
Median architecture by accumulative
parallel counters
Article

Accepted Version

Cadenas Medina, J., Megson, G. M. and Sherratt, S. ORCID:
https://orcid.org/0000-0001-7899-4445 (2015) Median
architecture by accumulative parallel counters. IEEE
Transactions on Circuits and Systems II, Express Briefs, 62
(7). pp. 661-665. ISSN 1549-7747 doi:
https://doi.org/10.1109/TCSII.2015.2415655 Available at
https://centaur.reading.ac.uk/36577/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1109/TCSII.2015.2415655

Publisher: IEEE

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

1

Abstract—The time to process each of W/B processing blocks of a median calculation method on a set of N W-bit integers is

improved here by a factor of three compared to the literature. Parallelism uncovered in blocks containing B-bit slices are exploited by

independent accumulative parallel counters so that the median is calculated faster than any known previous method for any N, W

values. The improvements to the method are discussed in the context of calculating the median for a moving set of N integers for which

a pipelined architecture is developed. An extra benefit of smaller area for the architecture is also reported.

Index Terms—Median Filter, Pipelined Processing, Image Processing.

I. INTRODUCTION

HE selection, and in particular the calculation of the median arises in many applications in computer science and statistics

that extends to a variety of fields [1, 2]. The median, M, of a set of integers is such that half the integers in the set are less or

equal to M, and half are greater or equal to M. For N sorted integers, the median is the integer at position P = ⌈N/2⌉ or the middle

position. The median filter is essentially the computation of the median for a moving set of N values within a window.

The median can be calculated by sequential or parallel methods, without performing a full sort (that would take O(nlogn)

time), with a complexity of O(n) [1], although these methods are not hardware amenable. Non-sorting based methods, especially

those designed for hardware architectures achieve the calculation in a number of steps related to the bit length of unsigned

integers, W, rather than N. Of these, probably the best method compared to previous sorting and non-sorting methods takes W

processing steps to find the median [3]. Lately, two architectures have been proposed using the sorting method [4, 5]; in these the

number of processing blocks are related to N which intuitively seem area-costly for the common case of N > W. This paper

improves our previous method to calculate the median on a set of N W-bit integers in W/B processing blocks, where B is a

parameter of how many bits are blocked for processing [6]. Each block contributes B-bit towards finding the median. A designer

has to analyze the tradeoffs of parameters N, B and W in order to produce a winning architecture. For instance, our previous

architecture [6] is made faster than the work in [3] only for N > 7 when working on slices of B = 2, 3 or 4 bits. The improvement

here makes the method faster than previous work [6] for any N while maintaining blocks of 2-bit or 3-bit for practical hardware

implementations. In fact, an analysis indicates the architecture presented here is faster than previously found even in the case of

1-bit slices (B = 1). As each block contributes B-bit to the median, the key idea in this paper is to maintain a parallel

accumulation to select these B bits within each block, whereas previously, this accumulation was computed serially within a

block. The novel approach that led to the improvement in this work relies on the concept of Accumulative Parallel Counters

(APC) [7]. This paper starts by applying the APC concept to a set of N non-negative integers (or single window) using a small

value of N as an example. APC is then applied to the case of maintaining the accumulation on a sliding window of size N, from

where an architecture for calculating the median follows.

II. ACCUMULATIVE PARALLEL COUNTERS

APC is defined as an l-bit register that is updated by the sum of the previous contents and its r 1-bit inputs [7]. For instance,

for a 3-bit register with a current value of 3 and four 1-bit input vector values of [0,1,1,0], the register value is incremented by 2

and thus updated to 5. This can be considered as if the number of ones in the 1-bit input were accumulated. An APC circuit with

r 1-bit inputs is arranged in such a way that the delay to perform its operation in terms of full/half adders using a l-bit ripple carry

adder is given by ⌊log2r⌋+l; details in [7]. The impact that this result has for the median architecture in this paper will be

discussed later in the timing analysis of Section V.

