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Variational data assimilation for very large
environmental problems

Amos S. Lawless

Abstract. Variational data assimilation is commonly used in environmental forecasting to es-
timate the current state of the system from a model forecast and observational data. The as-
similation problem can be written simply in the form of a nonlinear least squares optimization
problem. However the practical solution of the problem in large systems requires many careful
choices to be made in the implementation. In this article we present the theory of variational
data assimilation and then discuss in detail how it is implemented in practice. Current solutions
and open questions are discussed.

Keywords. 3D-Var, 4D-Var, adjoint model, background errors, error covariance, incremental
formulation, nested models, observation errors, optimization, reduced order models, tangent
linear model, weak-constraint.

AMS classification. 49-02, 65-02, 86-02.

1 Introduction

Data assimilation is the process of combining a numerical model forecast with ob-
servational data in order to estimate the current state of a dynamical system. It has
been an essential part of numerical weather prediction (NWP) since its beginnings in
the 1940s, when it was recognized that errors in the initial model state could rapidly
lead to large errors in the forecast. Early data assimilation schemes were based on a
simple interpolation between the observations and the model state, with later schemes
also taking account of the statistics of the errors in the data. Such schemes included
smoothing splines, successive correction, optimal interpolation and analysis correction
[82], [85]. The possible use of methods based on variational calculus was proposed by
Sasaki [103], [104] in the late 1950s and 1960s, but at the time a practical implemen-
tation was not possible. A real breakthrough in the application of variational schemes
to NWP came in the late 1980s with a series of papers demonstrating how the prob-
lem could be solved using techniques from the theory of optimal control, in particular
the use of adjoint equations to calculate the gradient of an objective function, or cost
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function [77], [107]. This led to a series of papers in which the feasibility of vari-
ational data assimilation was studied on a series of different simplified atmospheric
models [108], [98], [26], [93] (these experiments usually only included the large-scale
atmospheric dynamics and not the subgrid-scale processes of full weather prediction
models).

Despite the encouraging results of these experiments variational data assimilation
remained impractical for operational use due to the high computational cost. The
introduction of the incremental method of variational assimilation in 1994 [27], to-
gether with increasing computing power, opened up the possibility of an affordable
implementation for operational weather prediction. Over the following decade many
weather forecasting centres began to develop variational data assimilation for opera-
tional use [99], [84], [100], [42], [43], [61]. At the same time variational data assimi-
lation began to be applied to other applications, such as ocean forecasting [116], [112]
and atmospheric chemistry [38].

A common feature of many of these applications is that the size of the state variable
being estimated is extremely large. Current numerical weather prediction models may
require the initialization of the order of 108 variables in order to make a forecast.
As computing power increases the spatial resolution of the models tends to increase
and hence so does the number of variables being represented. Furthermore the real-
time nature of environmental forecasting requires that the data assimilation problem
be solved quickly. These two factors imply that when implementing variational data
assimilation schemes in practice compromises must be made. Hence it is important
to design the algorithms carefully to ensure that as accurate a solution as possible is
obtained within the time available. Ideally such design should also include knowledge
of the physics of the problem, so that the final solution is physically realistic. In the
remainder of this article we will discuss some of the different choices that arise in the
implementation of variational data assimilation for very large systems and the practical
approaches that have been developed. First we briefly present the mathematical theory
of variational data assimilation.

2 Theory of variational data assimilation

We consider a discrete nonlinear dynamical system given by the equation

xi+1 =Mi(xi), (2.1)

where xi ∈ Rn is the state vector at time ti andMi is the nonlinear model operator
that propagates the state at time ti to time ti+1 for i = 0, 1, . . . , N − 1. We assume
that we have imperfect observations yi ∈ Rpi at times ti, i = 0, . . . , N that are related
to the system state through the equation

yi = Hi(xi) + εi, (2.2)
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where Hi : Rn → Rpi is known as the observation operator and maps the state vector
to observation space. The observation errors εi are usually assumed to be unbiased,
serially uncorrelated, Gaussian errors with known covariance matrices Ri. For the
numerical weather prediction problem the vector xi would contain several meteoro-
logical variables, such as pressure, temperature and the three-dimensional wind, at
each grid point of the model domain. The observation operator Hi may just be a sim-
ple interpolation in space, if the state variable is observed directly. However, it could
be a much more complicated nonlinear function of the state. For example, for a satel-
lite radiance measurement the observation operator can include a complex radiative
transfer model.

We assume that at the initial time t0 we have an a priori estimate of the state, usually
referred to as a background field, that we denote xb. This background field is assumed
to have unbiased, Gaussian errors with known covariance matrix B. In practice the
background field is usually a short-term forecast of the state from a previous assimi-
lation cycle. The problem of four-dimensional variational data assimilation (4D-Var)1

is then to find the initial state that minimizes the weighted least squares distance to
this background while minimizing the weighted least squares distance of the model
trajectory to the observations over the time interval [t0, tN ]. Mathematically we can
formulate this as an optimization problem:
Find the state xa0 at time t0 that minimizes the function

J (x0) =
1
2
(x0−xb)TB−1(x0−xb)+

1
2

N∑
i=0

(Hi(xi)−yi)TR−1
i (Hi(xi)−yi) (2.3)

subject to the states xi satisfying the nonlinear dynamical system (2.1). In the case
where N = 0 there is no model evolution and the scheme is referred to as three-
dimensional variational data assimilation (3D-Var). The solution xa0 is commonly re-
ferred to as the analysis. In environmental data assimilation the function J (x0) is
usually called the cost function, but the terms objective function and penalty function
are often used in other fields.

The minimization problem given by equation (2.3) can be interpreted in a statisti-
cal or deterministic sense. From Bayes’ theorem it can be shown that xa0 gives the
maximimum a posteriori estimate of the state under the assumptions given [82]. This
includes the assumption of Gaussianity of the error statistics for the background field
and observations. In practice this assumption may not always hold. For example, for
variables that are inherently non-negative, such as humidity in the atmosphere or con-
centrations in chemical models, Gaussian statistics may not be appropriate. In some
cases these errors may be treated by assuming a lognormal distribution and using this
to transform to variables whose statistics are Gaussian [13], [41]. Some allowance for
non-Gaussian observation errors may also be made using the method of variational

1 The scheme is referred to as four-dimensional since we usually fit three spatial dimensions in time,
with time being the fourth dimension.
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quality control, as discussed in section 3.3. Furthermore, nonlinearity in the dynam-
ical model implies that the background errors are likely to be non-Gaussian if the
background comes from a forecast whose length is beyond the linearity regime of the
model. For this reason in numerical weather prediction the background field is usually
from a forecast of only 6 or 12 hours. In some applications, such as the identification
of the source of an atmospheric tracer, it may be more appropriate to specify other
prior error distributions [12]. The alternative, deterministic interpretation of the mini-
mization problem is to consider the term measuring the fit to the background state as
a form of Tikhonov regularization in fitting the observations [65], [29], [90]. Each of
these interpretations is able to provide different insights into the practical formulation
of the problem.

It is instructive to consider the solution to the 3D-Var problem under the hypothesis
that the observation operatorH0 is approximately linear, such that

H0(xb)−H0(x0) ≈ H0(xb)(xb − x0) (2.4)

where H0(xb) is the Jacobian ofH0 evaluated at xb (This assumption (2.4) is referred
to as the tangent linear hypothesis). In this case the minimum value of (2.3) can be
written explicitly as

xa = xb + BHT
0 (H0BHT

0 + R0)−1(y0 −H0(xb)). (2.5)

This solution is equal to the best linear unbiased estimate (or BLUE). We see then
that the analysis increment, defined as the difference between the analysis and the
background xa−xb, lies in the range space of the background error covariance matrix
B. We return to the implications of this in section 3.2.

