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Extreme rainfall variability in Australia: Patterns, drivers, and predictability 1 

Andrew D. King, Nicholas P. Klingaman, Lisa V. Alexander, Markus G. Donat, Nicolas C. 2 

Jourdain, Penelope Maher 3 

Abstract 4 

Leading patterns of observed monthly extreme rainfall variability in Australia are examined 5 

using an Empirical Orthogonal Teleconnection (EOT) method. Extreme rainfall variability is 6 

more closely related to mean rainfall variability during austral summer than in winter. The 7 

leading EOT patterns of extreme rainfall explain less variance in Australia-wide extreme 8 

rainfall than is the case for mean rainfall EOTs. We illustrate that, as with mean rainfall, the 9 

El Niño-Southern Oscillation (ENSO) has the strongest association with warm-season 10 

extreme rainfall variability, while in the cool-season the primary drivers are atmospheric 11 

blocking and the subtropical ridge. The Indian Ocean Dipole and Southern Annular Mode 12 

also have significant relationships with patterns of variability during austral winter and 13 

spring. 14 

Leading patterns of summer extreme rainfall variability have predictability several months 15 

ahead from Pacific sea surface temperatures (SSTs) and as much as a year in advance from 16 

Indian Ocean SSTs. Predictability from the Pacific is greater for wetter than average summer 17 

months than for months that are drier than average, whereas for the Indian Ocean the 18 

relationship has greater linearity. 19 

Several cool-season EOTs are associated with mid-latitude synoptic-scale patterns along the 20 

south and east coasts. These patterns have common atmospheric signatures denoting moist 21 

onshore flow and strong cyclonic anomalies often to the north of a blocking anti-cyclone. 22 
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Tropical cyclone activity is observed to have significant relationships with some warm season 1 

EOTs. 2 

This analysis shows that extreme rainfall variability in Australia can be related to remote 3 

drivers and local synoptic-scale patterns throughout the year.  4 

1. Introduction 5 

Rainfall in Australia is highly variable, both temporally and spatially, to a greater degree than 6 

in other countries and continents (Nicholls et al. 1997). This strong interannual variability is 7 

related to a variety of climate modes of variability including the El Niño-Southern Oscillation 8 

(ENSO), Indian Ocean Dipole (IOD), and the Southern Annular Mode (SAM). We discuss 9 

here relationships between these climate modes and Australian rainfall variability from 10 

previous literature. A map of the states and territories of Australia mentioned here is shown in 11 

Figure 1. 12 

The effects of ENSO on Australian rainfall variability are well documented (e.g. Allan 1988; 13 

McBride and Nicholls 1983; Nicholls et al. 1996). ENSO is generally considered to be the 14 

primary driver of rainfall variability in Australia. Rainfall in the east of Australia has the 15 

strongest relationship with ENSO (Risbey et al. 2009), where La Niña (El Niño) events are 16 

associated with increased (decreased) rainfall. ENSO also influences the summer monsoon, 17 

affecting rainfall patterns in northern Australia (Holland 1986). The position of the South 18 

Pacific Convergence Zone (SPCZ) is influenced by ENSO (Brown et al. 2011; Vincent et al. 19 

2011), affecting rainfall patterns in north-east Australia and the locations of tropical 20 

cyclogenesis (Vincent et al. 2011). The ENSO-rainfall relationship is non-linear across 21 

Australia generally (Power et al. 2006) and within specific regions such as south-east 22 

Queensland (Cai et al. 2010) and south-east Australia (King et al. 2013c), whereby the impact 23 

of ENSO on rainfall during La Niña events is stronger than during El Niño events. 24 
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The IOD primarily modulates rainfall on inter-annual timescales in western and southern 1 

Australia during winter and spring (Risbey et al. 2009). The IOD is also related to the climate 2 

of south-east Australia (Meyers et al. 2007) and has been linked to droughts in this region 3 

(Ummenhofer et al. 2009; Ummenhofer et al. 2011). 4 

Unlike ENSO and the IOD, SAM is an extra-tropical mode that reflects variability in the 5 

Southern Hemisphere mid-latitude storm tracks (Marshall 2003). Consequently it is 6 

associated with rainfall in southern Australia, such as south-west Western Australia and parts 7 

of south-east Australia (Meneghini et al. 2007; Risbey et al. 2009). The SAM is also related 8 

to spring rainfall in Queensland and New South Wales through teleconnections with weather 9 

systems located over the Tasman Sea (Hendon et al. 2014; Risbey et al. 2009). A positive 10 

trend in the SAM in recent decades has been associated with the rainfall decline in south-west 11 

Western Australia (Cai and Cowan 2006; Meneghini et al. 2007). Other studies suggest a 12 

weaker teleconnection between SAM and south-west Western Australia rainfall (Feng et al. 13 

2010). 14 

Several studies have considered how some of these remote drivers relate to mean and extreme 15 

rainfall variability in Australia as a whole (e.g. Risbey et al. 2009; Min et al. 2013) and 16 

within particular regions of the continent (e.g. Gallant et al. 2012; Klingaman et al. 2013). 17 

The relative roles of these remote drivers are examined in this study. 18 

Australian climate is also influenced by many local drivers. Atmospheric blocking to the 19 

southeast of Australia is known to increase rainfall over much of Australia, particularly 20 

during the cool season (Risbey et al. 2009). The position and intensity of the subtropical ridge 21 

influences rainfall in the east of Australia (Cai et al. 2011; Timbal and Drosdowsky 2013; 22 

Whan et al. 2013). An important consideration when investigating the effects of these remote 23 

and local drivers on Australian climate is the lack of independence between drivers. 24 
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Weather and climate regimes vary across Australia. The north of the country has a 1 

tropical/subtropical climate with the majority of rainfall concentrated during the summer 2 

months. Monsoon depressions and tropical cyclones are the major rain-bearing systems in 3 

this region. The extra-tropical south of Australia is affected by mid-latitude frontal systems. 4 

East Coast Lows affect the coasts of Victoria and New South Wales, bringing rainfall in 5 

winter primarily. The south and south-west experience more rainfall in winter, whereas, in 6 

the south-east, rainfall is more consistent through the year. These weather systems are 7 

affected by the remote and local drivers described previously in complex and sometimes 8 

conflicting ways, complicating the study of rainfall variability in Australia.    9 

The effects of these modes of variability and different weather systems on continental and 10 

regional rainfall have been studied to some degree. However, there has been less focus on the 11 

relationships between climate drivers and extreme rainfall. Therefore, further analysis of the 12 

associations between rainfall and different climate modes is required. These relationships 13 

may well differ from those that have been studied previously for mean rainfall. Extreme 14 

rainfall has the greatest impact on people and the environment. Very heavy rainfall can lead 15 

to severe floods, such as those of 2010-11 that devastated large areas of Queensland. 16 

Improving our understanding of the regional effects of drivers of extreme rainfall would be 17 

beneficial and may lead to improved seasonal predictability of flooding. For example, it is 18 

understood that extreme rainfall is heavier during La Niña events than in neutral or El Niño 19 

events (e.g. King et al. 2013a). However, there are gaps in our scientific understanding of 20 

how teleconnections between ENSO (and other climate drivers) and extreme rainfall vary 21 

monthly and seasonally.   22 

A limited number of studies have examined the statistical relationships between modes of 23 

variability and extreme rainfall in Australia, but few have considered physical mechanisms. 24 

Min et al. (2013) examined the statistical relationships between ENSO, SAM, and the IOD 25 
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with extreme rainfall, calculated using extreme value statistics. Strong relationships exist 1 

between ENSO and extreme rainfall in eastern Australia with multi-decadal modulation 2 

related to the Interdecadal Pacific Oscillation (IPO) (King et al. 2013a). 3 

This study aims to analyze patterns of extreme rainfall variability across Australia and 4 

relationships with mean rainfall, climate modes of variability, and the activity of several 5 

weather system types. Comparisons are made between results for extreme and mean rainfall 6 

to examine differences in relationships. Predictability of extreme (and mean) rainfall patterns 7 

is also considered in this study.  8 

A brief description of the data used and the methods applied is outlined in section 2 (more 9 

details on the methodology can be found in the Supplementary material). Results are 10 

presented for each climate driver or weather system type and are described in section 3. A 11 

discussion of the results and the conclusions is given in section 4. 12 

2. Data and Methods 13 

The observational monthly total and extreme precipitation data used in this study were 14 

calculated from the Australian Water Availability Project (AWAP) gridded dataset of daily 15 

rainfall (Jones et al. 2009). The AWAP dataset runs from 1900 to the present and grids all 16 

available station data on a particular day on to a 0.05
o
 grid. The data were regridded to a 0.5

o
 17 

resolution for computational reasons. The impacts of using data of different horizontal 18 

resolutions were tested and found to have minimal effects on the results. As an aim of the 19 

study was to look at spatial variability of total and extreme rainfall, a gridded product was 20 

deemed more appropriate than station data. Over most of Australia, AWAP captures extreme 21 

rainfall variability, however, in some rural areas, where the station network is sparse, the 22 

gridded data have spurious trends (King et al. 2013b), therefore a mask was applied. For our 23 

study, areas of Australia where AWAP has any missing values during the analysis period 24 
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were masked. To limit issues of variability in the station network used to generate AWAP, 1 

analysis was limited to 1930-2011. Prior to 1930 there were fewer stations used in the 2 

calculation of the AWAP daily rainfall grids (Jones et al. 2009). Results found using AWAP 3 

were evaluated against those using other rainfall datasets (see Supplementary Material for 4 

more details). 5 

In this study, extreme rainfall is defined using the monthly maximum consecutive 5-day 6 

precipitation totals (Rx5day hereafter). This is an extreme rainfall index recommended by the 7 

