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Abstract 

This study examines the rationality and momentum in forecasts for rental, capital value and 

total returns for the real estate investment market in the United Kingdom. In order to 

investigate if forecasters are affected by the general economic conditions present at the time 

of forecast we incorporate into the analysis Gross Domestic Product (GDP) and the Default 

Spread (DS). The empirical findings show high levels of momentum in the forecasts, with 

highly persistent forecast errors. The results also indicate that forecasters are affected by 

adverse conditions. This is consistent with the finding that they tend to exhibit greater 

forecast error when the property market is underperforming and vice-versa. 
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Rationality and Momentum in  

Real Estate Investment Forecasts 
 

1: Introduction 

Despite the increased use of econometric modelling and forecasting in both an academic 

and institutional context over the last two decades, very few studies have considered how 

accurate forecasts of the real estate market actually are. This paper expands upon this limited 

literature to specifically examine whether professional forecasts commercial real estate 

display bias and whether display momentum over the course of the forecast horizon. A key 

area of research in the forecasting literature has been the examination of those factors that 

may lead to variations in the accuracy of forecasts provided due to the provision of non-

rational forecasts. Empirical tests based on the rational expectations hypothesis generally 

examine whether predictions are rational, i.e. unbiased and efficient. This form of test 

postulates that as forecasters are paid to be accurate, the forecasts they produce represent 

their best estimates. However, this assumption invites further examination. In particular, is 

the forecast that maximizes the pay of an individual forecaster always the "best" forecast in a 

statistical sense?  

Real estate provides an interesting context in which to consider the accuracy and biases 

present in forecasts. As a combination of a real and investment asset it combines elements 

from both the macro-economy and the capital markets. This is especially evident in the data 

that we use in our consideration of rationality and momentum in forecasts. We consider the 

issue using three alternative forecast series’; all provided by the UK based Investment 

Property Forum (IPF). These series comprise forecasts of Rental Growth, Capital Value 

Growth and Total Returns. The rental series may possibly display different characteristics as 

it will be more highly associated with the economic dynamics and demand-supply factors in 
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the underlying occupier market. In contrast, the capital value and total return series’ bring 

into consideration investor behaviour. The difference in the series’ was highlighted by 

Matysiak et al. (2012) with vastly reduced forecast accuracy in the case of the capital and 

total return series’.  

The model specifications used in the paper are based upon the framework of Holden & 

Peel (1990). This allows us to consider rationality and momentum in the forecasts as the year 

progresses. In addition, we examine whether forecasters are affected not only by their 

previous estimates but also by each other. We also incorporate measures aimed at capturing 

economic and property market conditions at the time the forecasts were made. The empirical 

results show that all of the forecasts (rental growth, capital growth and total returns) exhibit 

significantly high levels of momentum (above 90%). This finding would suggest that the 

variation in the forecast errors can be largely explained by their past values. However, with 

the capital value and total return forecasts some instances were found of forecasters 

displaying momentum in excess of 100%, indicating highly persistent forecast errors. In other 

words, property forecasters tend to base their forecasts on their previous evaluations. In 

contrast, forecasters are more confident of predicting the trend in rents. We find that 

forecasters tend to bias the rental growth forecasts as the forecasting horizon comes closer to 

the target year. The inclusion of macroeconomic variables such as Gross Domestic Product 

(GDP) and the default spread show that property forecasters are affected by poor economic 

conditions at the time of forecast, with the forecast error negatively related to GDP and 

positively with the Default Spread. This indicates that forecast error increases when GDP 

declines and when the Default Spread widens. The results also illustrate that forecast 

accuracy reduces when the property market is underperforming.  

The remainder of the paper is structured as follows. Section 2 briefly considers some of 

the pertinent forecast accuracy literature. Section 3 provides details concerning the data 
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utilised, whilst Section 4 discusses the methodological framework adopted applied in the 

study. Section’s 5 and 6 respectively report the empirical results and provide concluding 

remarks. 

 

2: Literature Review 

Stekler (2007) and Hendry & Clements (2003) note several possible reasons as to why 

models may fail to provide accurate forecasts. These include; model mis-specification, the 

use of inaccurate data, characteristics of the individual forecasters and the presence of 

structural breaks that may affect the deterministic trend. For example, both Stock and Watson 

(1993) and Fintzen & Stekler (1999) note that series that had previously managed to capture 

anticipated economic downturns failed to do so for the 1990 recession in the United States. In 

addition to the above issues, Oller & Barot (2000) show that problems with data can also lead 

to large forecast errors. Furthermore, the characteristics and the behaviour of the individual 

forecasters are additional features that may affect forecasting performance. Gjaltema (2001) 

argues that forecasters are distinctive social entities with individual characteristics that 

interact in different sociopolitical contexts. This can therefore influence the forecast 

outcomes. Furthermore, Fintzen & Stekler (1999) argue that the manner in which individuals 

prepare their forecasts can affect their accuracy. One key behavioral element is that 

forecasters may deliberately ‘bias’ their forecasts. There are a number of studies that have 

argued that forecasters may not necessarily attempt to maximize forecast accuracy and may 

be motivated by factors such as their reputation when they release their forecasts. (Ehrbeck & 

Waldman, 1996; Laster et al., 1999; Pons-Novell, 2003).  

