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Chapter 1

Representing 3D shape and location

Andrew Glennerster

1.1 A primal sketch that survives eye rotation

Unlike much of the book, which is concerned with 2D shape, this chapter
discusses the problem of representing 3D shape. However, I will argue that
there is a strong link between these. 3D shape may be better understood
in terms of the 2D image changes that occur when an observer moves than
3D ego-centred or world-centred coordinates frames. The same applies to
representations of 3D location. 3D shape and 3D location are properties that
remain the same as an observer moves through a static world, despite rapidly
changing images. Two different conceptions for visual stability emerge. One
relies on generating a representation that is like the world and is stable in
the face of observer movements. The other relies only on an ability to predict
the sensory consequences of a movement. The implications for representation
of 3D shape (and location) are quite different under these two frameworks.

Most of the literature on visual stability focuses on a situation that is
relatively straightforward from a computational perspective, namely that of
a camera (or the eye) rotating around its optic centre3,4,5,6,7. In this case,
all the light rays we wish to consider arrive at a single optic centre from all
possible directions (a panoramic view, what Gibson called the ‘optic array’
at a single point). In computer vision, the process of ‘mosaicing’ a set of
such images is now standard8,9. In principle, it requires only that the rays
corresponding to each pixel in each image to be registered in a common
2D coordinate frame, or sphere, of visual directions from the optic centre.
Nevertheless, this is a sensible starting point for considering visual stability
in general. If points in the scene are all very distant (take, as an extreme
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2 Andrew Glennerster

example, the stars at night), the optic array remains unchanged wherever
you move. If these points are stable in the representation, we have a sound
foundation for explaining visual stability in general.

We are now in a position to consider translation of the optic centre, either
for a moving observer or the case of binocular vision. Translation of the
optic centre causes a change in the optic array. Two aspects of this change
can be examined separately: first, the image change generated by a small
patch in the scene and, second, the changes in the relative visual direction
of objects that are separated by wide visual angles. The first is relevant for
the representation of 3D surface shape; the second is relevant for encoding
object location.

1.2 Translation of the optic centre

1.2.1 Representing surface slant and depth relief

When viewing a small surface patch, the rays reaching the eye can be con-
sidered to be parallel (orthographic projection). This means that the ways
the image of the surface deforms when the optic centre translates are rela-
tively simple. For example, the component of eye translation along the line
of sight causes expansion (or contraction) while the orthogonal component
causes 1D shear or stretch. The axis of the shear/stretch depends on the
tilt of the surface, corresponding to the intersection of the plane perpendic-
ular to the line of sight with the plane of the surface. The direction of the

Fig. 1.1 Hierarchical

encoding of position.

An image (top left) is
bandpass-filtered to show
regions that are darker than
the local mean luminance,
including finer scale fea-
tures in one part of the
image, such as the fovea
(top right image) or across
the whole scene, e.g. after

many saccades (bottom
left). Because the combina-
tion of filter outputs follows
the MIRAGE algorithm1,
there is a natural hierar-
chical encoding of position
as shown schematically in
the bottom right image (see
also Figure 1.3).
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Fig. 1.2 A representa-

tion of visual direction.

a) An eye that rotates
about its optic centre
(which is an approxima-
tion to the truth in most
cases) provides information
about the relative visual di-
rection of objects. Fixating
different objects provides
different sets of relative
visual directions (e.g. blue
and red arcs) which can be
combined across the entire
sphere to provide a single,
stable representation of rel-
ative visual directions. b)
An illustration of forming
this type of representation
from images taken using a
camera that rotates about
its optic centre, including
the same image and primi-
tives as used in Figure 1.1.
Features J and n appear
in two of the images allow-
ing them to be registered
with the correct orientation
(adapted from Glennerster
et al.2).
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shear/stretch depends on the direction of the observer translation. The mag-