Our median calculation method slices each W-bit data item by B-bit to arrange for W/B processing blocks. Within each block,

accumulation of slices of bits are kept using an array of APC registers. Consequently, within a block, a number of 2
B
 APC

registers are maintained; the first one being of r = 1 1-bit input, the second of r = 2 1-bit inputs, and the last one being of r = 2
B

J. O. Cadenas and R. S. Sherratt are with the School of Systems Engineering, The University of Reading, Reading RG6 6AX, UK (e-mail:

o.cadenas@reading.ac.uk, sherratt@ieee.org).
G. M. Megson is with University of Westminster, London W1T 3UW, UK (e-mail: g.megson@westminster.ac.uk).

Median Filter Architecture by Accumulative

Parallel Counters

J. O. Cadenas, G. M. Megson, and R. S. Sherratt, Fellow, IEEE

T

2

1-bit inputs. In general, given qi of r = 2
B
 1-bit input then an array of 2

B
 APCs, 1

i i0
r
iA q
 is arranged for processing per

block. For N data items within a window, each APC register Ai is of l = log2N bits. Before an example is presented, it is worth

recalling how to generate a 1-bit input vector of length r = 2
B
 taken B-bit slices from data items.

A. Generation of bit vectors

An item data bit is interpreted as having disjoint amplitudes a0 and a1 for bit values 0 and 1 respectively. The item data bit is

manipulated to be expressed in the form d = a0Q[0] + a1Q[1] defining Q[0] = [0 1] and Q[1] = [1 0] so that when a data bit value is 0

it is represented as Q[0] or as Q[1] otherwise. This expression is based on quantum representations of bits [8], so let’s call Q[d] a

qubit. Operations on qubits such as a tensor between two or multiple qubits can now be defined. For instance, the tensor between

two qubits is defined as:

[] [] 1 0 1 0 1 1 1 0 0 1 0 0
× = []×[] = []g hQ Q g g h h g h g h g h g h

Thus, for two bits x0x1 = 102, the qubit tensor is
1 0[] = [1 0]×[0 1] = [0 1 0 0]x xQ . The tensor between two qubits is already

familiar to us; it is equivalent to a binary decoding on two bits; a 2-to-4 binary decoder. The method here manipulates bit slices

of data input as qubits and build its tensor; on a B-bit slice this is equivalent to performing a binary decoding operation of B bits

to generate a 2
B
 bit vector; a B-to-2

B
 binary decoder [9]. This bit vector is the one previously referred to as vector q with size r =

2
B
. For the specific case of B = 2, q = [q3 q2 q1 q0] and r = 4. APC register A0 takes as input q0, A1 takes as input q1q0, A2 takes as

input q2q1q0 and A3 takes as input q3q2q1q0. A median calculation procedure using APC registers proceeds as in the following

example.

B. Small Example

Consider a data set of N = 9 integers, xj = {3, 1, 29, 21, 16, 9, 11, 19, 17}, each of W = 5 bits (labelled as [4:0]). Note P =

⌈N/2⌉ = 5. Using all the five bits representation of each integer (and applying a qubit tensor) requires a full 5-to-32 binary

decoder generating a bit vector of length r = 2
5
 = 32 bits. Performing a 5-to-32 binary decoding for each integer in the set (and

OR-ing into a bit vector of size 32, with all 32-bit positions initially in zero), generate the bit mapping presented in Table I. The

binary decoding produces an indirect ordering of the integers in the set and then the median can be taken directly as 1610 since it

is the middle position of the nine ones in the 32-bit vector q (or the P = 5 position of the nine ones in the vector). However, as the

input size W grows in bits and other nuisances (such as repeated integers in the set) make this full binary decoding approach

impractical to be used as a direct method for computing the median at least for sizes W > 8 [10]. Nevertheless the approach can

be used as the principle of operation when processing slices of bits taken from the input integers instead of taking all bits at once.

 For illustration, let us partition each xj[4:0] into two blocks of bits as {xj[4:2], xj[1:0]}; that is a first block with B = 3 bits

(Block 1) and a second block with B = 2 bits (Block 2). For Block 1, eight (2
B
 = 2

3
 = 8) APC registers Ai are maintained, i = 0,

…, 7 (and each wide enough to accumulate a count of up to N = 9). The three-bit slices on all xj[4:2] are processed first by Block

1 and then xj[1:0] by Block 2 as shown in Table II (note the dot in (xj)2). Integers are processed one at a time, and a binary

decoding of the integer slice is performed on the fly into a 2
B
 bit q vector (for example slice “000” of integer 3 in Block 1 is

decoded as vector q = [0,0,0,0,0,0,0,1]). From this decoded bit vector the input to a given APC is selected as previously stated.