Batchelor & Dua (1991) observe that forecasters not only display conservatism in order 

to be closer to the consensus but that, more generally, they revise their estimates by less than 
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are warranted by new information. Instead, they prefer to wait until later revisions of data are 

available before adjusting their models. The findings of Isiklar et al. (2006) support this, 

reporting that it takes forecasters more than five months to incorporate 90% of new 

information. In line with this finding is Nordhaus (1987), who provides direct evidence of 

forecast inertia, in that forecasters prevail with forecasts for longer than is warranted. This 

inference is drawn from an analysis of fixed-event forecasts of GDP growth, which shows 

that forecast revisions tend to be highly serially correlated. Batchelor (2007) argues that there 

are three possible reasons why forecasters may publish persistently biased forecasts. One is 

the lack of appropriate skills and the inability to efficiently incorporate new information. 

Forecasters may also fail to learn from past forecast errors and as a result they produce biased 

forecasts on an ongoing basis. The second reason is that forecasters may fail to differentiate 

between the changes in the target variable that are permanent and those which are transitory. 

Effectively, they may assign an equal weight to each component, resulting in biased 

forecasts. The third possible reason, as has already been noted, is the financial or reputational 

incentives that may lead to overly optimistic or pessimistic forecasts.  

The real estate specific literature on forecast accuracy is remarkably limited, with the 

majority of it considering the same IPF data as used in the current paper, for example 

McAllister et al. (2008) and Matysiak et al. (2012). The McAllister et al. (2008) paper is 

somewhat constrained by only being able to analyze data up until 2004. In contrast, by 

examining data through to 2011 Matysiak et al. (2012) is are able to consider the issues at 

hand during the extreme market movements observed during the last cycle. Not only was the 

market correction in 2008 of a very large magnitude but the positive performance observed in 

the three years running up to 2007 was also of historically high levels. The results illustrate 

that forecasters display a tendency to under-estimate growth rates during strong market 

conditions and over-estimate when the market is performing poorly. This conservatism not 
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only results in smoothed estimates but also implies that forecasters display herding 

behaviour. There is also a marked difference in the relative accuracy of capital and total 

returns versus rental figures. Whilst rental growth forecasts are relatively accurate, 

considerable inaccuracy is observed with respect to capital value and total returns. Bond & 

Mitchell (2011) also consider the IPF data, although in a different context. Their analysis 

compares the forecasting accuracy of the IPF Consensus Forecast for total returns versus 

implied forecasts derived from total return swap contracts. The results, interestingly, show 

that for a one-year horizon, the derivatives based implied forecasts display greater accuracy 

than the consensus professional forecasts for total returns. Ling (2005) is one of the only 

papers to have considered non-UK data, analyzing forecasts provided by the Real Estate 

Research Corporation (RERC) for the U.S. commercial market. The results indicate that the 

consensus opinions analyzed are backward looking and reveal little information in terms of 

subsequent performance1. 

 

3: Data  

Since the late 1990’s the U.K. Investment Property Forum (IPF) has surveyed a variety 

of property advisory firms, fund managers and financial institutions, asking them to provide 

forecasts of the U.K. commercial market. The benchmark reference points specified by IPF 

are the relevant annual indices for rental income, capital values and total returns as 

constructed by Investment Property Databank (IPD). The forecasts contain information up to 

a three-year ahead period on a quarterly basis, and are produced in February, May, August 

and November. This therefore results in twelve-quarterly forecasting horizons. For the 

purpose of this study we utilize the quarterly forecasts over the period 1999-2011, thus the 

maximum possible number of forecasts for each of forecasters is 156. In total 69 firms 

contribute forecasts to IPF over the 13 year period. The forecasters are relatively evenly split 
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between property advisors (22), fund managers (26) and other financial institutions (21). 

However, the sample for each period and the number of observations for individual forecasts 

varies quite considerably. Due to the methodological framework adopted in this paper we 

only consider those forecasters that had a coverage ratio in excess of 50%. Therefore, given a 

maximum number of 156 forecasts this means that a minimum of 78 forecasts were required. 

As can be seen from Figure 1, only 20 forecasters had sufficiently large coverage ratios. 

Whilst this is a substantial reduction in the sample of individual forecasts it is necessary in 

order to avoid large numbers of missing values. It also does effectively reduce the sample to 

those organizations that regularly and consistently produce forecasts of the UK market.  

The use of the quarterly forecasts provides us with a rich vein of data that allows us to 

consider how the forecasts of the three property variables change as the year progresses. 

However, the forecasts do have to be adjusted in one important respect. In addition to the 

Annual Index, IPD also produce equivalent indices on a monthly and quarterly basis. Whilst 

not identical in terms of the properties they cover, they are broadly similar to each other, the 

primary difference revolving around the frequency of the periodic valuation of the properties. 

Table 1 reports the composition by sector across the three indices. As one would expect, the 

number of properties reduces as the frequency of the index increase. However, the monthly 

and quarterly indices are broadly similar in terms of composition. The primary differences 

that are observable are that the relative weights for offices and industrial are slightly up as the 

frequency increases whilst those for retail and other sectors are down. Within each sectors the 

most evident difference in the far higher weight for shopping centers in the annual index.  

Our interest centers on the issue that some relevant information has already been 

published, through the monthly and quarterly indices, during the year. If is therefore 

important that we account for the observed component from the forecasts and isolate the pure 

forecast for the remaining forecasting horizons of each one of the 13 target years. These 



8 
 

unobserved forecast series are then converted to an annual basis, as the quarterly IPF 

forecasts that are used in this study are annualized growth rates of the rents, capital values 

and total returns.  

