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a b s t r a c t

The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more
comprehensive understanding of how food components may affect neural systems. In particular, flavo-
noids have been recognized as promising agents capable of influencing different aspects of synaptic
plasticity resulting in improvements in memory and learning in both animals and humans. Our previous
studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is
known about the effects of these compounds in healthy animals, particularly with respect to the mo-
lecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible
for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids
(Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24
recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements
are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in
the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of
durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B
subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of
glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous
modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway,
which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie
learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on
flavonoid-induced improvements in learning and memory, contributing further to the growing body of
evidence suggesting beneficial effects of flavonoids in cognition and brain health.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Physical exercise and a diet rich in fruit and vegetables are
known to strongly influence the prevalence, and onset of, cardio-
vascular disease and neurological disorders (Kromhout et al., 2002;
Parrott and Greenwood, 2007). In particular, foods and beverages
Spencer).
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such as blueberries, green tea and cocoa, which are a group of
plant-derived foods/beverages rich in a group of polyphenols called
flavonoids, have been shown to have a positive impact on memory,
learning and cognitive function in both animals and humans
(Dinges, 2006; Haque et al., 2006; Kaur et al., 2008; Krikorian et al.,
2010; Williams et al., 2008). The mechanisms by which flavonoids
exert these actions on cognitive performance are being elaborated
with evidence suggesting that they may modulate the activation
status of neuronal receptors, signaling proteins and gene expres-
sion (Schroeter et al., 2007; Spencer, 2008; Vauzour et al., 2007).
For example, the effects of green tea (Li et al., 2009a,b) and blue-
berry (Williams et al., 2008) on spatial memory have been shown to
involve activation/phosphorylation of the ERK and PI3 kinase/Akt
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Table 1
Characterization of the flavonoid profile administered to young rats for a period of 3
weeks. The quantification of levels of both anthocyanins and flavanols oligomers
showed that Dose I delivered a total of 8.71 mg of flavonoids per animal per day,
consisting of 5.37 mg of anthocyanins and 3.34 mg of flavanols; whilst Dose II
delivered a total 17.42 mg of flavonoids per animal per day, consisting of 10.75 mg of
anthocyanins and 6.67 mg of flavanols.

Amounts per day per animal Dose I Dose II

Anthocyanins (mg)
Delphinidin 2.01 4.02
Cyanidin 0.37 0.73
Petunidin 1.04 2.08
Peonidin 0.08 0.16
Malvidin 1.89 3.76

Total Anthocyanins 5.37 10.75

Flavanols (mg)
Monomers 0.29 0.58
Dimers 0.96 1.93
Oligomers (3e10) 2.08 4.16

Total Flavanols 3.34 6.67

Total Flavonoids 8.71 17.42
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pathways, increased CREB phosphorylation and elevated BDNF
levels in the hippocampus.

Such signaling pathways regulate downstream changes in re-
ceptor density and cell adhesion molecule expression/recruitment,
crucial events in the regulation of various aspects of synaptic
function (Cull-Candy et al., 2001; Muller et al., 2000; Sheng and
Kim, 2002). With regards to the former, NMDA receptors (NMDA-
R) and AMPA receptors (AMPA-R) are key mediators of excitatory
synaptic transmission in the hippocampus, and their regulation is
regarded as vital for the induction and maintenance of LTP (Cull-
Candy and Leszkiewicz, 2004; Kim et al., 2005; Li and Keifer,
2009). In particular, NMDAR-dependent Ca2þ influx triggers acti-
vation of MAPK kinases, such as ERK, leading to persistent changes
in the expression of AMPA receptors (MacDonald et al., 2006),
which when trafficked to synaptic sites are known to have an
important role in synaptic plasticity and consequently in memory
and learning (Malinow and Malenka, 2002; Rumpel et al., 2005).
For example, AMPA-class glutamate receptors stabilize spine
morphology (Li and Keifer, 2009), whilst an increase in the density
of specific NMDA receptor subunits profoundly affects NMDAR-
dependent LTP, the major cellular mechanism underpinning
spatial learning (Cull-Candy et al., 2001; Cull-Candy and Leszkie-
wicz, 2004; Perez-Otano and Ehlers, 2004). Flavonoid-rich foods,
such as blueberry, have previously been shown to regulate re-
ceptors involved in hippocampal plasticity, notably IGF-1 and its
receptor (Casadesus et al., 2004) and levels of NMDAR subunits
(Coultrap et al., 2008).

In addition to changes in receptor density, cell adhesion
molecules such as the polysialylated form of the neural cell
adhesion molecule (PSA-NCAM), are recognized as having an
important role in activity-dependent changes in synapse
strength and morphology (Benson et al., 2000; Ronn et al., 2000,
1998), in defining memory and learning processes (Aonurm-
Helm et al., 2008; Kolkova et al., 2000; Muller et al., 2000) and
are known to be linked to NMDAR activation (Bouzioukh et al.,
2001; Butler et al., 1999). PSA-NCAM is enriched at post-
synaptic sites where it modulates synaptic transmission
(Hammond et al., 2006; Kiss et al., 2001; Kochlamazashvili et al.,
2012; Muller et al., 1996) and is required for the establishment of
durable memories (Becker et al., 1996; Doyle et al., 1992; Lopez-
Fernandez et al., 2007; Seymour et al., 2008). In view of this, in
the present study we have investigated the impact of a ‘dietary-
level’ flavonoid intervention on the expression of PSA-NCAM and
NMDAR in the hippocampus and how these changes may control,
or be controlled by signaling cascades previously observed to
change in response flavonoid interventions (Williams et al.,
2008). Our data suggest that a 3-week flavonoid administration
is capable of enhancing PSA-NCAM levels in the DG along with
increases in the NMDA receptor subunit NR2B and that these
changes appear to be related to changes in BDNF-related
signaling pathways.