For instance, register A2 has as input three 1-bit taken from the decoding vector the bits q2q1q0 = “001”, thus A2 register will

update to a count of 1. Therefore, in general, APC register Ai operates on i+1 1-bit inputs taken from the decoding vector q all

bits with indices 0, …, i. All APC registers are updated in parallel for each integer slice as shown in Table II. The running count

is shown on each APC after the slice for each input integer is processed. After all nine integers are processed by Block 1 A7, A6,

… A1, A0 have counts 9, 8, 8, 7, 4, 4, 2, 2 respectively. This is the count after the slice for integer 1710 (last in input window) is

processed.

TABLE II

MEDIAN CALCULATION PROCEDURE FOR NINE INTEGERS OF 5 BITS EACH. BLOCK 1 PROCESSES THREE BITS AND BLOCK 2 TWO BITS

Window Set Block 1 (3 bits) Block 2

(xj)10 (xj)2 A7 A6 A5 A4 A3 A2 A1 A0 A3 A2 A1 A0

3 000.11 1 1 1 1 1 1 1 1 0 0 0 0

1 000.01 2 2 2 2 2 2 2 2 0 0 0 0

29 111.01 3 2 2 2 2 2 2 2 0 0 0 0

21 101.01 4 3 3 2 2 2 2 2 0 0 0 0

16 100.00 5 4 4 3 2 2 2 2 1 1 1 1

9 010.01 6 5 5 4 3 3 2 2 1 1 1 1

11 010.11 7 6 6 5 4 4 2 2 1 1 1 1

19 100.11 8 7 7 6 4 4 2 2 2 1 1 1

17 100.01 9 8 8 7 4 4 2 2 3 2 2 1

 1 1 1 1 0 0 0 0 1 1 1 1

 P = 5; Ai ≥ P P = 1; Ai ≥ P

3

C. Finishing the example: calculating the median

Calculating the median proceeds in a similar way to the procedure shown in our previous work [6]. A given block finds B-bit

of the median as the first occurrence of the index i (right to left in Table II) for when Ai ≥ P; this comparison is parallel. For

Block 1 this comparison resolves to the bit vector “11110000” using P = 5 (shown at the bottom of Table II). Applying a priority

encoding [9] to this vector (with priority right to left) gives the index i = 4 which corresponds to the column under APC A4. This

index corresponds to slices of three bits with values “100”. Thus, the three MSBs of the median, are found as M[4:2] = “100”.

From the nine input integers in the window, only integers 16, 19 and 17 had their processed bit slices with values “100”

indicating that only the integers 16, 19 and 17 are still median candidates (highlighted in gray in Table II). Integers 3, 1, 29, 21, 9

and 11 need to get nullified so they cannot update any Ai for Block 2.

Next, Block 2 is processed. First, position for median P is recalculated as P = 5 - 4 = 1 (4 being the A value to the right under

A4 column, underlined in Table II for Block 1). Computing Ai proceeds as before, on the remaining 2-bit slice for all xj. The

condition A ≥ P is first satisfied for A under i = 0. The remaining two bits for the median are thus M[1:0] = “00”. Concatenating

the results from blocks 1 and 2 give the median as M = 100002 = 1610.

D. Key Observations for Improvements

From the above example, the following key observations are made as regard to the improvements to the method presented

here. Firstly, reformulating the accumulation of bits in terms of APCs makes Ai to be computed in parallel and as decisions for

finding the median are made on parallel logic decisions on accumulations, Ai, the method should be faster than the method as it

stands [6]. The previous method was equivalent to calculating the histogram on slice values (in parallel) and then accumulating

the histogram right to left (a serial process); this is one key difference. Secondly, the nullification of integers, that are not

candidates for the median, is easier to handle when postponed until the next block. This leads to the third observation; further

optimizations can be made to each APC arrangement for the case of a sliding window of N integers accepting a single integer.

This observation is valid for the front-end processing block (the one that processes slices of the MSB bits). In this case a single

integer leaves the window while a new integer arrives into the window. The front-end block sees and discards at most one integer

within a window which can be conveniently exploited into improvements as presented next.