Given that our forecasts are on a quarterly basis the preferred sub-annual measure of 

performance is the IPD Quarterly Index. However, the IPD Quarterly Index is only available 

from 2001; therefore quarterly data for the three variables is not available for the period from 

March 1999 to December 2000. Therefore, for this period we have to rely on figures obtained 

from the Monthly Index. The monthly figures are converted to a quarterly basis and 

expressed in annual terms as follows:  

 

 ̃  (
  

    
  )                   (1) 

 

where    represents the current monthly IPD value for each variable and      is the 

value one quarter before. We isolate the estimated unobserved (pure) forecasts for the last 

three forecasting horizons of each target year from 1999 to 2011. The forecasting horizons 

are denoted with h. For the last three forecasting horizons, i.e. when 1 ≤h< 4, the unobserved 

component of the forecast is mixed with the observed component, from either the monthly or 

quarterly IPD, for each target year. We estimate the pure forecast for the last three forecasting 

horizons, denoted as  ̃   , as follows: 
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where        is the forecast value which includes the observed component from the sub-

annual measures, h horizons before the end of each target year t and for i number of 

forecasters.      represents the quarterly observed (actual) IPD growth for the corresponding 

last three quarters        . However, since the forecast values are expressed on an 

annualized basis, the pure forecast values  ̃      have to be converted to an annual basis as 

well, as displayed in Equation (3): 

 

 ̂          ̃      
 

                                (3) 

 

where  ̂    is the annualized value of the pure forecast, i.e. the forecast without the 

observed component of the IPD index.  

The primary focus of this study is the examination of the rationality (i.e. bias and 

efficiency) of the forecasts as the horizon shortens when the target year approaches. In line 

with Holden & Peel (1990) and Lahiri & Sheng (2010) we test for rationality by analyzing 

the corresponding forecast errors, defined as the difference between the actual value, Xt,j, and 

the corresponding forecast value, yi,t,h.. Following the notation of Equations (2) and (3), the 

forecast errors ei,t,h can be defined as follows: 
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     ̂                                               
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  (4) 

 

where  ̂    is the annual pure forecast value for   number of forecasters, when the 

forecast horizon is greater than three (i.e. h≥4). Additionally,  ̃      is the quarterly pure 
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forecast value for 1≤h≤3 expressed in annual terms, whilst Xt,j is the corresponding actual 

value j quarters before the end of each target t .In order to examine the bias and accuracy of 

the forecasts three-dimensional panels (i.e. forecasting horizons, forecasters, and target years) 

were utilized for the rental growth, capital growth and total return variables. The variable of 

interest is the forecast error. As previously noted, in order to minimize the issue of missing 

values the sample was limited to those forecasters that had a coverage ratio in excess of 50% 

during the 1999-2011 period. However, there were some periods, especially in the case of the 

two-year ahead forecasts, with missing values. Therefore, the following linear interpolation 

method was used: 

 

                                (5) 

 

where          represents the previous missing forecast error value and          is the next 

non-missing forecast error value. Additionally,   denotes the relative position of the missing 

value divided by the total number of missing values in a row. For example, in cases where 

there was one missing value between other two the λ was the simple average (i.e. λ=1/2). The 

number of observations obtained was 2,168, 2,157 and 2,136 for the rental growth, capital 

growth and total return series’ respectively. 

 

4: Model Specification 

The methodological framework adopted in this paper is based on that proposed by 

Holden & Peel (1990), although modifications are made due to the nature of the data. The 

base specification can be expressed as below: 
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            ̃                (6) 

 

where        denotes the forecast error for i forecasters, h forecasting horizons and t target 

years.     represents the actual value of the property variables with j denoting the quarters of 

each target year t. Additionally,  ̃      is the corresponding forecast value of i=20 forecasters 

and h forecasting horizons before each target year t comes to the end. According to Holden & 

Peel (1990) the significance of the constant, τ in the equation (6), indicates biased forecasts. 

However, when multi-step forecasts are considered, as in the current piece of research, 

autocorrelation needs to be taken into account (Lahiri & Sheng, 2010). This is obviously an 

issue given the vast evidence illustrating the degree of smoothing in appraisal based real 

estate index data. For this reason, we include the lagged forecast error into the specification 

as follows:  

 

                            (7) 

 

We denote as ei,t,h the pure forecast error for i number of forecasters (i.e. twenty in our 

case), h number of horizons (i.e. h=12) and t number of target years (i.e. 1999-2011). Since 

the dataset was divided into forecasting horizons the forecast errors will be lagged dependent 

on the forecasting horizons. For that reason         , which is the horizon dependent forecast 

error, was included as an explanatory variable. Additionally vith∼i.i.d.(0,σ
2
) with zero mean 

and constant variance.  
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A further issue with the Holden and Peel (1990) methodology, as specified in Equation 

(6), is that it is based upon a static framework and does not include any lagged dependent 

variables. We therefore cannot test for bias by simply examining the significance of the 

constant “α” in equation (7). Instead we need to convert the dynamic AR(1) specification in 

Equation (7) into a static model in order to obtain the long-run equilibrium, the significance 

of which will determine bias. We follow the approach proposed by Chiang & Wainwright 

(2005) in order to convert the dynamic AR(1) model into a static model, as follows: 

 

                         (8) 

                         (9) 

 

Rearranging equation (9) we have: 

 

                                  (10) 

 

Let us assume that               and           and that –    , in order that the 

transformation are consistent with the Chiang & Wainwright (2005) notation. Equation (10) 

can therefore be re-expressed as: 

 

                          (11) 

 

The general solution of Equation (11), i.e. the 1
st
 order difference equation, will consist 

of the sum of two components, namely:  
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1) the particular integral   , which is any solution of the complete no-homogeneous 

Equation (11) and represents the intertemporal equilibrium level of    

2)    which is the complementary function and is the solution of the reduced 

(homogeneous) Equation (11).  