The covariance of the analysis error in this case is given by

A = (B−1 + HT
0 R−1

0 H0)−1. (2.6)

We find that for both 3D-Var and 4D-Var this is equal to the inverse of the Hessian of
the cost function,

A = (∇2J )−1. (2.7)

In general an exact solution cannot be found and the cost function is minimized us-
ing iterative numerical methods, such as conjugate gradient or quasi-Newton methods.
The use of these methods in data assimilation is discussed in more detail in section 3.4.
On each iteration of such methods the value of the cost function and its gradient at the
current iterate must be calculated. In order to calculate the gradient of (2.3) with re-
spect to the initial state x0 we consider the discrete Euler-Lagrange equations. We
introduce Lagrange multipliers λi at time ti and define the Lagrangian

L(xi,λi) = J (x0) +
N−1∑
i=0

λTi+1(xi+1 −Mi(xi)). (2.8)
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Then necessary conditions for a minimum of (2.3) subject to the constraint are found
by taking variations of L with respect to λi and xi. The first of these leads to the
original nonlinear model equations (2.1), while the latter gives the discrete adjoint
equations

λi = MT
i λi+1 −HT

i R−1
i (Hi(xi)− yi) (2.9)

for i = 1, . . . , N with boundary condition λN+1 = 0, where Hi and Mi are the
Jacobians of the nonlinear operators Hi andMi with respect to the state variable xi.
In the data assimilation literature these Jacobians are referred to as the tangent linear
operator and the tangent linear model (TLM) and the operators HT

i and MT
i are the

adjoints of the observation operator and the nonlinear model operator. From (2.8) we
then have that the gradient of the Lagrangian with respect to the initial state x0 is given
by

∂L
∂x0

= −MT
0 λ1 + HT

0 R−1
0 (H0(x0)− y0) + B−1(x0 − xb). (2.10)

From the theory of Lagrange multipliers this is equal to the gradient of function under
the constraint, so we can write

∇J (x0) = −λ0 + B−1(x0 − xb), (2.11)

where we have introduced the extra variable

λ0 = MT
0 λ1 −HT

0 R−1
0 (H0(x0)− y0), (2.12)

which can be calculated from the adjoint equations (2.9) with i = 0. Hence the adjoint
equations provide an efficient method for calculating the gradient information needed
for the minimization algorithm. Each iteration of a numerical optimization method
therefore requires one run of the forward model (2.1) to calculate the value of the cost
function and one run of the adjoint model (2.9) to calculate the gradient. This makes
4D-Var very expensive from a computational point of view.

We note that in this derivation we have implictly taken the adjoint with respect to
the Euclidean inner product. For a general linear operator L : X1 → X2 and inner
products < ., . >X1, < ., . >X2 in the spaces X1, X2 respectively, the adjoint of L is
the operator L∗ : X2→ X1 such that

< Lx1,x2 >X2=< x1,L∗x2 >X1 (2.13)

for all x1 ∈ X1,x2 ∈ X2. In the case where the Euclidean inner product is used
in both spaces then the adjoint is equal to the transpose operator, which is why we
define the transpose matrices HT

i and MT
i as the adjoint operators. In this case the

Lagrange multipliers provide the correct gradient of the cost function with respect to
the state vector, but it is difficult to interpret physically what these variables mean.
For other applications of adjoint modelling, such as generating initial perturbations
for ensembles of forecasts, it may desirable to give a physical interpretation to the
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gradients calculated from the Lagrange multipliers. In these applications other inner
products may be used, for example based on the energy or enstrophy2 of the system
[95].

2.1 Incremental variational data assimilation

The possibility of implementing variational data assimilation in an operational setting
came with the proposal of incremental variational data assimilation [27]. In this for-
mulation the solution to the nonlinear minimization problem (2.3) is approximated by
a sequence of minimizations of linear quadratic cost functions. We define x(k)

0 to be
the kth estimate to the solution and linearize the cost function (2.3) around the model
trajectory forecast from this estimate. The next estimate is then defined by

x(k+1)
0 = x(k)

0 + δx(k)
0 , (2.14)

where the perturbation δx(k)
0 ∈ Rn is a solution of the linearised cost function

J̃ (k)(δx(k)
0 ) =

1
2
(δx(k)

0 − [xb − x0
(k)])TB−1

0 (δx(k)
0 − [xb − x0

(k)])

+
1
2

N∑
i=0

(Hiδx
(k)
i − d(k)

i )TR−1
i (Hiδx

(k)
i − d(k)

i ). (2.15)

Here d(k)
i = yi − Hi(x(k)

i ), where x(k)
i is the nonlinear trajectory calculated from

the current estimate at the initial time using the nonlinear model equation (2.1). The
perturbation δxi satisfies the linear dynamical equation

δxi+1 = Miδxi. (2.16)

The linearized observation operator Hi and the tangent linear model operator Mi are
evaluated at the current estimate of the nonlinear trajectory, usually called the lin-
earization state. The minimization (2.15) is referred to as the inner loop, while the
update of the nonlinear model trajectory x(k)

i is the outer loop. On each iteration of
the inner loop the TLM is integrated to calculate the evolution of the perturbation,
in order to calculate the cost function (2.15), and the adjoint model is integrated to
provide the gradient.

The incremental method was later shown to be equivalent to an inexact Gauss-
Newton method applied to the original nonlinear cost function (2.3) [72]. If we con-
sider a general nonlinear least-squares cost function

φ(x) =
1
2
f(x)T f(x) (2.17)

with f(x) : Rn → Rp and let J(x) be the Jacobian of f(x) with respect to x, then the
Gauss-Newton method for minimizing φ is

2 In fluid dynamics the enstrophy is defined as the mean square vorticity of the fluid [58, Section 13.4]
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Algorithm 2.1 (Gauss-Newton).

step 0 : choose x(0)

step 1 : repeat until convergence

step 1.1 : compute
δx = −(J(x(k))TJ(x(k)))−1J(x(k))T f(x(k))

step 1.2 : update x(k+1) = x(k) + δx.

Sufficient conditions can be found such that the algorithm will converge to a lo-
cal minimum of (2.17) [34]. Step 1.1 of the algorithm is equivalent to solving the
minimization problem

min
δx
||J(x)δx + f(x)||22. (2.18)

If we define

f(x0) = −


B−1(x0 − xb)

R−1
0 (H 0[x0]− yo0)

...
R−1
N (HN [xN ]− yon)

 (2.19)

subject to (2.1), then the general cost function (2.17) is equal to the 4D-Var cost func-
tion (2.3). Applying the Gauss-Newton method to solve this problem we find that the
inner minimization step (2.18) is equivalent to the linearized cost function (2.15).

An advantage of using this method to solve the nonlinear problem is that each in-
ner minimization problem is linearly quadratic in δx. Hence, whereas the nonlinear
problem may have multiple minima, the inner problem has a unique solution that can
be found efficiently using iterative minimization methods (we discuss these methods
further in Section 3.4). Since these minimization methods are usually truncated ac-
cording to some stopping criterion, the inner step of the Gauss-Newton method is not
solved exactly. In this case the outer loop iterations can be shown to be locally con-
vergent under certain conditions, provided that the inner loop minimization is solved
to sufficient accuracy [71], [45].

In practice very few outer loop steps are performed. For example, the Met Office
in the U.K. perform only one, while the European Centre for Medium-range Weather
Forecasts (ECMWF) perform three [100], [39]. As for the fully nonlinear problem, the
incremental method can be run as 3D-Var (no model evolution) or 4D-Var (including
the model evolution). An alternative formulation that is often implemented is known
as 3D-FGAT (First Guess at Appropriate Time). This includes the nonlinear model
evolution in the calculation of the vectors di, but no evolution is included for the
perturbation and the TLM operator Mi in equation (2.16) is replaced by the identity.
This ensures that the observations are compared with the nonlinear trajectory at the
correct time, but approximates the perturbation in such a way that no TLM or adjoint
model is needed. In this way some of the benefit of 4D-Var can be achieved without
too much extra compuational cost [87], [70].
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A major advantage of the incremental approach is that the inner loop minimization
problem may be solved in a smaller dimensional space than the outer loop step, for
example at a lower spatial resolution. In this way the TLM and adjoint model need
only be run at the lower resolution on each inner loop iteration, while the linearization
trajectory from the nonlinear model is still calculated at the higher resolution on each
outer loop. This is discussed further in Section 3.5. The computational savings made
by implementing the inner loop in this way made incremental 4D-Var feasible for
operational weather and ocean forecasting.