III. APCS ON A SLIDING WINDOW

Consider a continuous streaming of input integers arriving one at a time for processing; a median filter is interested in finding

the median on the most recent N integers, and so we have a running window of size N. Once a pipeline with N integers gets full,

a single old integer leaves the window while a single new integer arrives into the window. For the method here, a processing

mechanism requires a coherent update on accumulations Ai for a correct fully streaming pipelined operation. Such an update can

be thought of as a parallel subtraction of the contribution of the oldest integer slice and likewise an addition of the newest integer

slice contribution. Consider a stream of integers as xj = {3, 1, 29, 21, 16, 9, 11, 19, 17, 14, …,}. The first window of nine integers

is the one presented in Table II. The second window is now composed of integers {1, 29, 21, 16, 9, 11, 19, 17, 14}; the oldest

integer in the window was of value 3 and a new integer of value 14 enters the window. With the new window, repeating the

whole computation of Ai for Block 1 in Table II gives counts of [9, 8, 8, 7, 4, 3, 1, 1]. The question is, given that the previous

window had a count of A
t-1

 and knowing the new value x
t
j (value 14) and the old value x

t-N
j (value 3), can count A

t
 be computed?

The slice for old integer value 3 (“00011”, iold = 0) is first decoded as q = [0,0,0,0,0,0,0,1] and to keep Ai coherent requires

subtracting [1,1,1,1,1,1,1,1] to the running accumulation of [9,8,8,7,4,4,2,2] of the previous window (bottom of Table II, Block

1). The slice for integer value 14 (“01110”, inew = 3) is decoded as q = [0,0,0,0,1,0,0,0] and to keep Ai coherent requires adding

[1,1,1,1,1,0,0,0] to the running accumulation. The net effect is subtracting (in parallel) the vector value [0,0,0,0,0,1,1,1]

([1,1,1,1,1,1,1,1] XOR [1,1,1,1,1,0,0,0] = [0,0,0,0,0,1,1,1]) from the running accumulation; that is [9,8,8,7,4,4,2,2]]-

[0,0,0,0,0,1,1,1] = [9, 8, 8, 7, 4, 3, 1, 1]. Thus, Ai is updated from [9,8,8,7,4,4,2,2] (for window {3, 1, 29, 21, 16, 9, 11, 19, 17})

to [9, 8, 8, 7, 4, 3, 1, 1] (for window {1, 29, 21, 16, 9, 11, 19, 17, 14}).

A. Update Logic on APCs

Note the following from the discussion above: Firstly, the slice decoding process sets a bit i in the decoded vector q and then

all the bits i+1, i = 0, …, 2
B
-1, are also set before being added or subtracted. This is in effect a sign-bit extension for a vector of

length 2
B
. Let’s denote the sign extension on the decoded vector by sign(qi); with bit vectors size of 2

B
 bits. Secondly, the sign-

extended decoded values of old and new slices are XOR-ed. A full analysis of what has to be performed to maintain a coherent

accumulation Ai is given by:

v = sign(qi_old) XOR sign(qi_new)

TABLE I
BIT MAPPING FOR THE PRESENTED EXAMPLE

q31 q30 q29 q28 q27 q26 q25 q24 q23 q22 q21 q20 q19 q18 q17 q16 q15 q14 q13 q12 q11 q10 q9 q8 q7 q6 q5 q4 q3 q2 q1 q0
0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0

4

if (i_old < i_new) then Ai = Ai – v

else Ai = Ai + v

Fig. 1 shows the internal architecture of a front-end median processing block similar to Block 1 of Table II for B = 2. The

block accepts integer inputs xj and median position for this block Pin; it is most convenient to accept input Min holding the

median slice value found by a previous block. The median slice found by this block is generated at the bottom as Mout as well as

the median position to be used by a next block Pout. Fig. 1 processes 2-bit slices of a window of N = 5 integers xj of W-bit each

and thus an array of four accumulative parallel counter registers of up to four 1-bit inputs with each register of size 3 bits is

arranged. The sign extension performed on the decoder outputs can be maintained in parallel using gates with a fan-in of at most

2
B
 inputs. Alternatively, a binary-to- thermometer encoding can replace the decoding and sign-extension for a direct look-up

table implementation [11]. Also, notice the decoders can be inhibited by a single enable bit to account for nullification of

integers within a running window; they are fully enabled for the front-end block by simply making Min[B-1:0] = xj[W-1:W-B].