2. Materials and methods

2.1. Materials

Antibodies used were anti-ACTIVE MAPK (ERK1/2), ERK1/ERK2, anti-CREB,
anti-GAPDH, anti-phospho-Akt (Ser473), anti-Akt, anti-phospho-mTOR (Ser2448),
anti-phospho-mTOR (Ser2481), anti-mTOR, anti-NMDAR1, anti-NMDAR2B, anti-
NMDAR2A, anti-AMPA (GluR1/2/3), anti-TrkB (New England Biolabs, Hitchin,
UK); anti-BDNF, anti-Arc/Arg3.1 (Santa Cruz Biotechnology, Santa Cruz, CA); anti-
CREB (Ser133), anti-pro-BDNF, (Millipore, Warford, UK) and anti-PSA monoclonal
antibody (Chemicon, UK). Horseradish peroxidase-conjugated goat anti-rabbit
secondary antibody (Sigma, UK), ECL reagent and Hyperfilm-ECL were pur-
chased from Amersham Biosciences (Amersham, UK) and FITC-conjugated goat
anti-mouse IgM from Calbiochem, UK. HPLC-grade hexane, acetone, glacial ace-
tic, acetonitrile, methanol, water, and hydrochloric acid were purchased from
Fischer Scientific (Loughborough, UK). All other reagents were obtained from
Sigma or Merck (Poole, UK).
2.2. Intervention diets and animal supplementation

Three groups of 8-week old experimentally naïve adult male Wistar rats
(n ¼ 8 per group, Harlan UK) were housed in groups of four and maintained on a
12 h lightedark cycle (lights on at 10 a.m.) with ad libitum access to food and
water. Prior to all experiments, animals were introduced into the experimental
room for a period of at least 1 h. The flavonoids (both anthocyanins and flava-
nols) were delivered/administered using a fully characterized blueberry powder
(Table 1) from Vaccinium Corymbosum high-bush blueberries (A.G. Axon and
Sons, UK). The powder was dissolved in water and administered daily to each rat
individually by oral gavage (twice a day). Animals were administered daily by
oral gavage either Dose I: 8.7 mg/day/animal of total flavonoids (anthocyanins:
5.37 mg/day and flavanols: 3.34 mg/day), similar to that used previously (Joseph
et al., 1999; Williams et al., 2008), or Dose II: 17.4 mg of total flavonoids (an-
thocyanins: 10.75 mg/day and flavanols: 6.67 mg/day), or a macro- and micro-
nutrient control (e.g. equal vitamin C, fructose, glucose, sucrose), for a total of
3 weeks (2 weeks prior spatial testing and 1 week during testing). Both doses
administered reflect dietary amounts that can be achieved easily through diet.
Analysis and quantification of flavonoids prior to the intervention (flavanols and
anthocyanins) was performed by HPLC with diode array detection as previously
described (Rodriguez-Mateos et al., 2012) and indicated that the powder con-
tained approximately 179.12 mg of anthocyanins/100 g FW (fresh blueberry
weight) and 111.12 mg of flavanols/100 g FW.

2.3. Water maze training

The water maze task was carried out as previously described (Murphy et al.,
1996). Briefly, the water maze apparatus consisted of a circular pool (1.6 m in
diameter, 80 cm high, temperature 26 �C) with a platform (11 cm diameter)
submerged 1.5 cm beneath the surface. Both pool and platform were constructed
from black Perspex and offered no intra-maze cues to guide escape behavior. The
testing room offered several strong extra-maze visual cues to aid the formation
of a spatial map. The spatial memory acquisition task consisted of 4 sessions (1
session a day for 4 consecutive days). Each session consisted of 5 testing trials in
which animals attempt to locate a hidden platform. Trials were initiated with
each rat facing the wall of the maze at one of three designated locations after
which animals were allowed to explore the water maze and the time taken to
locate the hidden platform was defined as the escape latency. During each test
session, the platform was hidden at the same location in the same quadrant
30 cm from the sidewall and animals were free to explore the maze for a period
of 60 s, with those failing to locate the platform within this period placed on it
for 10 s. Escape latencies were measured over four days of testing with five trials
in each session and an inter-trial rest interval of 300 s, during which animals
were dried off and returned to the holding cage. The performance at each session
is measured as an average of the escape latencies of the 5 testing trials within
that session. Swim behavior in the water maze paradigm was monitored using
Watermaze 3.1, a Labview� executable image motion analyzer written by Mat-
thias Grossmann (Dresden, Germany) linked to a CCD camera via an image
acquisition card (IMAQ-1408, National Instruments Co., UK). A probe trial was
performed 24 h after the 4th and final training session. During the probe trial
animals were returned to the water maze for 30 s in which the platform had been
removed and the amount of time spent in the quadrant that originally contained
the platform was recorded, as was the time spent in the other three quadrants.