Commission for Climatology (CCI)/CLIVAR/JCOMM Expert Team on Climate Change 8 

Detection and Indices (ETCCDI; Zhang et al. 2011). The total rainfall and Rx5day index 9 

were calculated for each 0.5
o
 gridbox in each month of the 82-year period. Only AWAP 10 

gridboxes where the time series of the total rainfall and Rx5day index were complete (i.e. 11 

with no missing data) were used in this investigation. 12 

To examine spatial and temporal variability in the monthly rainfall and Rx5day across 13 

Australia, an Empirical Orthogonal Teleconnection (EOT; van den Dool et al. 2000) method 14 

was applied. A detailed description of the method and its verification is in the Supplementary 15 

Material section. In short, EOT analysis statistically decomposes the (extreme) rainfall fields 16 

into orthogonal (in time) time series related to the spatial points that explain the greatest 17 

space-time variance in the domain (as measured by correlation coefficients with all other 18 

gridboxes). That is, there is one grid point (referred to as the base point) that is associated 19 

with the greatest amount of variance across all other gridpoints. The orthogonality of the 20 

EOTs allows for the investigation of multiple drivers of Australian (extreme) rainfall 21 

variability beyond the primary driver. EOTs are only orthogonal in either time or space, 22 

whereas Empirical Orthogonal Functions (EOFs) are orthogonal in both time and space, 23 

making the physical interpretation of EOTs simpler than EOFs. We calculate EOTs that are 24 

orthogonal in time. A modified EOT method (Smith 2004) using the all-Australia mean (and 25 
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extreme) rainfall time-series, as opposed to the global variance, was applied. Use of the 1 

global variance biases results to regions of higher rainfall totals. The modified EOT method 2 

applied in this study more naturally lends itself to studying mean (and extreme) rainfall 3 

variability. 4 

As many EOTs can be computed as are desired (up to the number of gridboxes in the 5 

domain). After the first EOT, the calculation is repeated on residual time-series that remove, 6 

by linear regression, the effects of EOTs calculated previously. The first four EOTs were 7 

calculated separately for each calendar month of the 1930-2011 timeseries for Rx5day and 8 

total rainfall to allow for the investigation of several extreme and mean rainfall patterns 9 

across different regions of Australia. EOTs were also calculated using seasonal data, but 10 

these EOTs missed some details that were better captured with monthly analysis, such as the 11 

annual cycle of the ENSO influence on extreme rainfall. 12 

2.1. Indices for remote drivers 13 

Indices for several climate drivers were used to examine statistical relationships with EOTs. 14 

ENSO is represented by the Southern Oscillation Index (SOI) and the Niño-3.4 SST Index, so 15 

that both atmospheric and oceanic indices were considered. The SOI was calculated as the 16 

difference in standardized mean sea-level pressure between Tahiti and Darwin (Trenberth et 17 

al. 1984). The Niño-3.4 index was calculated from the HadISST dataset as an SST-based 18 

index of ENSO (Rayner et al. 2003). The IOD is represented by the Dipole Mode Index 19 

(DMI; Saji et al. 1999) also calculated from HadISST. The DMI was both correlated and 20 

partially correlated (removing ENSO influence) with EOTs. The SAM index (SAMI) is that 21 

of Marshall (2003) and was calculated using station-based data as the difference in pressure 22 

between 40
o
S and 65

o
S (Gong and Wang 1999). The relationship between the SAM and the 23 
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EOTs was examined for the 1957-2011 period of reliable SAM data (Marshall 2003). 1 

Timeseries of the indices described here are shown in Figure S1. 2 

Relationships between the Interdecadal Pacific Oscillation (IPO) and EOT time series were 3 

also analyzed as previous studies have found relationships between the IPO and total (Power 4 

et al. 2006; Klingaman et al. 2013; Speer 2008; Speer et al. 2011) and extreme rainfall (King 5 

et al. 2013a) in parts of eastern Australia particularly. All correlations between an index for 6 

the IPO (Parker et al. 2007) and EOT time series were found to be non-significant after 7 

reduction in the number of degrees of freedom to account for serial interannual persistence in 8 

the IPO. The Madden-Julian Oscillation (MJO; Madden and Julian 1971) is an important 9 

driver of Australian rainfall variability. The MJO was not considered in this study as it is an 10 

intraseasonal mode of variability which would require (extreme) rainfall indices at a daily or 11 

weekly resolution as opposed to the monthly indices applied in this study. 12 

To examine the physical mechanisms behind mean and extreme rainfall variability, reanalysis 13 

fields were used. The Twentieth Century reanalysis (20CR hereafter; Compo et al. 2011) 14 

extends further back in time than other reanalysis products, to 1871 (before the start date of 15 

this study’s analysis). The reanalysis was generated through using an atmosphere-only model 16 

constrained by observed surface pressure, sea surface temperatures (SSTs) and sea ice. An 17 

ensemble of 56 members was generated using an Ensemble Kalman filter data assimilation 18 

technique. King et al. (2013a) found that the 20CR ensemble members captured the observed 19 

ENSO-extreme rainfall relationship in eastern Australia, suggesting that it performs 20 

reasonably well in this region. Ensemble-mean 20CR fields have been used to examine 21 

Queensland rainfall variability (Klingaman et al. 2013) and climate variability in southeast 22 

Australia (Ashcroft et al. 2013). The 20CR fields used in this study are outgoing longwave 23 

radiation, mean sea level pressure (MSLP), zonal and meridional winds, and specific 24 
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humidity. All 20CR data used here have a monthly resolution and are the ensemble-mean 1 

fields. 2 

2.2. Indices for local drivers 3 

Indices calculated from the 20CR (for the period 1930-2010) were also used to represent 4 

variability in large-scale systems that affect Australian weather. The atmospheric blocking 5 

index (BI) was calculated using 20CR 500 hPa zonal winds (Pook and Gibson 1999). For 6 

points along 140
o
E, the BI is defined as: 7 

)2(5.0
60555045403025

UUUUUUUBI  8 

where Ux is the monthly-mean zonal wind at each latitude “x” in the Southern Hemisphere. 9 

Indices for the position and the intensity of the subtropical ridge (STR-P and STR-I 10 

respectively; Larsen and Nicholls 2009) were calculated from 20CR MSLP by cubic spline 11 

fitting of the zonally averaged MSLP across the Australian domain (10
o
S-50

o
S, 110

o
E-12 

155
o
E). The maximum of the spline fit gives the STR-I index, and the latitude at which the 13 

maximum occurs gives the STR-P. 14 

The position of the western portion of the South Pacific Convergence Zone (SPCZ) is 15 

represented by an index (SPCZ-I; Vincent et al. 2011). This index was calculated from 20CR 16 

precipitation as the latitude of maximum zonally averaged precipitation between 155
o
E and 17 

175
o
E. 18 

Indices for tropical cyclone frequency were also calculated using observed tracks from the 19 

IBTrACS dataset (Knapp et al. 2010). Monthly indices of cyclone frequency (TC-E and TC-20 

W for eastern and western regions respectively), were calculated by counting the number of 21 

cyclones per day that pass through two defined regions (shown in Figure 5) in each month of 22 

the warm season (November-April) from 1930-2010. 23 
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The time series of these local indices are also shown in Figure S1. All indices were correlated 1 

or partially correlated (removing ENSO using the Niño-3.4 index) with EOT time series. 2 

Correlations (Spearman’s rank) are defined as statistically significant at the 5% level (p-value 3 

< 0.05). Given that correlations are calculated between each climate index and 96 EOTs (four 4 

for each calendar month for both total and extreme rainfall), and the 5% significance level 5 

applied, approximately five of these correlations would be expected to be significant by 6 

chance for each climate mode. Therefore, caution needs to be exercised in the analysis based 7 

on these correlation coefficients. 8 

All correlations between climate indices and the EOT time series are Spearman’s rank. This 9 

is because several indices, including the tropical cyclone indices, are not normally 10 

distributed. Nevertheless, tests showed high agreement between Pearson’s and Spearman’s 11 

rank correlation coefficients for the majority of climate indices. The fields were correlated 12 

with, and regressed onto, individual EOTs to produce maps.  13 

3. Results 14 

3.1 EOT correlation maps 15 

The EOTs were calculated for the Rx5day index (and total rainfall) for each month of the 16 

year over 1930-2011. The base point of an EOT is the grid point which has the time series 17 

that explains the most variance in time series at other points. Correlating the base point time 18 

series of each EOT with the time series at other grid points gives an idea of the spatial 19 

variance in extreme (and total) rainfall. Maps of these correlation coefficients were plotted 20 

for each EOT. Examples for the leading EOTs of January and August extreme and mean 21 

rainfall are shown in Figure 2. 22 
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The locations of the base points of the leading EOTs shift seasonally for both extreme and 1 

total rainfall (Fig. 2 and S2). The base points for extreme and total rainfall are in similar 2 

locations during the warmer months, in the north and north-east of Australia. In the cooler 3 

months the locations of leading Rx5day EOTs tend to move polewards, but more so for total 4 

rainfall. This is particularly clear in August (Fig. 2 and S2c) and October (Fig. S2e) where the 5 

leading total rainfall EOTs are in Victoria and SE New South Wales, respectively. Although, 6 

in other cool season months, such as July (Fig. S2b) and September (Fig. S2d), the leading 7 

EOTs of extreme and total rainfall are in similar locations. However, the second-order EOTs 8 

of total rainfall in July and September are located much further south than those of extreme 9 

rainfall. There is greater variability in the locations of lower-order EOTs generally. 10 

All of the 48 extreme rainfall EOT basepoints (four EOTs for each of 12 months) are on 11 

mainland Australia, however three cool season EOTs of monthly total rainfall are located on 12 

Tasmania. The total space-time variance associated with the first four EOTs varies from 13 

month-to-month, but has a stronger seasonal cycle for extreme rainfall than for total rainfall 14 