This is the reason to have Min as input, to contain nullification signals within a block rather than passing these from one block to

the next (that would require N bits). A full circuit arrangement for the APC [7] is not necessary due to the fact that at most a

single integer arrives or leaves the window; this is a key further optimization to a front-end block as of Fig. 1. After the

comparison Ai ≥ P is performed (comparator block in Fig. 1) a priority encoder produces the median slice for this block. A

simple arrangement of a (priority) multiplexer acting on the comparison output to select the value to be subtracted from input Pin

to generate output Pout completes the operation of the block (Multiplexer/Adder block in Fig. 1).

Note the pipeline arrangement is clear from Fig. 1; a delay of N clock cycles is required to see all integers from a window (left

to right registers in Fig. 1) plus the extra delay top to bottom in the architecture of Fig. 1; this delay is denoted by L. The gray

boxes in Fig. 1 are to indicate places where extra registers might be necessary for faster pipelined operation. The overall latency

for a front-end block is of N+L clock cycles, after this latency a median slice is produced every clock cycle.

IV. MEDIAN ARCHITECTURE FOR A SLIDING WINDOW

In general, for W-bit integers, physical blocks of B-bits each arrange for ⌈W/B⌉ processing blocks; however it is possible to make

each processing block to operate with its own B value (of bits) as shown from Table II. Fig. 2 shows the block diagram for

computing the median for the example in Table II. Front-end block (Block 1) computes the 3-bit median, M[4:2], and a second

processing block (Block 2) computes the remaining 2-bit median M[1:0] as detailed in Table II. M[4:2] is available after N+L

clock cycles; thus the next processing block needs to get aligned in time by delaying input xj by L clock cycles so the current

input window is already loaded into the next processing block. Note for the next processing block, the assumption made earlier

of having a single old integer leaving the window while a single new integer arrives into the window, is no longer valid.

Consequently the simplifications seen in Fig. 1 cannot be used directly. Fortunately, the processing block previously presented in

[6] can be used instead except with two key modifications. The first one is that integer nullification is replaced by exactly the

scheme of Fig. 1 here. So, M[4:2] computed by the front-end block gets compared to xj[4:2] seen by the processing block. The

Fig. 1. A front-end block processing 2-bit slices on 5 integers. This block

generates 2-bit of the median Mout and the P value (Pout) for the next block.

Sign-Extend, XOR

0 1

2

3
 Decoder <

new slice

old<new: -

ej

xnew

x
j

=

x
old

e
j-4

 Min

0

1

2

3
 Decoder

 &

A0 A
1
 A

2
 A

3

+ + + +

Comparator

old≥new: +

old slice

Priority

Encoder

Multiplexer

Adder

 Mout Pout

P
in

5

second modification is that full APC circuit arrangements as detailed in [7] can be incorporated into the block for a parallel

accumulation. This is so since more than one integer can enter or leave within a window for Block 2 as it is clearly shown in

Table II. Each APC accumulator (there are 2
B
) has an N-bit input vector with a register output of length log2N. Results from a

processing block are pipelined vertically where the calculation continues to the next block concatenating the generated median

bit slices as shown in Fig. 2; the median emerges every clock cycle after an initial latency of N+2L clock cycles in Fig. 2. This

result is consistent with latest methods of O(1) time for calculating running medians [12]. In a generic case of K processing

blocks (K = ⌈W/B⌉ if B-bit are processed by each block), the median M is found every clock cycle with a latency of N+KL clock

cycles; L is a tuning design parameter for speed of operation.