Having presented the basic theory of variational data assimilation we now examine
some of the issues that arise in its practical implementation. For the very large systems
found in environmental modelling it is not always possible to apply the theory in an
intuitive way. Many choices must be made in order to set up and solve the assimilation
problem efficiently and compromises must often be made. It is the attention to detail
in these choices that can determine the success or otherwise of the data assimilation
scheme.

3 Practical implementation

3.1 Model development

The development of a 4D-Var scheme for the large models used in operational weather
and ocean forecasting is a huge undertaking. In most cases the nonlinear model code
already exists and has been developed over many years. These models are very large
pieces of software, with maybe close to one million lines of code. In order to develop
an incremental 4D-Var scheme the code for the TLM and adjoint model must first be
written. The development of a TLM code and adjoint model code from the source code
of a nonlinear model is a fairly automatic procedure. The correct code for the TLM can
be found from a linearization of each statement of the nonlinear model source code,
based on treating the nonlinear model as a series of arithmetic operations and apply-
ing the chain rule. The adjoint model is then found by a line-by-line transpose of the
TLM source code in reverse order. This method is known as automatic differentiation.
We do not go into details of its application here, but refer the reader to several good
introductions in the literature [26], [10], [102], [44]. The automatic nature of this pro-
cedure has led to many software tools being developed that will produce a TLM and
adjoint model code from a nonlinear mode source code. These automatic differentia-
tion tools, or automatic adjoint compilers, are now available commercially for many
different programming languages. 3

In practice the TLM and adjoint models of many large environmental models have
been developed by hand, rather than using the automatic compilers. There are sev-
eral reasons for this. The first is that in many cases of operational weather and ocean
forecasting the complexity of the already exisiting nonlinear model codes was such

3 The term automatic differentiation refers to the approach itself, not just to the automatic tools.
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that simple application of the automatic compilers was not possible. In many cases,
particularly for large codes developed by many people, it is necessary to tidy the non-
linear model codes to make them suitable for use with the automatic compilers. Many
centres felt that the effort to do this would have been greater than coding the TLM and
adjoint model by hand.

The second reason for developing the TLM and adjoint codes by hand arises from
the nature of the incremental approach to variational data assimilation. Since the TLM
and adjoint are run at a lower resolution in the inner loop, the TLM is already an
approximate linearization of the nonlinear model used in the outer loop. It is there-
fore justifiable to make further simplifications in the TLM, in order to reduce the
computational cost. As long as the adjoint model is derived from the approximate
TLM, then the inner loop minimization will contain the correct gradient information
for convergence. In coding the models by hand it is easier to make such simplifica-
tions based on physical arguments. For example, many meteorological models contain
parametrizations of sub-grid-scale processes (known as the physics in the meteorolog-
ical literature), which include such things as clouds, precipitation and surface drag.
The schemes used to represent these processes can be highly complex and often in-
clude non-differentiable functions, such as on-off switches. While it is possible for
automatic differentiation to deal with such functions it is usually felt that this level of
complexity is not necessary in the TLM and adjoint model. Hence a series of sim-
pler parametrizations have been developed solely for use in incremental 4D-Var, that
capture the main behaviour of the more complex schemes [118], [64], [99], [88].

An alternative approach, devised by the Met Office, is to start from the premise that
the linear model must evolve finite and not infinitesimal perturbations and so there is
no need for the linear model to be tangent to any nonlinear model. In this approach
the linear model is designed with this in mind. In particular, the resolved dynamics is
approximated by a discretization of the linearized continuous equations, with various
simplifications in the equations and the discretization. Then simplified parametriza-
tions can be used to represent sub-grid-scale processes [86], [74]. The adjoint model
is derived from this approximate linear model by the process of automatic differentia-
tion, ensuring that it provides the exact gradient of the discrete linear cost function.

An essential part of the development of the linear and adjoint models is their test-
ing, as any small mistakes could lead to lack of convergence of the minimization algo-
rithms. Robust tests exist to check the coding of a TLM and adjoint model. The test
for the TLM is based on comparing the evolution of a perturbation in the TLM with the
evolution of the same perturbation in the nonlinear model. A Taylor series expansion
of the nonlinear model operator shows that the evolutions should be closer together as
the perturbation size is reduced [98], [79]. Where an inexact TLM is used then this test
is not able to differentiate between small coding errors and the desired inexactness. In
this case other more subjective tests must be performed [74]. The adjoint model code
can be tested by a verification of the adjoint identity (2.13). If we assume that the
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spaces X1 and X2 are both equal to Rn, then we must have

< Miδxi,Miδxi >=< δxi,M∗
i (Miδxi) >, (3.1)

which, in the Euclidean inner product, is equivalent to

(Miδxi)T (Miδxi) = δxTi (MT
i (Miδxi)). (3.2)

This identity can be tested for random perturbations δxi. If the adjoint operator MT
i

has been correctly coded then this identity will hold to machine precision [93]. For
large codes each of these tests should be available for each subroutine as well as at
higher levels. A further test, also based on a Taylor expansion, is used to verify that
the gradient of the cost function has been correctly coded [93].

3.2 Background error covariances

The background field xb is a very important part of practical data assimilation systems
in environmental forecasting. Since in many operational forecasting systems the back-
ground field is a forecast from a previous assimilation cycle, it contains information
from observations assimilated at earlier times. In one of the early 4D-Var systems
at ECMWF it was shown that, at any assimilation time, the background field has an
approximately 85% influence on the analysis, with the new observations contributing
only 15% [24]. The background error covariance matrix B determines the relative
weight between the background field and observations and hence plays an essential
role in the data assimilation algorithm. However, the calculation of these covariances
for the assimilation system is a hugely complex task and very dependent on the spe-
cific system being modelled. Here we are only able to give an outline of the main steps
involved. For further details in the context of atmospheric data assimilation the reader
is referred to the comprehensive two-part review article of Bannister [6], [7].

As was seen from (2.5) in section 2, under certain simplified assumptions the anal-
ysis increment of 3D-Var can be shown to lie in the subspace spanned by the columns
of the matrix B. In order to understand the implications of this, we consider the case
where we have a single observation y of the kth component of the vector x, with error
variance σ2

o. In this case the observation operator is linear and is given by the kth unit
vector ek and the analysis equation (2.5) becomes

xa = xb +


b1,k

b2,k
...

bN,k

 y − xb(k)
bk,k + σ2

o

, (3.3)

where bi,k, i = 1, . . . , N indicates the (i, k) element of the matrix B and xb(k) is
the kth component of xb. Hence we see that the value of each entry bi,k, which is
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the covariance between the errors in the components of the background field xb(i)
and xb(k), determines the analysis increment to the ith component of the state given
an observation of the kth component. As a consequence the entries of this matrix
determine how observations are used to infer information about unobserved parts of
the state. Thus this matrix is fundamental in allowing information to be inferred about
unobserved physical variables or unobserved regions of space. However, it is usually
impossible to represent this matrix in matrix form. If the state vector is of size n then
the matrix B is of size n × n and when n is of order 108 this matrix is impossible to
calculate or store. Instead the action of this matrix is usually represented by a variable
transform.

We consider the variable transform in the context of incremental variational data
assimilation, since that is how it is usually implemented. We define a new variable
δzi ∈ Rn and a transformation matrix Ui ∈ Rn×n, such that

δxi = Uiδzi, i = 0, . . . , N. (3.4)

In terms of this new variable the incremental cost function (2.15) can be written

J̃ (k)(δz(k)
0 ) =

1
2
(δz(k)

0 − [zb − z0
(k)])TUT

0 B−1U0(δz
(k)
0 − [zb − z0

(k)])

+
1
2

N∑
i=0

(HiUiδz
(k)
i − d(k)

i )TR−1
i (HiUiδz

(k)
i − d(k)

i ), (3.5)

If the variables δz are chosen in such a way that they are uncorrelated then they have
identity covariance matrix by definition and so UT

0 B−1U0 can be replaced with the
identity in the cost function (3.5). In this case the cost function no longer contains the
original background error covariance matrix; instead it is implicitly defined through
the variable transform, with B = U0UT

0 .
Furthermore, this variable transform is expected to lead to a better conditioned prob-

lem. To understand this we note that the Hessian of the original inner loop cost function
(2.15) is given by

G = B−1 +
N∑
i=0

M(ti, t0)THT
i R−1

i HiM(ti, t0), (3.6)

where

M(ti, t0) = Mi−1Mi−2 . . .M0 (3.7)

is the tangent linear model solution operator from time t0 to time ti. Equivalently we
can write this as

G = B−1 + ĤT R̂−1Ĥ, (3.8)
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where

Ĥ =


H0

H1M(t1, t0)
...