In order to find the solution of Equation (11) it is assumed that α=0:  

 

                           (12) 

 

According to Chiang & Wainwright (2005) the    component represents the deviations 

of the time-path from the intertemporal equilibrium. Therefore, the solution is in the form 

      , where      , as otherwise yt will tend to be a horizontal straight line lying on 

the t axis. Hence,           . If these two values hold then the Equation (12) becomes: 

 

                           (13) 

 

After cancelling the nonzero common factor the above can be expressed as: 

 

                                 (14) 

 

From Equation (14) the complementary function can then be derived as: 

 

                              (15) 
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After obtaining the complementary function yc the next step is to define the particular 

integral      in order to obtain the complete solution for equation (7). Since the purpose of 

the Chiang & Wainwright (2005) methodology is to find the long-run equilibrium of equation 

(11) let us assume that      (a constant) and also       . The substitution of these 

values into the equation (11) leads to the following: 

 

         
 

   
               (16) 

 

The particular integral can therefore be written as: 

 

       
 

   
                       (17) 

 

Hence the long run equilibrium of the equation (11) is the following:  

 

       
 

   
                     (18) 

 

The unconditional mean of equation (7) can be expressed as follows: 

 

                                         (19) 
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By taking the common factor of equation (19) and assuming that the long term mean of 

ei,t,h exists, this implies that        (      )        
 . Therefore, by assuming that E(νith) →0, 

from equation (19) we can derive the long term mean of the dynamic model (7) as follows: 

 

      
                      

  
 

   
          (20) 

 

The analysis of the momentum and bias in the forecasts is therefore achieved by the 

implementation of equation (7). Based upon the transformation of the AR(1) dynamic model 

in equation (11) into a static process, the new constant term of the panel regressions will not 

be the ‘α’ coefficient but rather 
 

   
 as displayed in equation (21): 

 

          
 

   
                     (21) 

 

where E(ei,t,h) is the expected forecast error with β coefficient being the momentum and 

 

   
 is the constant for the three static models. Therefore, the methodological framework 

focuses upon the testing of the significance of 
 

   
. If this is significant then this implies that 

that forecasters tend to make biased forecasts as the forecasting horizon reduces as the target 

year approaches. The necessary condition for the long term mean to exist is that the forecast 

errors of the property variables are stationary process (i.e. β<1). In the case where β>1 they 

can be referred to as explosive time-series, meaning that the long-term mean cannot be 

defined and therefore that bias cannot be examined.  
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5: Empirical Results 

5.1: Analysis of Bias and Momentum in Property Forecasts 

The first component of the empirical analysis is to consider the results from the 

estimation of Equation (7). Given that a panel specification is adopted a number of issues 

need to be initially considered. Firstly, whether the lagged forecast error is included in the 

specifications as a common or variable (i.e. cross-section specific) coefficient. To assess this 

we apply a test of restriction based on the common F-statistic as shown in equation (22): 

 

      
           

    
 

   

 
             (22) 

 

where J is the number of restrictions, n is the number of observations and k the number 

of regressors in the unrestricted regression including the constant. For the rental growth, 

capital growth and total returns the number of observations was 2,168, 2,157 and 2,136 

respectively. Additionally, the number of restrictions will be J=19 and the number of 

regressors in the unrestricted model will be equal to the number of forecasters, i.e. twenty. 

The null hypothesis of this test is that the restricted model is appropriate. The estimated F-

statistics are 0.30, 0.94 and 1.00 for the rental, capital value and total return series 

respectively, none of which are significant at conventional levels. Therefore, as these findings 

indicate that the restricted model is appropriate, the lagged forecast error is inserted as a 

common coefficient for the three variables. 

The second specification issue revolves around the choice of fixed or random effects. 

We consider the issue by applying the redundant fixed effects test, which has as its null that 

the fixed effects specification is not appropriate. In each case the F-statistic (1.03, 0.26 and 

0.47) is not statistically significant for the rental, capital value and total return series’. These 
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findings therefore are supportive of estimating the models without the inclusion of fixed 

effects. The pooled models therefore used to test for bias in the rental growth (RG), capital 

growth (CG) and total returns (TR) forecasts are as follows: 

 

                                             
  

 

   
              (23) 

                                       
     

  
 

   
              (24) 

                                       
     

  
 

   
                (25) 

 

Where β denotes the momentum coefficient for i=20 forecasters. However, prior to the 

estimation of the models it is necessary to test whether the three variables are stationary as it 

is a necessary condition for the long-term mean E(ei,t.h) to exist. We utilise the Levin et al. 