(Fig. S3; Tables S1, S2). In the cool season there appears to be greater spatial homogeneity in 15 

extreme rainfall than in the warm season, with more widespread coherent extreme rainfall 16 

patterns. In all months there is lower variance in extreme rainfall explained by the four 17 

leading extreme rainfall EOTs than total rainfall variance explained by the first four total 18 

rainfall EOTs. 19 

The space-time variance associated with each Rx5day EOT is between 8% and 22% for each 20 

leading EOT and decreases for lower-order EOTs to a minimum of roughly 4% when 21 

studying at the first four EOTs for each month. These values are lower than those found for 22 

monthly total rainfall, and considerably lower than those found with EOTs of seasonal 23 

rainfall in Queensland (Klingaman et al. 2013) and annual rainfall nationally (Smith 2004). 24 

One possible explanation for this may be increased inhomogeneities in monthly extreme 25 
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rainfall as opposed to monthly, seasonal, and annual total rainfall, leading to less coherent 1 

variability. Also, the Australia domain examined in this study is large compared with 2 

Queensland (the focus of Klingaman et al. (2013)). Explained variance would be expected to 3 

decrease with increases in domain size as different areas of Australia have different 4 

relationships between modes of variability and extreme rainfall. Smith (2004) found the 5 

leading EOT of annual rainfall, located in SW Queensland, was associated with 60% of 6 

variance. A similar calculation of the leading annual rainfall EOT in AWAP, with a mask 7 

applied, found this EOT to be located further north-east and associated with only 25% of 8 

space-time variance across Australia (not shown). However, Smith (2004) used the SILO 9 

gridded dataset (Jeffrey et al. 2001) without the application of a mask through central areas of 10 

Australia where there are few rainfall stations. In these areas, over-smoothing of rainfall data 11 

would likely lead to strong similarity in rainfall time-series of neighboring gridboxes and 12 

artificial increases in the variance explained by leading EOTs. In this study a mask is applied 13 

where any values of the Rx5day index or monthly total rainfall are missing (see white areas 14 

on maps in Figure 1) causing small variations in the EOT coverage between months. 15 

Generally, areas of central and inland western Australia are masked in this analysis. 16 

Many Rx5day EOTs have extreme rainfall signatures across reasonably large areas of the 17 

continent extending hundreds of kilometers from the base point. This would suggest that, at 18 

least for maximum consecutive 5-day rainfall, large-scale processes dominate and drive 19 

where locally strong convective rainfall occurs. Isolated convective systems are less likely to 20 

produce rainfall amounts that would be detected at more than a small number of stations (or 21 

any at all in some central parts of Australia) and therefore are less likely to feature in the EOT 22 

correlation maps. Tests on EOTs of maximum 1-day rainfall (Rx1day) indicated greater 23 

spatial inhomogeneities in “more extreme” extreme rainfall variability.   24 

3.2 Trends in EOT time series 25 
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Linear trends were calculated for each of the EOT time series for mean and extreme rainfall. 1 

Only one of 48 extreme rainfall EOTs has a significant trend at the 5% level (March EOT2). 2 

This is fewer than would be expected by chance (2.4). This lack of significant trends is in 3 

agreement with the findings of other studies (e.g. Haylock and Nicholls 2000; Alexander et 4 

al. 2007; Gallant et al. 2007) where few areas of Australia are observed to exhibit significant 5 

trends in extreme rainfall. Although, Speer (2008) detected significant decreases in extreme 6 

annual east coast rainfall during the second half of the twentieth century. This trend may not 7 

be detected in our analysis because it could map onto more than one EOT. Also, the trend 8 

may be non-significant for our (longer) period of study. 9 

More total rainfall EOT time series have significant increasing trends (six of 48). All of these 10 

EOTs are located in either the Northern Territory or Queensland and occur during the warm 11 

season. No EOT time series have significant decreasing trends. This is consistent with trends 12 

shown on the Bureau of Meteorology website (http://www.bom.gov.au/climate/ 13 

change/index.shtml#tabs=Climate-change-tracker&tracker=trend-maps) for the 1930-2012 14 

period. Other studies show different trends when different periods are examined or if station 15 

data are used (e.g. Gallant et al. 2007). 16 

3.3 Relationships between remote drivers and EOTs 17 

Indices representing three prominent modes of variability (ENSO, IOD, and SAM) were 18 

correlated with each EOT time series to examine the roles of the different potential drivers in 19 

extreme (and total) rainfall variability for different areas of Australia. Relationships involving 20 

total rainfall EOTs are only discussed when they are distinctly different from results based on 21 

extreme rainfall. The EOTs and corresponding correlation coefficients are shown for Rx5day 22 

and total rainfall in Tables S1 and S2 respectively. Maps of the normalized regression 23 

coefficients of 20CR fields were also plotted and a selection of these are shown. Many of 24 
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these maps show signatures that resemble patterns typically associated with the climate 1 

drivers studied. 2 

3.3.1 ENSO 3 

The relationship between ENSO and each EOT was investigated using the SOI and the Niño-4 

3.4 SST index. The SOI has significant positive correlations with ten of the 12 leading 5 

Rx5day EOTs (all except January and June). This suggests La Niña (El Niño) events are 6 

associated with higher (lower) values of extreme rainfall in northern and eastern Australia in 7 

general. The correlations are weakest in winter when ENSO events are usually not yet 8 

developed or are already terminated. There are significant positive correlations in some 9 

months with lower-order EOTs located in northern and eastern areas of Australia. The Niño-10 

3.4 index correlations largely reflect the relationships between SOI and the EOTs with all 11 

significant correlations being negative. Although, the SST signature associated with ENSO is 12 

weaker during the autumn and early winter, so relationships between the Niño-3.4 index and 13 

EOTs are generally non-significant at this time of year. 14 

The total rainfall EOTs also show strong relationships with ENSO. The SOI and Niño-3.4 15 

index generally have slightly larger correlations with the total rainfall EOTs than the extreme 16 

rainfall EOTs, but have a similar seasonal cycle. 17 

The ENSO relationship with many EOTs can be seen in several of the regression fields. 18 

Regressing MSLP on to the leading EOTs of December extreme and total rainfall (Figs. 3a,b) 19 

produces similar patterns of lower pressure over the maritime continent and higher pressure 20 

over the central equatorial Pacific. This reflects the well-known enhanced Walker-like 21 

circulation pattern which increases extreme (and total) rainfall amounts over north-eastern 22 

areas of Australia in particular. Heavier rainfall totals in these EOT time series are also 23 

associated with the typical ENSO SST pattern: warmer SSTs in the western equatorial Pacific 24 
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and locally to the Australian region, and cooler SSTs in the central and eastern equatorial 1 

Pacific (Figs. 3c,d). Wetter-than-average conditions in many extreme and mean rainfall EOTs 2 

are associated with La Niña-like SST patterns and warm local SSTs off the coast of north-3 

east Australia. Previous research has pointed to the important role of locally warm SST 4 

anomalies around northern Australia in warm season heavy rainfall events (Evans and Boyer-5 

Souchet 2012). Regressing OLR on to the December EOT1 time series of extreme and total 6 

rainfall (Figs. 3e,f) also produces recognizable patterns one might relate to the ENSO 7 

phenomenon, such as an intensification of the SPCZ near Queensland associated with 8 

increased extreme rainfall.  9 

As the position of the western pole of the SPCZ is strongly correlated to the Niño-3.4 index 10 

(Vincent et al. 2011), we also discuss here results using the SPCZ index. The SPCZ is related 11 

to some extreme rainfall variability in the north and east of Australia. The SPCZ index has 12 

few significant correlations with Rx5day EOTs (four of 48). These are negative correlations, 13 

implying that increased extreme rainfall occurs when the western pole of the SPCZ is in a 14 

southerly position. Some 20CR fields show an SPCZ-like signature being projected onto 15 

several EOTs (e.g. Figs. 3e, f). This is particularly well observed when the OLR field is 16 

regressed on to warm season EOTs centered in Queensland. The interannual variability of the 17 

summer SPCZ signal is tightly related to the ENSO phenomenon.  18 

In summary, ENSO is a major driver of extreme (and total) rainfall, particularly in the east of 19 

the country and during the austral warm season. We observe shifts in the SPCZ related to 20 

ENSO and affecting the northeast of Australia. These findings are in agreement with several 21 

other studies (Risbey et al. 2009; King et al. 2013a; Min et al. 2013), but they are reached 22 

using different methods. 23 

3.3.2 IOD 24 
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The IOD is also related to extreme rainfall variability in Australia. Seven out of 48 Rx5day 1 

EOTs are significantly correlated to the DMI (Table S1). Most of these are EOTs for extreme 2 

rainfall in late autumn to late spring and located in eastern Australia with negative 3 

correlations with the DMI. A similar pattern can be observed with the EOTs of total rainfall. 4 

The predominance of winter and spring relationships between the IOD and Australian rainfall 5 

EOTs is in agreement with previous studies (e.g. Risbey et al. 2009). Removing the ENSO 6 

effect (through partial correlations with Niño-3.4) reduces the number of significant 7 

relationships (to five for Rx5day EOTs), but not greatly. This illustrates that the IOD 8 

relationships with EOTs are probably not statistical artifacts resulting from the ENSO-EOT 9 

relationships (assuming all relationships are linear). Warmer SSTs in the eastern Indian 10 

Ocean promote wetter conditions in mainland eastern Australia in spring time particularly. 11 

Several significant positive correlations exist between the IOD and late summer extreme 12 

rainfall EOTs in inland eastern Australia. Although, these relationships do not extend to total 13 

rainfall.     14 

3.3.3 SAM 15 

Four of 48 Rx5day EOTs have significant positive correlations with the SAM index (close to 16 

the number that might be expected by chance statistically). Nine total rainfall EOTs are 17 

significantly correlated with SAM. The majority are positive correlations, although 18 

significant negative correlations are observed with total rainfall EOTs in Tasmania. Most 19 