nitude of the shear/stretch is influenced by the slant of the surface away from
fronto-parallel. Figure 1.3 shows one ‘patch’ or blob that has been stretched
as a result of observer translation. It also shows how a hierarchical encod-
ing of spatial location could help to implement a method of recording image
changes. Koenderink and van Doorn10 have proposed that surface structure
could be represented using an image-based coordinate frame that would not
require the generation of a 3D object-based representation. Because the three
basis vectors of the frame are image based, the coordinates of all points on
a rigid object remain unaffected by changes in viewpoint, rather like the co-
ordinates of points on a deformable rubber sheet. A similar approach can be
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applied to the deformation of the blob shown in Figure 1.3. The centroids of
the blobs at each scale are recorded in relation to the centroid of the blob at
a larger scale. If the coordinate frame for measuring these relative positions
is inherited from the scale above, i.e. the distance metric is not measured in
minutes of arc at the eye but relative to the width and height of the blob at
the next coarsest scale, this would lead to a representation of location with
similar properties to those advocated by Koenderink and van Doorn10. Shear,
stretch or expansion of an image region caused by moving laterally or closer
to a planar surface patch (as shown in Figure 1.3) would yield no change in
the relative position of the finer scale features if positions are measured in
this locally-defined, hierarchical coordinate frame. Similarly, any depth relief
of points relative to the surface plane would give rise to a change in hierar-
chical position when the viewpoint changes but this would be independent of
the slant of the surface and signal only the relief relative to the surface11,12.

One difference between this hierarchical scale-based scheme and that of
Koenderink and van Doorn10 concerns the basis vectors used. In Koenderink
and van Doorn’s scheme, provided that the points defining the three basis
vectors are not co-planar, the coordinate of every point on a rigid object
is recorded using the same basis vectors. But in the hierarchical system il-
lustrated in Figure 1.3, the coordinate frame is local and scale-based. This
means that the representation amounts to something like a set of planar
patches at each scale, each patch having a location, depth, tilt and slant
defined relative to the ‘parent’ patch at the scale above. With this proviso,
the scale-based hierarchy is very similar to the object-based representation
Koenderink and van Doorn proposed and has the advantage of avoiding an
explicit 3D coordinate frame.

A series of psychophysical studies support the hypothesis that the visual
system may use a surface-based coding system of this sort. Mainly, these
studies have investigated the processing of binocular disparity but there is
also some evidence from structure from motion experiments13. Mitchison and
McKee14 showed that binocular correspondences in an ambiguous stereogram
were determined not by a nearest-neighbour rule using retinal coordinates
to define proximity, as had always been supposed, but by proximity to an
invisible ‘interpolation’ surface drawn between the edges of the patch. This is
equivalent to the prediction of the hierarchical ‘rubber sheet’ representation
outlined above, in which the metric for measuring the location of dots in
the left and right eyes is determined by the shear/stretch of the patch in
that eye. Like correspondence, perceived depth relief is also determined by
the disparity of a point relative to a local surface even when observers are
remarkably insensitive to the slant of the surface15,16,17. Finally, sensitivity to
depth perturbations are determined not by the disparity of a point relative
to neighbouring points but instead by its disparity relative to an invisible
interpolation plane18,12,19, as a ‘rubber sheet’ model would predict.

As an aside, it is worth noting that the hierarchical encoding of blob loca-
tion proposed here (following Watt and Morgan20,1) brings some theoretical
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Fig. 1.3 Consequences of translating the optic centre. The ‘blobs’ shown in Fig-
ure 1.1 are repeated here with, in grey, the changes that would be caused by a movement of
the observer or a change from the left to right eye’s view. The lower blob has shifted to the
left without any change in width, size or the configuration of the finer scale blobs within
it. This is compatible with the surface being fronto-parallel and at a different depth from
the other blobs. The centroid location of the top left blob has not changed so it is at the
same depth as the top right blob. However, the width of the blob has changed, compatible
with these features being on a slanted surface. The inset shows that in this case all the
relative visual directions of the features (yellow and white lines) have changed together, as
if drawn on a rubber sheet. These features all lie in the same slanted plane.