(2002) unit root test, the null hypothesis of which is the existence of a common unit root. We 

also use three alternative Fisher-type panel unit root tests where the null hypothesis is the 

existence of individual unit roots. The three unit root tests are the Im et al. (2003), Fisher 

Augmented Dickey Fuller and Fisher Phillips-Peron tests. The results from these are reported 

in Table 2. In the case of the rental growth series we can reject the null hypothesis of a unit 

root and can conclude that the forecast errors are stationary. However, this is not the case for 

either the capital value or total return series, where the null hypothesis of a unit root is not 

rejected, indicating, therefore, non-stationary forecast errors. This would as such imply the 

absence of a long-term mean for these forecasts. This has the implication that equations (24) 

and (25) cannot be used to test for bias in the forecasts of capital value or total returns.  

Whilst the Holden & Peel (1990) test of bias cannot be applied in the case of the capital 

value and total return forecasts due to non-stationarity, it is of interest to present some results 

in order to illustrate why the non-stationarity issue arises. As can be observed in Table 3, both 
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capital growth and total returns forecasts have highly significant common momentum, 0.98 

and 0.99 respectively. In addition, when the lagged forecast error is include as a variable 

coefficient, as displayed in Panel B of Table 3, in six instances when capital value returns are 

considered, and eight in the case of total returns, the momentum coefficient is equal to or 

greater than unity. (i.e.    ), indicating explosive time-series. These findings imply that 

forecasters do not update their forecasts as the time horizon progresses, leading to a 

cumulative effect on the forecast errors (Lahiri & Sheng, 2010). The results may also be 

interpreted as implying that forecasters display less confidence in the prediction of capital 

values and total returns in comparison to the case with rental growth. Effectively, this 

phenomenon, the accumulation of forecast errors, causes the absence of a long term mean in 

the forecast errors of the capital values and total returns’ forecasts. This in turn leads to the 

stationarity problems in the forecast errors and therefore prevents the formal empirical 

examination of bias.  

Although we are unable to undertake the analysis of bias for all series we can in the case 

of the rental growth forecasts, where equation (23) can be implemented. We apply the Wald 

test (Wald, 1943) to test for the significance of the long term mean (          
 

   
) and 

therefore for bias in the forecasts (Holden & Peel, 1990). These results are reported in Table 

4 and it can be observed that there is highly significant momentum (90%) in the rental growth 

forecast errors. Additionally, the R
2
 can be interpreted as signaling that 85% of the variation 

in the forecast errors is explained by the common momentum coefficient, i.e. the lagged 

forecast error. Regarding bias, forecasters tend to make biased forecasts as the forecasting 

horizon progresses. In other words they feel more confident for short-term forecasting 

periods and they tend to differentiate their rental growth forecasts from the consensus.   
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5.2: Behavioral Analysis of Property Forecasts 

The second major component of the empirical analysis considers whether the behaviour 

of forecasters is affected by market conditions at the time the forecasts were made. We 

empirically address this issue through include in the specifications Gross Domestic Product 

(GDP) and the Default Spread (DS). GDP has been extensively used as a proxy for general 

economic conditions not only in the general forecasting literature (e.g. Batchelor, 2007; 

Lahiri & Sheng, 2010; Dovern & Weisser, 2011) but also in the dedicated real estate 

literature. The default spread, defined as the difference between the corporate yield and the 

10-year government bond, is often used as an indicator of expected economic growth (e.g. 

Harvey, 1991). The rationale in this case is that a widening spread implies negative 

expectations about future economic performance In addition to its broader use, papers such as 

Seck (1996) and Ling & Naranjo (1997) have made use of the default spread as an 

explanatory variable in real estate specific papers.  

Consequently we augment equations (23-25) with the two macroeconomic variables 

(GDP, Default Spread) as well as a dummy variable to capture long-term property market 

performance. To construct the dummy we use the average return of the respective IPD 

indices from 1981 up to the date of the forecast, thereby avoiding any retrospective bias.  

When the forecasted value is greater than the long-run average performance of the IPD index 

then the dummy variable takes the value of unity, otherwise zero. The results from the 

dummy variable can therefore be used to indicate whether forecasters are systematically 

affected by the relative conditions prevalent at the time the forecast was made. As the 

dependent variable is the forecast error, the sign of the coefficient will reveal behavioural 

elements in the forecasts. For example a negative sign would imply that forecasts tend to 

systematically underestimate, as when the forecasts overestimate returns, smaller forecast 
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errors are observed. In contrast, a positive sign would indicate that when forecasters 

overestimate returns, forecast errors are higher. 

As noted previously, the forecast errors of the capital value and total returns forecasts 

were found to be non-stationary, hence the inability to formally test for bias. In order to 

conduct the augmented tests of behaviour we take the first difference of the two forecast error 

series. As the results in Table 5 illustrate, all of the alternative unit root tests show that the 

first differenced series are stationary. To test whether the default spread and GDP should be 

included as common or as cross-sectional specific variables in the three specifications we run 

tests of restrictions. In all cases the test statistic is insignificant, indicating that the restricted 

model (i.e. common coefficients) is more appropriate. With the addition of the 

aforementioned dummy variable the final specifications can be displayed as follows: 

 

                                                             (26) 

                                                   (27) 

                                                   (28) 

 

where GDP is the logarithmic difference of the GDP, DS is the default spread at the 

time of forecast. As the forecast errors for the capital values and total returns were not 

stationary, the first differences of them (i.e. ei,t,h), are used instead
2
. As the first differences 

are used as the dependent variable and therefore the lagged forecast errors are contained in 

the dependent (i.e.                        ) we do not include the lagged errors as an 

explanatory variable. Finally, MD is the property market dummy previously described
3
.  