HNM(tN , t0)

 (3.9)

and R̂ is a block diagonal matrix with blocks equal to Ri, i = 0, . . . , N . If the back-
ground error covariance matrix is ill-conditioned, then we expect this to dominate the
conditioning of the Hessian G. We return to an examination of this in section 3.4. On
the other hand the Hessian of the transformed problem (3.5) is given by

G̃ = I +
N∑
i=0

UT
i M(ti, t0)THT

i R−1
i HiM(ti, t0)Ui. (3.10)

Usually the number of observations is less than the number of state variables being
estimated and so the Hessian (3.10) is equal to the identity plus a low rank matrix.
Then it has a minimum eigenvalue equal to one and the condition number (in the
two-norm) is equal to the largest eigenvalue. Thus we would expect the transformed
problem to be better conditioned.

Of course this theory all relies on being able to choose appropriate variables δz that
are truly uncorrelated and it is here that a knowledge of the physical problem is neces-
sary. In presenting how the transform is designed in practice it is easier to think about
it in terms of the inverse transform, from model variables δx to uncorrelated vari-
ables δz. A common approach in numerical weather prediction is to split the inverse
transform into two parts. The first part, which we write U−1

p , is known as the param-
eter transform and transforms to physical variables δχ whose errors are assumed to
be uncorrelated between themselves, but still contain spatial correlations. The spatial
transform, U−1

s , then removes spatial correlations between the physical variables δχ.
We thus have the steps

δχ = U−1
p δx (3.11)

δz = U−1
s δχ, (3.12)

where for ease of notation we assume the transforms to be time-invariant. In prac-
tice the transforms Up and Us may not be square and a generalization of the inverse
operator is needed. We now consider each of these transforms in turn.

Parameter transform

In designing a suitable transform of parameters U−1
p it is necessary to have an under-

standing of the particular system being modelled, in order to decide which variables
have errors that are likely to be uncorrelated. For atmospheric models the transform
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is based on the concept of balanced variables. Balance relationships are diagnostic
relationships that exist between certain atmospheric variables. For example, in mid-
latitudes and at large horizontal length scales the horizontal wind is approximately in
balance with the gradient of the pressure field, through the relationship of geostrophic
balance. This relationship can be used in the parameter transform by assuming that
errors in the the balanced part of the flow are uncorrelated with those in the unbal-
anced part [7]. This can be justified by an eigenanalysis of the linearized equation set,
which shows that the balanced flow can be associated with one eigenvector and the
unbalanced flow with the remaining eigenvectors. Hence under linear evolution these
will evolve independently.

The variable that best represents the balanced flow in the atmosphere is potential
vorticity (PV) [59] and so it would be natural to use this variable as the basis for the
parameter transform. However the transform from PV to the original model variables
requires the solution of a three-dimensional elliptic equation as part of the application
of the operator Up. In dynamical regimes with small characteristic horizontal length
scales, the PV is well-approximated by the vorticity, which only requires the solution
of a two-dimensional equation [117]. Hence early work in this area proposed a trans-
form based on this variable [97] and this is still the basis of the parameter transform in
many operational weather forecasting systems [7]. It is recognized that this approxi-
mation is not valid in all parts of the atmosphere and it has been demonstrated on sim-
ple systems that significant correlations can remain between errors in the transformed
variables [66]. For this reason attempts are being made to implement a transformation
based on PV in large-scale systems [28], [8].

A similar approach may be followed in other applications, for example in ocean
forecasting, though here there has been less work on the design of appropriate trans-
forms than in the meteorological context. In many cases it may be assumed that errors
in the model variables such as salinity and temperature are uncorrelated and only the
spatial transform is needed [116], but work on defining balance relationships has al-
lowed multi-variate covariances to be introduced [114].

Spatial transform

Once the parameter transform has been performed it is assumed that the errors in the
resulting variables are uncorrelated between themselves. At this point it is necessary
to specify the autocovariance information for each parameter through the spatial trans-
form. In atmospheric models it is common to assume that the transforms in the hori-
zontal and vertical planes are separable. In most systems a Fourier transform is used in
the horizontal and for the vertical correlations a transformation to the eigenvectors of a
vertical error covariance matrix is used. The order in which these transformations are
performed varies between systems. If the horizontal transform is performed first, then
the horizontal spectral modes are assumed to be uncorrelated and vertical correlations
are specified separately for each mode. This assumption leads to correlations that are
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homogeneous (independent of horizontal position) and isotropic (independent of ori-
entation) in the transformed parameters [7]. The method allows vertical correlations
that vary with horizontal scale, so that features with large horizontal scale have deeper
vertical correlations [36]. However, it does not allow vertical correlations to vary with
horizontal position [62]. The alternative is to first perform the vertical transform and
then, assuming that these modes are independent, apply the Fourier transform to each
vertical mode. This allows more variation of vertical correlations with horizontal posi-
tion (for example, with latitude). However it is more difficult to obtain an appropriate
variation in horizontal correlation length scales with height [84], [62]. In both cases
a scaling transformation is also needed to ensure that the variance of the transformed
variables is equal to one. In an ideal case we would like to obtain covariances that de-
pend on both horizontal scale and horizontal position. This has led to the development
of spatial transforms based on a wavelet basis [36], [5]. Such a transform has been
implemented in the operational NWP system of ECMWF.

In ocean models the complex boundaries near the coast prohibit the simple use of a
Fourier transform in the horizontal and so other methods must be used to represent spa-
tial correlations. For example, the application of a correlation operator can be shown
to be equivalent to the integration of an appropriately-constructed diffusion equation
[113]. This can be used to design correlation models for use in data assimilation sys-
tems with irregular boundary conditions [116], [115].

The use of transforms for spatial covariances requires the specification of corre-
lation lengthscales and variances for each of the transformed variables. Since the
background field is usually a short-term forecast, these statistics must represent the
structure of errors in the forecasting system being used and so be diagnosed from
that. An early method for obtaining these statistical parameters used the difference
between the observations and the background field (known as the innovations) [57].
However, a disadvantage of this method is that it relies on having a sufficient number
of observations and is therefore biased towards data-dense areas. The most popular
method in atmospheric data assimilation is that known as the ‘NMC method’ [97]4.
In this method the difference between two different forecasts valid at the same time
is taken as a proxy for forecast errors and statistics are taken over a sample of many
such forcasts. In atmospheric forecasting usually two forecasts starting 24 hours apart
are used, with the earlier one run for 48 hours and the later one for 24 hours. By us-
ing an interval of 24 hours problems arising from modelling the diurnal variation of
the atmosphere are avoided. However, this means that the differences are taken over
a much longer time interval than the normal background forecast, which is usually 6
or 12 hours. As a result the covariance structures of the forecasts differences do not
necessarily reflect those of the background error and often they need to be modified
for use in the assimilation system [62], [36].

This has motivated the development of ensemble methods to generate statistics from

4 So called because it was first introduced in the National Meteorological Center of the USA, now the
National Center for Environmental Prediction.
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shorter forecasts. Such a method for estimating background error statistics from an
ensemble of short forecasts was developed for use at ECMWF in [36]. The basis of this
method is that if the inputs to the assimilation system (for example, the background,
observations and physical boundary conditions) are perturbed within the statistics of
their errors, then the perturbation in the resulting analysis will be drawn from the
distribution of analysis error. If a short forecast is produced from this analysis, then
we expect the perturbation to the forecast to be drawn from the distribution of forecast
error. This perturbed forecast can then be used as a background field for the next
assimilation time and the process repeated to produce the next analysis and another
forecast. Suppose that we run two such cycles in parallel for l cycles, starting from two
different sets of perturbations at time t0. Then at each assimilation time ti, i = 1, . . . , l
this will produce two perturbed short forecasts xb1i and xb2i . It can be shown that the
statistics of the true forecast error can then be calculated from the sample covariance
of the differences between these pairs [6],

B ≈ 1
2(l − 1)

l∑
i=1

(xb1i − xb2i )(xb1i − xb2i )T , (3.13)

under the assumption that the errors in the two forecasts are uncorrelated. The factor of
1/2 arises since the sample covariance itself is equal to the sum of the error covariances
of the two different sets of forecasts. Since the forecasts used in this method are of the
same length as the forecasts used to obtain the background field in the assimilation,
the error statistics produced in this way are a more realistic representation of the true
error statistics.

