of metamemory judgments1.  
Correlation Family 
 One straightforward way to quantify the relative accuracy is to compute the 
correlation between metamemory judgments and memory performance. Correlation 
measures have been typically used in eyewitness memory research (Krug, 2007), and are 
implicitly implemented in a recent stochastic model on the accuracy of JOLs (Jang, 
Wallsten, & Huber, 2012). The simplest index is a Pearson product-moment correlation 
between metamemory judgments and recall memory performance. As memory 
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performance is dichotomous (recalled or forgotten), it is also equivalent to the 
point-biserial correlation (rpb). Some researchers may view a biserial correlation (rb) as a 
more appropriate measure of metacognitive accuracy. In the context of metamemory 
research, the biserial correlation represents a correlation between metamemory judgments 
and latent continuous memory strength (see Adams, 1960), but sets an assumption that the 
observed memory performance is dichotomized based on a fixed threshold. Similarly, we 
can extend the biserial correlation to a polychoric correlation (rpc), which represents a 
correlation between two latent continuous variables that are observed as ordered categories. 
The assumption behind this idea is that observed categorical metamemory judgments (e.g., 
JOLs with a Likert-type scale) reflect thresholded latent continuous judgments (see Jang et 
al., 2012). Both biserial correlation and polychoric correlation can be computed by a 
two-step maximum likelihood procedure (Olsson, 1979). 
 Although rarely used, a regression coefficient from logistic regression analysis 
that predicts memory performance from metamemory judgments may be a viable 
alternative to index metamemory accuracy. Logistic regression posits that a logit—the 
natural log of the odds—is linearly related to the independent variable(s). In the context of 
JOL accuracy, the model takes the following form. 

i
i

i JOL







 101

log 



                       (6) 

where i  is a probability that item i is recalled, and JOLi is the JOL rating for the i th 

item. 1  is the critical coefficient that represents the relationship between metamemory 
judgment and memory performance (in the current study, we call it logistic B). One 
advantage of logistic B is that it, or rather, the exponential coefficient, Exp ( 1 ), provides a 
more interpretable and intuitive metric than other accuracy measurements (e.g., 
G)—exponential beta is interpreted as the effect of the independent variable on the odds 
ratio of successful memory recall (i.e., the probability of recalling items divided by the 
probability of forgetting them). For example, if Exp ( 1 ) = 1.1, it means that the odds that 
an item is recalled is increased by 1.1 times as the JOL value is increased by one unit. Note 
that Exp ( 1 ) = 1 when JOLs do not predict memory performance at all (i.e., 1  = 0) and 

0 < Exp ( 1 ) < 1 when JOLs negatively predict memory performance (i.e., 1  < 0). 
Other Measures 
 Schraw (1995) suggested that the Hamann coefficient (HC) provides a better 
measure of relative metamemory accuracy. HC can be computed when both predictor and 
criterion variables are dichotomous using the following formula (Romesburg, 1984):  

    
T

ICC

N

NN
HC

)( 
                 (7) 

where NT is the total number of items, NC is the number of correct judgments (the number 
of recalled items that are judged to be recalled and the number of forgotten items that are 
judged to be forgotten), and NIC is the number of incorrect judgments (the number of 
recalled items that are judged to be forgotten, and the number of forgotten items that are 
judged to be recalled). Although this measure has been criticized as a measure of 
metamemory accuracy (Cheng, 2010; Nelson, 1996; Wright, 1996), it is sometimes used as 
a supplement of G (e.g., Reggev, Zuckerman, & Maril, 2011). Another measure of 
metacognitive accuracy is Hart’s difference score, D, which is calculated as the difference 
in mean metacognitive judgments between recalled and unrecalled items (Hart, 1965; this 
is also conceptually equivalent to corrected hit rate in the case where both criterion and 
predictor variables are dichotomous). This measure is intuitively easy to understand, and 
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still practically reported (e.g., Merritt, Hirshman, Hsu, & Berrigan, 2005).  
By-participant Approach to the Group-level Inference of Relative Accuracy 

 When data are collected from a group of participants and items, researchers are 
mostly interested in performing statistical tests (e.g., “Is the averaged gamma statistically 
different from zero?”) to make group-level inferences. Group-level inference refers to 
making a statistical inference regarding whether an obtained result in a given sample can 
be generalized to the population of participants and items. Being able to make this 
inference is obviously a critical aspect of empirical research in psychology, and research in 
metamemory accuracy is no exception. 
 Importantly, although our review revealed a variety of measures that quantify the 
relative accuracy of metacognitive judgments, there is surprisingly little variation with 
regard to the group-level statistical inference in the literature. Specifically, researchers take 
two steps to obtain group-level inferential statistics: Researchers compute a measure of 
relative accuracy (e.g., G) for each participant, and then enter a set of these values into a 
t-test or an analysis of variance (ANOVA) using participants as the unit of analysis. 
Following Baayen (2008), we shall call this approach the by-participant analysis. When 
making a group-level inference on the relationship between two variables, this 
by-participant analysis has long been advocated in the literature of experimental 
psychology (Lorch & Myers, 1990; Monin & Oppenheimer, 2005), as it has some desirable 
characteristics over other approaches (e.g., pooling across participants, aggregation over 
participants or items, etc.).  
 The traditional by-participant analysis, however, considers only random variation 
across participants (i.e., random participant effect), and overlooks an important effect 
inherent in metamemory experiments: a random item effect. Typically, items used in a 
specific experiment are considered as a (ideally random) sample from an infinite 
population of items, and the same set of items is used across all the participants. Due to 
variation in random sampling, the relative metacognitive accuracy in the population of 
items should be different from that in the sampled items, and the relative accuracy in the 
sampled items should be be similar across participants as long as metamemory judgments 
(e.g., JOLs) for individual items have some similarities across participants (this is very 
likely, as metamemory judgments are influenced by item characteristics; see Koriat, 1997). 
For example, let’s think about a situation where G between metacognitive judgments and 
memory performance is zero in an infinite population of items. In any given study, 
however, only a sample of items is included, and because of the random sampling variation 
of items, it is almost impossible that G computed from the included items is also exactly 
zero. Imagine that you have collected data from 1,000 participants in a metamemory 
experiment using one set of items, and compute G for each participant. Despite the fact 
that the relative accuracy (G) at the population level is zero, the averaged Gs across 
participants approach a certain non-zero value (denoted as ' ), not zero. Although '  
may be very small, the statistical test (i.e., a one-sample t-test) is then very likely to show 
that the averaged value is significantly different from zero. In other words, statistical tests 
that do not account for a random item effect can seriously inflate the Type-1 error rate, 
producing significant effects even when the population G is zero.  

Generalized Mixed-effects Model 
 The issue of random item effect is not new: Clark (1973) raised the issue nearly 
40 years ago, and it has recently attracted revived attention in multiple fields of psychology 
(Baayen et al., 2008; E. Freeman, Heathcote, Chalmers, & Hockley, 2010; Judd, Westfall, 
& Kenny, 2012). The impact of random item effect in metamemory research, however, has 
rarely been discussed. One naïve approach to account for the random item effect is to 
compute relative accuracy for each item (across participants) and conduct a t-test using 
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items as the unit of analysis (called “by-item analysis”; Raaijmakers, 2003; see also Clark, 
1973). This analysis, however, does not consider random variation across participants, and 
therefore the generalizability of the results to the population of participants is limited 
(Raaijmakers, Schrijnemakers, & Gremmen, 1999). The limitation of the conventional 
by-participant analysis and the by-item analysis is that both deal with only one type of 
random effect—either the random participant effect or random item effect. In recent years, 
however, statistical techniques, called mixed-effects models, have been developed that 
easily and effectively account for both random effects simultaneously (Baayen, 2008; 
Jaeger, 2008; Littell et al., 2006; Ozechowski, Turner, & Hops, 2007; Raudenbush & Bryk, 
2002; Snijders & Bosker, 1999). 
 The mixed-effects model with a dichotomous dependent variable (i.e., memory 
performance) is called the generalized mixed-effects model, and actually a simple extension 
of the logistic regression model explained earlier. Specifically, in a typical metamemory 
experiment where there is one continuous independent variable (i.e., metamemory 
judgments such as JOLs), the model can be specified as follows: 

ijij
ij

ij JOLuu 










 1000001
log 




                (8) 

where ij  represents the probability that the i th item of the j th participant is recalled. 

JOLij is metamemory judgment of the i th item of the j th participant (preferably 
mean-centered for each participant, to account for individual differences in average JOL 
ratings; Enders & Tofighi, 2007), and the association between memory strength and 
metamemory judgments (i.e., the effect of primary interest) is represented by 10. As in 

logistic regression model, 10  is typically interpreted after being converted into Exp 

( 10 ). Importantly, the equation takes into account both item ( iu0 ) and participant ( ju0 ) 

random effects that are added to the overall intercept term 00 . These multiple random 

effect components with different variances can be estimated based on maximum likelihood 
methods. Software for mixed-effects models is now widely available in specialized 
packages such as HLM (Raudenbush, Bryk, Cheong, Congdon, & Toit, 2011) or Mplus 
(Muthen & Muthen, 1998-2012) and in general statistical packages such as SAS (PROC 
MIXED or PROC GLIMMIX; Littell et al., 2006), SPSS (MIXED), or R (lme4 package; 
Bates, Maechler, & Bolker, 2011). It should be noted that the generalized mixed-effects 
models specified here include participants and items as crossed, independent random 
effects, as opposed to hierarchical or multilevel models in which random effects are 
assumed to be nested (Hox, 2002; see also Van den Noortgate & Onghena, 2006, for the 
simiralities and differences between the by-participant analysis and multilevel modeling 
analysis). The model specified in Equation 8 is considered an extension of these multilevel 
models, as it accounts for the fact that items are crossed with (rather than nested within) 
participants and accordingly, explicitly incorporates a random item effect (Quene & van 
den Bergh, 2008). Therefore, although recent metamemory research has begun to use 
multilevel modeling to model metamemory accuracy (e.g., Castel, Murayama, Friedman, 
McGillivray, & Link, in press; Hines, Touron, & Hertzog, 2009; Tauber & Rhodes, 2012), 
it is important to realize that the specification of a random item effect makes the 
mixed-effects model proposed here critically different from standard multilevel modeling 
approaches used in past research. Except for two remarkable papers specifically focusing 
on signal detection theory (Rouder & Lu, 2005; Rouder et al., 2007), the issue of random 
item effect has never been explicitly addressed in the context of metamemory research. 
 Mixed-effects models have several additional advantages. First, mixed-effects 
models have great modeling flexibilities. Equation 8 is a basic model and can be modified 
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according to individual experimental contexts and designs. For example, if researchers are 
interested in the difference in metacognitive accuracy across two groups, we can include an 
interaction term between metacognitive judgments and experimental conditions. 
Researchers can also specify random slopes of participants to account for the possibility 
that the association between metacognitive judgments and memory performance is 
different across participants This random slopes model can be specified as follows: 

ijjij
ij

ij JOLuuu 











)()(

1
log 1100000 




             (9) 

Equation 9 is different from Equation 8 in that random slope component ( ju1 ) is added to 

the model. 10  still represents the overall association between memory strength and 

metamemory judgments (i.e., the effect of primary interest), but this model also allows for 
the variation in the associations (i.e., slopes) across participants by incorporating ju1 . 