Fig. 1. Effects of 3 weeks Flavonoid supplementation on spatial memory in young rats.
(a) Effect of flavonoid supplementation on acquisition of the Morris Water Maze task
was measured as latency to find the platform (sec). There is a significant decrease in
escape latency for both 8.7 mg and 17.4 mg of flavonoids in comparison to control for
session 2 (**p < 0.01, n ¼ 8), session 3 and 4 (*p < 0.05, n ¼ 8), indicating a faster
acquisition of the task by the flavonoid groups. (b) 24 h recall of spatial memory
measured as time spent in target quadrant. Only the 17.4 mg flavonoid group showed
significantly enhanced recall of the platform location (*p < 0.05, n ¼ 8). The 8.7 mg
flavonoid group showed a trend for increase relative to control animals (p ¼ 0.1).

C. Rendeiro et al. / Neuropharmacology 79 (2014) 335e344 337
At the end of the last testing session animals were sacrificed by decapitation and
the brains were immediately extracted and halved. Half of the brain was coated in
optimum cutting temperature (OCT) compound and lowered into a Cryoprep
freezing apparatus containing dry-ice-cooled n-hexane and used for NCAM-PSA
immunolabeling experiments (the combination of the OCT and n-hexane was
used to ensure even freezing of the tissue to avoid freezing artifacts). From the other
half of the brain, the hippocampus was dissected and frozen at �80 �C until use for
Western immunoblotting analysis. All experimental procedures were approved by
the Animal Research Ethics Committee of University College Dublin, conformed to
EU Council Directive 86-609-EEC, and were carried out by individuals retaining the
appropriate license issued by the Irish Department of Health.

2.4. Preparation of brain sections and PSA-NCAM immunolabeling

The immunohistochemical procedures employed to detect NCAM PSA have
been described in greater detail previously (Fox et al., 1995). Briefly, horizontal
frozen brain sections (12 mm) were cut on a Microm Series 500 cryostat at �15 �C
(n ¼ 4 for the Control group, n ¼ 5 for the Dose II group). All sections were
prepared on the day of the experiment and were not pre-cut and stored frozen.
For the analysis of the NCAM PSA-positive hippocampal dentate granule cell
layer/hilus border cells, 10 alternate sections were taken at a level equivalent to
�5.6 mm below bregma (Paxinos and Watson, 1986). Cryosections were thaw-
mounted onto glass slides and immersion fixed for 30 min with 70% (v/v)
ethanol and incubated overnight with anti-PSA monoclonal antibody diluted
1:500 in 0.1M PBS containing 1% (w/v) bovine serum albumen (BSA) and 1% (v/v)
normal goat serum (NGS). The sections were exposed for 3 h to FITC-conjugated
goat anti-mouse IgM diluted 1:100, again in PBS containing 1% BSA and 1% NGS,
and mounted in Citifluor (Agar, UK).

2.5. Quantitative evaluation of PSA-NCAM expression

Quantitative image analysis was performed using a Leica Quantimet 500 PC-
based software package connected to a Leitz DM RB fluorescent microscope with a
high sensitivity CCD video camera. Each microscope lens was calibrated for length
and area measurements using a 1 mm graticule. The total number of NCAM PSA-
immunoreactive neurons in the dentate granule cell layer/hilar border was coun-
ted in 6 alternate 12 mm sections commencing �5.6 mm from bregma (Paxinos and
Watson, 1986), to preclude double counting of the 5e10 mm perikarya. Cell identi-
fication was aided by the use of the nuclear counter-stain propidium iodide (40 ng/
ml PBS; 60 s). Cell counts were standardized to unit area of the granule cell layer,
0.15 � 0.01 mm2 at this level, and expressed as mean � SEM values.