EOTs which are associated with the SAM are located in south-eastern Australia. Several of 20 

these EOTs in SE Australia are also associated with higher MSLP over the Tasman Sea and 21 

onshore flow over the coastlines of New South Wales and southern Queensland. We find 22 

several winter-time SAM-EOT relationships, whereas Maher and Sherwood (2014) showed 23 

non-significant relationships between SAM and rainfall at this time of year. EOTs with 24 

significant SAM relationships also have strong associations with atmospheric blocking south 25 
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of Australia and the position and intensity of the subtropical ridge (Tables S2, S4). Cowan et 1 

al. (2013) found spring-time relationships between positive SAM and enhanced blocking 2 

resulting in increased rainfall in SE Australia. Some extreme rainfall EOT time series with 3 

significant positive SAM index correlations also have relationships with ENSO indices and 4 

Walker-like circulation patterns. 5 

3.4 Relationships between local drivers and EOTs 6 

Indices representing several local drivers (Blocking, Subtropical ridge, and Tropical 7 

Cyclones) were also correlated with each EOT time series. The EOTs and corresponding 8 

correlation coefficients are shown in Tables S3 and S4. Maps of the normalized regression 9 

coefficients of 20CR fields on to EOTs were also plotted. It is worth noting that these local 10 

drivers are not independent of the remote drivers discussed previously. 11 

3.4.1 Blocking 12 

The relationships between blocking and extreme rainfall variability were examined first by 13 

correlating each Rx5day EOT with the Blocking Index (BI). Of the 48 Rx5day EOTs, 13 14 

have significant correlations with the BI, 11 of these positive. The majority of significant 15 

correlations between the BI and EOTs occur in the cool season.  16 

There are many more significant relationships between blocking and total monthly rainfall 17 

than extreme rainfall. Twenty-one of the total rainfall EOTs have statistically significant 18 

correlations with the BI. The blocking influence extends throughout the year, but is weakest 19 

in autumn. The EOTs in mainland SE Australia have positive correlations with the BI, 20 

whereas those in the Northern Territory and Tasmania have negative correlations where 21 

significant. Risbey et al. (2013) found enhanced blocking is related to an increase in cut-off 22 

low systems affecting southeast Australia bringing rainfall to this region.    23 
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Signatures of blocking are seen in some of the atmospheric fields from the 20CR. As would 1 

be expected, higher values of the BI coincide with EOTs that are associated with increased 2 

MSLP south of Australia. Enhanced blocking is related to increased cloudiness in SE 3 

Australia, particularly as seen through fields of the OLR regressed on to EOTs. Onshore 4 

moist flow along the coast of SE Australia is a feature of EOTs where blocking increases 5 

extreme rainfall amounts. 6 

The blocking index (Pook and Gibson 1999) used here is calculated using winds over the 7 

140
o
E meridian whilst the center of blocking is more commonly further east over the Tasman 8 

Sea. Using a different blocking index centered further east would likely lead to fewer 9 

significant correlations with EOTs in the Northern Territory and have little effect on results in 10 

eastern Australia. Cowan et al. (2013) found blocking at different meridians (130
o
E and 11 

140
o
E) had slightly different associations with precipitation patterns. Klingaman et al. (2013) 12 

found small differences in the relationships between Queensland seasonal rainfall EOTs and 13 

blocking at different longitudes between 120
 o
E -180

o
E. 14 

3.4.2 Subtropical ridge 15 

Six Rx5day EOTs have significant negative correlations with the STR-P index (Fig. 4). When 16 

the STR is in an anomalously poleward position there is an associated increase in extreme 17 

rainfall in New South Wales and Queensland. The position of the ridge is most strongly 18 

related to Eastern Australia extreme rainfall variability from late winter to early summer. The 19 

trajectories of rain-bearing systems are influenced by the position of the STR.  20 

The STR position is more strongly related to mean rainfall variability than extreme rainfall 21 

variability. Six EOTs of total rainfall have significant positive correlations with STR-P, 22 

located in Tasmania, Victoria and southern New South Wales (Fig. 4). Six EOTs centered 23 

further north have significant negative correlations with STR-P. 24 
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The position of the STR (or the associated subtropical jet) has previously been related to the 1 

IPO, SAM, and blocking (e.g. Speer 2008; Kidston et al. 2009; Maher and Sherwood 2014) 2 

illustrating the complex nature of investigating the drivers of rainfall patterns in the 3 

Australian region. Whilst, the ridge position has strong correlations with rainfall in eastern 4 

Australia, these correlations may be the result of covariability with other climate drivers. 5 

The STR-I index also has significant relationships with EOTs (seven for Rx5day and 11 for 6 

total rainfall). The intensity index is, in general, negatively correlated with the EOT time 7 

series. Thus, a weaker ridge is associated with increased (extreme) rainfall for sites primarily 8 

in eastern Australia.   9 

3.4.3 Tropical Cyclones 10 

The monthly TC-E and TC-W indices (see Data and Methods) were calculated for boxes to 11 

the north-east and north-west of Australia respectively (Figs. 5a,b). Each TC index is rank 12 

correlated with November-April monthly EOTs of extreme and total rainfall. Seven of 24 13 

Rx5day EOTs are significantly positively correlated to the TC-W index, indicating that an 14 

increased frequency of TCs passing through the box is related to increased extreme rainfall; 15 

six of these EOTs are located in northern Western Australia or the Northern Territory. The 16 

leading EOT in December, centered in eastern Queensland, has a significant positive 17 

correlation with TC-W, but also with TC-E. There are only two significant correlations 18 

between TC-E and the Rx5day EOTs, both of which are positive and located in the east of 19 

Queensland. 20 

Eight of 24 mean rainfall EOTs have significant correlations with TC-W. These are mostly 21 

positive correlations and for EOTs located in Western Australia and the Northern Territory. 22 

There are five significant correlations between TC-E and total rainfall EOTs, four of which 23 

are positive and for EOTs in Queensland. Klingaman et al. (2013) also found significant 24 
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relationships between Coral Sea tropical cyclones and summer rainfall in northern 1 

Queensland. Our results contrast somewhat with Lavender and Abbs (2013) who found that 2 

closed-low systems (including tropical cyclones) contributed more to extreme rainfall totals 3 

than total rainfall. 4 

3.4.4 East Coast Lows 5 

The relationships between east coast lows (ECLs) and extreme rainfall variability were 6 

studied through the use of 20CR fields, i.e. without the formation of an index to describe their 7 

frequency, locations or intensities. Several EOTs during the cool season have base points on 8 

the coast of New South Wales, with strong correlation patterns to the east of the Great 9 

Dividing Range extending along the coast of SE Australia. Figure 6a shows the EOT 10 

correlation map for August Rx5day EOT3 as an example. ECLs have similar rainfall 11 

signatures, with the heaviest precipitation occurring along the coastal fringe. Some general 12 

patterns emerge in the atmospheric circulation associated with these EOTs. Increased cloud 13 

cover over the immediate area around the location of the EOT and extending into the Tasman 14 

Sea to the east can be observed in the OLR fields (Fig. 6b). There are also clearer skies to the 15 

south and often positive correlations with the blocking index. These EOTs are generally 16 

linked with anomalously high moisture availability over the Tasman Sea and south-west 17 

Pacific and anomalous cyclonic circulation (Fig. 6c), patterns that would be associated with 18 

east coast lows. 19 

3.5 Predictability of extreme rainfall 20 

Whilst it is useful to advance our understanding of the drivers of extreme rainfall events, it is 21 

perhaps of greater importance to improve predictability of these events. Potential sources of 22 

prediction skill for above-average monthly extreme (and total) rainfall were investigated. 23 

SSTs were regressed on to EOT time series with varying lead times. Several warm season 24 
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EOTs of both extreme and total rainfall, such as December extreme rainfall EOT1, have 1 

concurrent patterns of regression coefficients with strong ENSO signatures in the Pacific 2 

Ocean (Fig. 7l). Regressing SSTs from previous months on to December EOT1, thus 3 

introducing a lag, shows predictability from the equatorial Pacific decreasing as the lag 4 

increases (Fig. 7). Extending the lag to months prior to the “predictability barrier” of April-5 

June (e.g. Webster and Hoyos 2010) causes the SST signature in the Pacific to largely 6 

disappear. However, a potential source of predictability is observed in the Indian Ocean using 7 

SST fields from January-March (i.e. 9-11 months in advance). Basin-wide warming in the 8 

Indian Ocean during one warm season is related to above-average rainfall in parts of 9 

Queensland the following warm season. Averaging January SSTs over the box in Fig. 7a and 10 

correlating with December extreme rainfall EOT1 (11 months later) gives a correlation 11 

coefficient of 0.27 (0.30 for total rainfall). Scatter plots of January Indian Ocean SSTs and 12 

December extreme and total rainfall EOT1 (Figs. 8a,b) show large spread in the relationship, 13 

but a clear tendency for a warmer Indian Ocean in January to relate to greater extreme and 14 

total rainfall in December. The lagged response of northern Australian rainfall to Indian 15 

Ocean warming was previously observed by Taschetto et al. (2011) and may be related to the 16 

IOD influence on ENSO more than 12 months in advance (Izumo et al. 2010). Here it is 17 

shown that the leading patterns of variability in extreme rainfall in Australia in December 18 

have a source of predictability arising from basin-wide Indian Ocean warming from the 19 

previous warm season.  20 

Equatorial Pacific Ocean SSTs are related to December extreme and total rainfall at shorter 21 

lead times. Scatter plots of September Niño-3.4 region SSTs and December extreme and total 22 

rainfall EOT1 (Figs. 8c,d) point to potential predictability of high extreme and total rainfall 23 

amounts related to emerging La Niña conditions at a lead time of three months. SST 24 

anomalies in the Niño-3.4 region are significantly correlated even a few months apart and this 25 
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is likely to be behind the predictability at three months lead time (e.g. Jourdain et al. 2013). 1 

These potential predictability sources may aid in the forecasting of heavy summer rainfall in 2 

Queensland. Although, noise in SST relationships with rainfall points to limits in the 3 

predictability of monthly extreme and total rainfall.    4 

There is an asymmetry in the ENSO relationship with warm-season extreme and total rainfall 5 