A key assumption in the methods presented so far is that the error covariance matrix
represents a statistical average over time. The computational expense of calculating
these statistics means that the matrix is kept constant from day to day, perhaps with
different statistics being used with a change of season. More recently there has been
interest in developing methods for estimating statistics that vary from day to day, since
it is expected that the actual background errors will depend on the underlying flow.
Such flow-dependent statistics arise naturally in ensemble methods of data assimila-
tion, such as the ensemble Kalman filter. Methods are currently being designed to
obtain some flow-dependent information in variational assimilation, by combining in-
formation from ensembles of forecasts with the statistically-averaged error covariance
matrix, for example [18], [15].

3.3 Observation errors

As well as representing the errors in the background field it is important to treat prop-
erly the errors in the observations within a variational data assimilation system. Ob-
servational data received into operational weather and forecasting centres can contain
errors from a variety of sources, including limitations in the measuring instrument,
biases in the measurements and errors simply due to human error in recording the
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measurement. Furthermore other errors arise from the way the data are used within
the data assimilation system, both from inaccuracies in the operators used to map the
model state to observation space and from the differences in spatial resolution between
the model and the observations. The theory of variational data assimilation assumes
that all observational errors are random, unbiased errors with a Gaussian distribution
and known covariance. It is therefore important that as many of these sources of error
as possible are accounted for in the data assimilation system.

A first essential step in an operational data assimilation system is to perform a qual-
ity control check on the data themselves. This may consist of several stages. First a
check for obvious errors in the reporting of the data is made, such as errors in the re-
ported position. For example, if a ship observation is reported over a land point it will
be rejected from the assimilation. Then a so-called ‘background check’ may be made
to see how close the observation is to the forecast background field. If the difference
from the background is too large when compared with its expected error variance then
the observation may be rejected and not used in the assimilation [2]. Once this check
has been performed the next step is to identify observations that may have gross errors,
that is errors that are unlikely to satisy the assumption of being random and normally
distributed. This can be done either outside or within the assimilation process. Outside
the assimilation each observation can be checked against nearby observations and any
observations that largely disagree with others can be rejected [100]. Alternatively this
check can be included in the assimilation process using the variational quality control
method [63], [2]. In this method the probability density function of the observation er-
rors are assumed to be a weighted combination of a standard Gaussian distribution and
a flat probability distribution function, with the weights determined by the probability
of gross error of the observation. Thus for each single observation y with weight αy,
the probability density function of the observation error is assumed to be of the form

PQC = (1− αy)PN + αyPF , (3.14)

where PN indicates the appropriate Gaussian probability density function and PF is a
flat distribution over a finite interval centred at zero and is equal to zero outside this in-
terval (the size of this interval is taken to be a multiple of the observation error standard
deviation). The observation part of the cost function is then taken to be equal to the
negative logarithm of PQC . In the case where αy = 0 this corresponds to the obser-
vation term in the original nonlinear cost function (2.3). In this method observations
that have a high probability of gross error are given very little weight in the analysis.
Initially these probabilities are assigned to each observation based on a study of his-
torical data. The probabilities are then updated on each iteration of the minimization
procedure by comparison with the current estimate of the state, to allow observations
to be given more or less weight as the assimilation progresses. The introduction of
non-Gaussianity means that variational quality control can introduce multiple minima
into the cost function and so it is necessary to have a good starting point for the mini-
mization. For this reason the minimization is first run for several iterations without the
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quality control term before switching it on [1].
A second important aspect of observation errors is the treatment of systematic er-

rors, or biases, in the observations. This is particularly important for satellite radiance
data, where biases may occur from changes in the measuring instrument over time or
from errors in the radiative transfer model needed as part of the observation operator
[54]. Since the assimilation scheme assumes that the observations are unbiased, any
biases in the observations can introduce biases into the analyses. As with the qual-
ity control these biases may be treated offline or within the assimilation scheme. For
each satellite channel a bias model is assumed in such a way that we can define a new
observation operator for the biased measurement

H̃(x,β) = H(x) + b(β,x), (3.15)

with

b(β,x) =
Np∑
j=0

βjpj(x), (3.16)

where pj are predictors for j = 0, . . . , Np and βj are scalar coefficients [33]. A few
predictor states are chosen that may be related to the state at the observation positions.
The coefficients β can then be estimated in an offline regression using a few weeks
of data [54] or a variational procedure can be used to estimate these coefficients. This
can be included directly in the assimilation procedure by including (3.15) in the cost
function in place of the standard observation operator and including a background
estimate βb of β with covariance Bβ. The 4D-Var assimilation problem is then to
minimize

Jβ(x0,β) =
1
2
(x0 − xb)TB−1(x0 − xb) +

1
2
(β − βb)TB−1

β (β − βb)

+
1
2

N∑
i=0

(Hi(xi) + b(β,xi)− yi)TR−1
i (Hi(xi) + b(β,xi)− yi) (3.17)

subject to the dynamical equations, to estimate the state x0 and the coefficients β si-
multeneously [33]. Alternatively, a variational procedure can be used to estimate these
coefficients offline at regular intervals, using the previous value as the background for
the new estimate [3].

Finally we consider the specification of the observation error covariance matrix,
which represents the covariance of the random components of the observation error.
It is important to note that this error is defined by the difference between the actual
measurement and the model representation of the true state xt mapped into observation
space by the observation operator, that is the error εoi at time ti is given by

εoi = yi −Hi(xti). (3.18)

This means that the error includes different components arising from the accuracy
of the measuring instrument (instrument error), errors in the observation operator Hi
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and errors due to the difference in spatial resolution between the measurement and
the model state (known as representativity error). The instrument error is the easiest to
treat, since the variances of this error can usually be obtained from the instrument man-
ufacturer and it is normally safe to assume that these errors are uncorrelated. However,
this may not always be the case. For example, measurements derived by preprocessing
satellite data may include spatial correlations [17]. Errors in the observation operator
may include such things as errors in the radiative transfer models used to model satell-
lite data, which can lead to error correlations between different satellite channels [16],
[105].

Although it is recognized that observation error correlations exist, particularly with
respect to satellite data, the correlations are not usually very well treated in current
operational forecasting systems. Often the correlations are ignored and it is assumed
that the observation error covariance matrix is diagonal. To balance this assumption
either the error variances are inflated [56] or the data are thinned so that many fewer
of them are used [32]. The reasons for this are the difficulty in calculating what the
error correlations should be and the difficulty in then representing these correlations
within an assimilation scheme in a way that the inverse correlation matrix can easily be
applied. To estimate the correlations in satellite data the methods that have mainly been
used are a comparison with independent measurements from radiosondes, based on the
method of [57], and the use of diagnostics calculated from the data assimilation system
itself, based on [35]. Various ways of then representing these correlations within the
data assimilation system have been proposed, including the use of a circulant matrix
[55], an eigenvalue decomposition [37] and a Markov matrix [105]. However there is
so far little use of these methods in operational practice.