2.6. Western immunoblotting

Dissected hippocampus were homogenized on ice with a glass homogenizer
using Tris (50 mM), Triton X-100 (0.1%), NaCl (150 mM) and EGTA/EDTA (2 mM); pH
7.4, containing mammalian protease inhibitor cocktail (1:100 dilution), sodium
pyrophosphate (1 mM), PMSF (10 mg/ml), sodium vanadate (1 mM) and sodium
fluoride (50 mM). Homogenates were left on ice for 45 min before centrifugation at
1000 � g for 5 min at 4 �C to remove unbroken cell debris and nuclei. For analysis of
proteins by Western immunoblotting, samples were incubated for 2 min at 95 �C in
boiling buffer (final concentration 62.5 mM Tris, pH6.8; 2% SDS; 5% 2-
mercaptoethanol; 10% glycerol and 0.0025% bromophenol blue) and stored at
�80 �C until analysis. Protein samples (40e80 mg/lane) were run on 9e12% SDS-
polyacrylamide gels and proteins were transferred to nitrocellulose membranes
(Hybond-ECL�; Amersham) by semi-dry electroblotting (1.5 mA/cm2). The nitro-
cellulose membrane was then incubated in a blocking buffer (20 mM Tris, pH 7.5,
150 mM NaCl; TBS) containing 4% (w/v) skimmed milk powder for 45 min at room
temperature followed by 2 � 5 min washes in TBS supplemented with 0.05% (v/v)
Tween 20 (TTBS). Blots were then incubated overnight at room temperature on a
three dimensional rocking table with either anti-BDNF pAb (1:1000), anti-pro-BDNF
pAb (1:1000), anti-phospho CREB (Ser133) pAb (1:500), anti-CREB (1:1000), anti-
ACTIVE MAPK pAb (1:1000 dilution), anti-ERK1/ERK2 pAb (1:1000), anti-
phospho-Akt (Ser473) pAb (1:1000), anti-Akt pAb (1:1000), anti-phospho-mTOR
(Ser2448) pAb (1:2000), anti-phospho-mTOR (Ser2481) (1:2000), anti-mTOR pAb
(1:5000), anti-Arc/Arg3.1 pAb (1:5000), anti-NMDAR1 (1:1000), anti-NMDAR2B
(1:1000), anti-NMDAR2A (1:1000), anti-AMPA (GluR1/2/3) (1:1000), anti-TrkB
(1:1000) or anti-GAPDH pAb (1:5000), in TTBS containing 1% (w/v) skimmed milk
powder (antibody buffer). The blots were washed 2 � 10 min in TTBS and incubated
with goat anti-rabbit IgG conjugated to HRP (1:1000 dilution) for 60 min. Finally
blots were washed 2�10min in TTBS rinsed in TBS and exposed to ECL-reagent� for
1e2 min and developed. Bands were analyzed using the band analysis software
UVISoft Band. Molecular weights of the bands were calculated from comparison
with pre-stained molecular weight markers (MW 27,000e180,000 and MW 6500e
45,000, BioRad) that were run in parallel with the samples. Relative band intensities
were calculated as a ratio of the phosphorylated protein to total protein in the case of
ERK1/2, Akt, CREB, mTOR. For BDNF, pro-BDNF, Arc, NMDR1, NMDR2B, NMDAR2A,
TrkB, AMPA relative band intensity was calculated by comparison with GAPDH
levels.
2.7. Statistics

The behavioral data was analyzed using a repeated measures 3-way analysis of
variance (ANOVA) with Session, Trial and Treatment as main factors. For immuno-
blot data, statistical comparisons between the three treatment groups were carried
out using a one-way ANOVA. Tukey Post-hoc tests were subsequently used to
examine differences between the individual treatments at a confidence level of 95%.
Student’s t test was used for the PSA-NCAM immunolabeling experiments. Corre-
lation coefficients betweenmemory scores and the markers synaptic plasticity, PSA-
NCAM, NMDA-NR2B and Arc, were calculated using the Pearson productemoment
correlation coefficient. All the data is expressed as mean (�S.E.M) and was analyzed
using SPSS.
3. Results

3.1. Spatial working memory

As anticipated, young rodents showed a significant increase in
weight over the time course of the experiment (F 27, 567 ¼ 70.425,
p< 0.001). However, the increase inweight was similar for all three
experimental groups (control: 6.3%; 8.7 mg Flav: 5.9%; 17.4 mg Flav
: 6.5%) and, there was no significant effect of treatment on the
weight of the animals over the course of the experiment (F
2,21¼1.628, NS). A 3-way ANOVA revealed a significant main effect
of session (F 3, 63) ¼ 95.1, p < 0.0001), trial (F 4,84) ¼ 32.0,
p < 0.0001) and an interaction between session and trial (F 12,
252) ¼ 14.8, p < 0.0001) (Fig. 1a), reflecting learning among all
groups. Individual 2-way ANOVAs for each session revealed that
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there were no significant differences in the measured escape la-
tencies between the different treatment groups at baseline (F
2,21 ¼ 0.027, NS). However, there were significant differences in
learning performance among treatment groups in the following
sessions: Session 2 (F 2,21 ¼ 6.101, p < 0.01), Session 3 (F
2,21 ¼ 5.641, p < 0.05) and Session 4 (F 2,21 ¼ 5.506, p < 0.05).
Specially, there was a significant decrease in escape latency for the
17.4 mg flavonoid supplemented group in comparison to control for
session 2, 3 and 4 (p < 0.05), whilst the lower dose of 8.7 mg
flavonoid group was significantly faster at sessions 2 and 3
(p < 0.05) and marginally significant on the last session (p ¼ 0.07)
(Fig. 1a). On average all animals experienced a significant decrease
(approximately ten-fold) in escape latency between test session 1
and test session 4 (Fig. 1a), indicating that all groups successfully
acquired the spatial task reaching minimum escape latency by
session 4 (F 3, 84 ¼ 169.5, p < 0.0001) (Fig. 1a). Swimming speed
was also measured in addition to latency to find the platform,
revealing no significant (p> 0.05) differences among groups during
the acquisition of the task. Importantly, this eliminates the possi-
bility of latency results being masked by different swimming
speeds among the groups. Effective consolidation of the task was
assessed using a probe trial 24 h after the 4th and final testing
session (Fig. 1b). A one-way ANOVA demonstrated a significant
difference in time spent in the target quadrant between treatment
groups (F 2, 23 ¼ 3.656, p < 0.05). Further post-hoc tests confirmed
that the 17.4 mg flavonoid group exhibited significantly enhanced
recall of the platform location (p< 0.05) in comparisonwith control
animals, whilst the 8.7 mg flavonoid group showed a trend for
increased recall relative to control animals (p ¼ 0.1) (Fig. 1b).
3.2. Modulation of PSA-NCAM in the dentate gyrus of the
hippocampus