To consider the most appropriate econometric framework we check the statistical 

properties of the errors. In particular, the errors for different cross-sections may have 
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differing variances (panel heteroskedasticity) or may be correlated across the sections. On the 

one hand, if the disturbances of the equations of different cross-sections are 

contemporaneously correlated and heteroscedastic then the most appropriate econometric 

technique is a GLS estimation of SUR (Seemingly Unrelated Regression), which gives more 

efficient estimates than separate OLS estimates of each cross-section. On the other hand, in 

the presence of panel heteroscedastic errors, then Weighted Least Squares is the most 

appropriate method to obtain consistent estimates of the variance-covariance matrix. In order 

to check the evidence of heteroscedastic panel errors the Breusch-Pagan (1979) test for 

heteroscedasticity was applied to each of specifications. We also use the likelihood ratio test 

for cross-sectional stochastic dependence (Mouzakis & Richards, 2007) to test for the 

presence of cross-sectional correlation
4
. The null hypothesis of this test is that the disturbance 

terms of the different cross-sections are correlated. The results from both tests are reported in 

Table 6. It can be seen that the variance of the residuals is not constant as the null hypothesis 

of homoscedastic errors is strongly rejected. However, this is not the case for the likelihood 

ratio test where the null hypothesis of no cross-section stochastic dependence is not rejected. 

In other words, the disturbance terms of different forecasters are not correlated, therefore, the 

most appropriate estimation method is weighted least squares. The final preliminary tests are 

concerned with whether fixed-effects are used are not. The redundant fixed effects test was 

used and in each case the F-statistic was not significant at conventional levels, with values of 

1.24, 0.71 and 0.72 for the rental, capital growth and total return series respectively. These 

findings therefore indicate that there is no need for the inclusion of fixed effects in any of the 

three specifications.  

The results for the models detailed in equations (26-28) are reported in Tables 7 and 8. 

Table 7 reports the findings without the inclusion of the default spread, whilst the 

specifications modelled and reported in Table 8 do include the spread. The reason behind this 
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was to see how much of the variation in the forecast errors can be explained by the addition 

of the default spread as an explanatory variable. The results are broadly consistent when the 

default spread is included, indeed they do not substantially differ across the three series. All 

of the independent variables are significant at conventional levels and the sign of the 

coefficients is consistent. GDP is found to be negative and significant, implying that forecast 

errors increase during worsening economic conditions. It is important to recognise that given 

the specifications used this does not necessarily relate to forecasts for periods when the 

economy was in recession. Rather, as the GDP figure is taken as that of the time of the 

forecast it actually can be interpreted that poor economic conditions may contribute to future 

inaccuracy. This can be seen it that a consideration of the raw data and based on the analysis 

in Matysiak et al. (2012), the worst performing one-year rental growth forecasts were for 

2009. These findings are supported by the findings when the default spread is included in the 

analysis. The default spread is defined as the yield spread between corporate and 10-year 

government bonds. A wider spread implies deteriorating economic conditions as the markets 

are pricing increased default risk into the corporate bond market and yields. As noted 

previously, the default spread has been used extensively as an indicator of economic 

expectations. The default spread results support those of GDP, with a significant positive sign 

reported for each three series. This indicates that there is a positive relationship between the 

default spread and the forecast errors, thus, when the default spread increases, implying 

worsening economic expectations, forecast inaccuracy increases.  

The results with respect to the capital growth and total returns errors are broadly 

consistent with the rental growth case. As already noted the first difference of the forecast 

errors were used as the dependent variables in the capital growth and total returns 

specifications. However, as the explanatory variables are also in first differences, the 

interpretation of the results is exactly the same as in the rental growth case. As with the rental 
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series, GDP is negative and statistically significant, confirming that forecasts tend to become 

more inaccurate, i.e. display greater forecast error, when the economy is underperforming. 

The sign of the property market dummy is negative and significant. The interpretation of this 

finding does need to be carefully considered as the dummy is defined as taking the value of 

unity when the forecast value is greater than the historical average of IPD at the time of 

forecast, otherwise zero. The negative sign of the coefficient therefore implies that forecast 

errors tend to be lower when the series are forecasted as being less than their long-run 

average. However, if one considers the underlying data it is clear that forecasters tend to 

under-predict all three series as the total number of “zeros” is higher than the corresponding 

number of “one’s”, showing that forecasts tended to be lower than the historical average. This 

is despite the strong market conditions prevalent during the 2002-7 period. This does provide 

a degree of support for the view that forecasters tend to be conservative in their forecasts.  

 

 

 

6: Concluding Comments 

This study has examined the bias and momentum in forecasts of the UK commercial 

property market for up to three years ahead. A distinctive feature of this research is the 

introduction of a quarterly forecasting horizon that allows for the examination of the 

rationality of property forecasts as the forecasting horizon progresses. The first key finding is 

that the forecasts for all three series (rental growth, capital growth and total returns) display 

very high levels of momentum, meaning that the variation of the forecast errors can be 

explained in a large part by their past values. This is particularly evident in the case of the 

capital and total return forecasts, where the momentum coefficient was significant and above 



24 
 

0.98. Additionally, individual cases were noted where the momentum coefficients was in 

excess of unity, indicating an explosive time series. This implies that forecasters do not 

update their capital growth and total returns forecasts, relying largely upon their previous 

estimates. This would therefore help to explain the presence of highly persistent forecast 

errors. In addition, the results also imply that property forecasters tend to more accurately 

predict trends in rents rather than those in capital and total returns, supporting the analysis 

contained in Matysiak et al. (2012). Regarding the examination of bias in the property 

forecasts it was found that property forecasters tend to bias their rental growth forecasts as 

the forecasting horizon progresses. However, the Holden & Peel (1990) approach could not 

be applied for the capital growth and the total returns forecasts due to non-stationarity in the 

forecast errors.  