Second, mixed-effects models allow us to test whether hypothesized random 
effects are actually present in the data. The random item effect in Equation 8 or 9 ( iu0 ) 

represents the inter-item variation of recall difficulty (i.e., iu0  is large when, on average, 

some items are difficult to remember and other items are easy to remember)2. We believe 
that such random item effects are relatively common in memory research (as discussed 
later), but regardless of one’s standpoint, mixed-effects model can objectively evaluate the 
presence and the magnitude of different kinds of random effects in the data. Third, 
researchers can also include as many additional predictors as they want to control for the 
effects of these variables. This is an attractive feature of the mixed-effect model analysis, 
as computing partial associations is very cumbersome (if not impossible; see Goodman & 
Kruskal, 1954; Nelson, Narens, & Dunlosky, 2004) for the conventional G and SDT 
measures. We will revisit these issues in our simulation and empirical studies. 

Monte Carlo Simulations 
   To illustrate the inflation of Type-1 error rate in the traditional by-participant 
analysis and the effectiveness of mixed-effects modeling analysis, we performed a set of 
Monte Carlo simulations with several experimental settings used in metamemory research 
to compare these analyses. The experimental designs were selected for illustrative purpose 
and simplicity, but there are clearly many other alternative designs that are more complex. 
Mixed-effects model analysis can be easily adapted for such complex experimental designs. 
The Supplementary Materials Online includes R script (using the lme4 package; Bates et 
al., 2011) to perform mixed-effects model used in each simulation. 
Simulation 1: A Single-Group Case with Typical JOL ratings 
 In Simulation 1, we investigated the Type-1 error rate for the simplest case where 
researchers are interested in whether metamemory accuracy (i.e., the JOL-memory 
association) is significantly different from chance based on a dataset of multiple 
participants and items. The relationship between metamemory judgments (i.e., JOLs) and 
memory strength was assumed to be independent at the population level (i.e., null 
relationship). Then, we computed and compared the proportion of false-positive effects 
(with alpha = 0.05) by various by-participant measures and the mixed-effect model. 
 Method. Hypothetical JOL experiment data were simulated by systematically 
varying the number of simulated participants (N = 20, 40, 60, or 80) and the number of 
items (K = 10, 30, 50, 70). In the simulation, for each trial of each participant, we 
randomly sampled continuous JOL values from a normal distribution with mean = 0 and 
SD = 1, and computed the corresponding memory strength by considering a random 
participant effect, a random item (intercept) effect, a random slope connecting JOLs and 
memory strength, and random noise (mean = 0 and SD = 1). Critically, the population 
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mean of the random slope is zero, meaning that the simulation assumed no overall 
relationship between JOLs and memory strength at the population level. 

 Details of the pre-defined parameters are described in the Supplementary 
Materials Online. Among other parameters, the foremost interest of our simulation is the 
effect of random item effect on Type-1 error rates. We manipulated the absence or the 
presence of random item effect by setting the SD of random item effect to 0 (i.e., no item 
effect variance) or 0.6 (i.e., item effect variance is about one-third of the variance of 
random noise). It should be added that, to account for possible variation in the slopes 
across participants, the SD of the random slopes was set to 0.3 in our simulation. The 
simulation also assumed that the simulated continuous JOL values from the same item 
were weakly correlated (r = 0.3) across participants, in order to account for the findings 
that JOLs are influenced by item characteristics (i.e., intrinsic cues; Koriat, 1997). 
 For each item, we set a threshold value of zero on the memory strength dimension 
such that any item with a strength value falling above the threshold was classified as 
recalled, and all other items were classified as forgotten. We also set five equal-interval 
threshold values on the JOL dimension such that the continuous JOLs are mapped onto a 
6-point discrete scale, as is frequently done with JOL research (e.g., Dunlosky & Connor, 
1997; Hertzog, Kidder, Powell-Moman, & Dunlosky, 2002).  
 For each simulated experimental dataset with N participants of K items, a set of 
measures of metamemory accuracy were computed (i.e., G, Gw, G*, rpb, rb, rpc, logistic B, 
da, Az, and D)3 for each participant, and these values were entered into a one-sample t-test 
to test whether the average values were statistically different from chance. In addition, the 
same dataset was applied to a generalized mixed-effect model. The tested model was 
equivalent to Equation 9, and the independent variable (i.e., JOLs) was centered within 
participants (Enders & Tofighi, 2007; Hoffman & Stawski, 2009). 
 The main focus of this model is the statistical significance of the fixed slope value 
of JOL ( 10  in Equation 9). There are primary two ways to obtain p-values from 

generalized mixed-effects models4. First, we divide the estimated coefficient by its 
standard error to obtain a z value, and judge the effect to be significant if the z value 
surpasses 1.96. Previous studies indicated that such z tests tend to be lenient in the context 
of mixed-effects model analysis (Baayen et al., 2008). The second option is to test the 
fixed slope value by using a log-likelihood ratio test (LRT; Baayen, 2008). Specifically, we 
applied a mixed-effects model twice to the same data, once with and once without the fixed 
slope. We then compared the fit statistics between these two models with a LRT. When a 
significant improvement of model fit was observed by including the fixed slope effect, we 
considered the fixed slope as significant (for problems with this procedure, see Pinheiro & 
Bates, 2000). The total number of replications (i.e., simulated experiments) was 5,000 for 
each combination of the parameters. Alpha was set to 0.05 throughout the simulation.  
 Results. Without a random item effect, the simulation showed that all the 
metamemory measurements and the mixed-effects model closely kept the nominal Type-1 
error rates (see Figure S1 in Supplementary Materials Online), except for a very slight 
anticonservatism of z test in mixed-effects modeling with a small number of participants or 
items. These results suggest that when there truly is no random item effect, by-participant 
analysis yields tests of metamemory accuracy that have appropriate Type-1 error rates. 
 When a random item effect is present, however, the picture changes dramatically. 
Figure 1 plots the Type-1 error rates as a function of number of participants and items. In 
these simulated experiments, the mixed-effects model still shows reasonable Type-1 error 
rate (except for z test showing a slight inflation when the numbers of participants and items 
are small). In contrast, the conventional by-participant analysis shows a remarkable degree 
of positive bias, regardless of the accuracy measure used. Generally, Type 1 error rates 
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increased when 1) number of items decreased, and 2) number of participants increased. In 
the worst cases, Type-1 error rates exceeded .30 in our simulation. Larger number of 
participants exacerbated Type-1 error rates because, as described earlier, a random item 
effect produces an artefactual non-zero association between metamemory judgment and 
memory performance in sampled items. Thus, the chance of detecting this non-zero 
association increases as the number of participants increase. Increasing the number of 
items, on the other hand, directs the artefactual non-zero association in sampled items 
toward zero (i.e., the population value). Accordingly, we found in our simulation that using 
large number of items inhibited the inflation of Type-1 error rates. We also observed that 
the regression coefficient of logistic regression analysis (logistic B) showed slightly lower 
Type 1 error rates than other by-participant analyses. These results are, however, the 
consequences of some inappropriate solutions in logistic regression analysis with small 
samples (see Supplementary Materials Online for further the discussion). 
 In sum, these results indicate that the traditional by-participant analysis bears the 
potential danger to yield statistically significant results in the absence of true metamemory 
accuracy (and especially so with large sample sizes). The mixed-effects model analysis 
(especially when LRT is used), however, always showed the appropriate Type-1 error rates, 
irrespective of the number of items or participants, providing the strong evidence that this 
model is more appropriate in the presence of random item effects. 
 Statistical power. Although our main focus is on Type-1 error rates, we also 
investigated the statistical power of the metamemory measures and mixed-effects model. 
For that purpose, we ran the same set of simulations with the true slope of 0.2 (with the 
current simulation parameters, a JOL-memory slope of 0.2 corresponds to a correlation of 
about 0.17), and computed the rate of correctly detecting statistically significant relations 
between JOL ratings and memory performance. Figure 2 summarizes the findings. Given 
the statistical fact that Type-1 error rates and Type-2 error rates are negatively related, one 
may expect higher statistical power for by-participant analysis. Figure 2 indicates that this 
is not really the case. In most of the cases, statistical power is comparable between 
by-participant analysis and mixed-effects modeling. The mixed-effects model actually has 
greater statistical power when the numbers of participants and item are large. These results 
indicate that lower Type I error rate in mixed-effects model was not simply due to a 
general conservatism (see Supplementary Materials Online on adjusted power analysis).   