PSA-NCAM expression in the adult dentate gyrus was found to
be primarily associated with granule cell bodies located at the
infragranular zone and their dendritic arbor that extended through
the granular cell layer and into the molecular layer (Fig. 2; white
arrows). Animals supplemented with 17.4 mg of flavonoids
exhibited a significant increase in the number of NCAM-
polysialylated cells present in the DG compared to animals on a
standard diet (t7 ¼4.49, p < 0.01). PSA-NCAM expression in the DG
was highly correlated with both the acquisition of the memory task
(Session 2: R¼ 0.87; p< 0.01: Session 3: R¼ 0.79, p< 0.01; Session
Fig. 2. Levels of PSA-NCAM in the Dentate Gyrus of the Hippocampus. Levels of polysialylat
after 3 weeks of flavonoid supplementation. Animals treated with 17.4 mg of flavonoids (n
animals on the control diet (n ¼ 4) (**p < 0.01). Illustrative qualitative images of PSA immun
to bregma are presented (1 animal from the control group and 1 animal from the 17.4 mg fla
the infragranular zone and the scale bar represents 50 mm. Cell identification was aided b
dardized to unit area of granule cell layer. (For interpretation of the references to color in
4: R ¼ 0.75, p < 0.05) and the 24 h recall of the platform location
(R ¼ 0.82, p < 0.01).
3.3. Regulation of NMDA and AMPA receptors in the hippocampus

Flavonoid intervention induced highly significant increases in
the levels of the NR2B subunit (F2,17 ¼ 10.843, p < 0.001), for
both the 8.7 mg dose (p < 0.05) and the 17.4 mg dose (p < 0.001).
We observe simultaneously a significant decrease in the levels of
NR2A subunit after treatment (F2,16 ¼ 3.804, p < 0.05) driven
mainly by the 17.4 mg dose (p ¼ 0.08). No significant changes
were detected in the NR1 subunit (F2,17 ¼ 2.759, NS) (Fig. 3a).
Increases in NMDAR2B subunit levels were significantly corre-
lated with the recall of the platform location in behavioral tasks
(R ¼ 0.48, p < 0.05). Furthermore, the level of NR2B subunit was
highly correlated with PSA-NCAM positive cells in the dentate
gyrus (R ¼ 0.75, p < 0.05) and levels hippocampal Arc (R ¼ 0.78,
p < 0.01), outlined below. In contrast to NMDAR levels, the
flavonoid intervention had no effect on the overall hippocampal
levels of GluR1/2/3 receptors (F 2,17 ¼ 2.003, NS) (Fig. 3b).
Nonetheless, the AMPA antibody used detects simultaneously
GluR1/2 and 3 which could potentially mask potential changes in
individual subunits.
3.4. Modulation of hippocampal ERK, CREB and BDNF

The activation of the mitogen-activated protein kinase ERK1/2
was probed using a phospho-specific antibody that recognizes both
phosphorylated motifs pTEpY within activated ERK1/2. Hippo-
campal levels of phospho-ERK1 and phospho-ERK2 were signifi-
cantly regulated by the flavonoid intervention (F2,17 ¼ 4.435,
p< 0.05 and F2,17¼4.849, p< 0.05, respectively). Subsequent post-
hoc tests, revealed a significant increase in pERK1/2 induced by the
8.7 mg dose (p < 0.05) but not the 17.4 mg dose (NS) (Fig. 4a). As
ERK1/2 are known to mediate the activation of CREB1 at Ser133, we
also probed changes in CREB activation using a phospho-specific
antibody that recognizes CREB when phosphorylated at the Ser133

residue. There was a trend towards an increase in the levels of
activated CREB for flavonoid animals in comparison with control
(F2,17 ¼ 2.965, p ¼ 0.09), with increases in pCREB1 being dose-
dependent in nature: 17.4 mg dose (p ¼ 0.07), 8.7 mg dose (NS)
(Fig. 4b). A significant increase in the levels of mature BDNF was
observed in response to flavonoid supplementation (F2,17 ¼ 4.217,
p< 0.05), which againwas greater with the 17.4 mg dose (p< 0.05)
ed NCAM cell frequency in the dentate gyrus of the hippocampus of adult Wistar Rats
¼ 5) showed a significant increase in the frequency of PSA-NCAM cells compared to
oreactivity in the dentate granule cell layer/hilar border (GCL) at �5.6 mmwith respect
vonoid group). The green staining indicates the position of the immunostained cells at
y the use of the nuclear counter-stain propidium iodide (red). Cell counts were stan-
this figure legend, the reader is referred to the web version of this article.)