3.4 Optimization methods

The minimization of the inner loop cost function (2.15) requires the use of a suitable
optimization algorithm. For the large problems of environmental modelling there are
two particularly important constraints. The first is that because of the number of vari-
ables in the system it is not possible to obtain second derivative information. The
Hessian or second derivative matrix would contain of the order 1016 elements, which
is impossible to calculate or to store. Hence only methods that require first derivative
information can be used. The second constraint is that often these problems must be
solved within a real-time forecasting system and hence the computer time that can
be used to solve the problem is very limited. Hence the methods much use as few
function evaluations as possible. This means that usually the problem is not allowed
to run to full convergence and the use of any line search algorithms is prohibitively
expensive. Traditionally the algorithms that have most been used within data assimi-
lation systems are quasi-Newton algorithms and conjugate gradient or related Lanczos
algorithms, which require only first derivative information to be provided. The mathe-
matical details of these algorithms are well explained elsewhere (e.g. [94]) and so here
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we limit discussion to their implementation in data assimilation systems.
An essential aspect of the minimization procedure for variational data assimilation

is an appropriate preconditioning. Experimental evidence indicates that the Hessian of
the inner loop cost function (2.15) is badly conditioned and that this arises from the
ill-conditioning of the background error covariance matrix [83]. This has been further
confirmed by theoretical results that bound the condition number of the Hessian of the
cost function in terms of the condition number of this covariance matrix [50], [51].
The first level of preconditioning that is applied is therefore to transform the problem
to new variables, as described in section 3.2. The transformed problem (3.5) can be
shown in general to be better conditioned both in theory and in practice [83], [42], [50],
[51]. However, even after this transformation the problem is not very well-conditioned
and can have a condition number of order 103 − 104 [39], [52]. Experiments in the
ECMWF system showed that the ill-conditioning that remains is related to the inclu-
sion of dense, accurate surface observations over Europe [110] and this has also been
shown to be true for the system of the Met Office [52]. This can be explained by
theoretical bounds obtained by [50], [52] that show that the condition number of the
transformed problem increases as the spacing between observations decreases and as
observations become more accurate. Hence ideally a second level of preconditioning
is required after the variable transformation has been performed.

In order to implement a further preconditioning it is necessary to find a precondi-
tioning matrix K that is inexpensive to compute and such that the eigenvalues of KG̃
are more clustered than those of the Hessian G̃ of the transformed problem. Often the
preconditioning matrix may be represented in the factored form K = PPT and the
preconditioning matrix P is then used directly, for example in the preconditioned con-
jugate gradient method [111]. In order to design such a preconditioner some knowl-
edge of the Hessian (3.10) of the transformed cost function is required. One way that
this can be obtained is by using a Lanczos algorithm to perform the inner loop min-
imization. The Lanczos method produces estimates of the leading eigenvectors and
eigenvalues of the Hessian of the function being minimized. If the first m eigenvalues
λj and eigenvectors uj , j = 1, . . . ,m have sufficiently converged then the inverse of
the Hessian (3.10) can be approximated by the expression

K = I +
m∑
j=1

(λj − 1)ujuTj . (3.19)

This expression can then be used for the preconditioning of subsequent minimizations,
under the assumption that the Hessian does not change greatly between one minimiza-
tion and another [39], [111]. This method, known as spectral preconditioning, is used
in the operational forecast system of ECMWF, where three outer loops are performed
for each assimilation. During the first inner loop minimization the Lanczos vectors are
stored and these are then used to precondition the mininimization of the second and
third inner loop cost functions [39]. It has been shown that this preconditioner belongs
to a larger class of limited memory preconditioners [111]. In order to define this class
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we let si ∈ Rn, i = 1, . . . , l, with l < n, be a set of G̃−conjugate vectors. Then the
limited-memory preconditioning matrix is given by

Kl =

(
In −

l∑
i=1

sisTi
sTi G̃si

G̃

)(
In −

l∑
i=1

G̃
sisTi

sTi G̃si

)
+

l∑
i=1

sisTi
sTi G̃si

. (3.20)

If the vectors si are chosen to be the eigenvectors of G̃ then this formula results in the
spectral preconditioning matrix (3.19).

The authors of [111] propose an alternative preconditioner from the same class,
based on the Ritz pairs of the Hessian. Ritz pairs are approximate eigenpairs (θi,vi)
defined in an appropriately chosen subspace. By choosing the subspace to be that
spanned by the Lanczos vectors, the authors obtain the Ritz limited memory precondi-
tioner

KRitz
l =

(
In −

l∑
i=1

vivTi
θi

G̃

)(
In −

l∑
i=1

G̃
vivTi
θi

)
+

l∑
i=1

vivTi
θi

. (3.21)

They found that the use of this preconditioner can provide an improvement over spec-
tral preconditioning when the estimates of the Hessian eigenpairs are inaccurate. A
similar result was also found in the Regional Ocean Modelling System (ROMS), in
which both of these preconditioners are implemented [91]. One drawback of both of
these methods is that, in order to generate the required information, the first minimiza-
tion must be performed in order to generate the vectors si before any preconditioning
can be applied. So far little attention has been paid to preconditioning of this first
minimization.

With any minimization method it is important to specify appropriate stopping crite-
ria and this is also the case in variational data assimilation. As discussed in section 2.1
it has been proved that the inner-loop step of the Gauss-Newton method (step 1.1 of
Algorithm 2.1) needs to be solved to sufficient accuracy in order to ensure convergence
of the outer loops [45]. The theory has been used to show how it is natural to use an
inner-loop stopping criterion based on the relative change in the norm of the gradient,
of the form

||∇J̃ (k)
(l) ||2

||∇J̃ (k)
(0) ||2

< ε, (3.22)

where the subscript indicates the inner-loop iteration index and ε is a specified toler-
ance [73]. The tolerance used to stop the iterations must therefore be chosen carefully.
If it is too high then there is no guarantee that the outer loop steps will converge.
However the convergence should not be pushed below the level of noise on the obser-
vations, as then small spatial scales are adjusted to fit the observational noise [68]. In
many practical forecasting problems such care is not always taken and other criteria
are introduced. There are two main reasons for this. One is that in a time-critical fore-
casting system it may considered more important to solve each minimization problem
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using approximately the same amount of wall-clock time rather than to the same accu-
racy. The second reason is that the preconditioning techniques decribed in this section
require a minimum number of iterations to be performed on the first inner-loop mini-
mization in order to acquire sufficiently accurate information about the Hessian. Hence
criteria that have been introduced include stopping the iterations when the value of the
cost function is close to its expected minimum value [84] or using a fixed number of
iterations, particularly for the first minimization [110].

3.5 Reduced order approaches

As was mentioned in section 2.1 a major advantage of the incremental approach is that
the inner loop problem may be solved in a smaller dimensional space than the outer
loop update of the linearization trajectory. Within environmental prediction lower spa-
tial resolution systems have often been used in the inner loop step, with the full reso-
lution nonlinear model being used in the outer loop. Further simplifications may also
be made to the linear dynamical model used in the inner loop, such as using simpli-
fied parametrizations of sub-grid scale processes as described in section 3.1. While a
change in resolution is certainly the simplest way to achieve a more computationally
tractable inner loop problem, it does not necessarily provide the most accurate low
order representation of the linearized cost function and its constraint. In order to im-
prove on this other reduced order approaches have been investigated in the context of
incremental 4D-Var. These essentially fall into two categories, methods based on prin-
cipal component analysis and methods based on near-optimal reduction of dynamical
systems.

Principal component analysis, which is often referred to as principal orthogonal
decomposition (POD) or the method of empirical orthogonal functions (EOFs), aims
to represent the solution of the assimilation problem as a linear combination of basis
vectors. The basis vectors are chosen to represent the leading directions of variability
in the model and are calculated using a series of model states, or ‘snapshots’, from
an integration of the nonlinear model. Such a method was used in an ocean model
assimilation by [101]. From the sample of model states the authors generate the matrix
X = (X1, . . . ,Xl), where Xi is the difference between the model state at time ti and
the mean state. The covariance matrix XXT /(l − 1) is then diagonalised to find a set
of orthonormal eigenvectors vi (EOFs) and associated eigenvalues λi, i = 1, . . . , l.5

The solution δx0 to the inner loop minimization problem (2.15) is then defined by an
expansion of the leading r eigenvectors

δx0 =
r∑
i=0

wivi = Vw (3.23)

5 In practice the eigenvalues can be found by diagonalising the much smaller matrix XT X/(l − 1)
[11].
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where V = (v1, . . . ,vr) is the matrix of the leading r eigenvectors and w = (w1, . . . , wr)T

are the weights to be determined. In this case the matrix V acts as a variable transfor-
mation in a similar way to the parameter transform (3.4) and so the background term
can be written in the form

Jb(w) =
1
2
wTB−1

w w, (3.24)

where the covariance matrix Bw is taken to be the diagonal matrix of eigenvalues. The
number of vectors r that are used in the expansion is chosen in order to ensure that a
large fraction of the total variance is retained, where this fraction is calculated from
the eigenvalues as ∑r

i=1 λi∑l
i=1 λi

. (3.25)

This method has been applied to assimilation in ocean models in an idealized setting
[101] and using real data [60]. It is noted that the assumption behind this method is
that the variability of the system can be well described by a low dimensional space.
Although the approach reduces the size of the space in which the minimization is
performed, the tangent linear model (2.16) must still be integrated at full resolution on
each iteration.