(King et al. 2013a; Cai et al. 2010; Power et al. 2006). This is reflected in concurrent SST 6 

regressions onto December extreme rainfall EOT1 for wetter than average and drier than 7 

average December Rx5day values separately (Figs. 9l and 10l). There is greater potential for 8 

predictability of very wet extremes in Decembers from Pacific SSTs (Fig. 9) than there is of 9 

very dry December extremes (Fig. 10). This has important implications for the seasonal 10 

forecasting of flood and drought events. There is less of a non-linearity in the relationship 11 

between December extreme rainfall EOT1 and Indian Ocean SSTs from the previous warm 12 

season (Figs. 9 and 10). These results also extend to mean rainfall (Figs. S5 and S6). 13 

There is lower potential for predictability of January and February leading EOTs of extreme 14 

and total rainfall as SST relationships with these time series are weaker (not shown). This is 15 

likely related to their locations tending to be further west and in more inland areas (Figure 16 

S2).    17 

For some warm season extreme rainfall patterns, particularly in December, there are sources 18 

of potential prediction skill arising from Pacific Ocean SSTs a few months in advance and 19 

Indian Ocean SSTs up to a year ahead. This potential for predictability extends to total 20 

rainfall patterns and could aid in the forecasting of heavy rainfall in north-eastern Australia. 21 

In general, however, strong predictability of extreme and total rainfall is not observed and 22 

there is high noise in lagged SST relationships with EOTs.   23 

4. Discussion and Conclusions 24 
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This study presents an application of an EOT decomposition method to Australian extreme 1 

(and mean) rainfall for the investigation of climate drivers and their relative roles in the 2 

continent’s climate. Use of this method sheds new light on extreme rainfall patterns, their 3 

drivers, and the predictability of extreme events.  4 

A number of features are striking from examining the EOTs and their various relationships. 5 

The locations of extreme rainfall EOTs differ from those of mean rainfall in the cool season 6 

considerably more than in the warm season. The leading EOTs of extreme rainfall tend to be 7 

located further north during austral winter than the EOTs of mean rainfall. This reflects the 8 

differences in weather systems affecting Australia between the warm and cool seasons. 9 

During the winter, mid-latitude synoptic-scale systems pass across southern Australia 10 

bringing frontal rainfall over a large area. This has a strong effect on the spatial distribution 11 

of total rainfall. However, these frontal systems have less impact on the extreme rainfall 12 

index and result in small Rx5day values in many areas of southern Australia. 13 

The predominance of ENSO as a driver of warm-season extreme rainfall variability in eastern 14 

Australia is clear, both from EOT relationships with the SOI and Niño-3.4 index, and through 15 

examining fields from the 20CR. The SAM and IOD both have weaker roles. Blocking and 16 

the subtropical ridge strongly influence total rainfall, particularly during the cool season in 17 

southern and eastern Australia. Relationships with extreme rainfall tend to be weaker due to 18 

the locations of the Rx5day EOTs being further north. 19 

Several of the extreme rainfall EOTs are strongly related to local weather systems. Tropical 20 

cyclones affect warm season EOTs in the north of the continent and east coast lows influence 21 

cool season EOTs in the south-east. The EOTs that exhibit east coast low-like patterns have 22 

consistent atmospheric features: often an anomalous anticyclone to the south and associated 23 

onshore moist flow along the coastal fringe. 24 
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Warm-season EOTs are more closely related to SSTs than EOTs during the cool season. The 1 

SST fields associated with the leading December EOTs during the austral summer have 2 

ENSO-like SST patterns in the Pacific. Potential sources of prediction skill have been 3 

identified for above-average monthly rainfall and extreme rainfall through Pacific Ocean 4 

SSTs several months in advance and, also Indian Ocean basin-wide warming up to a year 5 

ahead. The Pacific conditions provide more information on how much wetter than average 6 

conditions could be than on how much drier than average they might be. On the other hand, 7 

the relationship between Indian Ocean SSTs and rainfall up to a year later is more linear. 8 

In summary, this study uses a statistical decomposition of rainfall fields to show that extreme 9 

rainfall variability in Australia can be related to remote and local drivers as well as large-10 

scale weather systems. The drivers of extreme rainfall variability are more similar to drivers 11 

of total rainfall in the warm season than the cool season. Extratropical climate drivers, such 12 

as blocking and the subtropical ridge, have weaker relationships with extreme rainfall than 13 

mean rainfall. There are potential sources of prediction skill for the most prominent modes of 14 

warm season extreme rainfall variability arising from the Pacific and Indian Oceans as much 15 

as a year in advance.  16 
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Figures 1 

Figure 1: Map of Australian states and territories referred to in this study. The abbreviations 2 

stand for the following states and territories: NSW- New South Wales, NT- Northern 3 

Territory, QLD- Queensland, SA- South Australia, TAS- Tasmania, VIC- Victoria, and WA- 4 

Western Australia. 5 

Figure 2: Maps of the locations of leading EOTs (blue triangles) and the correlations between 6 

EOT time series (i.e. base-point time series) and time series at all other grid points for (a) 7 

January Rx5day, (b) January total rainfall, (c) August Rx5day and (d) August total rainfall. 8 

Stippling indicates where the correlations are significant at the 5% level. White areas over 9 

Australia indicate masking where there is at least one missing data point in the time series. 10 

Figure 3: Maps of (a), (b) MSLP, (c), (d) SSTs, and (e), (f) OLR regressed on to December 11 

EOT1 of Rx5day and total rainfall respectively. Stippling indicates 5% significance in the 12 

correlation coefficients. 13 

Figure 4: Map of the locations of significant correlations (at the 5% level) between the sub-14 

tropical ridge position index and EOT time series. Positive and negative correlations are 15 

indicated by the upward and downward pointing triangles respectively. 16 

Figure 5: Maps of the locations of Rx5day (blue) and Total rainfall (red) EOTs correlated at 17 

the 5% level with the (a) TC-E and (b) TC-W indices. Positive and negative correlations are 18 

indicated by the upward and downward pointing triangles respectively. The boxes in a) and 19 

b) represent the areas for which tropical cyclone counts are calculated for TC-E and TC-W 20 

indices respectively. 21 

Figure 6: (a) Map of the location of the August Rx5day EOT3 (blue triangle) and the 22 

correlations between EOT time series and all other residual time series. Stippling indicates 23 
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where the correlations are significant at the 5% level. White areas over Australia indicate 1 

masking where there is at least one missing data point in the time series. (b) Map of OLR 2 

regressed on to August Rx5day EOT3. Stippling indicates where the correlation coefficients 3 

are significant at the 5% level. (c) Map of 850hPa moisture and winds (arrows) regressed on 4 

to August Rx5day EOT3. 5 

Figure 7: (a-l) Maps of SSTs from each calendar month from (a) January to (l) December 6 

regressed on to December Rx5day EOT1. The boxed region in (a) is used to calculate mean 7 

January SSTs in the equatorial Indian Ocean to examine relationships with the EOT. The 8 

boxed region in (i) is used to calculate September Niño-3.4 region SSTs. Stippling indicates 9 

5% significance of the correlation between SSTs and the EOT.  10 

Figure 8: (a-b) Scatter plots of January equatorial Indian Ocean SST anomalies versus (a) 11 

December Rx5day EOT1 and (b) December Total EOT1. Lines of best fit (black solid) are 12 

shown across all SST anomalies with slope, correlation coefficient and p-value. (c-d) Scatter 13 

plots of September Niño-3.4 SST anomalies versus (c) December Rx5day EOT1 and (d) 14 

December Total EOT1. Lines of best fit (blue and red) are shown for negative and positive 15 

SST anomalies respectively with slope, rank correlation coefficient and p-value. 16 

Figure 9: (a-l) Maps of SSTs from each calendar month from (a) January to (l) December 17 

regressed on to December Rx5day EOT1 for wetter than average December Rx5day values 18 

only. Stippling indicates 5% significance of the correlation between SSTs and the EOT.  19 

Figure 10: (a-l) Maps of SSTs from each calendar month from (a) January to (l) December 20 

regressed on to December Rx5day EOT1 for drier than average December Rx5day values 21 

only. Stippling indicates 5% significance of the correlation between SSTs and the EOT.  22 

 23 
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 1 

Figure 1: Map of Australian states and territories referred to in this study. The abbreviations 2 

stand for the following states and territories: NSW- New South Wales, NT- Northern 3 

Territory, QLD- Queensland, SA- South Australia, TAS- Tasmania, VIC- Victoria, and WA- 4 

Western Australia. 5 
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 1 

Figure 2: Maps of the locations of leading EOTs (blue triangles) and the correlations between 2 

EOT time series (i.e. base-point time series) and time series at all other grid points for (a) 3 

January Rx5day, (b) January total rainfall, (c) August Rx5day and (d) August total rainfall. 4 

Stippling indicates where the correlations are significant at the 5% level. White areas over 5 

Australia indicate masking where there is at least one missing data point in the time series. 6 

 7 



38 
 

 1 

Figure 3: Maps of (a), (b) MSLP, (c), (d) SSTs, and (e), (f) OLR regressed on to December 2 

EOT1 of Rx5day and total rainfall respectively. Stippling indicates 5% significance in the 3 

correlation coefficients. 4 

 5 
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 1 

Figure 4: Map of the locations of significant correlations (at the 5% level) between the sub-2 

tropical ridge position index and EOT time series. Positive and negative correlations are 3 

indicated by the upward and downward pointing triangles respectively. 4 

 5 

Figure 5: Maps of the locations of Rx5day (blue) and Total rainfall (red) EOTs correlated at 6 

the 5% level with the (a) TC-E and (b) TC-W indices. Positive and negative correlations are 7 
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indicated by the upward and downward pointing triangles respectively. The boxes in a) and 1 

b) represent the areas for which tropical cyclone counts are calculated for TC-E and TC-W 2 

indices respectively. 3 

 4 

 5 
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Figure 6: (a) Map of the location of the August Rx5day EOT3 (blue triangle) and the 1 

correlations between EOT time series and all other residual time series. Stippling indicates 2 

where the correlations are significant at the 5% level. White areas over Australia indicate 3 

masking where there is at least one missing data point in the time series. (b) Map of OLR 4 

regressed on to August Rx5day EOT3. Stippling indicates where the correlation coefficients 5 

are significant at the 5% level. (c) Map of 850hPa moisture and winds (arrows) regressed on 6 

to August Rx5day EOT3. 7 

 8 

Figure 7: (a-l) Maps of SSTs from each calendar month from (a) January to (l) December 9 

regressed on to December Rx5day EOT1. The boxed region in (a) is used to calculate mean 10 