disadvantages but there is experimental evidence to suggest that the visual
system may be prepared to pay this cost. In the coarse-to-fine stereo cor-
respondence algorithm proposed by Marr and Poggio21, the ‘coarse scale’
version of an image is always sparse, with large spacing between features (in
their case, ‘zero-crossings’). This means that there will always be relatively
wide gaps between true and false matches along any given epipolar line and
hence a nearest-neighbour rule will yield correct correspondences over a wide
range of disparities. In Watt and Morgan’s MIRAGE scheme, however, the
‘coarse scale’ representation is generated by summing the ‘on’ responses of
filters at all spatial scales and, separately, the ‘off’-responses. While this has
the merit that the fine scale features always lie within the boundary of coarse-
scale blobs, the disadvantage is that in certain situations the ‘coarse scale’
representation can be much more densely packed with features than the pure
low frequency channel output envisaged by Marr and Poggio. Figure 1.4 shows
such a situation: a dense random dot pattern with, on the right, a MIRAGE
‘coarse scale’ output and a schematic version to illustrate how the ‘valleys’
between the low frequency blobs have been ‘filled in’. A random dot pattern
has much greater power at high frequencies than natural images and percep-
tually it appears far more crowded than most images. Glennerster (1998)22

measured the ability of the visual system to find matches when random dot
patterns were shifted (either in motion or by adding disparity) and showed
that MIRAGE primitives predicted well the magnitude of shift that the vi-
sual system could tolerate before the perception of motion or stereo depth
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broke down. This price (a small Dmax for high density patterns) appears to
be an acceptable sacrifice for the visual system. The positive benefit is that
fine scale features always have a simple, hierarchical ‘address’ to define their
location.

Fig. 1.4 A penalty for hierarchical encoding. If fine scale features are always to lie
within the boundaries of coarse scale features, as they do in the MIRAGE algorithm20,1 and
illustrated in Figures 1.1 and 1.3, then the ‘coarse scale’ representation must inevitably
be more crowded than a low-pass version of the image. This is particularly evident in
white noise images such as the random dot pattern shown here. In a Dmax task (see text),
observers behave as if their representation of this type of image is quite crowded with
features, as shown on the top right (reproduced, with permission, from22). The white dots
mark the centroids of each blob measured along horizontal raster lines. The ‘coarse scale’
representation is crowded, as shown schematically in the bottom right panel, because blobs
originating from different low, medium and high spatial frequency filters all contribute to
the representation (see bottom left panel) and ‘fill in the sea’ between low spatial frequency
‘islands’.
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1.2.2 Representing location

Having considered the effect of observer translation on a small patch of the
visual field, we now turn to the consequences for widely separated features.
There are strong similarities between these two scales but also important
differences. In particular, disparity and motion of a small patch provide useful
information about surface shape while changes in relative position of widely
separated features, such those shown in Figure 1.1a, provide information
about object location.

Unlike the image changes in a small region of the visual field, the changes
in relative visual direction of widely separated features do not suffer from the
‘bas relief ambiguity’. This refers to the fact that a small disparity or motion
can be due either to the depth relief being small or to the patch being far
away. By contrast, for two widely separated features, if the angle separating
them does not change when the observer moves (or there is no change between
the left and right eye’s view) then, in general, the points are distant: the bas
relief ambiguity has disappeared (discussed in detail by Glennerster et al.2).
The tendency for the relative visual direction of two features to change as
the observer moves gives useful information about whether those features are
part of near or distant objects. The most distant points in a scene form a set
whose relative visual directions (the angles separating each pair and triple of
points) are the most stable when the observer translates. Against the back-
ground of these distant objects, nearer objects ‘slide around’ as the observer
moves8. One could turn this around and propose, in Gibsonian fashion, that
an observer moves themselves from one place to another by ‘grabbing’ an
object (visually, by fixating it) and ‘pushing it’ one way or another against
the background (by walking, say) until it is in the desired place relative to
the background.