Simulation 2: A Single-Group Case with varied JOL thresholds  
 Nelson (1984) argued that Goodman and Kruskal’s gamma correlation (G) is 
preferable because it is insensitive to the placements of the thresholds of metacognitive 
judgments. In Simulation 1, however, we placed fixed-interval thresholds for 
metacognitive judgments across participants (i.e., we set five equal-interval threshold 
values on the JOL dimension such that the continuous JOL are mapped onto a 6-point 
discrete scale), and these fixed thresholds may have underestimated the usefulness of G. 
Simulation 2 addressed this issue by adopting varied thresholds for JOL ratings across 
participants.  
 Method. The simulation was identical to Simulation 1 with a random item effect, 
except for one setting. Specifically, rather than using fixed threshold values to determine 
categorical JOL ratings, we randomly sampled (from a uniform distribution between -1.5 
to 1.5) five threshold values for each participant, and used these thresholds to map a 
continuous JOL values onto categorical JOL ratings on a 1-6 scale. 
 Results. The varied thresholds simulation revealed that G and other metamemory 
measures still exhibited Type-1 error rate inflation (Figure 3). On the other hand, 
mixed-effects model analysis kept Type-1 error rates close to 0.05, despite the fact that the 
mixed-effects model assumes an interval scale of measurement. These findings indicate the 
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robustness of mixed-effects modeling to threshold variation in metamemory judgment.   
Simulation 3: A Single-Group Case with Dichotomous JOL ratings 
 In some metamemory paradigms, such as “feeling of knowing”, metamemory 
judgments are made on a dichotomous scale (e.g., Hart, 1965). Accordingly, literature on 
measurement of metamemory accuracy has often focused on dichotomous metamemory 
judgments (Nelson, 1984; Rotello et al., 2008). As such, it is important to examine the 
performance of the by-participant analysis with a dichotomous independent variable. 
Because dichotomous judgments carry less information with regard to participants’ true 
state (MacCallum, Zhang, Preacher, & Rucker, 2002), a mixed-effects model analysis may 
not exhibit better performance than other metamemory measures specifically adapted for 
dichotomous variables. In Simulation 3, we investigated the effectiveness of the 
by-participant and the mixed-effects model analyses in the case of dichotomous 
independent and dependent variables.   
 Method. The simulation setup was identical to that of Simulation 1 with the 
presence of a random item effect, except for the following two aspects: First, instead of 
using fixed multiple thresholds to determine multiple discrete JOL ratings, the current 
simulation set a single threshold value that varies across participants. Simulated continuous 
JOL values were categorized as “yes” when the values were above the threshold and as 
“no” when the values are below the threshold, resulting in a 2 (metamemory judgment; yes 
vs. no) X 2 (memory recall; recalled vs. forgotten) observed data structure for each 
participant. Second, we computed measures of metamemory accuracy that are adapted to 
the dichotomous independent variable. We kept G, Gw, G*, as these measurements can be 
used for dichotomous independent cases. From the signal detection family, we computed 
d’ as well as Gc, which was proposed by Masson & Rotello (2009) as an alternative 
measure of metamemory accuracy in dichotomous metamemory judgment: 
         2)()(2 FHFHGC                       

 From the correlation family, we computed Pearson product-moment correlation 
(rpb), polychoric correlation (rpc), and logistic regression coefficients (logistic B) as in 
Simulation 1. In the case of dichotomous independent and dependent variables, the first 
two correlations are called the Phi coefficient and tetrachoric correlation, respectively. We 
also computed Hamann coefficient (HC) and Hart's difference score D.  
 Results. Figure 4 reports the observed Type-1 error rates as a function of number 
of participants and items. Although Type-1 error rates for measurements using the 
by-participant analysis are somewhat smaller than Simulation 1, they are still well beyond 
the nominal alpha = 0.05. On the other hand, despite the loss of information due to 
dichotomization, the mixed-effects model retained appropriate Type-1 error rates, further 
indicating the robustness of this approach (see also Supplementary Materials Online on the 
discussion of slightly lower Type-1 error rates of logistic B and G*). 
Simulation 4: A Case with Comparing Two Within-participant Conditions with a 
Between-Item Manipulation 
 Metamemory research is sometimes interested in comparing metamemory 
accuracy between two (or more) within-person conditions with a between-item 
manipulation. For example, Zimmerman and Kelley (2010, Experiment 1; see also Tauber 
& Dunlosky, 2012) asked participants to make JOLs for emotionally negative and neutral 
word pairs (22 pairs each). Although not the main focus of the article, they compared the 
JOL-recall gamma coefficients across the emotionality conditions, and found better 
metamemory accuracy (G) for negative word pairs than neutral word pairs. Note that this 
example examined the effect of emotional valence with a between-item manipulation (i.e., 
each condition has different items). In Simulation 4, we examined whether the inflation of 
Type-1 error rates would be observed with such an experimental design.  
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 Method. Hypothetical JOL experiment datasets were simulated by systematically 
varying the number of simulated participants (N = 20, 40, 60, or 80) and the total number 
of items (K = 20, 40, 60, 80). The basic parametric settings were almost the same as that of 
Simulation 1 with a random item effect. The main difference was that the items were split 
into one of the two conditions. Importantly, we posited that the true slope relating JOL and 
memory strength is identical (β = 0.3) between these conditions. That is, we assumed no 
effects of the experimental condition on metamemory accuracy at the population level. We 
also arbitrarily set the effects of experimental condition on memory to 0 and the SD of 
random participant effect of experimental condition to 0.3. 
 For each simulated experimental dataset, the measurements of metacognitive 
accuracy (i.e., G, Gw, G*, rpb, rb, rpc, logistic B, da, Az, and D) were computed for each 
condition of each participant. These values were entered into a paired t-test to test whether 
the average values were statistically different between the two experimental conditions. In 
addition, the same dataset was applied to a generalized mixed-effect model, with 
experimental condition as a predictor. Importantly, we included the interaction between 
metamemory judgment (JOL) and experimental condition. This interaction term was the 
primary focus of this mixed-effects model, as the term represents different JOL-memory 
relations between the two experimental conditions. Due to the computational load, the total 
number of replications was 3,000 for each combination of parameter values. 
 Results. The results (Figure 5) revealed that the conventional by-participant 
analysis still produces substantial inflation of Type-1 error rates, even when the primary 
focus is on the difference between conditions. Like in Simulations 1-3, Type-1 error rates 
increase as the number of participants increases. An interesting observation is that, unlike 
the previous simulations, increasing the number of items did not prevent the inflation of 
Type-1 error rates in this experimental design (see Supplementary Materials Online 
“Effects of Random Slope Variance on Type1 error Rate” for further discussion). 
Simulation 5: A Case with Comparing Two Between-participant Groups with a 
Within-Item Manipulation 
 Another typical comparison in metamemory research is that of metamemory 
accuracy between two independent groups with the same items. For example, research on 
aging has been concerned with age-related differences (e.g., younger adults vs. older 
adults) in metacognitive accuracy (Hertzog & Dunlosky, 2011). In these studies, younger 
and older adults make metacognitive judgments on the same learning materials, and their 
metacognitive accuracy (typically, gamma correlation) is compared.  
 Simulation 5 examined the Type-1 error rates when two independent groups are 
compared (i.e., a between-participants design). Importantly, in this particular paradigm, we 
do not anticipate the inflation of Type-1 error rates with the presence of a random item 
effect as defined in the previous simulations. Because the same learning materials are used 
for both groups, the artefactual non-zero association between metacognitive judgment and 
memory performance in sampled items is expected to be identical between the groups. 
Therefore, as far as researchers focus on the between-groups difference, statistical 
inferences are not biased. However, this expectation rests on the critical assumption that 
the random item effect (intercept) is identical across the groups. This is not a realistic 
assumption in many situations. For example, dated words may be easier to older adults, 
and words with higher-present-day frequency may be easier for younger adults to 
remember (the word frequency cohort effect; Worden and Sherman-Brown, 1983). 
Therefore, item effects may be different between younger and older adults. In the presence 
of such a random item effect X group interaction (in the context of mixed-effects model, 
this is equivalent to a random item slope of group), we may still expect inflation of Type-1 
error rates with the traditional by-participant analysis. 
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 Method. We systematically varied the number of simulated participants for each 
group (N = 20, 40, 60, or 80) and the total number of items (K = 10, 30, 50, 70) to generate 
hypothetical JOL experiments. The basic parametric settings were the same with 
Simulation 4, with the following exceptions: First, because we were interested in the 
between-groups difference, we did not split data of individual participants into two 
conditions. Instead, for each replication, two sets of independent data (number of 
participants = N) were generated to represent each group. Crucially, we posited that the 
true slope relating JOL and memory strength is identical (β = 0.3) between these groups, 
assuming no group difference in metamemory accuracy at the population level. Second, we 
manipulated the presence or absence of the random item effect X group interaction, by 
setting the SD of the random effect to 0.6 or 0.  
 For each replication, the measurements of metacognitive accuracy (i.e., G, Gw, G*, 
rpb, rb, rpc, logistic B, da, Az, and D) were computed for each participant. These values were 
entered into an independent samples t-test to test whether the average values were 
statistically different between the groups. The same dataset was applied to a generalized 
mixed-effect model, with group as a participant-level predictor. Importantly, we included 
the [cross-level] interaction between metamemory judgment (JOL) and group—the 
primary focus of this mixed-effects model analysis, as the term represents different 
JOL-memory relations between the groups.  
 Results. Type-1 error rates without the random item effect X group interaction 
showed that, although this simulation included a random item effect, as expected, the 
by-participant analysis measures all exhibited appropriate Type-1 error rates, regardless of 
the number of items or participants (see Figure S3 in Supplementary Materials Online). 
When the item effect X group interaction is considered, however, the same pattern as our 
previous simulations was observed in the by-participant analysis—Type-1 error rates were 
inflated (Figure 6), especially when the experimental design involves a small number of 
items or large number of participants. On the other hand, the mixed-effects model analysis 
kept the correct Type-1 error rates. 
Simulation 6: A Case with Comparing Two Within-participant Groups with a 
Within-Item Manipulation 
 Some metamemory studies employ counterbalancing procedures to assign the 
same items to different within-participant conditions. For example, Sungkhasettee, 
Friedman, and Castel (2011) assessed the JOLs of the items presented in an upright or 
inverted format. The word format (upright vs. inverted) was manipulated within 
participants: Half of the items were assigned to the upright condition, the other half of the 
items were assigned to the inverted condition, and the assignment of the items were 
counterbalanced across participants. Like the previous simulation using a 
between-participants design (Simulation 5), this paradigm is another example where the 
effect of a random item effect inflating Type-1 error rate in by-participant analysis is 
minimized: As the same items are used between the conditions (across participants), the 
artificial non-zero association between metacognitive judgment and memory performance 
in sampled items is expected to be the same across the conditions, preventing false 
significant effects (Raaijmakers et al., 1999). It is still possible, however, to conceive of 
scenario where this design is subject to the inflation of Type-1 error rate. Specifically, 
some types of experimental manipulations may alter the pattern of the random item effect 
between the conditions. Taking an example from Sungkhasettee et al. (2011), inverted 
words were overall recalled better than upright words on the final memory test, perhaps 
due to their more elaborate encoding process. Such an elaborative encoding process could 
have a differential impact on different items. If this random item effect X condition 
interaction is present, the artificial non-zero association between metacognitive judgment 
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and memory performance is different between the conditions, resulting in the inflation of 
Type-1 error rate. Simulation 6 examined the effects of random item effect X condition 
interaction in a within-participant design. 
 Method. We systematically varied the number of simulated participants for each 
group (N = 20, 40, 60, or 80) and the total number of items (K = 20, 40, 60, 80) to generate 
hypothetical JOL experiments. The basic parametric settings were the same with 
Simulation 4, with the two exceptions. First, the assignment of the items was 
counterbalanced across participants with two counterbalanced lists, so that the same item 
was assigned to the two conditions equally often. Second, we manipulated the presence or 
absence of the random item effect X condition interaction, by setting the SD of the random 
effect to 0.6 or 0.  
 By-participant analysis was the same with Simulation 4. The same dataset was 
applied to a generalized mixed-effect model, with condition as a within-participant 
predictor. Importantly, we included the interaction between metamemory judgment (JOL) 
and condition, which was the primary focus of this mixed-effects model analysis, as the 
term represents different JOL-memory relations between the conditions.  
 Results. In accordance with Simulation 5, Type-1 error rates without the random 
item effect X group interaction, but with the random item effect (intercept), showed 
appropriate Type-1 error rates, regardless of the analysis methodology used (see Figure S4 
in Supplementary Materials Online). When the item effect X group interaction is 
considered, however, the conventional by-participant analysis showed increased Type-1 
error rates, especially when the experimental design involves a small number of items or 
large number of participants. On the other hand, the mixed-effects model analysis kept the 
correct Type-1 error rates. It should be noted, however, that the false-positive rates were 
smaller than the other simulations, indicating the relative robustness of the current 
experimental design to Type-1 error rate inflation. 