January SSTs in the equatorial Indian Ocean to examine relationships with the EOT. The 11 

boxed region in (i) is used to calculate September Niño-3.4 region SSTs. Stippling indicates 12 

5% significance of the correlation between SSTs and the EOT.  13 
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 1 

Figure 8: (a-b) Scatter plots of January equatorial Indian Ocean SST anomalies versus (a) 2 

December Rx5day EOT1 and (b) December Total EOT1. Lines of best fit (black solid) are 3 

shown across all SST anomalies with slope, correlation coefficient and p-value. (c-d) Scatter 4 

plots of September Niño-3.4 SST anomalies versus (c) December Rx5day EOT1 and (d) 5 

December Total EOT1. Lines of best fit (blue and red) are shown for negative and positive 6 

SST anomalies respectively with slope, rank correlation coefficient and p-value. 7 

 8 
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 1 

Figure 9: (a-l) Maps of SSTs from each calendar month from (a) January to (l) December 2 

regressed on to December Rx5day EOT1 for wetter than average December Rx5day values 3 

only. Stippling indicates 5% significance of the correlation between SSTs and the EOT.  4 
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 1 

Figure 10: (a-l) Maps of SSTs from each calendar month from (a) January to (l) December 2 

regressed on to December Rx5day EOT1 for drier than average December Rx5day values 3 

only. Stippling indicates 5% significance of the correlation between SSTs and the EOT.  4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 
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Supplementary Material 1 

Supplementary Text 2 

The Empirical Orthogonal Teleconnection (EOT) method of statistical decomposition was 3 

developed by van den Dool et al. (2000) and bears strong similarities to the more commonly 4 

used Empirical Orthogonal Function (EOF) analysis. Unlike EOFs, however, EOTs are only 5 

orthogonal in either time or space. In this study the EOTs are orthogonal in time. Therefore, 6 

the method employed in this study involves finding the point in space whose time series bears 7 

the strongest similarity to the time series at all other points (as measured by the correlation 8 

coefficient). The time series at that point (called the base point) is then the leading EOT and 9 

its signature is removed from all other time series to create residuals. The same process is 10 

then applied to the new residual time series to find the second EOT. This process may 11 

continue to find however many EOTs are desired up to a limit equal to the number of 12 

gridboxes - in this study we calculate the first four (chosen as a compromise between gaining 13 

additional EOTs to study their drivers, and not examining EOTs with very low explained 14 

space-time variance). This method was adapted by Smith (2004) for Australia to account for 15 

the large spatial gradients in rainfall between coastal and inland areas. Smith (2004) 16 

calculated EOTs based on variance in area-average rainfall as opposed to the sum of variance 17 

across all points. The Smith (2004) method has since been employed to examine inter-annual 18 

rainfall variability over Australia in the CSIRO Mk3.6 model (Rotstayn et al., 2010), and to 19 

study interannual-to-multidecadal rainfall variability in Queensland (Klingaman et al., 2013). 20 

To the knowledge of the authors this is the first study to apply the Smith (2004) method to 21 

look at extreme rainfall as well as total rainfall. 22 

The method of calculating EOTs on a gridded dataset raises a number of potential issues. The 23 

gridded dataset has a varying station network in time and space and, given that the EOT 24 
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method involves comparing time-series of individual gridboxes, several tests were required 1 

and steps taken to ensure the robustness of results. Firstly, all data analyzed in this study 2 

starts from 1930 at the earliest. Prior to 1930 there is a rapid rise in the number of stations 3 

used to generate the AWAP gridded dataset (Jones et al., 2009). Whilst there is still some 4 

temporal variability in stations used to form AWAP after 1930, it is substantially reduced 5 

from earlier on in the twentieth century. Using different start dates, such as 1907 and 1950 6 

does not have a large effect on the locations of the EOT base points. The EOT method was 7 

also applied to precipitation data from the 20CR (Compo et al., 2011) and GHCNDEX 8 

(Donat et al., 2013) and found to produce similar patterns. 9 

EOTs of total rainfall and Rx5day were calculated from the 20CR for comparison with the 10 

EOTs from AWAP regridded to a 2-degree resolution (to match the resolution of the 20CR). 11 

As there is complete data coverage, EOTs in the 20CR could be calculated both with and 12 

without a mask. Patterns of leading EOTs in the unmasked 20CR tend to be centered further 13 

west during the warmer months and further south in the cool months when compared with the 14 

leading EOTs in AWAP. The patterns also spread more into the center and west of Australia, 15 

increasing the associated space-time variance. The EOTs in the masked 20CR are in similar 16 

locations to those in AWAP. The EOTs centered on the coast of New South Wales during the 17 

cool season in the observations are not replicated in the 20CR but this is likely due to the 18 

coarser nature of the land-sea mask in the reanalysis. 19 

 20 

Supplementary Figures 21 

These supplementary figures are referred to in the main text. 22 
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Figure S1: Timeseries of climate indices used in this study: a) Southern Oscillation Index 1 

(SOI), b) Niño-3.4 index, c) South Pacific Convergence Zone (SPCZ) index, d) Dipole Mode 2 

Index (DMI), e) Southern Annular Mode (SAM) index, f) Blocking Index (BI), g) 3 

Subtropical ridge position (STR-P) index, h) Subtropical ridge intensity (STR-I) index, i) 4 

Tropical Cyclone West (TC-W) index, and j) Tropical Cyclone East (TC-E) index.     5 

Figure S2: (a-l) The locations of the first four Rx5day (blue numbers) and Total rainfall (red 6 

numbers) EOTs for each calendar month from (a) June to (l) May. 7 

Figure S3: Fraction of total variance explained by each of the first four total (red) and Rx5day 8 

(blue) EOTs for each calendar month. The size of the diamond decreases for lower-order 9 

EOTs (i.e. the largest diamond represents the first EOT).  10 

Figure S4: (a-l) As Figure 7 for December total rainfall EOT1. 11 

Figure S5: (a-l) As Figure 9 for December total rainfall EOT1. 12 

Figure S6: (a-l) As Figure 10 for December total rainfall EOT1. 13 

 14 
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 1 

Figure S1: Timeseries of climate indices used in this study: a) Southern Oscillation Index 2 

(SOI), b) Niño-3.4 index, c) South Pacific Convergence Zone (SPCZ) index, d) Dipole Mode 3 

Index (DMI), e) Southern Annular Mode (SAM) index, f) Blocking Index (BI), g) 4 

Subtropical ridge position (STR-P) index, h) Subtropical ridge intensity (STR-I) index, i) 5 

Tropical Cyclone West (TC-W) index, and j) Tropical Cyclone East (TC-E) index.     6 
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 1 

Figure S2: (a-l) The locations of the first four Rx5day (blue numbers) and Total rainfall (red 2 

numbers) EOTs for each calendar month from (a) June to (l) May. 3 

 4 
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 1 

Figure S3: Fraction of total variance explained by each of the first four total (red) and Rx5day 2 

(blue) EOTs for each calendar month. The size of the diamond decreases for lower-order 3 

EOTs (i.e. the largest diamond represents the first EOT).  4 

 5 

 6 
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 1 

Figure S4: (a-l) As Figure 7 for December total rainfall EOT1. 2 

 3 
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 1 

Figure S5: (a-l) As Figure 9 for December total rainfall EOT1. 2 

 3 
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 1 

Figure S6: (a-l) As Figure 10 for December total rainfall EOT1. 2 

 3 

Supplementary Tables 4 

Table S1: Table showing each four monthly Rx5day EOTs, their locations, the percentage of 5 

associated variance, trends, and correlation coefficients with a range of climate indices (SOI, 6 

Niño-3.4 index, DMI, SAM index). Locations of EOTs are described by location within each 7 

state or territory (New South Wales (NSW), Northern Territory (NT), Queensland (QLD), 8 

South Australia (SA), Tasmania (TAS), Victoria (VIC), Western Australia (WA)). All 9 

correlation coefficients are computed using Spearman’s rank correlations. Significant trends 10 

and correlation coefficients at the 5% level are shown in bold text. 11 

 12 
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EOT Variance Location Trend SOI Niño3.4 DMI DMI (no ENSO) SAM 

June                 

EOT1 11.58 NE NSW -0.06 
0.10 -0.13 0.08 0.11 0.22 

EOT2 8.09 NW QLD -0.10 
0.11 -0.15 -0.18 -0.15 -0.10 

EOT3 7.1 NW WA -0.10 
0.07 0.09 -0.17 -0.19 -0.07 

EOT4 6.39 SE NSW -0.08 
0.05 -0.11 -0.08 -0.06 -0.12 

July       
          

EOT1 17.99 S QLD -0.02 
0.37 -0.40 -0.27 -0.18 0.25 

EOT2 9.73 W QLD -0.05 
0.10 0.01 0.09 0.09 0.08 

EOT3 6.14 NE NSW -0.15 
-0.08 -0.04 -0.05 -0.04 0.09 

EOT4 5.44 E QLD -0.04 
-0.11 -0.06 -0.02 0.00 -0.12 

August       
          

EOT1 13.52 SE QLD 0.03 
0.28 -0.23 0.00 0.09 0.22 

EOT2 10.84 NE NSW -0.12 
0.07 -0.01 0.06 0.06 0.04 

EOT3 7.12 SE NSW -0.02 
0.20 -0.11 -0.16 -0.12 -0.15 

EOT4 5.42 C VIC -0.07 
0.21 -0.23 -0.12 -0.04 0.33 

September       
          

EOT1 21.26 C QLD 0.07 
0.31 -0.23 -0.35 -0.24 0.19 

EOT2 6.61 E QLD 0.11 
-0.08 -0.02 0.04 0.05 0.10 

EOT3 6.01 C NSW -0.10 
0.02 0.07 0.09 0.05 0.13 

EOT4 4.87 E NSW -0.02 
-0.04 -0.09 0.17 0.21 0.19 
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October       
          