The advantage of this representation is that the 3D origin of the coordinate
frame is never defined. This makes sense. If you are star-gazing and see only
stars, their relative visual directions do not change as you move and hence
they provide no information about where you are on earth. The location of
the 3D origin is impossible to define. Distant mountains allow your location
to be defined more precisely, nearby trees even more so. The closer the objects
in view, the more it becomes possible to pinpoint the location of the origin.
Only with near objects in view would it make sense to distinguish between
the origin of a coordinate system being at the eye, head, body or hand. If,
however, the goal is not to build a 3D coordinate frame at all but instead to
build an image-based representation, then the stars, the mountains, trees and
very near objects provide a hierarchical method of locating the current image
in that representation. These ideas are discussed in detail by Glennerster,
Hansard and Fitzgibbon2,23.

In summary, both 3D shape and 3D location can be considered as proper-
ties derived from the changes in relative visual direction of features produced
by observer translation. The way that each of these are encoded in the visual
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system should leave traces when we test psychophysical performance, as we
have discussed. Two further examples are described in the final section (1.4).

1.3 Implementation of a universal primal sketch

There is no pretence that the suggestions raised in this chapter are anything
like a recipe for implementation, but they do provide some useful pointers.
The case of a camera rotating around its centre is an exception. In that case,
a solution was described by Watt 25 years ago1,24, with the location (visual
direction) of features defined hierarchically across scale space for the entire
optic array. But once the optic centre of the camera or observer translates,
practical issues emerge that are considerably more tricky.

One example is the matching process that must link data structures de-
scribing the same surface seen from different view points. For example, if
a surface is viewed from two distances, the spatial frequency of the filters
responding to features on the surface will be higher for the farther viewing
distance but if scales, like positions, are defined relative to one another, then
the data structure recording fine scale features and a coarse scale outline of
the object might be relatively unchanged by this alteration in viewing dis-
tance. Relative measures are likely to be a prominent aspect of the primal
sketch. Of course, in the real world, with real images, complex changes occur
with changes in viewpoint due to cast shadows, occlusions and specularities.
The suggestions made in this chapter provide no quick fix for these problems.

It is also worth questioning the extent to which a view-based representation
could underlie all visual tasks, not just the ones described here. One partic-
ularly problematic class of tasks involves imagining you were at a different
location and making responses as if you were there. In a familiar environ-
ment, the observer may have visited that location in the past, in which case
it is possible that an observer could ‘run the tape’ instead of actually walk-
ing to the new location and solve the task that way. But people are able to
imagine being on the other side of a room that they have never seen before
and to make judgements as if from that location. In our lab, we are currently
exploring ways to model behaviours of this type using view-based methods,
without relying on the assumption that the brain generates a Cartesian rep-
resentation of the scene. In general, it is not yet clear what the limits will
be to the set of tasks that could be carried out using a primal sketch or
view-based framework.
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1.4 Apparent paradoxes in the representation of 3D

shape and location

The primal sketch outlined in this chapter is a source of ‘raw’ visual infor-
mation that could be used for many different tasks. We discuss here two
experiments that show how participants’ performance appears paradoxical if
we assume the visual system uses a 3D representation but readily explained
if we suppose that the visual system extracts ‘raw’ visual information once
the task is defined25. In one case, the task is a judgement of object shape
and in the other it is a judgement of object location.

Figure 1.5 illustrates the shape task. We know that under rich-cue condi-
tions, people show good size constancy and good depth constancy when they
compare the size or depths of similar objects across different distances26,27