In order to examine behavioural elements in the forecasting process, we incorporate 

GDP and the Default Spread into the specifications. The results show that forecasters tend to 

be affected by both the general economic and property market conditions at the time the 

forecasts are made. Specifically, the results indicate property forecasters tend to exhibit 

greater forecast errors when the market is underperforming and vice-versa. This issue is also 

confirmed by the positive sign of the default spread coefficient.  
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Tables & Figures 

Table 1: Composition of the Annual IPD All Property Index 

 Annual Index Quarterly Index Monthly Index 

 Capital  

Value 

(£m) 

% 

Capital 

Value 

Capital  

Value 

(£m) 

% 

Capital 

Value 

Capital  

Value 

(£m) 

% 

Capital 

Value 

All Retail 68,464 48.8% 53,733 46.4% 15,547 44.4% 

Standard Retail (South East of England) 12,993 9.3% 11,705 10.1% 2,628 7.5% 

Standard Retail (Rest of UK) 9,669 6.9% 9,383 8.1% 2,939 8.4% 

Shopping Centers 22,871 16.3% 11,965 10.3% 2,078 5.9% 

Retail Warehouses 22,931 16.3% 20,681 17.9% 7,903 22.5% 

All Offices 37,190 26.5% 33,613 29.0% 11,037 31.5% 

City of London 5,027 3.6% 4,639 4.0% 1,256 3.6% 

West End of London 17,279 12.3% 14,211 12.3% 4,086 11.7% 

Rest of South East of England 9,404 6.7% 9,748 8.4% 3,632 10.4% 

Rest of UK 5,481 3.9% 5,015 4.3% 2,063 5.9% 

All Industrial 21,459 15.3% 19,784 17.1% 6,490 18.5% 

South East of England 13,679 9.7% 11,960 10.3% 3,678 10.5% 

Rest of UK 7,780 5.5% 7,824 6.8% 2,811 8.0% 

Other Property 13,216 9.4% 8,621 7.4% 1,981 5.7% 

All Property 140,329 100% 115,752 100% 35,055 100% 

Notes: Table 1 provides details of the composition of the Annual IPD All Property Index for the UK as of the end of 2013. 

For comparative purposes the equivalent information is provided for the IPD quarterly and monthly indices. 
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Figure 1: Coverage Ratio of the 69 Property Forecasters during the period 1999-2011 
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Table 2: Unit Root Tests for Forecast Errors 

Variables H0 : (common unit root process) Statistic p-value 

Rental Growth  

Levin, Lin & Chu t*  

-4.61 (0.00) 

Capital Growth 2.18 (0.98) 

Total Returns 2.57 (0.99) 

Variables H0 : (Individual unit root process) Statistic p-value 

Rental Growth 

Im, Pesaran and Shin W-stat -9.15 (0.00) 

ADF-Fisher chi-square 174.78 (0.00) 

PP-Fisher chi-square 127.92 (0.00) 

Capital Growth 

Im, Pesaran and Shin W-stat 0.38 (0.65) 

ADF-Fisher chi-square 34.87 (0.69) 

PP-Fisher chi-square 38.10 (0.55) 

Total Returns 

Im, Pesaran and Shin W-stat 0.90 (0.81) 

ADF-Fisher chi-square 32.65 (0.78) 

PP-Fisher chi-square 33.77 (0.74) 

Note: Table 2 reports the panel unit root tests on the forecast error series.  

 

Table 3: Momentum Tests for Capital Value Returns and Total Returns 

Capital Growth Total Returns 
Panel A: Common Momentum Coefficient 
Constant 0.002

a
 Constant 0.002

a
 

Lagged Forecast Error 0.98
a
 Lagged Forecast Error 0.99

a
 

Panel B: Variable Momentum Coefficient 
Constant 0.002

b
 Constant 0.002

a
 

Forecaster 1 0.96
a
 Forecaster 1 0.95

a
 

Forecaster 2 0.99
a
 Forecaster 2 1.00

a
 

Forecaster 3 0.97
a
 Forecaster 3 0.98

a
 

Forecaster 4 0.96
a
 Forecaster 4 0.96

a
 

Forecaster 5 0.94
a
 Forecaster 5 0.95

a
 

Forecaster 6 0.99
a
 Forecaster 6 0.99

a
 

Forecaster 7 1.00
a
 Forecaster 7 1.00

a
 

Forecaster 8 1.04
a
 Forecaster 8 1.04

a
 

Forecaster 9 1.02
a
 Forecaster 9 1.03

a
 

Forecaster 10 0.97
a
 Forecaster 10 0.98

a
 

Forecaster 11 0.94
a
 Forecaster 11 0.95

a
 

Forecaster 12 0.96
a
 Forecaster 12 0.92

a
 

Forecaster 13 1.01
a
 Forecaster 13 1.02

a
 

Forecaster 14 0.95
a
 Forecaster 14 0.96

a
 

Forecaster 15 0.97
a
 Forecaster 15 0.98

a
 

Forecaster 16 0.97
a
 Forecaster 16 0.98

a
 

Forecaster 17 0.99
a
 Forecaster 17 1.00

a
 

Forecaster 18 1.02
a
 Forecaster 18 1.01

a
 

Forecaster 19 0.96
a
 Forecaster 19 0.98

a
 

Forecaster 20 1.01
a
 Forecaster 20 1.00

a
 

Note: “b” indicates a 5% level of significance and “a” 1% level of significance 

 
  