EOT1 16.58 W QLD -0.01 
0.39 -0.41 -0.32 -0.11 0.21 

EOT2 6.91 NE NSW 0.19 
0.04 -0.08 0.14 0.18 0.11 

EOT3 5.68 C QLD -0.01 
0.32 -0.18 -0.14 -0.04 -0.10 

EOT4 4.42 SE NSW -0.12 
0.13 -0.06 -0.09 -0.05 0.18 

November       
          

EOT1 17.12 C QLD 0.11 
0.26 -0.35 -0.11 0.04 0.31 

EOT2 5.98 W NT 0.16 
0.17 -0.15 0.01 0.07 0.07 

EOT3 5.05 E NSW 0.04 
0.33 -0.27 -0.15 -0.03 0.20 

EOT4 4.36 E QLD 0.11 
0.15 -0.16 -0.27 -0.20 0.07 

December       
          

EOT1 11.49 E QLD 0.28 
0.41 -0.41 -0.09 0.00 -0.01 

EOT2 7.9 NE WA 0.43 
0.25 -0.12 0.00 0.02 0.06 

EOT3 5.52 C QLD -0.06 
-0.01 0.00 -0.13 -0.13 -0.16 

EOT4 5.08 S NSW 0.10 
0.20 -0.07 0.03 0.04 0.33 

January       

     
EOT1 13.34 C QLD 0.21 

0.15 -0.05 -0.01 -0.01 0.22 

EOT2 6.56 C NT 0.28 
0.02 0.12 0.17 0.17 0.05 

EOT3 4.73 E QLD -0.23 
0.03 -0.02 0.12 0.12 0.03 

EOT4 4.3 NW NSW 0.17 
-0.01 -0.03 0.30 0.30 0.01 

February       
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EOT1 9.76 E NT 0.37 
0.32 -0.08 0.29 0.28 0.06 

EOT2 7.3 E QLD 0.22 
0.21 -0.04 0.12 0.11 0.15 

EOT3 5.78 NE WA 0.19 
0.15 -0.13 0.07 0.04 0.05 

EOT4 4.48 N QLD -0.19 
0.02 0.07 0.13 0.15 0.18 

March       
          

EOT1 8 N QLD 0.20 
0.29 -0.10 0.08 0.05 0.21 

EOT2 6.87 NE WA 0.72 
0.08 -0.18 0.11 0.07 0.14 

EOT3 5.61 SW QLD 0.03 
0.04 0.03 0.21 0.22 0.08 

EOT4 4.85 N NT -0.07 
0.13 -0.09 0.05 0.02 0.30 

April       
          

EOT1 13.17 SW QLD 0.17 
0.30 -0.25 -0.01 -0.04 0.04 

EOT2 9.84 N NT -0.02 
0.39 -0.15 0.17 0.15 0.14 

EOT3 5.59 N WA 0.21 
-0.02 0.02 -0.17 -0.17 0.08 

EOT4 5.42 E QLD -0.14 
-0.04 0.02 -0.20 -0.19 -0.03 

May            

EOT1 19.43 E QLD 0.08 
0.34 -0.13 -0.20 -0.19 0.08 

EOT2 8.74 W QLD -0.11 
0.27 0.00 -0.35 -0.35 -0.19 

EOT3 6.87 NE NSW 0.09 
0.16 0.09 0.04 0.03 0.01 

EOT4 5.4 NW WA -0.11 
-0.02 0.03 -0.02 -0.02 0.13 

 1 

Table S2: As Table S1 except for monthly total rainfall EOTs. 2 
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EOT Variance Location Trend SOI Niño3.4 DMI DMI (no ENSO) SAM 

June 

        
EOT1 

16.79 NE NSW -0.14 0.23 -0.17 0.05 0.08 0.28 

EOT2 
9 W VIC -0.02 0.20 0.01 -0.11 -0.11 -0.13 

EOT3 
7.16 W WA -0.02 0.07 -0.11 0.01 0.03 -0.16 

EOT4 
6.73 E NSW -0.22 0.05 0.10 -0.06 -0.08 0.08 

July 

   

          

EOT1 
22.47 S QLD -0.07 0.41 -0.43 -0.26 -0.17 0.27 

EOT2 
10.82 SE NSW 0.00 0.31 -0.13 -0.11 -0.07 -0.34 

EOT3 
7.08 E NT 0.05 -0.05 0.16 0.12 0.08 0.07 

EOT4 
5.86 W WA 0.17 0.10 -0.01 -0.09 -0.08 -0.12 

August 

   

          

EOT1 
16.92 E VIC -0.29 0.25 -0.24 -0.35 -0.27 0.01 

EOT2 
13.05 SE QLD -0.13 0.33 -0.19 0.04 0.11 0.19 

EOT3 
7.42 W TAS 0.32 0.11 -0.16 -0.18 -0.13 -0.14 

EOT4 
6.07 E NSW -0.03 0.09 -0.07 0.00 0.03 0.05 

September 

   

          

EOT1 
23.77 C QLD 0.17 0.38 -0.36 -0.29 -0.11 0.28 

EOT2 
10.03 E VIC 0.14 0.10 0.04 -0.24 -0.26 0.01 

EOT3 
7.98 W TAS 0.26 0.16 0.02 -0.12 -0.13 -0.53 

EOT4 
6.19 NE NSW 0.00 0.07 -0.03 -0.10 -0.08 -0.03 
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October 

   

          

EOT1 
20.64 SE NSW -0.28 0.41 -0.32 -0.37 -0.20 0.21 

EOT2 
9.53 SE QLD 0.11 0.11 -0.12 0.10 0.16 0.09 

EOT3 
8.1 C QLD 0.06 0.25 -0.34 -0.26 -0.08 0.03 

EOT4 
3.96 NW TAS -0.03 0.22 -0.17 -0.17 -0.08 -0.43 

November 

   

          

EOT1 
27.07 C QLD 0.42 0.35 -0.41 -0.24 -0.06 0.33 

EOT2 
6.46 NE NT -0.02 0.27 -0.30 -0.10 0.03 0.24 

EOT3 
6.2 SE NSW 0.05 0.24 -0.21 -0.02 0.08 0.00 

EOT4 
4.11 SE QLD -0.21 0.09 0.03 -0.06 -0.07 0.05 

December 

   

          

EOT1 
21.69 N QLD 0.86 0.46 -0.34 -0.10 -0.03 0.22 

EOT2 
9.23 NW NT 0.61 0.07 0.02 0.02 0.02 0.02 

EOT3 
5.74 C NSW 0.22 0.11 0.00 -0.09 -0.09 0.28 

EOT4 
4.64 E QLD 0.17 0.08 -0.16 -0.08 -0.04 -0.24 

January       

     
EOT1 

28.74 C QLD 0.74 0.15 0.00 0.16 0.16 0.27 

EOT2 
9.21 NW NT 1.24 0.12 0.00 0.06 0.06 0.23 

EOT3 
6.25 NE QLD -1.02 0.23 -0.19 0.03 0.03 0.10 

EOT4 
4.25 NW NSW -0.05 -0.07 -0.05 0.17 0.17 -0.03 

February    
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EOT1 
19.81 N NT 1.36 0.54 -0.30 0.21 0.15 0.07 

EOT2 
10.02 E QLD -0.89 0.08 -0.08 0.13 0.11 0.19 

EOT3 
6.45 NW QLD -0.08 0.17 -0.01 0.18 0.18 0.07 

EOT4 
4.64 N QLD 0.68 0.13 -0.11 0.13 0.10 0.08 

March    
          

EOT1 
19.11 NW NT 1.39 0.42 -0.38 0.06 -0.05 0.19 

EOT2 
12.36 NE QLD -0.78 0.32 -0.15 0.08 0.04 0.15 

EOT3 
6.06 S QLD 0.09 0.06 -0.04 0.14 0.14 0.05 

EOT4 
4.7 NE WA 0.51 -0.13 0.09 0.03 0.05 -0.02 

April    
          

EOT1 
16.97 E QLD 0.20 0.23 -0.18 0.10 0.08 0.06 

EOT2 
11.01 N NT 0.35 0.29 -0.11 0.16 0.15 0.14 

EOT3 
8.35 E NSW -0.38 0.28 -0.26 -0.04 -0.07 -0.09 

EOT4 
6.47 N QLD 0.00 0.28 -0.20 0.14 0.12 -0.06 

May    
          

EOT1 
18.97 E QLD -0.01 0.37 -0.14 -0.28 -0.26 0.17 

EOT2 
10.61 N VIC -0.05 0.38 -0.06 -0.19 -0.18 -0.12 

EOT3 
7.07 NE NSW 0.15 -0.06 0.13 0.20 0.18 0.16 

EOT4 
5.85 SW WA 0.03 0.01 -0.08 -0.07 -0.06 0.05 

 1 
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Table S3: Table showing each four monthly Rx5day EOTs, their locations, the percentage of 1 

associated variance, and correlation coefficients with a range of climate indices (Blocking 2 

index, STR position index, STR intensity index, SPCZ index, Tropical Cyclone (West) index, 3 

Tropical Cyclone (East) index). Locations of EOTs are described by location within each 4 

state or territory (New South Wales (NSW), Northern Territory (NT), Queensland (QLD), 5 