Fig. 3. Levels of hippocampal NMDA and AMPA receptors. Hippocampal lysates were immunoblotted with antibodies to detect (a) NMDAR2B, NMDAR2A and NMDAR1; (b) AMPA
(GluR 1/2/3). * Indicates a significant increase in NMDAR2B of animals supplemented with 8.7 mg of flavonoids relative to animals supplemented with control solution, p < 0.05;
n ¼ 6. *** Indicates a significant increase in NMDAR2B of animals supplemented with 17.4 mg of flavonoids relative to control animals, p < 0.001; n ¼ 6. # Indicates a trend toward a
decrease in levels of NMDAR2A of animals supplemented with 17.4 mg of flavonoids relative to control animals, p ¼ 0.08, n ¼ 6. GAPDH was used as loading control to normalize
total levels of NMDAR2B, NMDAR2A, NMDAR1 and GluR1/2/3. Representative blots showing, left to right, protein levels in two control animals, two animals supplemented with
8.7 mg of flavonoids and two animals supplemented with 17.4 mg of flavonoids are presented.
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(Fig. 4c). No changes were found between diet groups for pro-BDNF
(F2,17 ¼ 1.645, NS) (Fig. 4c) or for total levels of the TrkB receptor
(F2,17 ¼ 2.885, NS; F2,17 ¼ 0.639, NS) (Fig. 4d).

3.5. Regulation of Akt, mTOR and Arc/Arg3.1 in the hippocampus

Flavonoid intervention had a significant impact on the activa-
tion of Akt (F 2,17 ¼ 5.573, p < 0.05), primarily at the 17.4 mg dose
(p < 0.01), whereas the 8.7 mg dose showed a trend to increase
(p < 0.1) (Fig. 5a). Furthermore, flavonoid intervention was
observed to significantly induce mTOR phosphorylation at the
Ser2448 residue (F 2,17 ¼4.459, p< 0.05) but not the Ser2481 residue
(F2,17 ¼ 0.291, NS), although these changes only manifested at the
17.4 mg intervention dose (p < 0.05) (Fig. 5b). The activity-
regulated cytoskeleton-associated protein Arc/Arg3.1 was also
significantly increased by flavonoid intervention in comparison to
the control group (F 2,17 ¼ 3.788, p < 0.05) (Fig. 5c). The pattern of
Arc activation was similar to that observed for other molecular
parameters, with the 17.4 mg dose inducing a significant increase in
Arc/Arg3.1 (p < 0.05) and the 8.7 mg dose showing a trend for an
increase in Arc (p ¼ 0.1) (Fig. 5c). The increases in hippocampal Arc
following flavonoid administration were found to be highly corre-
lated with the levels of hippocampal NR2B subunit receptor
(R ¼ 0.78; p < 0.01).



Fig. 4. Levels of hippocampal ERK1/2 and CREB phosphorylation and total levels of hippocampal BDNF, pro-BDNF and TrkB. Hippocampal lysates were immunoblotted with an-
tibodies to detect: (a) ERK1/2 when dually phosphorylated and total ERK. *Indicates a significant increase in phosphorylation levels of pERK1 (44 kb) and pERK2 (42 kb) of animals
supplemented with 8.7 mg of flavonoids relative to animals supplemented with the control (p < 0.05, n ¼ 6). (b) phosphorylated CREB (Ser133) and Total CREB. # indicates a trend for
an increase of 17.4 mg flavonoid dose in relation to the control solution (p < 0.1, n ¼ 6). CREB and ERK phosphorylation were normalized against total levels of CREB and ERK
respectively. (c) Total levels of pro-BDNF (grey bars) and mature BDNF (white bars). * Indicates a significant increase in total levels of BDNF of animals supplemented with 17.4 mg of
flavonoids in relation to control animals (p < 0.05, n ¼ 6). (d) Total levels of TrkB (90 kb, 140 kb). GAPDH was used as loading control to normalize total levels BDNF, pro-BDNF and
TrkB. Representative blots showing, left to right, protein levels in two control animals, two animals supplemented with 8.7 mg of flavonoids and two animals supplemented with
17.4 mg of flavonoids are presented.
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4. Discussion

Research into the impact of flavonoid-rich foods on memory,
learning and cognitive performance has primarily focused on
their potential to reverse cognitive deficits in aged animals
(Casadesus et al., 2004; Li et al., 2009a,b) or transgenic mouse
models of neurodegenerative disease, such as Alzheimer Disease
(Joseph et al., 2003). In the present study, we show that a 3-week
supplementation with 8.7 mg or 17.4 mg of flavonoids per day
(containing both anthocyanins and flavanols) (Table 1) is also
effective in improving spatial learning and memory in healthy,
young animals. Both doses (8.7 mg and 17.4 mg), which broadly
reflect a dietary level of intervention, were equally efficacious in
enhancing memory acquisition, with the 17.4 mg dose being
more effective toward memory recall, 24 post testing, which is
typically more demanding. The observed flavonoid-induced im-
provements in behavior were associated with specific changes in
protein expression in the hippocampus, in particular 24 h recall
was found to be highly correlated with hippocampal levels of the
NR2B subunit of the NMDA receptor and with the levels of the
adhesion molecule PSA-NCAM in the DG of the hippocampus,
both proteins linked to efficient and persistent LTP and spatial
learning (Gascon et al., 2007b; Li et al., 2007; Murphy et al.,
2006; Sandi, 2004).
Regarding the establishment of a causal link between flavonoid
intake and neuronal function, we have shown previously that both
anthocyanins and flavanols are quantifiable in the hippocampus
after ingestion, establishing the presence of the potential active
compounds at the site of action in the time frame of the behavioral
effect (Williams et al., 2008). We have further shown that pure
flavanols and anthocyanins when administered separately result
equally in improvements in learning and memory as well as in
modulation of BDNF levels in the hippocampus, strongly suggesting
that flavonoids are the active components driving the beneficial
effects of flavonoid-rich foods in brain function (Rendeiro et al.,
2013). The present data supports our recent study in young ani-
mals showing that a 7-week intervention with blueberry resulted
in significant improvements in spatial memory, along with BDNF
regulation in the hippocampus (Rendeiro et al., 2012). In the pre-
sent study we show an effect on spatial memory after only a 3 week
intervention on an MWM learning paradigm, which allowed us to
distinguish the effect of flavonoids on both acquisition and
consolidation aspects of learning. Notably, the data emanating from
this study suggests a novel mechanism bywhich flavonoids may act
in the brain and it shows a dose response at both behavioral and
molecular levels after a 3-week administration of dietary amounts
of flavonoids. This further adds to the causality criteria for the
assessment of flavonoids as potential mediators of brain function.