An alternative approach, based on POD, was put forward by [22], [23]. In that work
the solution to the full nonlinear 4D-Var problem is expressed as a perturbation from
the sample mean that is expanded in terms of basis functions Φi, such that

δx0 =
r∑
i=0

wiΦi, (3.26)

where wi are again weights to be determined. The basis functions are derived in a
similar way to the EOFs, but by then projecting the perturbation fields X onto the
eigenvectors vi, so that

Φ = {Φ1, . . . ,Φl} = XV. (3.27)

The number of basis functions that are used in the expansion is again determined using
the fractional variance (3.25). In this work the authors solve the nonlinear 4D-Var cost
function (2.3) in the reduced space. As well as expressing the background term in
terms of coefficients of the basis functions they also derive a Galerkin projection of
the dynamical model onto the basis functions for use in the observation term. Thus
this formulation has the advantage that the dynamical model and its adjoint are also
expressed in the reduced space. Again this method relies on the snapshots being able
to capture a low-dimensional subspace that adequately describes the full system.

A disadvantage with both the EOF and POD methods is that they do not use any
information about the data assimilation problem itself within the reduction procedure.
There have been two approaches proposed to improve on this. The first is an adaption
of the POD method, called dual-weighted POD. In this method the snapshot perturba-
tions X are weighted according the sensitivity of the cost function at the time of the
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snapshot, where the weights are calculated using the adjoint model [30]. The other
approach, put forward in the series of papers [76], [75], [14], is to use near-optimal
model order reduction methods for linear dynamical systems to derive a reduced order
model and observation operator. The inner loop problem of incremental 4D-Var (2.15)
is subject to the dynamical system described by the evolution equation (2.16) and the
output equation

di = Hiδxi. (3.28)

Model reduction seeks linear restriction operators STi and prolongation operators Ti

that map the perturbation δxi ∈ Rn to δx̂i ∈ Rr with r << n. These operators are
chosen such that the output of the projected system

δx̂i+1 = STi MiTiδx̂i (3.29)

d̂i = HiTiδx̂i (3.30)

approximates well the output of the full dynamical system di. The inner loop problem
can then be defined in the reduced space as the minimization of

min Ĵ (k)[δx̂(k)
0 ] =

1
2
(δx̂(k)

0 − ST0 [xb − x0
(k)])T

× (ST0 B0S0)−1(δx̂(k)
0 − ST0 [xb − x0

(k)])

+
1
2

N∑
i=0

(HiTiδx̂
(k)
i − d(k)

i )TR−1(HiTiδx̂
(k)
i − d(k)

i ),

subject to the reduced dynamical model (3.29). The linearization state is then updated
with the perturbation

δx(k)
0 = T0δx̂

(k)
0 . (3.31)

The authors of these papers use the method of balanced truncation [92] to demon-
strate this method in the case where the operators M and H are time-invariant. The
aim of balanced truncation is to truncate the states of the system that are least affected
by the inputs and have least effect on the outputs. Since these are not generally the
same, the first step in the method is to transform the system into one in which these
states coincide, the ‘balancing’ step. It is first necessary to find the state covariance
matrices P and Q associated with the inputs and outputs respectively. These are found
by solving the Stein equations

P = MPMT + B (3.32)

and Q = MTQM + HTR−1H. (3.33)

The balancing transformation Ψ is then given by the matrix of eigenvectors of PQ,
while the eigenvalues of PQ are equal to the Hankel singular values of the full system.
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The reduction step then calculates the restriction and prolongation operators from

ST = [Ir,0]Ψ−1 (3.34)

T = Ψ

[
Ir
0

]
, (3.35)

where the decay of the Hankel singular values is used to choose the model reduction or-
der r. In idealised models the studies [76], [75], [14] show how this method improves
the solution with respect to using low resolution models and how it is important to
use information about the assimilation problem in the reduction procedure, including
information about the background and observation error covariance matrices. How-
ever, whereas reduction methods based on POD can be implemented in large systems,
the method of balanced truncation cannot. Although efficient numerical methods are
available to apply balanced truncation to systems of moderately large size (e.g. [53],
[69], [25]), these are not suitable for the very large systems found in environmental
prediction. Efforts are being made to design near-optimal reduction methods for such
systems based on Krylov methods [21], but these methods have not yet been tried out
in data assimilation for large systems.

3.6 Issues for nested models

For very high resolution weather and ocean forecasting operational centres often use
models covering only the domain of interest that are nested in a larger model, often
of lower resolution, which we refer to here as the parent model. In most of the sys-
tems the nesting is a one-way nesting, whereby lateral boundary conditions for the
nested model are provided by the parent model, but there is no feedback from the high
resolution nested model to the parent model. This presents particular challenges for
the application of variational data assimilation. For problems specific to high resolu-
tion weather forecasting we refer the reader to the review articles [96] and [31]. Here
we consider only more general problems arising from using a high resolution nested
grid, in particular treatment of the lateral boundary conditions and of the difference in
representation of spatial scales between the parent and nested models.

With respect to the lateral boundary conditions, a decision must be made as to
whether to estimate them as part of the assimilation procedure or to assume that they
do not change. Both approaches have been used in practice. In the operational weather
forecasting system of the Met Office the lateral boundary conditions are not updated,
but are fixed by the parent model. Hence the increment δx on the boundary is set to
zero. This has advantages for the practical implementation of the scheme. In particular
it allows a simple sine transform to be used in the definition of the spatial background
error covariances described in section 3.2, which then enforces zero boundary incre-
ments [83]. However, observational information close to the boundaries can be diffi-
cult to use, since the nested model cannot use observations lying outside the domain
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and the analysis inside the domain may not be consistent with the boundary condi-
tions provided [4], [47]. This can lead to features being artificially cut-off close to the
boundaries.

The alternative approach is to estimate the boundary variables within the assimila-
tion procedure [48], [67], [49]. This means that the state vector x is defined to include
both the variables in the interior of the domain and on the lateral boundaries. In this
way observations inside the nested domain can update the boundary values and so it
is possible to ensure that the analysis is consistent throughout the domain. However
in this case it is no longer possible to apply a sine transform to impose the spatial
background error covariances. In order to be able to apply a spectral transformation
an extension zone is created around the domain to obtain fields that are horizontally
periodic. A Fourier transform can then be applied. One difficulty in analysing the
boundaries in this way is that the lateral boundary conditions are only updated during
the assimilation period. During the subsequent forecast no updates are available and
the values from the parent model must be used, so there is some inconsistency between
the boundary conditions of the analysis and those of the forecast. However, some con-
sistency over the assimilation window can be ensured by estimating the boundary con-
ditions at the beginning and end of the assimilation window, with both constrained by
background values from the parent model. In this case the cost function to be solved
is of the form

J (x0,xlbc) =
1
2
(x0 − xb)TB−1(x0 − xb) +

1
2
(xlbc − xblbc)

TB−1
lbc(xlbc − xblbc)

+
1
2

N∑
i=0

(Hi(xi)− yi)TR−1
i (Hi(xi)− yi), (3.36)

where x0 represents the model variables in the interior of the domain and the lateral
boundary conditions at initial time t0, xlbc is the lateral boundary condition at final
time tN , xb is the background estimate of x0, with error covariance matrix B and xblbc
is the background estimate of xlbc, with error covariance matrix Blbc [67].