South Australia (SA), Tasmania (TAS), Victoria (VIC), Western Australia (WA)). All 6 

correlation coefficients are computed using Spearman’s rank correlations. Significant 7 

correlation coefficients at the 5% level are shown in bold text. 8 

EOT Variance Location BI STR-P STR-I SPCZ-I TC-W TC-E 

June     

      
EOT1 11.58 NE NSW 

0.02 -0.15 -0.08 -0.05 

  
EOT2 8.09 NW QLD 

0.11 -0.02 -0.09 0.01 

  
EOT3 7.1 NW WA 

0.18 0.07 -0.20 0.08 

  
EOT4 6.39 SE NSW 

0.23 0.02 -0.16 -0.05 

  
July     

        

  
EOT1 17.99 S QLD 

0.20 -0.32 0.04 -0.15 

  
EOT2 9.73 W QLD 

0.21 0.21 -0.15 -0.11 

  
EOT3 6.14 NE NSW 

-0.12 0.01 -0.04 0.05 

  
EOT4 5.44 E QLD 

0.11 0.07 -0.10 0.19 

  
August     

        

  
EOT1 13.52 SE QLD 

0.27 -0.18 0.03 0.04 

  
EOT2 10.84 NE NSW 

0.18 -0.19 0.04 0.12 
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EOT3 7.12 SE NSW 
0.40 0.23 -0.41 0.02 

  
EOT4 5.42 C VIC 

0.42 0.12 -0.26 0.04 

  
September     

        

  
EOT1 21.26 C QLD 

0.30 0.07 -0.19 -0.10 

  
EOT2 6.61 E QLD 

0.23 -0.02 0.08 0.13 

  
EOT3 6.01 C NSW 

0.32 0.05 -0.18 0.14 

  
EOT4 4.87 E NSW 

-0.09 -0.36 0.30 -0.03 

  
October     

        

  
EOT1 16.58 W QLD 

0.24 0.21 -0.24 -0.04 

  
EOT2 6.91 NE NSW 

0.06 -0.31 0.14 -0.07 

  
EOT3 5.68 C QLD 

0.16 0.06 -0.13 0.06 

  
EOT4 4.42 SE NSW 

0.36 -0.29 -0.07 0.17 

  
November     

        

  
EOT1 17.12 C QLD 

0.31 -0.37 0.18 -0.08 0.15 -0.03 

EOT2 5.98 W NT 
-0.06 0.12 -0.09 -0.06 0.16 0.16 

EOT3 5.05 E NSW 
0.16 -0.15 0.11 -0.07 0.11 0.10 

EOT4 4.36 E QLD 
0.14 0.05 -0.10 -0.12 0.15 0.01 

December     
        

  
EOT1 11.49 E QLD 

-0.11 -0.05 -0.15 -0.23 0.33 0.32 

EOT2 7.9 NE WA 
-0.21 0.14 -0.25 -0.24 0.42 -0.12 
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EOT3 5.52 C QLD 
-0.08 0.08 0.01 0.11 0.16 0.03 

EOT4 5.08 S NSW 
0.19 -0.17 0.14 -0.11 0.02 0.03 

January     

    

    

EOT1 13.34 C QLD 
-0.13 0.00 -0.18 -0.21 0.05 0.17 

EOT2 6.56 C NT 
-0.23 0.00 -0.07 0.13 0.29 -0.16 

EOT3 4.73 E QLD 
0.09 -0.04 -0.03 0.20 -0.08 -0.04 

EOT4 4.3 NW NSW 
0.17 -0.18 0.25 0.09 -0.06 -0.06 

February     
        

  

EOT1 9.76 E NT 
-0.26 -0.10 -0.10 -0.11 0.11 -0.05 

EOT2 7.3 E QLD 
-0.06 -0.27 0.17 -0.06 -0.17 0.08 

EOT3 5.78 NE WA 
-0.10 0.03 -0.16 -0.09 0.41 -0.01 

EOT4 4.48 N QLD 
0.07 -0.01 0.00 -0.09 -0.01 0.02 

March     
        

  

EOT1 8 N QLD 
-0.09 -0.22 0.18 -0.25 0.10 0.10 

EOT2 6.87 NE WA 
0.12 -0.07 0.01 -0.10 0.34 -0.06 

EOT3 5.61 SW QLD 
0.17 -0.04 0.10 0.05 -0.20 -0.04 

EOT4 4.85 N NT 
0.04 -0.15 0.13 -0.03 0.45 0.14 

April     
        

  

EOT1 13.17 SW QLD 
0.08 -0.05 -0.06 -0.05 0.15 -0.07 

EOT2 9.84 N NT 
0.05 -0.01 0.01 -0.22 0.43 0.11 

EOT3 5.59 N WA 
0.19 -0.13 0.02 0.11 0.13 0.09 
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EOT4 5.42 E QLD 
-0.02 -0.03 -0.02 0.14 -0.02 0.26 

May     
        

  

EOT1 19.43 E QLD 
0.06 -0.10 -0.07 0.05   

EOT2 8.74 W QLD 
0.30 0.25 -0.42 0.13   

EOT3 6.87 NE NSW 
0.21 0.02 -0.10 0.08   

EOT4 5.4 NW WA 
0.14 0.11 -0.12 0.13   

 1 

Table S4: As Table S3 except for monthly total rainfall EOTs. 2 

EOT Variance Location BI STR-P STR-I SPCZ-I TC-W TC-E 

June 

        
EOT1 

16.79 NE NSW 0.21 -0.07 -0.21 -0.05 

  
EOT2 

9 W VIC 0.26 0.60 -0.50 0.15 

  
EOT3 

7.16 W WA 0.37 0.02 -0.21 0.01 

  
EOT4 

6.73 E NSW 0.06 0.00 -0.16 0.08 

  
July 

  

        

  
EOT1 

22.47 S QLD 0.23 -0.28 0.00 -0.21 

  
EOT2 

10.82 SE NSW 0.27 0.61 -0.58 0.16 

  
EOT3 

7.08 E NT -0.05 -0.06 0.18 -0.24 

  
EOT4 

5.86 W WA 0.07 0.12 -0.29 0.12 

  
August 

  

        

  
EOT1 

16.92 E VIC 0.33 0.47 -0.54 0.13 
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EOT2 
13.05 SE QLD 0.39 -0.06 -0.14 0.08 

  
EOT3 

7.42 W TAS -0.52 0.05 0.03 -0.04 

  
EOT4 

6.07 E NSW 0.02 0.09 -0.16 0.04 

  
September 

  

        

  
EOT1 

23.77 C QLD 0.27 -0.07 -0.14 -0.16 

  
EOT2 

10.03 E VIC 0.38 0.34 -0.35 0.19 

  
EOT3 

7.98 W TAS -0.43 0.42 -0.25 -0.10 

  
EOT4 

6.19 NE NSW 0.04 0.14 -0.21 0.04 

  
October 

  

        

  
EOT1 

20.64 SE NSW 0.46 0.19 -0.33 0.05 

  
EOT2 

9.53 SE QLD 0.13 -0.19 0.04 -0.10 

  
EOT3 

8.1 C QLD -0.11 0.06 0.01 -0.18 

  
EOT4 

3.96 NW TAS -0.02 0.66 -0.36 -0.01 

  
November 

  

        

  
EOT1 

27.07 C QLD 0.38 -0.27 0.07 -0.15 0.21 -0.05 

EOT2 
6.46 NE NT 0.28 -0.09 -0.03 -0.03 0.36 0.16 

EOT3 
6.2 SE NSW -0.07 -0.06 0.11 -0.07 -0.02 0.14 

EOT4 
4.11 SE QLD 0.24 -0.32 0.27 0.08 0.03 0.14 

December 

  

        

  
EOT1 

21.69 N QLD -0.05 0.06 -0.20 -0.16 0.50 0.25 
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EOT2 
9.23 NW NT -0.16 -0.12 0.01 -0.03 0.21 -0.20 

EOT3 
5.74 C NSW 0.23 -0.39 0.23 -0.12 -0.04 -0.03 

EOT4 
4.64 E QLD -0.13 0.07 -0.16 -0.03 0.01 0.08 

January     

    

    

EOT1 
28.74 C QLD -0.05 -0.09 -0.11 -0.18 0.07 0.08 

EOT2 
9.21 NW NT -0.16 -0.02 -0.13 -0.06 0.30 -0.11 

EOT3 
6.25 NE QLD -0.19 -0.07 0.00 -0.14 0.02 0.26 

EOT4 
4.25 NW NSW 0.23 -0.21 0.12 0.03 -0.05 0.06 

February   
        

  

EOT1 
19.81 N NT -0.26 -0.10 -0.20 -0.20 0.29 0.11 

EOT2 
10.02 E QLD 0.03 -0.23 0.04 -0.07 -0.22 0.07 

EOT3 
6.45 NW QLD -0.06 -0.02 0.06 0.00 -0.08 0.04 

EOT4 
4.64 N QLD -0.01 -0.11 -0.01 -0.24 0.15 0.12 

March   
        

  

EOT1 
19.11 NW NT -0.07 -0.15 0.03 -0.21 0.49 0.07 

EOT2 
12.36 NE QLD -0.07 -0.21 0.04 -0.13 0.24 0.35 

EOT3 
6.06 S QLD 0.27 -0.05 0.00 0.11 -0.06 -0.21 

EOT4 
4.7 NE WA 0.06 0.08 -0.06 -0.04 -0.05 -0.26 

April   
        

  

EOT1 
16.97 E QLD 0.06 -0.07 0.08 0.02 0.14 0.08 

EOT2 
11.01 N NT -0.01 0.13 -0.15 -0.21 0.49 0.09 
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EOT3 
8.35 E NSW 0.27 -0.28 -0.04 -0.14 -0.14 -0.10 

EOT4 
6.47 N QLD -0.01 -0.02 0.13 -0.30 0.15 0.27 

May   
        

  

EOT1 
18.97 E QLD 0.25 -0.13 -0.13 0.08   

EOT2 
10.61 N VIC 0.27 0.41 -0.45 0.18   

EOT3 
7.07 NE NSW 0.20 -0.24 0.11 -0.01   

EOT4 
5.85 SW WA 0.17 0.12 -0.39 0.02   

 1 

 2 