31 
 

Table 4: Tests for Bias and Momentum in the Rental Growth Forecasts 

Momentum Analysis Examination of Bias:           
 

   
 

Constant 0.002
a
 Χ

2
-stat. DoF p-value 

Lagged Forecast Error 0.90
a
 30.51 1 0.00 

R
2
=0.85, R

2
-adj.=0.84     

Note: We denote with “a” 1% level of significance 

 

Table 5: Unit Root Tests for First Differenced Capital and Total Return Forecast Errors 

Variables H0 : (common unit root process) Statistic p-value 

Capital Growth 
Levin, Lin & Chu t* 

-9.06 0.00 

Total Returns -10.24 0.00 

Variables H0 : (Individual unit root process) Statistic p-value 

Capital Growth 

Im, Pesaran and Shin W-stat -22.92 0.00 

ADF-Fisher chi-square 508.43 0.00 

PP-Fisher chi-square 504.85 0.00 

Total Returns 

Im, Pesaran and Shin W-stat -24.38 0.00 

ADF-Fisher chi-square 538.07 0.00 

PP-Fisher chi-square 509.11 0.00 

Note: Table 5 reports the panel unit root tests on the first differenced forecast error series’.  

 
Table 6: Breusch & Pagan and LR Test Results 

Panel A: Breusch & Pagan Test for Heteroskedatic Errors 

 LM statistic 
2 
p-value Conclusion 

Rental Growth 

Capital Growth 

Total Returns 

155.37 (0.0000) Heteroscedasticity 

67.52 (0.0000) Heteroscedasticity 

72.81 (0.0000) Heteroscedasticity 

Panel B: LR tests for cross-section stochastic dependence 

Variables SUR 

(RSS) 

OLS-

WLS 

(RSS) 

Log 

Likelihood 

LL-ratio Dof 
2
 p-value Conclusion 

Rental Growth 5564.26 5594.64 30.38 60.75 105 0.99 Accept H0 

Capital Growth 4063.96 4065.28 1.31 2.64 105 1 Accept H0 

Total Returns 3994.53 4000.37 5.84 11.68 105 1 Accept H0 

Notes: The null hypothesis for the LR test is one of No Cross Section Stochastic Dependence 
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Table 7: Pooled Regression Results 

 Rental Growth Capital Value Returns Total Returns 

Constant 0.007
a
 0.012

a
 0.011

a
 

 (0.0004) (0.001) (0.001) 

GDP -0.868
a
 -0.988

a
 -0.830

a
 

 (0.053) (0.125) (0.134) 

Lagged Forecast Error 0.903
a 

- - 

 (0.010) - - 

Market Dummy -0.010
a
 -0.024

a
 -0.023

a
 

 (0.001) (0.001) (0.001) 

Observations  2,168 2,156 2,136 

R
2
 0.87 0.16 0.13 

R
2
-adjusted 0.86 0.15 0.13 

Note: “a” denote  the 1% level of significance. The values in parenthesis (.) are the corresponding standard 

errors. All the models were estimated with the Weighted Least Squares method. 

 

 

 

 

Table 8: Pooled Regression Results including the Default Spread 

 Rental Growth Capital Value Returns Total Returns 

Constant 0.006
a
 0.009

a
 0.009

a
 

 (0.0007) (0.001) (0.001) 

GDP -0.868
a
 -0.662

a
 -0.547

a
 

 (0.133) (0.140) (0.224) 

Default Spread 0.069
c
 1.187

a
 1.057

a
 

 (0.040) (0.219) (0.511) 

Lagged Forecast Error 0.897
a 

- - 

 (0.009) - - 

Market Dummy -0.010
a 

-0.023
a
 -0.021

a
 

 (0.001) (0.001) (0.001) 

Observations  2,168 2,156 2,136 

R
2
 0.88 0.20 0.16 

R
2
-adjusted 0.87 0.19 0.15 

Note: a ,b and c denote  the 1%, 5% and 10% level of significance respectively. The values in parenthesis (.) are 

the corresponding standard errors. All the models were estimated with the Weighted Least Squares method. 
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Endnotes: 
                                                        
1
 Two recent papers by Pierdzioch et al. (2012, 2013) have considered forecast accuracy in 

the context of housing starts.  

2
 In order to facilitate the interpretation we include in the capital value and total return 

specifications the first difference of the default spread.  

3
 We also use the Lewis-Beck test for multicollinearity. The tolerance statistic for this test is 

1-R
2
, with the rule of thumb being that only tolerance statistics lower than 20% are raise 

concerns about multicollinearity. In our case the tolerance statistic for each independent 

variable were 0.99 (lagged rental forecast error), 0.80( default spread) and 0.92 (GDP).  

4
 It should be noted that this test was only applied to a sample comprising 15 out of the 20 

forecasters. This is due the test requiring a balanced panel. The five excluded forecasters did 

not have sufficient observations. 