V. TIMING ANALYSIS AND IMPLEMENTATION

A. Timing Analysis

The critical path delay T of Fig. 2 is essentially due to the APC accumulators of l = log2N bits each (of Fig. 1), and as the

rightmost APC has r = 2
B
 1-bit inputs, then T = ⌊log22

B⌋+log2N thus T = B + log2N. A processing block in our previous method

[6] had a critical path complexity of 3log2N + 6 for B = 2, so the processing block of Fig. 1 is three times faster than our previous

method [6] for any B < 6. The critical path of the work in [3], T[3], is the delay cost of the Carry-Save Adder tree (CSA) and is at

least of log1.5(N/2) + log2N to account for the final adder [13]. It follows that for B ≤ log1.5N/2 a pipeline path here would be

faster than a pipeline of the work in [3]. This is satisfied even for small values of N such as N = 3 and B = 1, which implies that

the circuit here is faster for all practical cases values of N with a suitable choice of B. Interestingly, for B = 1, the work here is

expected to be faster than the work in [3] for any N which suggests that the architecture in [3] may adopt the concept of APCs for

a hybrid architecture. For B > 1 this work computes the median in W/B processing blocks while the work in [3] needs W

processing blocks. It seems convenient to maintain B as small as 2, 3 or 4. This favors the parallel decoding and sign extension as

shown in Fig. 1. Remarkably, the final accumulator in this work is still a ripple-carry adder. For the recent hardware sorting-

based method in [4] the critical path goes through a chain of N-1 logic OR gates and therefore longer than the critical path of

Figs. 1, 2. These latest sorting methods have been proposed for area-efficiency [4] or power [5].

B. Hardware Implementation

In order to verify the architecture presented here designs were expressed in RTL Verilog HDL and functionally verified by

simulation. From the RTL design of the processing blocks using APC registers (similar to Fig. 1), circuit area and frequency of

operation synthesis results is reported in Table III using ASIC TSMC 0.25μm technology. For a quick comparison the results of

the previous work in [6] are also included. Clearly, using APC registers improves the frequency of operation as expected from

the timing analysis. The front-end block offers an extra advantage in area especially when input integers are of W ≤ 12 bits.

From Table IV it is seen that area scales well with parameter value N. A front-end block makes it easier to produce designs for

any parameter value B; however the table suggests it is preferable to keep parameter B to 2, 3 bits (or make parameter L > 2 to

increase frequency). Getting a circuit for Fig. 2 is subjected to implementation details at the RTL level. We explored maintaining

the accumulation Ai coherent by fusing the decoder and sign extension of Fig. 1 into an ad-hoc decoder (a look up table) such

that the critical path in the accumulation process is kept bounded by log2N. In this case, the critical path could move into the

logic towards the bottom of Fig. 1. This is the purpose of introducing the delay elements down the pipeline in Fig. 1. Table IV

uses L = 2; this sort of tuning is best to be evaluated under the specific technology used to target the architecture and so it is not

discussed in full detail in this paper. Observe the latency N+KL paid by the architecture here is related to the number of blocks K
(K = W/B when each block is of B-bit slices); K remains small even in common practical cases (W ≤ 16). The work in [3] has a

latency of W but requires all samples in parallel and so needs WN input wires while this work needs only W input wires for

streaming pipelined operation. The work in [4, 5] needs N processing blocks and so there is the tradeoff of evaluating overall

 xj[4:2] P

x
j
[4:0]

Front-End Block

Pin M
in

P
out

 M
out

Processing Block

P
in
 M

in

P
out

 M
out

M[4:2]

M[1:0]

L

L

Median

Fig. 2. Architecture to compute the median bits as in Table 1 using a front-end

block of B = 3 bits followed by a processing block with B = 2 bits.

6

area, frequency of operation, and latency for a specific application. Note, Tables III and IV do not report results for a complete

median architecture.

C. Extensions

The extensions to handle signed integers and the case of rank filtering as discussed in [6] remain valid. For keeping the paper

self-contained we briefly mentioned them here. In order to handle signed integers, count the number of negative and positive

integers within a window as C0 and C1 respectively so that N = 2k+1 = C0 + C1. Set the median position P to the first block of the

computation to P = k + 1 – C1 if C0 > C1 or to P = k + 1 – C0 otherwise. The method remains unmodified if applied to the

remaining W-1 bits of the input data set within the window. An order R filter for a set of N data elements has R data elements less

or equal to the output [2]. The median is a rank filter with R = k, so this method to calculate the median behaves as a rank filter

by setting initial median position to the first block of computation to P = R + 1 when accumulations Ai proceed right to left as

performed here.