Real Data Applications 
 The Monte Carlo simulations show that the traditional by-participant analysis 
tends to produce increased Type-1 error rates, regardless of specific type of measurements 
used. In contrast, the mixed-effects model analysis effectively prevented the inflation of 
Type-1 error rates. In the following sections, we present several real data applications to 
further complement these findings, and highlight additional strengths that are unique to the 
mixed-effects model analysis.  
Real Data Example 1: Test of Random Item effect 
 Our simulations revealed that a random item effect is a critical factor to determine 
whether the by-participant analysis produces increased Type-1 error rates. Without a 
random item effect, the by-participant analysis was able to hold Type-1 error rates at the 
set alpha level of 5%. This raises an important question: Is the random item effect common 
in practice? A random item effect in the context of memory research refers to the variation 
of memory performance (e.g., recall rate) between items. In other words, it is the inter-item 
variability in memorability (or recall difficulty) of items. We believe that such a random 
item effect is common in memory research (see also E. Freeman et al., 2010), because 
previous studies have revealed a myriad of factors that influence memorability of 
individual items, such as word frequency (Hall, 1954), word length (Watkins, 1972), 
imagery (Paivio & Smythe, 1971), emotionality (Kleinsmith & Kaplan, 1963), etc. Unless 
all of these factors are held completely constant, a random item effect is likely to exist. 
 To illustrate this point, the current example utilized a real metamemory dataset 
with standardized word stimuli (i.e., word stimuli used in a previous study), and 
empirically examined the presence of random item effect in that experiment. The mixed 
effects model is particularly useful even in this context, because unlike the by-participant 
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analysis, mixed-effects modeling can statistically test any random components included in 
the model. By taking advantage of this feature in the mixed-effects model analysis, we 
examined whether the random item effect is statistically significant for real experimental 
data using standardized word stimuli.  
 Method. Fifty participants were recruited from Amazon.com’s Mechanical Turk. 
The learning materials were 40 related word-pairs taken from Experiment 3 of Connor, 
Dunlosky, and Hertzog (1997). These target-cue pairs were highly associated on the basis 
of the University of South Florida associability norms. In the experiment, each word pair 
was presented for three seconds in a randomized order and participants were asked to make 
predictions (JOLs) about the likelihood that the target item would be recalled in a later 
cued recall test on scale of 0% to 100%. This study phase was followed by a 60 second 
distractor task, and then a cued recall test.  
 Results. To examine whether there was a statistically significant random item 
effect, we conducted a mixed-effects model, with memory performance as the dependent 
variable. This model was the same with Equation 8 but the independent variable (JOLs) 
was omitted from the model. The results (from a LRT) showed a highly significant random 
item effect, χ2 (1) = 78.80, p < .01. These findings indicate that the variation in memory 
performance with this specific learning material includes random item effects, suggesting 
the importance of incorporating random item effects with this learning material. The 
random participant effect was also significant, χ2 (1) = 306.16, p < .01. 
 The averaged Gs between JOLs and memory performance was .17 (SD = .37), 
which was significantly greater than zero, t(45) = 3.10, p < .01. Note that we needed to 
exclude four participants for whom we could not compute G, because they did not have 
variation in JOLs or memory performance. We also conducted a mixed effect model 
analysis that predicts memory performance from JOLs (Equation 9). JOLs were 
transformed into units of 10% (i.e., 1 point interval represents 10%) and group-mean 
centered. The results showed that the effects of JOL on memory performance was 
statistically significant with both z test, z = 4.86, p < .01 and LRT, χ2 (1) = 20.37, p < .01. 
The estimated exponential beta value, Exp (B), was 1.18, meaning that the odds that an 
item is recalled is increased by 1.18 times as the JOL value is increased by 10%. The 
random slope variance was not statistically significant, χ2 (1) = 1.33, p = .25. 
 The mixed effect model confirmed that the association between JOLs and memory 
performance was statistically significant in this experiment. However, the random item 
effect observed in this experiment may have inflated Type-1 error rate, had there not been 
any associations between JOLs and memory performance at the population level. 
Accordingly, to evaluate Type-1 error rates that could have happened with this memory 
data set, we further conducted a Monte Carlo simulation. Specifically, for the obtained 
memory dataset, we replaced the actual JOLs with hypothetical JOL values that were 
randomly generated in the same manner with Simulation 1. Then, we conducted a 
statistical test on the relationship between the generated JOLs and memory performance 
once with a by-participant analysis with gamma correlation and again with a mixed effect 
model analysis. This procedure was repeated 3,000 times. Because JOLs were randomly 
generated without considering actual memory performance, the JOL-memory relation 
should be null at the population level, and the rate of significant effects in this simulation 
can be considered as Type-1 error rate. 
 Consistent with findings from previous simulation studies, the mixed effects 
model produced a Type-1 error rate of 0.05 using the z-test and of 0.04 using LRT. On the 
other hand, the by-participant analysis with gamma correlation showed a Type-1 error rate 
of 0.15, comparable to what was observed in the previous simulations (see Figure 1). 
Although we need to be careful in generalizing our findings to other learning stimuli, these 
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findings indicate that our simulation studies reflect realistic situations that are existent in 
real memory data, at least to some extent. 
Real Data Example 2: Data with a Large Number of Missing Gammas 
 When a participant’s data does not vary in either metacognitive judgments (i.e., 
the same JOL value for all the items) or memory performance (i.e., perfect recall or zero 
recall), most measurements of metacognitive accuracy cannot be computed for that person. 
This is one of the issues frequently encountered in metamemory research. For example, 
Experiment 1 of Zimmerman and Kelley (2010), which was mentioned earlier, excluded 12 
out of 48 participants from their analysis because gamma could not be computed for these 
participants. For the same reason, Experiment 3 of Schwartz and Metcalfe (1992) excluded 
11 out of 32 participants for their analysis of metacognitive accuracy. This problem is 
particularly likely to happen when the number of items is small or memory performance 
exhibits ceiling or floor effects. The omission of participants, however, may bias the results, 
unless the pattern of missing/non-computable data takes place completely at random 
(Schafer & Graham, 2002).  
 On the other hand, the mixed-effects model analysis is a one-step procedure that 
does not directly compute metacognitive accuracy for each individual. Accordingly, a 
mixed-effects model can make full use of the information in the data, without the need to 
exclude participants that lack within-person variation. We will illustrate this point in the 
next example using the dataset from Experiment 2 of Kornell and Bjork (2008)5.  
 Method and Procedure. In Experiment 2, Kornell and Bjork (2008) asked 54 
participants to study 20 Swahili-English translations (Nelson & Dunlosky, 1994), each 
printed on a card. The procedure was similar to studying flashcards: Participants cycled 
through the cards repeatedly. On each trial, the front of the card (the Swahili cue) was 
shown first, before the card appeared to flip and the back (the English target) was shown. 
After the presentation of each target, participants were allowed to drop the item from the 
stack, if they did not want to study that word again in the next study cycle. When they 
decided to drop an item, they were asked to make a JOL on that item by selecting one of 
six categories (0%, 20%, 40%, 60%, 80%, and 100%). A cued-recall test was administered 
after a 5-minute distractor task.  
 Results. This illustration aims to examine the metamemory accuracy for the 
dropped items that received JOLs. Two participants did not drop any items and thus made 
no JOL ratings, resulting in the final set of 52 participants. We first computed G for each 
participant. As reported in Kornell and Bjork (2008), we could not compute G for as many 
as 48% of participants (i.e., 25 participants). This is mostly because of the fact that many 
participants showed perfect memory performance for the items they decided to drop. 
Another reason is that some participants had only a few JOL ratings because JOLs are 
made only on the dropped items. With the remaining 27 participants, the average gamma 
correlation between JOLs and recall performance (for the dropped items) was very high, M 
= .59 (SD = .51) and significantly greater than zero, t (26) = 6.03, p < .01. 
 Consistent with the previous application, our preliminary analysis on the data 
from Kornell and Bjork (2008) showed a significant random item effect, χ2 (1) = 4.44, p 
< .05. We then conducted a mixed-effects model predicting memory performance from 
JOLs (Equation 9). JOLs were transformed in the units of 10% (i.e., 1 point interval 
represents 10%) and group-mean centered. Despite the large number of participants with 
zero variance, the model converged successfully. The effect of JOL on memory 
performance was statistically significant for both z test, z = 5.16, p < .01, and LRT, χ2 (1) = 
18.2, p < .01. The estimated exponential beta value Exp (B) was 1.63, meaning that the 
odds that an item is recalled are 1.63 times greater as the value of JOL is increased by 10%. 
The random slope variance was not statistically significant, χ2 (1) = 0.86, p = .35. Although 
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both analyses showed the statistically significant effect of JOLs on memory performance, 
the present example provides a nice illustration of usefulness of a mixed-effects model 
analysis when there are a large number of participants with zero variance. In such cases, 
even if the results are consistent, the mixed-effects model is preferable given that it makes 
full use of the information in the data. 
Real Data Example 3: Controlling for Other Independent Variables  
 The mixed-effects model can be viewed as an extension of regression or logistic 
regression analyses, and accordingly, researchers may include multiple independent 
variables. The mixed-effects model analysis produces estimated beta values (called partial 
regression coefficients), which can be interpreted as the effect of a given independent 
variable after partialing out for the other independent variables (Cohen, Cohen, West, & 
Aiken, 2003). As such, by including multiple predictor variables, mixed-effects model 
enables researchers to statistically tease apart independent contributions of each 
independent variable to the dependent variable. Most of the conventional measurements in 
the by-participant analysis (e.g., G or Az), in contrast, have difficulty in addressing the 
effects of multiple independent variables or partial relations.  
 To illustrate the usefulness of a multiple-predictor model, this example employed 
data from unpublished work (Yan, Murayama, & Castel, 2013). This work aimed to 
investigate the effects of personal preference judgment on memory performance. Thus, 
though the study does not specifically examine metamemory judgments, it still highlights 
an important strength of the mixed-effects model analysis.   