but exhibit large biases when asked to make a judgement of the metric shape
of a surface such as comparing the depth to the half-height of a horizon-
tal cylinder28,29,27. In the case shown in Figure 1.5, the visual system must
apparently estimate four values, namely the depths and half-heights of two
semi-cylinders presented at two distances: d1, h1 and d2, h2. If these values
were all available to the visual system, independent of the task the partici-
pant was set, then it would not be possible for participants to judge d1 ≈ d2,
h1 ≈ h2 and yet, under the same viewing conditions, d1 > h1, d2 < h2 (i.e.
d1 judged as reliably larger than h1 but d2 judged to be reliably smaller that
h2). Yet, this is what observers see. If they built a single consistent repre-
sentation of the scene and accessed the values d1, h1, d2 and h2 from this
representation for all tasks, then the data would present a paradox. However,
comparisons of height (h1 versus h2) can be done with other short-cuts, such
as comparing the retinal size of test objects to other objects in the scene
and the same is true of the comparisons of depths. By contrast, comparing
d1 to h1 or d2 to h2 requires an estimate of absolute (not relative) viewing
distance which means that these estimates are open to a source of bias that
does not affect the other judgements27. The important point is that these
data provide compelling evidence that the visual system uses information in
a more ‘raw’ form than the metric values d1, h1, d2 and h2 when carrying out
these judgements of 3D shape.

For 3D location, a good example of an apparent paradox is the case il-
lustrated in Figure 1.6 from Svarverud et al.30. Several experiments using
immersive virtual reality have shown that moving observers fail to see a room
changing in size around them, by as much as a factor of four in all directions,
provided that looming cues are eliminated31,32,33. This is compatible with
earlier evidence on observers’ poor sensitivity to change in disparity in the
absence of looming cues34 and raises interesting questions about the type
of representation that observers must be building of the scene. Svarverud et

al.30 measured subject’s biases when they judged the relative depth of objects
either with or without an expansion of the room between the presentation of
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1d

1h
2d

2h

D1

D2

Fig. 1.5 Paradoxical representations of shape. Observers are good at size constancy
(h1 = h2) and depth constancy (d1 = d2) but, under essentially identical viewing condi-
tions, they make systematic errors when judging the shape of objects (d1 > h1 while at the
same time d2 < h2). The solution to the apparent paradox is to assume that in each case,
once the task is defined, the visual system acquires the relevant information and computes
the solution. One task depends on an estimate of viewing distance (e.g. D1) while the other
requires only an estimate of the ratio of viewing distances to the two objects (D1/D2)27.

the two objects. Observers did not notice any difference between these two
types of trial. As Figure 1.6 illustrates, although their perception of the room
was stable throughout, their pairwise depth matches cannot be explained by
a single, consistent 3D representation. There is, therefore, no one-to-one map-
ping between a participant’s internal representation of the room and a single
static 3D room. It does not matter that the stimulus is an unusual one. The
point is that the observer’s perception is one of an ordinary, stable room
so the conclusions we draw from probing the representation underlying that
perception should apply to other ordinary, stable scenes.

These examples raise questions about what the minimum requirements are
for a useful representation of the scene. It is no use claiming, as Gibson often
appeared to35, that an internal representation is unnecessary. More recent
accounts emphasise the importance of information stored ‘out in the world’
rather than in the head25, but these still require a coherent set of rules that
will allow the information ‘out there’ to be accessed. The stored information
must remain useful even if the object or visual information is not within the
current field of view. This chapter outlines a possible primal sketch of for blob
location that is an example of a representation of ‘raw’ visual information.
Something like this might, with further elaboration, fulfil the criteria for a
store that could be used to access information ‘out there’. Such a representa-
tion must store sufficient information to allow the observer to turn their gaze
to any object they remember and, if necessary, walk in the right direction
until the object comes into view. It must also contain information about the
slant of surfaces and the depth relief of points compared to local surfaces.
These requirements fall short of the attributes of a full 3D reconstruction,
but psychophysical evidence suggests the same is true of human vision.
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Fig. 1.6 Paradoxical representation of location. In virtual reality, observers judged
the relative depth of two squares presented in separate intervals. Sometimes the room
expanded between intervals (A to B and C to D), although the participants never noticed
a change in room size30. On the other trials, the room stayed still (small room: A to C or
large room B to D). It is impossible to determine a single location of D relative to A that
is compatible with all the pairwise settings observers make. However, similar to Figure 1.5,
there is no paradox if the visual system acquires the relevant information for any given
comparison once the task is defined.
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