VI. CONCLUSION

Fundamental in median filtering methods for noise reduction in high quality imaging, the method for calculating the median

given here makes faster decisions than previous hardware algorithms in the literature. The computation within each processing

block is executed faster than before for any size of blocking bits (design parameter B). The median on a set of N integers

completes after K (typically W/B) processing blocks for a serial pipelined stream of W-bit integers with a latency of N+KL, with

L a tuning pipeline parameter for speed. It is also shown that this result holds irrespective of the actual values of parameter N or

any combination of B and N. The use of full accumulative parallel counters circuitry is required for extending calculating the

median in a parallel approach of accepting more than one integer at a time in streaming operation. The method is generic

following a systematic number of steps from where different architectures and implementations can be derived. The method is

also easily extended to be implemented as a fast programmed solution.

REFERENCES

[1] S. G. Akl, The Design and Analysis of Parallel Algorithms. Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 39–58.
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms. Cambridge, Mass., MIT Press, 2003.

[3] D. Prokin and M. Prokin, “Low hardware complexity pipelined rank filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 6, pp. 446–450, June
2010.

[4] R. D. Chen, P. Y. Chen, and C. H. Yeh, “Design of an area-efficient one-dimensional median filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no.

10, pp. 662–666, Oct. 2013.
[5] R. D. Chen, P. Y. Chen, and C. H. Yeh, “A low-power architecture for the design of a one-dimensional median filter,” IEEE Trans. Circuits Syst. II, Exp.

Briefs, to appear, 2015.

[6] J. Cadenas, G. M. Megson, R. S. Sherratt, and P. Huerta, “Fast median calculation method,” Electron. Lett., vol. 48, no. 10, pp. 558-560, May 2012.
[7] B. Parhami and C. H. Yeh, “Accumulative parallel counters,” in Proc. 23rd Asilomar Conf. on Signals, Systems, and Computers, 1995,

pp. 513–516.

[8] M. A. Neilsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
[9] J. F. Wakerly, Digital Design: Principles and Practices. 4th Ed., Upper Saddle River, NJ: Prentice-Hall, 2006, Ch. 6.

[10] Q. Gan, J. M. P. Langlois, and Y. Savaria, “Parallel array histogram architecture for embedded implementations,” Electron. Lett., vol. 49, no. 2, pp. 99-101,

Jan. 2013.
[11] Hieu B. V., Beak S. Choi S, Seon J. and Jeong T. T.: ‘Thermometer-to-binary encoder with bubble error correction (BEC) for flash analog-to-digital

converters (FADC)’, in Proc. 3rd Int. Conf. on Communications and Electronics, 2010, pp. 102-106.

[12] S. Perreault and P. Hebert, “Median filtering in constant time,” IEEE Trans. Image Process., vol. 16, no. 9, pp. 2389-2394, Sept. 2007.
[13] B. Parhami, Computer Arithmetic, Algorithms and Hardware Designs. New York, NY: Oxford University Press, 2000, pp. 125-140.

TABLE III

AREA AND FREQUENCY FOR MEDIAN ARCHITECTURE BLOCKS

W Front-End Block Processing Block Old Block [6]

 Gates MHz Gates MHz Gates MHz

6 642 387 944 353 1169 166

8 801 355 991 353 1368 166

12 1010 324 1082 353 1768 166

16 1255 318 1173 353 2168 166

Front-End Block (Fig. 1, B = 2, L = 2), the previous block in [6] redesigned

with APC accumulators (Processing Block, B = 2, L = 2), and the block of

previous work in [6] (B = 2) for N = 9 and W = 6, 8, 12, and 16 bits.

TABLE IV

AREA AND FREQUENCY FOR A MEDIAN PARAMETERIZED BLOCK

 W, N 8, 9 8, 25 8, 49 16, 9 16, 25 16, 49

B A/fMHz A/fMHz A/fMHz A/fMHz A/fMHz A/fMHz

2 801/355 1556/353 2761/337 1255/318 2584/268 4804/261

3 1172/330 2178/315 3314/319 1588/279 3083/258 5677/257

4 2065/309 3242/273 4703/266 2500/267 4319/248 7526/246

Front-end block Area (A) in gates, and frequency (fMHz) in MHz. L = 2.