 Method and Procedure. Ninety-one participants were recruited from 
Amazon.com’s Mechanical Turk (for details of the experiment, see Supplementary 
Materials Online). The learning materials were 16 popular ice cream flavors (e.g., 
strawberry, coconut). Participants were shown the 16 flavors one at a time, and asked to 
rate their preference for that flavor on a 1 (I really don't like this flavor) - 10 (I love this 
flavor) scale. Following a distractor task, participants were asked to recall the flavors they 
had studied. After recall, participants were asked to rate the familiarity of each flavor in 
their daily experience from 1 (not at all familiar) to 10 (very familiar).  

Results. We first computed G between preference ratings and memory performance 
for each participant. Excluding 10 participants for whom G could not be computed, the 
average G was positive and statistically significant, M = 0.08, t (80) = 2.13, p < .05, 
suggesting that preference drives better memory performance. However, memory 
performance was also positively related to flavor familiarity, M = .20, t (87) = 4.48, p < .01, 
and preference ratings and familiarity ratings were also strongly related, M = .52, t (80) = 
14.32, p < .01. These findings suggest the possibility that the positive relationship between 
preference and memory performance may be caused by the fact that familiar flavors are 
more preferred and memorable. 

Our preliminary mixed-effects model showed a significant random item effect, χ2 
(1) = 64.72, p < .01. When we tested a mixed-effects model that included preference 
ratings as a predictor, the results showed significant effect of preference on memory 
performance, Exp (B) = 1.06, for both z test, z = 2.88, p < .01, and LRT, χ2 (1) = 8.00, p 
< .01. The estimated coefficient indicated that the odds that an item is recalled are 1.06 
times likely as the value of preference rating is increased by 1. When we added familiarity 
ratings as the second predictor, however, the familiarity ratings showed a significant effect 
on memory performance for both tests, Exp (B) = 1.07, z = 3.10, p < .01; χ2 (1) = 9.24, p 
< .01, and the effects of liking was no longer significant for both tests, z = 1.34, p = 0.18; 
χ2 (1) = 1.74, p = .19. These results indicated that preference is not associated with 
memory performance, when familiarity ratings are held constant, a conclusion that could 
not have been drawn from the G measures. The random slope of either preference or 
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familiarity was not significant, p = 1.00 and p = 1.00, respectively. 
General Discussion 

 Since the 1980s, measurements of metacognitive accuracy have been a recurring 
issue in metamemory literature. Researchers have proposed a variety of measurements, 
including the most widely used gamma coefficient (G). The strengths and weaknesses of 
different measurements have also been discussed at length (Benjamin & Diaz, 2008; 
Maniscalco & Lau, 2012; Masson & Rotello, 2009; Nelson, 1984; Rotello et al., 2008; 
Schwartz & Metcalfe, 1994). Despite the number of proposed measurements, previous 
research has almost unanimously relied on the so-called by-participant analysis, where 
metacognitive accuracy measurements are computed for each participant and then entered 
into a statistical test (e.g., t-test) to make a group-level inference. In contrast, little attention 
has been paid to Type-1 error rates when making group-level statistical inferences. 
Although by-participant analysis is a well-accepted procedure in practice, the current work 
showed that this conventional analysis can inflate Type-1 error rates when a random item 
effect is present. Our simulation showed that, in certain circumstances, this inflation can be 
considerably high, calling for attention to this important issue. Our Monte Carlo simulation 
illustrated that the mixed-effects model can be an effective way to address this issue, 
across many different experimental designs and even in situations where the common 
metacognitive accuracy measure (i.e., G) allegedly has advantage (e.g., varied thresholds 
in JOLs; Simulation 2). 

It should be emphasized that we by no means argue that many of the findings on 
metacognitive accuracy are false-positives. The relationship between metacognitive 
judgments and memory performance is mostly small to moderate, if not large (Dunlosky & 
Metcalfe, 2009), and it is quite implausible to explain this large body of consistent 
observations by increased false-positive rates with the by-participant analysis. Nevertheless, 
our findings have potential to provide a useful alternative view to interpret some past 
findings in metamemory research. For example, as described earlier, Experiment 1 of 
Zimmerman and Kelley (2010) found better metamemory accuracy (assessed by G) for 
negative word pairs than neutral word pairs using the by-participant analysis. However, 
this result was not replicated in their subsequent studies (Experiments 2 -4). Although the 
authors did not provide explanations, our work could suggest that these inconsistent results 
may be simply due to a Type-1 error. Another example comes from aging literature, where 
the majority of research has shown that there is no age-related decline in terms of 
metacognitive accuracy (Hertzog, Sinclair, & Dunlosky, 2010; Robinson, Hertzog, & 
Dunlosky, 2006; for reviews, see Hertzog & Dunlosky, 2011; Rhodes & Tauber, 2011). 
There are, however, a few studies that show a statistically significant difference in 
metacognitive accuracy between younger and older adults (e.g., Daniels, Toth, & Hertzog, 
2009; Souchay, Moulin, Clarys, Taconnat, & Isingrini, 2007). These inconsistencies were 
attributed to methodological differences in experiment (see Hertzog, Dunlosky, & Sinclair, 
2010). However, our findings suggest that part of these inconsistent findings might be 
caused by the inflation of Type-1 error rates in using the by-participant analysis.  
When By-participant Analysis is Resistant to the Type-1 Error Inflation 
 Our primary recommendation is to use mixed-effects model whenever possible, 
but it is also practically useful to know when the conventional by-participant analysis does 
not inflate Type-1 error rates (especially when we read or review a paper that uses the 
by-participant approach). Our simulations suggested some answers to this question. 
 The foremost important factor is clearly the presence of a random item effect. As 
indicated earlier, it is difficult to nullify random item effect in practice, as there are 
numerous factors that contribute to the memorability of individual items. Careful choice of 
items that hold several important characteristics (e.g., word frequency, word familiarity) 
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constant, however, may reduce the random item effect to a certain extent. These 
homogeneous items, on the other hand, cannot be regarded as a random sample from a 
broader item population. Thus, this selective approach should limit the generalizability of 
the findings to a broader set of items with different item characteristics. The second factor 
we observed is the number of items in an experiment. Our simulations showed that using a 
large number of items (per condition) typically reduces Type-1 error rates. Although this 
may appear to be a realistic solution, in practice it is often difficult to increase the number 
of items per condition, especially when there are multiple within-participant factors.  
 Another important factor is the nature of experimental design. As shown in 
Simulations 5-6, random item effect does not necessarily inflate Type-1 error rate when 
two groups/conditions use the same items across participants (see Figures S3-S4; see 
Raaijmakers et al., 1999). Our simulations indicated that a random item effect X condition 
interaction could increase the Type-1 error rate even in those cases, but the impact was less 
than in the other simulations. A similar alternative design that can be applied to most 
experimental designs is to prepare a large number of items and assign a small set of 
different items to each participant/condition, either by using different lists or randomly 
sampling items. Although not standard in previous experiments (see Son & Kornell, 2009, 
for an exception), such item selection procedure could minimize the problem of 
by-participant analysis. Finally, our simulations also showed that the number of 
participants is another consistent factor that influences Type-1 error rates. That is, 
increasing the number of participants exacerbated false-positive errors. This finding, 
however, does not mean that studies with a smaller number of participants are desirable. 
As shown in our simulation (Figure 2), small numbers of participants yield poor statistical 
power, which makes it difficult to make inferences when statistically significant effects are 
not obtained (Wagenmakers, 2007). 
Issue of Model Specification 
 One of the strengths of mixed-effects modeling is the flexibility of model 
construction. That is, researchers can flexibly incorporate different kinds of random effects, 
such as a random participant effect or random participant slopes based on the experimental 
design, and statistically evaluate the presence of these effects. But the flip side of this 
flexibility is the risk of model misspecification. For example, in the current paper, our 
mixed effects model mainly tested the model in Equation 9 (and data are basically 
generated by this model). It is possible, however, to add another type of random item 
effects to the model—a random item slope ( ju1 in the following equation). 
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 In this model, metacognitive accuracy can vary across different items as well as 
different participants. We did not consider the random item slopes in our models because 
1) the complexities of the model would be likely to a produce non-convergence problem in 
estimation process and 2) in our own experiences, the variance of random item slopes is 
much less likely to be statistically significant6. If random item slopes exist, however, 
specifying a model in Equation 9 would be likely to produce incorrect parameter estimates 
and Type-1 error rate. Although the field has not come to an agreement, two other 
strategies to handling the issue of model misspecification are worth mentioning.  
 First, we specify all the possible random effects afforded by the design of the 
experiment in focus in any statistical analyses. Barr et al. (2013) showed that this strategy 
performs better than other modeling strategies when the dependent variable is continuous. 
He also noted, however, that the complexity of the full model may hinder the estimation 
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process when the dependent variable is categorical like in our simulations and examples. 
Second, we can decide upon the inclusion or exclusion of a random effect based on the 
statistical test (i.e., LRT) of that random effect. This stepwise procedure has the advantage 
in that it can avoid model nonconvergence and possibly preserves statistical power by 
minimizing the number of estimated parameters. On the other hand, this strategy 
capitalizes on the sampling variation and thus runs the risk of model overfitting, 
endangering the generalizability of results (Babyak, 2004). In addition, this strategy may 
lead to different final models depending on how random item effects are sequentially 
tested (Barr et al., 2013). Future work is needed to delineate the best way to avoid model 
misspecification in the context of generalized mixed-effects model. 
Additional Strengths of Mixed-effects Model and Expansion 
 Missing data (participants who do not allow us to compute metacognitive 
accuracy measure) present a practical challenge to researchers in metamemory. This 
happens, because most of the measurements in metacognitive accuracy cannot be 
computed when the variance of one variable is zero. The situation becomes even worse for 
the measurements that do not have lower or upper boundaries such as G*, logistic B, or d’. 
For these measurements, “perfect” association produces an infinite value, and researchers 
are forced to drop these participants or add some ad-hoc modifications to re-compute the 
value (Stanislaw & Todorov, 1999). On the other hand, our second application illustrated 
that the mixed-effects model can easily address this issue, making full use of the 
information from the data. It should be added that the mixed-effects model is also resistant 
to item-level missing data (i.e., missing observations within each participant). This is 
typically the case in “feeling-of-knowing” research, where participants make 
feeling-of-knowing judgments only for those items for which they could not recall a 
correct answer (Gruneberg, Monks, & Sykes, 1977). In such situations, the reliability of 
computed metamemory-memory association is different between participants, as the 
number of items is different across participants (e.g., G computed from a participant with 
fewer items is relatively unstable). Mixed-effects model analysis effectively takes into 
account the reliability information and provides a precise estimate of 
metamemory-memory association.  