Fig. 5. Levels of hippocampal AKT and mTOR phosphorylation and Arc/Arg3.1. Hip-
pocampal lysates were immunoblotted with antibodies to detect: (a) Akt when
phosphorylated at Ser473 and total levels of Akt. ** Indicates a significant increase in
phosphorylation levels of Akt in 17.4 mg supplemented animals relative to animals
supplemented with a control solution (p < 0.01, n ¼ 6). # Indicates a trend toward
increase for animals supplemented with 8.7 mg of flavonoids (p � 0.1, n ¼ 6); (b) mTOR
when phosphorylated at Ser 2448 (grey bars) and at Ser 2481 (white bars). * Indicates a
significant increase in phosphorylation levels of mTOR at Ser2448 in 17.4 mg supple-
mented animals relative to animals supplemented with control solution (p < 0.05,
n ¼ 6); Akt and mTOR phosphorylation were normalized against total levels of Akt and
mTOR respectively. (c) Total levels of Arc/Arg3.1. *Indicates a significant increase in
total levels of Arc/Arg3.1 in 17.4 mg flavonoid supplemented animals relative to ani-
mals supplemented with control solution (p < 0.05, n ¼ 6); # Indicates a trend towards
an increase for animals supplemented with 8.7 mg of flavonoids (p � 0.1, n ¼ 6).
GAPDH was used as loading control to normalize total levels of Arc/Arg3.1. Repre-
sentative blots showing, left to right, protein levels in two control animals, two animals
supplemented with 8.7 mg of flavonoids and two animals supplemented with 17.4 mg
of flavonoids are presented.
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PSA-NCAM plays an important role during brain development,
although its expression persists during adulthood in brain struc-
tures such as the hippocampus that display a high degree of plas-
ticity (Gascon et al., 2007b). The negatively charged PSA chain of
NCAM has been suggested to act as a spacer, decreasing NCAMe

NCAM mediated cell adhesion between neurons, therefore facili-
tating structural remodeling and consequently promoting activity-
induced plasticity (Kochlamazashvili et al., 2010; Rutishauser,
2008; Rutishauser and Landmesser, 1996). Furthermore, the poly-
sialylation of NCAM in the DG of the hippocampus is known to
support the development of basal synaptic transmission in this
region (Stoenica et al., 2006) and has been reported to be learning-
specific, in particular during spatial learning tasks (Murphy et al.,
1996; Venero et al., 2006). In addition to the regulation of adhe-
sion strength, there is evidence that the polysialylation of NCAM
may also allow it to regulate the activation of signaling pathways
linked to the control of synaptic plasticity (Dityatev et al., 2004;
Kiss et al., 2001; Muller et al., 2000). Although, the exact mecha-
nisms are unclear, there is evidence to suggest that regulation of
NCAM polysialylation is linked to BDNF signaling, since defective
LTP observed in PSA-NCAM-deficient hippocampus can be selec-
tively rescued by BDNF (as well as exogenous application of PSA
residues or recombinant PSA-NCAM) and is associated with a
reduced activation of BDNF signaling (Muller et al., 2000). In
agreement with this we observe significant increases in BDNF
levels in the hippocampus of flavonoid fed rats, suggesting a po-
tential mechanistic link between PSA-NCAM and BDNF-associated
signaling in flavonoid-induced memory improvements.

The observed increases in BDNF levels in flavonoid supple-
mented animals appear to be linked to the activation of ERK/CREB
signaling in our animals, since BDNF is an important CREB target
involved in memory and learning events (Ying et al., 2002). Indeed,
there is evidence that NCAM intrinsic signaling results in MAPK
activation (via Fyn-FAK-Ras) (Kolkova et al., 2000). Furthermore,
previous studies have demonstrated that activation of NCAM by
PSA may induce the activation of CREB (Aonurm-Helm et al., 2008).
On the other hand, BDNF, once released into the synapse, triggers
the activation of the PI3 kinase/Akt signaling pathway and further
activation of mTOR pathway through its binding to TrkB receptors
(Kumar et al., 2005; Takei et al., 2004). Although we observed no
increase in the total levels of TrkB, we observed activation of Akt
and selective phosphorylation of mTOR at Ser 2448 in flavonoid fed
animals, suggesting increased BDNF binding. Such events are spe-
cifically involved in the regulation of protein translation
(Bekinschtein et al., 2007) and there is strong evidence suggesting
that the Akt/mTOR and the MAPK (ERK1/2) pathways act in par-
allel/coordination to regulate morphological changes in neuronal
dendrites (Dijkhuizen and Ghosh, 2005; Kumar et al., 2005;
Rodgers and Theibert, 2002). Moreover, Arc, an important Akt/
mTOR target, is involved in the regulation of cytoskeletal actin and
impact on dendritic morphogenesis and spine formation, events
regarded as being pivotal in synaptic plasticity associated with
learning (Messaoudi et al., 2007). These data agree with our pre-
vious observations that blueberry induced behavioral changes in
old animals are underpinned by increases in hippocampal BDNF
and parallel activation of ERK/CREB and Akt/mTOR/Arc pathways
(Williams et al., 2008).

Alterations in NMDAR activation have also been postulated to be
regulated via BDNF, since manipulations that reduce BDNF
expression in the hippocampus also reduce NMDA receptor subunit
expression (Roceri et al., 2002). In particular, high levels of NR2B-
containing NMDA receptors confer distinct gating and pharmaco-
logical properties to the receptor channel that impact on the ki-
netics of receptor activation facilitating glutamate signaling (Cull-
Candy et al., 2001). This can dramatically alter an animal’s
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capacity to exhibit LTP contributing to enhanced synaptic plasticity
that results in memory and learning improvements (Farmer et al.,
2004; Tang et al., 1999; Vasuta et al., 2007). Our observations of
an increase in NR2B-NMDA receptors in the hippocampus of
flavonoid supplemented rats suggest that flavonoids may alter
glutamatergic signaling and consequently affect memory. In sup-
port of this, our simultaneous observation of a trend towards a
decrease on the levels of the subunit NR2A, suggests a replacement
of NR2A by NR2B subunits in the NMDA heteromeric receptor as-
semblies, which is known to favor LTP (Foster et al., 2010). Indeed
changes in spatial memory performance induced by flavonoid
intervention significantly correlated with hippocampal levels of the
NR2B glutamate receptor subunit. It has been reported previously
that animals fed with blueberry for 6e8 weeks ameliorate age-
related declines in NMDA receptor-dependent LTP in the CA1 re-
gion of the hippocampus, suggesting that intervention with blue-
berry flavonoids increases NMDAR function and enhances
glutamatergic signaling (Coultrap et al., 2008). However, since this
was conducted in a resting state (not after a learning paradigm),
there is no direct evidence that the changes in LTP observed
translate into memory improvements after flavonoid consumption.

Finally, the regulation of PSA-NCAM expression by NMDAR
activation has been described in several systems, suggesting a
functional link between these two proteins (Bouzioukh et al., 2001;
Butler et al., 1999; Dityatev et al., 2004). Although we observed a
good correlation between the increases in PSA-NCAM and NR2B
hippocampal levels following supplementationwith flavonoids, we
cannot at this stage conclude to what extent these two events are
linked and their relative contribution to the observed behavioral
outcomes. Interestingly, increased levels of PSA-NCAM are a typical
feature of newly generated neurons in the dentate gyrus of the
hippocampus (Garcia-Verdugo et al., 1998; Rousselot et al., 1995)
and this has been suggested to play an important role in the sur-
vival rate of such neurons by facilitating their integration into
functional circuits (Aimone et al., 2006; Gascon et al., 2007a).
Indeed, there is strong evidence suggesting that processes that
enhance synaptic plasticity, such as spatial learning, increase the
survival of newborn neurons and the efficiency of integration of
these in hippocampal circuitry (Drapeau et al., 2007; Dupret et al.,
2007). Although, we are presently unable to conclude the extent to
which a flavonoid-rich diet may affect specifically the plasticity of
newborn neurons, future research should further explore this by
looking at survival and integration rates of immature neurons
following flavonoid supplementation (Seki, 2002; von Bohlen Und
Halbach, 2007).

In summary, the improvements in memory and learning
observed in flavonoid fed young animals are likely to be associated
with flavonoid-induced polysialylation of NCAM. In addition to this,
a parallel elevation of NR2B-containing NMDA receptor at synaptic
sites, suggests an enhancement of glutamate signaling, potentially
prolonged NMDAR currents and more stable LTP. Our data further
suggest that such events might be linked by sustained activation of
the signaling ERK/CREB/BDNF and Akt/mTOR/Arc pathways. These
flavonoid-induced changes at the neuronal level are likely to ac-
count, at least partially, for the observed improvements in spatial
memory in young animals following flavonoid supplementation.
Nonetheless, in order to fully establish a causal relationship be-
tween flavonoid intake and brain function, future work will focus
on showing that the withholding of flavonoid consumption results
in a reversal or attenuation of the behavioral effects. Furthermore
the establishment of the mechanism of action will require the in-
hibition of the relevant mediator pathways/receptors, (e.g. NMDA
receptor and NCAM polysialylation) resulting in a loss or attenua-
tion of learning following flavonoid intake. Overall, we should bear
in mind that we cannot at this stage draw conclusions regarding
whether flavonoids are triggering such effects by acting centrally or
whether these effects are mediated by peripheral actions (e.g
vascular related-effects).
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