The final empirical application showed the capacity of the mixed-effects model to 
include multiple predictors. In metamemory literature, it is not uncommon to ask 
participants to make multiple metacognitive judgments (e.g., Leonesio & Nelson, 1990; 
Wahlheim, Finn, & Jacoby, 2012). Furthermore, typical metamemory experiments 
inherently contain a variety of information that may influence memory performance or 
metamemory judgments such as reaction time or item order. In these situations, the 
mixed-effects model is particularly a powerful tool, as it computes the unique contribution 
of each independent variable to memory performance. This way, researchers can eliminate 
possible confounding variables or understand the factors that contribute to a specific 
metamemory-memory relation7. In addition, recent statistical developments allow 
researchers to test more complicated path models (e.g., mediation model) using a 
multilevel structural equation model framework (Asparouhov & Muthen, 2012; see also 
Preacher, Zyphur, & Zhang, 2010). 
 As the equal-variance signal detection model can be considered as a submodel of 
generalized mixed-effects model (DeCarlo, 1998), it is possible to expand our model to 
encompass the signal detection measure of metamemory accuracy. Similarly, Rouder and 
his colleagues (Rouder & Lu, 2005; Rouder et al., 2007) recently provided a hierarchical 
Bayes framework of the signal detection model that takes into account both random 
participant and item effects. This expansion of the model, though the analysis is not yet 
easily accessible to researchers who are not expert in statistics, would open a venue for a 
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more fine-grained analysis on metacognitive accuracy. A Bayesian framework (e.g., Fong, 
Rue, & Wakefield, 2010) can also effectively loosen the assumptions inherent in the 
mixed-effects models (e.g., normality of error term). Future studies would do well to 
examine and compare the performance of such advanced statistical models.  
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Footnotes 
1. Some researchers argue that Type-2 signal detection tasks—where people judge the 
correctness of their own decisions (Clarke, Birdsall, & Tanner, 1959; Galvin, Podd, Drga, 
& Whitmore, 2003)—provides a better measure of metacognitive accuracy (Barrett et al., 
in press; Higham, 2007; Maniscalco & Lau, 2012). Although Type-2 SDT fits well with 
some specific metacognitive judgment tasks (e.g., confidence judgment of perceptual 
discrimination task), it is comparable to the standard SDT (also called the Type-1 SDT) in 
that the model assumes separate distributions for target and distractor items. Therefore, 
Type-2 SDT also may not be applicable when there are no distractor items, as in common 
in JOL experiments. In addition, these measures are also subject to the inflation of Type-1 
error rates that we will demonstrate. 
 
2. It is possible to further incorporate random item slopes (i.e., the inter-item variation of 
metacognitive accuracy) in our models. In the current manuscript, we limited the term 
random item effect to refer to random item intercept ( iu0 ) in Equation 8 or 9 (i.e., the 

inter-item variation of overall recall difficulty), following the conventional use of this term 
(e.g., Judd et al., 2012; but see Barr, Levy, Scheepers, & Tily, 2013). Random item slopes 
will be discussed in General Discussion. 
 
3. We also computed Gk and Gw. As these measures showed very similar results with Gs, in 
this and in the following simulations, for display purposes, we only report the results from 
Gs, but not from Gk or Gw. The results from these measures can obtained from the authors 
upon request. 
 
4. When the dependent variable is continuous, there are a few more options to derive 
p-values from mixed-effects models. For example, recent simulation studies showed that 
the Kenward–Roger approximation (Kenward & Roger, 1997) controls for Type-1 error 
rate relatively well (Schaalje, McBride, & Fellingham, 2002). Baayen et al. (2008) 
recommended Markov Chain Monte Carlo methods. These options are, however, not yet 
well implemented in models with a categorical dependent variable (i.e., generalized 
mixed-effects model).  
 
5. We thank Dr. Nate Kornell for sharing the data. In their Experiment 2, there were four 
experimental conditions, but the current manuscript focuses only on one of the conditions 
(i.e., Drop – JOL condition) as this is the only condition that includes JOLs. 
 
6. In fact, none of the real data used in our examples showed significant random item 
slopes in our preliminary analyses. 
 
7. As indicated in the literature (Brunner & Austin, 2009; Culpepper & Aguinis, 2011), 
when there is more than one correlated independent variables, measurement error of one 
independent variable can inflate the Type-1 error rates of the other predictors in regression 
analysis. We believe this issue should also apply to the generalized mixed-effects model. 
In addition, measurement error in the independent variable(s) typically produces attenuated 
parameter estimates. Although beyond the scope of the paper, multilevel structural 
equation model (Asparouhov & Muthen, 2012) may potentially address these problems by 
controlling for measurement error of independent variables. 
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Figure Captions 
Fig. 1. Type 1 error rates as a function of number of participants and number of items in 
Simulation 1, when random item effect is present. Gw = corrected gamma correlation 
proposed by Wilson (1974). rpb = point-biserial correlation. rb = biserial correlation. rpc = 
polychoric correlation. Logistic = logistic regression coefficient. da = a signal detection 
measure with unequal variance computed by Equation 4. Az = a signal detection measure 
with unequal variance computed by Equation 5. D = Hart's difference score. Mixed model 
z test = z value more than 1.96 with mixed-effects model. Mixed model LRT = 
Log-likelihood ratio test with mixed-effects model. The predetermined alpha value (α 
= .05) is highlighted by the dotted line. 
 
Fig. 2. Statistical power as a function of number of participants and number of items in 
Simulation 1, when random item effect is present (true slope = 0.2). Gw = corrected gamma 
correlation proposed by Wilson (1974). rpb = point-biserial correlation. rb = biserial 
correlation. rpc = polychoric correlation. Logistic = logistic regression coefficient. da = a 
signal detection measure with unequal variance computed by Equation 4. Az = a signal 
detection measure with unequal variance computed by Equation 5. D = Hart's difference 
score. Mixed model z test = z value more than 1.96 with mixed-effects model. Mixed 
model LRT = Log-likelihood ratio test with mixed-effects model.  
 
 
Fig. 3. Type 1 error rates as a function of number of participants and number of items in 
Simulation 2, when random item effect is present. Gw = corrected gamma correlation 
proposed by Wilson (1974). rpb = point-biserial correlation. rb = biserial correlation. rpc = 
polychoric correlation. Logistic = logistic regression coefficient. da = a signal detection 
measure with unequal variance computed by Equation 4. Az = a signal detection measure 
with unequal variance computed by Equation 5. D = Hart's difference score. Mixed model 
z test = z value more than 1.96 with mixed-effects model. Mixed model LRT = 
Log-likelihood ratio test with mixed-effects model. The predetermined alpha value (α 
= .05) is highlighted by the dotted line. 
 
Fig. 4. Type 1 error rates as a function of number of participants and number of items in 
Simulation 3, when random item effect is present. Gw = corrected gamma correlation 
proposed by Wilson (1974). Phi = Phi coefficient. Tetrachoric Cor. = tetrachoric 
correlation. Logistic = logistic regression coefficient. d’ = a signal detection d prime 
computed by Equation 3. Gc = a signal detection measure computed by Equation 8. HC = 
Hamann coefficient. D = Hart's difference score. Mixed model z test = z value more than 
1.96 with mixed-effects model. Mixed model LRT = Log-likelihood ratio test with 
mixed-effects model. The predetermined alpha value (α = .05) is highlighted by the dotted 
line. 
 
Fig. 5. Type 1 error rates as a function of number of participants and number of items in 
Simulation 4, when random item effect is present. Gw = corrected gamma correlation 
proposed by Wilson (1974). rpb = point-biserial correlation. rb = biserial correlation. rpc = 
polychoric correlation. Logistic = logistic regression coefficient. da = a signal detection 
measure with unequal variance computed by Equation 4. Az = a signal detection measure 
with unequal variance computed by Equation 5. D = Hart's difference score. Mixed model 
z test = z value more than 1.96 with mixed-effects model. Mixed model LRT = 
Log-likelihood ratio test with mixed-effects model. The predetermined alpha value (α 
= .05) is highlighted by the dotted line. 
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Fig. 6. Type 1 error rates as a function of number of participants and number of items in 
Simulation 5, when random item effect X group interaction is present. Gw = corrected 
gamma correlation proposed by Wilson (1974). rpb = point-biserial correlation. rb = biserial 
correlation. rpc = polychoric correlation. Logistic = logistic regression coefficient. da = a 
signal detection measure with unequal variance computed by Equation 4. Az = a signal 
detection measure with unequal variance computed by Equation 5. D = Hart's difference 
score. Mixed model z test = z value more than 1.96 with mixed-effects model. Mixed 
model LRT = Log-likelihood ratio test with mixed-effects model. The predetermined alpha 
value (α = .05) is highlighted by the dotted line. 
 
Fig. 7. Type 1 error rates as a function of number of participants and number of items in 
Simulation 6, when random item effect X condition interaction is present. Gw = corrected 
gamma correlation proposed by Wilson (1974). rpb = point-biserial correlation. rb = biserial 
correlation. rpc = polychoric correlation. Logistic = logistic regression coefficient. da = a 
signal detection measure with unequal variance computed by Equation 4. Az = a signal 
detection measure with unequal variance computed by Equation 5. D = Hart's difference 
score. Mixed model z test = z value more than 1.96 with mixed-effects model. Mixed 
model LRT = Log-likelihood ratio test with mixed-effects model. The predetermined alpha 
value (α = .05) is highlighted by the dotted line. 
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Details of Simulation 1 
 Hypothetical JOL experiment data were simulated by systematically varying the 

number of simulated participants (N = 20, 40, 60, or 80) and the number of items (K = 10, 
30, 50, 70). In the simulation, for each trial of each participant, we randomly sampled 
continuous JOL values from a normal distribution with mean = 0 and SD = 1, and 
computed the corresponding memory strength by considering a random participant effect, 
a random item effect, a random slope connecting JOLs and memory strength, and random 
noise. All the random effects were simulated from a normal distribution with mean = 0. 
Accordingly, the population mean of the random slope is zero, meaning that the simulation 
assumed no overall relationship between JOLs and memory strength at the population level. 
The SD of the random noise was held constant across the simulations at 1. We manipulated 
the absence or the presence of a random item (intercept) effect by setting the SD of the 
random item effect to 0 (i.e., no item effect variance) or 0.6 (i.e., item effect variance is 
about one-third of the variance of random noise). Our pilot simulation indicated that the 
variance of the random participant effect does not influence any of the simulation results. 
This is a logical consequence of the fact that the by-participant analysis computes relative 
accuracy based only on covariation within each participant. That is, by computing relative 
accuracy measurements separately for each participant, between-participants variation in 
memory performance is effectively eliminated in the by-participant analysis. The 
mixed-effects model analysis also takes into account random participant effect. Therefore, 
we arbitrarily set the SD of the random participant effect to 0.6. 

 The SD of the random slopes was set to 0.3. With the current simulation 
parameters, a JOL-memory slope of 0.3 approximately corresponds to a correlation of 0.25. 
By setting random slope SD = 0.3, therefore, the simulation posits that the correlation 
between JOL and memory strength vary mostly between -.50 to .50 across participants. 
Note that this is the variation in slope/correlation when there are unlimited number of 
items—with a limited number of items, the observed variance in the relation between JOLs 
and memory would be even larger. Finally, many studies found that JOLs are influenced 
by item characteristics (i.e., intrinsic cues; Koriat, 1997). Accordingly, in order to simulate 
realistic experiments, the simulation also assumed that the simulated continuous JOL 
values from the same item were weakly correlated (r = 0.3) across participants.  

 For each item, we set a threshold value of zero on the memory strength dimension 
such that any item with a strength value above the threshold was classified as recalled, and 
all other items were classified as forgotten. It should be noted that the possible fluctuation 
of the threshold value (i.e., threshold variance) across participants, items or trials is 
reflected in the random effects in our simulation. In other words, our simulation took the 
threshold variance into consideration by incorporating different types of random effects. 
We also set five equal-interval threshold values on the JOL dimension such that the 
continuous JOLs are mapped onto a 6-point discrete scale, as is frequently done with JOL 
research (e.g., Dunlosky & Connor, 1997; Hertzog, Kidder, Powell-Moman, & Dunlosky, 
2002).  
 For each simulated experimental dataset with N participants of K items, all the 
possible measures of metamemory accuracy were computed (i.e., G, Gw, G*, rpb, rb, rpc, da, 
Az, and D) for each participant, and these values were entered into a one-sample t-test to 
test whether the average values were statistically different from chance. In addition, the 
same dataset was applied to a generalized mixed-effect model using the lme4 package in R 
(Bates et al., 2011). We used a standard logit-link function to handle the dichotomous 
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dependent variable. The tested model was equivalent to Equation 9, including three 
independent random components (i.e., random participant intercept, random item intercept, 
and random participant slope), and the independent variable (i.e., JOLs) was centered 
within participants following recommendations in the past literature (Enders & Tofighi, 
2007; Hoffman & Stawski, 2009). The primary focus of this model is the statistical 
significance of the fixed slope value of JOL ( 10  in Equation 9). There are primary two 

ways to obtain p-values from generalized mixed-effects models (see footnote 4 in the main 
text). First, we divide the estimated coefficient by its standard error to obtain a z value, and 
judge the effect to be significant if the z value surpasses 1.96. Previous studies indicated 
that such z test tends to be lenient in the context of mixed-effects model analysis (Baayen 
et al., 2008). The second option is to test the fixed slope value by using a log-likelihood 
ratio test (LRT; Baayen, 2008). Specifically, we applied a mixed-effects model twice to the 
same data, once with and once without the fixed slope (i.e., a baseline model). We then 
compared the fit statistics between these two models with a LRT. When a significant 
improvement of model fit was observed by including the fixed slope effect, we considered 
the fixed slope as significant. One possible weakness of this approach is that the model has 
an appropriate, nested baseline model. However, the appropriate baseline is not always 
available. For example, if a model has two main effects and one interaction between them, 
the main effect of this model is difficult to test using LRT, because dropping the main 
effect while keeping the interaction term yields results in an inappropriate model.  
 The total number of replications (i.e., simulated experiments) was 5,000 for each 
combination of the parameters. Alpha was set to 0.05 throughout the simulation.  

Previous studies indicated that the conventional z-test tends to be lenient in the 
context of mixed-effects model analysis (Baayen et al., 2008). Accordingly, we additionaly 
tested the fixed slope value by using a log-likelihood ratio test (Baayen, 2008). Specifically, 
we applied a mixed-effects model twice to the same data, once with and once without the 
fixed slope. We then compared the fit statistics between these two models with a 
log-likelihood ratio test. When a significant improvement of model fit was observed by 
including the fixed slope effect, we considered the fixed slope value as significant. The 
total number of replications (i.e., simulated experiments) was 5,000 for each combination 
of the number of participants (N = 20, 40, 60, or 80), the number of items (K = 10, 30, 50, 
70), and the random item effects (SD = 0 or 0.6). Alpha was set to 0.05 throughout the 
simulation. 

 The simulations presented in this paper were computed in parallel, using 120 CPU 
cores provided by a dedicated hybrid CPU-GPU Infiniband compute cluster as well as 13 
high-performance analysis laboratory workstations; both computer platforms are hosted at 
the Centre for Integrative Neuroscience and Neurodynamics, University of Reading, UK. 
Logistic Regression Coefficients and Type 1 Error Rates 

 Throughout the simulations, the regression coefficient of logistic regression 
analysis (logistic B) consistently showed slightly lower Type 1 error rates than other 
measures using by-participant analysis. These results do not mean that logistic B is 
resistant to the Type-1 error rate inflation caused by random item effects. The lower Type 
1 error rates actually came from the fact that logistic regression model cannot uniquely 
estimate the regression coefficient when predictors can perfectly separate the occurrence 
and absence of a binary outcome (called “linear separation problem). This issue is not so 
common when we have many observations. In the context of metamemory research and 
our simulation, however, logistic regression is applied to each individual with a relatively 
small number of items, possibly resulting in the omission of relatively large number of 
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participants. As a consequence, logistic B showed artificially deflated Type 1 rates in our 
simulations. 
Adjusted Power Analysis in Simulation 1 

 Although Figure 2 presented the statistical power of different methodologies, it is 
misleading to directly compare the power of different approaches that differ in Type 1 
error rate, because the power of anticonservative approaches will be inflated. An ideal 
statistical analysis method maximizes statistical power while keeping Type 1 error nominal. 
To make a fair comparison across the methodologies, we also calculated an adjusted power 
(Barr, Levy, Scheepers, & Tily, 2013), a power rate corrected for the difference in Type-1 
error rates. Specifically, for each methodology, we first obtained the p-value at the 5% 
quantile of the empirical p-value distribution yielded in Simulation 1 (i.e., simulation with 
the null hypothesis). We used this p-value as the cutoff for rejecting the null hypothesis for 
the given methodology in the statistical power simulation (i.e., true slope = 0.2). As 
illustrated in Figure S2, the adjusted power analysis showed much higher statistical power 
for mixed-effects model than for by-participant analyses, further indicating the advantage 
of mixed-effects modeling. 
G* and Type 1 Error Rates in Simulation 3 

 One anomalous observation in Simulation 3 (Figure 2) is that Type-1 error rates of 
G* inflate at a slower rate than the other measures as the number of participants increased. 
This is caused by a special property of computing G*. As shown in Equation 2, G* cannot 
be computed (i.e., it is treated as missing) when G = -1 or G = 1. With a small number of 
categories like in the current simulation, G is likely to take such extreme values especially 
when the number of items is small, and this increases number of missing data points. 
Accordingly, G* has a smaller number of participants contributing to the group-level 
inferences in comparison to other metamemory measurements, resulting in smaller Type-1 
error rates. Given that participants with G = -1 or 1 have certain meaningful information 
about their metacognitive accuracy, such omissions are not considered a desirable 
characteristic of G*. 
Effects of Random Slope Variance on Type1 error Rate 

 As a supplementary analysis, we examined the effects of random slope variance 
(i.e., the variation of JOL-memory relations across participants). All the simulations we 
conducted posited a variance in true slopes (across participants), and this simulation aimed 
to examine the impact of this assumption. If the slope variance were smaller, the computed 
metamemory accuracy measures (e.g., G) would vary less across participants. Accordingly, 
we could expect an even higher chance of finding a (false) significant effect. To confirm 
this point, we simulated the same set of experiments in Simulation 1 with random slope SD 
= 0, 0.15, and 0.30 (in our original simulation, we used 0.30). Table S1 reports the 
observed Type-1 error rates with N = 40. The results with N = 20, 60, and 80 are available 
from the authors upon request. Consistent with our prediction, the results indicated that the 
traditional by-participant analysis produces higher Type-1 error rates when there is a 
smaller random slope variance. Another interesting observation is that, when random slope 
variance is small, increasing the number of items does not mitigate the inflation of Type-1 
error rates. This may be because increasing the number of items would also decrease the 
sampling variation of metacognitive accuracy measurements (e.g., G becomes stable with 
many items), which ironically, enhances the chance of detecting small non-zero artefactual 
association. In other words, increasing the number of items drives two opposite forces, and 
these two effects are somewhat balanced out when random slope variance is zero. 

 These findings can explain why increasing the number of items did not alleviate 
the inflation of Type-1 error rate in Simulation 4 and Simulation 6. In Simulations 4 and 6, 
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although the simulations posited random slopes across participants, each participant had 
the same random slope across the conditions. Accordingly, in these particular experimental 
setups, the two random slopes within each participant cancel each other out when 
examining the difference between the two conditions. As our supplementary simulation 
above indicated, without variance in random slopes across participants, the number of 
items tends to have no influence on Type-1 error rates. The weak effect of the number of 
items in Simulations 4 and 6 can be explained by such factors. 

 Interestingly, none of our real data examples (Examples 1-3) showed statistically 
significant random slopes of participants. This supplementary simulation suggests that 
such situation would exacerbate the inflation of Type-1 error rates caused by the 
by-participant analysis in the presence of random item effect. 
Details of the Real Data Example 3 

Yan, Murayama, and Castel (2013) examined how personal preference of 
to-be-remembered items contributes to subsequent memory performance with an 
intentional learning paradigm. Ninety-one participants were recruited from Amazon.com’s 
Mechanical Turk. The learning materials were 16 popular ice cream flavors (e.g., 
strawberry, coconut). At the beginning of the study, participants were told that they would 
be presented with ice cream flavors that they would later be asked to recall. Participants 
were then shown the 16 flavors one at a time, for seven seconds each. The order of the 
flavors was randomized for each individual. In each trial, one of the flavors appeared in the 
middle of the screen, with a textbox underneath and a “Liking (1-10)?” prompt. 
Participants were asked to rate each flavor during its presentation on a scale of 1 (I really 
don't like this flavor/least favorite) to 10 (I love this flavor/one of my favorites). This was 
followed by a 30 second distractor task, and then a free recall test. Participants were asked 
to recall the flavors they had studied, regardless of whether they liked or disliked them for 
90 seconds. After recall, participants were shown the 16 ice cream flavors sequentially 
again (in a randomized order), and were asked to rate the familiarity of each flavor in their 
daily experience from 1 (not at all familiar) to 10 (very familiar). Participants were 
reminded that familiarity was not the same as liking. Below each flavor was a prompt, 
“Familiarity (1-10)?” and a text box in which they entered their responses. 
R Code 

 All the mixed-effects models conducted in this paper were performed using the 
lme4 package in R (Bates et al., 2011). The codes used in our simulations are described 
below. Note that we dropped the covariance between random components from all the 
models (see Barr et al., 2013). We also did not estimate all the possible random 
components, but focused on main random components that are likely to be present. These 
decisions were made in order to avoid non-convergence of parameter estimates in our 
research, but researchers should be careful in specifying their random components, taking 
into account both the nature of experimental designs and the number of observations (see 
General Discussion). It is also possible to statistically test the presence of these random 
components. In all the codes, m, sub, item, and JOL are the variables that represent 
memory performance (0 = forgotten, 1 = recalled), participants, items, and metamemory 
judgments (e.g., JOLs), respectively.  

 Simulations 1 - 3: A Single-Group Case. In this simple model, three random 
components were specified: random participant effect (intercept), random item effect 
(intercept), random JOL slope of participants. 

 
glmer(m ~ 1 + JOL + (1 | sub) + (-1 + JOL | sub) + (1 | item), family=binomial 
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(link="logit")) 
 
 Simulation 4: A Case with Comparing Two Within-participant Conditions 

with a Between-Item Manipulation. In this model, condition represents two 
experimental conditions (-1 or 1) and JOLXcondition represents the interaction effect 
between condition and metamemory judgments on memory performance. JOLXcondition 
is the focal effect that represents the difference in metacognitive accuracy (i.e., 
relationships between metamemory judgments and memory performance) between the 
conditions. The model now included four independent random components: random 
participant intercept, random item intercept, random participant slope of JOL, and random 
participant effect of experimental condition. 

 
glmer(m ~ 1 + JOL + condition + JOLXcondition + (1 | sub) + (-1 + JOL 

| sub) + (-1 + condition | sub) + (1 | item), family=binomial (link="logit")) 

 
 Simulation 5: A Case with Comparing Two Between-participant Groups with 

a Within-Item Manipulation. In this model, the critical component in the context of 
current paper is the random item effect X condition interaction, which is a random item 
slope of the condition effect (condition | item). The model included four independent 
random components: random participant intercept, random item intercept, random 
participant slope of JOL, and random item slope of group. 

 
glmer(m ~ 1 + JOL + condition + JOLXcondition + (1 | sub) + (-1 + JOL 

| sub) + (1 | item) + (-1 + condition | item), family=binomial (link="logit")) 

 
 Simulation 6: A Case with Comparing Two Within-participant Groups with 

a Within-Item Manipulation. Again, in this model, the critical component in the context 
of current paper is the random item effect X condition interaction, which is a random item 
slope of the condition effect (condition | item). The model now included five 
independent random components: random participant intercept, random item intercept, 
random participant slope of JOL, random participant slope of condition, and random item 
slope of condition. 

 
glmer(m ~ 1 + JOL + condition + JOLXcondition + (1 | sub) + (-1 + JOL 

| sub) + (-1 + condition | sub) + (1 | item) + (-1 + condition  | item), 

family=binomial (link="logit")) 
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Running head: GAMMA AND MIXED MODELLING 

Table S1 
Type-1 Error Rates As a Function of Random Slope Variance 
 

  Random slope SD = 0  Random slope SD = 0.15  Random slope SD = 0.3 

  K = 10 K = 30 K = 50 K = 70  K = 10 K = 30 K = 50 K = 70  K = 10 K = 30 K = 50 K = 70 

G  .226 .221 .235 .226  .218 .204 .194 .199  .196 .165 .155 .141 

Gk  .234 .235 .247 .238  .229 .211 .201 .201  .205 .175 .151 .146 

Gs  .226 .222 .23 .227  .222 .20 .192 .199  .194 .164 .153 .141 

Gw  ..236 .235 .248 .238  .229 .213 .200 .201  .204 .175 .152 .146 

G*  .191 .218 .230 .226  .178 .204 .191 .198  .164 .161 .149 .142 

rpb  .240 .237 .245 .236  .230 .214 .202 .202  .204 .174 .154 .148 

rb  .235 .2 .240 .236  .226 .210 .195 .200  .198 .173 .154 .144 

rpc  .228 .231 .235 .233  .221 .208 .192 .199  .197 .166 .153 .144 

Logistic  .179 .218 .229 .231  .170 .201 .190 .195  .153 .166 .148 .141 

da  .231 .235 .236 .228  .224 .208 .190 .196  .199 .166 .151 .142 

Az  .233 .236 .237 .229  .224 .209 .191 .195  .200 .165 .149 .142 

D  .230 .224 .239 .233  .225 .206 .189 .199  .196 .166 .152 .141 

Mixed model z  .050 .045 .045 .049  .054 .054 .056 .054  .059 .054 .061 .062 

Mixed model LRT  .048 .045 .045 .049  .052 .052 .054 .051  .056 .052 .059 .060 

 
Note. K = number of participants. G = Goodman & Kruskal’s gamma correlation. Gk = corrected gamma correlation proposed by Kim 

(1971). Gs = corrected gamma correlation proposed by Somers (1968). Gw = corrected gamma correlation proposed by Wilson (1974). rpb = 
point-biserial correlation. rb = biserial correlation. rpc = polychoric correlation. Logistic = logistic regression coefficient. da = a signal 
detection measure with unequal variance computed by Equation 4. Az = a signal detection measure with unequal variance computed by 
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Equation 5. D = Hart’s difference score. Mixed model z test = z value more than 1.96 with mixed-effects model. Mixed model LRT = 
Log-likelihood ratio test with mixed-effects model. 
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Figure Captions 
 
Fig. S1. Type 1 error rates as a function of number of participants and number of items in Simulation 1, when random item effect is 

absent. Gw = corrected gamma correlation proposed by Wilson (1974). rpb = point-biserial correlation. rb = biserial correlation. rpc = 
polychoric correlation. Logistic = logistic regression coefficient. da = a signal detection measure with unequal variance computed by Equation 
4. Az = a signal detection measure with unequal variance computed by Equation 5. D = Hart's difference score. Mixed model z test = z value 
more than 1.96 with mixed-effects model. Mixed model LRT = Log-likelihood ratio test with mixed-effects model. The predetermined alpha 
value (α = .05) is highlighted by the dotted line. 

 
Fig. S2. Adjusted statistical power (see text for further explanation) as a function of number of participants and number of items in 

Simulation 1, when random item effect is present (true slope = 0.2). Gw = corrected gamma correlation proposed by Wilson (1974). rpb = 
point-biserial correlation. rb = biserial correlation. rpc = polychoric correlation. Logistic = logistic regression coefficient. da = a signal 
detection measure with unequal variance computed by Equation 4. Az = a signal detection measure with unequal variance computed by 
Equation 5. D = Hart's difference score. Mixed model z test = z value more than 1.96 with mixed-effects model. Mixed model LRT = 
Log-likelihood ratio test with mixed-effects model.  

 
Fig. S3. Type 1 error rates as a function of number of participants and number of items in Simulation 5, when random item effect is 

present but random item effect X group interaction is absent. Gw = corrected gamma correlation proposed by Wilson (1974). rpb = 
point-biserial correlation. rb = biserial correlation. rpc = polychoric correlation. Logistic = logistic regression coefficient. da = a signal 
detection measure with unequal variance computed by Equation 4. Az = a signal detection measure with unequal variance computed by 
Equation 5. D = Hart's difference score. Mixed model z test = z value more than 1.96 with mixed-effects model. Mixed model LRT = 
Log-likelihood ratio test with mixed-effects model. The predetermined alpha value (α = .05) is highlighted by the dotted line. 

 
Fig. S4. Type 1 error rates as a function of number of participants and number of items in Simulation 6, when random item effect is 

present but random item effect X group interaction is absent. Gw = corrected gamma correlation proposed by Wilson (1974). rpb = 
point-biserial correlation. rb = biserial correlation. rpc = polychoric correlation. Logistic = logistic regression coefficient. da = a signal 
detection measure with unequal variance computed by Equation 4. Az = a signal detection measure with unequal variance computed by 
Equation 5. D = Hart's difference score. Mixed model z test = z value more than 1.96 with mixed-effects model. Mixed model LRT = 
Log-likelihood ratio test with mixed-effects model. The predetermined alpha value (α = .05) is highlighted by the dotted line. 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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