The second challenge we consider is the difference in the spatial scales that can be
represented in the nested and parent models. In particular, since the nested model often
covers only a small domain, the assimilation scheme is not able to analyse adequately
scales of the size of the domain and larger. In applications such as weather prediction
it is important to capture these larger scales, since the physical system is inherently
multiscale, with strong feedbacks between large and small scales. Hence attempts have
been made to improve the large-scale information in nested model data assimilation by
providing information on these scales from a parent model analysis. For example, the
Met Office experimented with a system that combined large scale increments from a
parent model analysis with the small scale increments from the nested model analysis
[4]. In this method the large scales of the nested model analysis are forced to be equal
to those of the parent model.
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An alternative, proposed by [47], is to use the large scales of the parent analysis over
the nested model domain as a weak constraint on the variational problem. We let xap be
the analysis from the parent model and define operatorsHp andHn such thatHp(xap)
represents some large scales of the parent analysis on the nested domain and Hn(x)
represents the same large scales from the nested model field x. Then the difference
between the large scales of the global analysis and those forecast by the nested model
can be constrained by adding an extra term to the cost function (2.3) of the form

1
2
(Hp(xap)−Hn(x))TB−1

p (Hp(xap)−Hn(x)), (3.37)

where Bp is the error covariance matrix of the parent model large scales. This means
that the analysis is constrained by large scales from the parent model, through this ad-
ditional term, and by large scales from the nested model, through the background term.
In theory this should introduce another term including the cross-correlation between
these two sources of information. However, in their demonstration of the method in a
3D-Var scheme of the ALADIN model at Météo-France the authors of [47] concluded
that this cross-correlation could be neglected, though at the cost of some inaccuracy.

A more theoretical study of this problem was carried out by [9]. They used a spectral
analysis to show how information from waves longer than the domain size is projected
onto different scales in the nested model domain, corresponding to the lowest wave
numbers that can be represented on this domain. They demonstrated that by giving
more weight to these scales in the background term of the cost function it was possible
to retain more of the large scale information from a parent model background. In this
method the large spatial scales from only the parent model are used as a constraint in
the assimilation, as in [4], but they are not imposed exactly and may be altered by the
assimilation process. The authors of [9] demonstrated benefit from this in an idealised
system, but the method has not been tested in a realistic model.

3.7 Weak constraint variational assimilation

The formulation of variational data assimilation presented in section 2 assumes that the
discrete dynamical model (2.1) is an exact representation of the physical system being
observed. In practice we know that the models contain errors, caused by limitations in
our knowledge of the physical equations and limitations in the numerical modelling,
such as the need for sub-grid scale parametrizations. In theory it is possible to account
for and estimate such errors in variational data assimilation, though implementation in
practice is more complicated. We assume an additive error to the model equations, so
that the true dynamical system can be written

xi+1 =Mi(xi) + ηi, (3.38)

where ηi are the unknown model errors at times ti, which are assumed to be random,
serially uncorrelated, Gaussian errors with covariance matrix Qi. Then we can define
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a weak constraint 4D-Var problem, in which the model equations do not have to be
exactly satisfied over the assimilation window. We define a cost function of the form

J (x0,η0, . . . ,ηN−1) =
1
2
(x0 − xb)TB−1(x0 − xb)

+
1
2

N∑
i=0

(Hi(xi)− yi)TR−1
i (Hi(xi)− yi) +

1
2

N−1∑
i=0

ηTi Q−1
i ηi (3.39)

subject to (3.38). The weak constraint problem is then to minimize (3.39) with respect
to the initial state x0 and all the model errors ηi.

An alternative formulation of the weak constraint problem (3.39) is to write it in
terms of the model state xi at each time ti rather than in terms of the model errors.
This leads to the cost function

J (x0,x1, . . . ,xN ) =
1
2
(x0 − xb)TB−1(x0 − xb)

+
1
2

N∑
i=0

(Hi(xi)− yi)TR−1
i (Hi(xi)− yi)

+
1
2

N−1∑
i=0

(xi+1 −Mi(xi))TQ−1
i (xi+1 −Mi(xi)).(3.40)

In [109] both formulations were presented in the incremental version of 4D-Var as
possibilities for inclusion in the ECMWF system.

The inclusion of the model errors at each observation time increases the size of the
argument of J by a factor of N + 1, the number of observation times. One way to
reduce this cost is by assuming a relationship in time between the model errors ηi.
Theoretical work by [46] used an augmented state approach to solve for the state and
the model error, with a dynamical equation used to explain the evolution of the error.
The authors introduced a general form for the error evolution, including both a system-
atic and random component of the error. Various options for the systematic evolution
were proposed, including a contant bias error and simple dynamical evolutions, and the
methods were illustrated on simple systems. In the context of a regional atmospheric
model [119] demonstrated a weak-constraint 4D-Var system under the assumption that
the model error was serially correlated and obeyed a first order Markov process.

Since this early work there have been several idealised studies with weak-constraint
4D-Var, but the move towards operational implementations in large-scale systems has
been slow. One of the biggest challenges remains the specification of the model er-
ror covariance matrix Qi for real systems. An initial idea was to take this matrix to
be a scalar multiple of the background error covariance matrix B. However, in ex-
periments with the ECMWF atmospheric forecasting system using formulation (3.39),
[110] showed that this choice implies that corrections to the model error lie in the same
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space as those to the background. This leads to estimates of model error that are very
similar to the increments to the initial conditions. An alternative method, proposed in
the same paper, is based on the use of model tendency fields, that is fields of the change
in model variables over a model time step. The statistics of Qi are estimated from an
ensemble of differences between model tendency fields using the NMC method, in
a similar way that differences between the model fields themselves are used in the
estimation of the background error covariances (as explained in section 3.2). [110]
interprets differences between these tendencies as a proxy for the uncertainty in the
model forcing. The statistics from this sample are then fit to the same statistical model
as is used for the matrix B. The use of a covariance matrix estimated in this way
was tested in weak-constraint 4D-Var experiments that assumed a constant error over
the assimilation window. This was shown to give an improvement over the use of a
covariance matrix defined by a scalar multiple of B.

The work of [80] illustrated the implementation of weak-constraint 4D-Var using
such a matrix, again in the ECMWF system, to estimate a constant bias error in the
stratosphere, where the model is known to have biases. A similar scheme has been
introduced into the operational assimilation system of ECMWF [40]. In this imple-
mentation the deviation of the error from its mean value is minimized, so that the last
term of (3.39) becomes

1
2
(η − η̄)TQ−1(η − η̄), (3.41)

where η̄ is the estimate of the model bias from the previous analysis cycle. In this way
the assimilation ensures that the estimated error does not vary too quickly from one
analysis cycle to the next.

Despite these initial successes much more work is needed. One particular difficulty
is that it is not clear how to differentiate between model bias and observation bias, since
the assimilation only measures the difference between the model and the observations.
[110] showed a case study of observation bias being interpreted as a model error by
weak-constraint 4D-Var. This problem was discussed further by [78] in the context of
ocean data assimilation. They suggested that to estimate both model and observation
bias it is necessary to include information on the spatial and temporal structure of these
biases in the covariance matrices.

In order to then move away from the assumption of a constant bias and treat time-
varying systematic and random model errors, more sophisticated methods for describ-
ing the evolution of errors must be developed. This evolution is likely to be dependent
on the specific model being used, yet general methods for representing this are also
needed. At the same time efficient and accurate representations of the covariances
of these model errors must be found. The use of the weak-constraint formulation of
4D-Var holds much promise to counteract the inadequacies of models, but many chal-
lenges remain open to be able to implement this in very large environmental models.
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4 Summary and future perspectives

Variational data assimilation is now a well-established method for combining obser-
vational data with very large environmental models. However, as has been illustrated
in this article, its successful implementation requires careful and judicious choices in
each aspect of the assimilation scheme. In some cases these choices are determined
by the physical system being modelled or the observational data available, such as the
specification of the error covariances in the system. In other cases the choices may be
determined by the size of the problem and the need to solve it in an efficient manner,
often for real-time forecasting, or by features of the numerical model itself, such as lat-
eral boundary conditions. In each instance the choices to be made will inevitably be a
compromise between the ideal solution and what is practically feasible in a given sys-
tem. We have presented some of the solutions that have been found that have allowed
variational data assimilation to be implemented in large environmental forecasting sys-
tems. Nevertheless much research continues to improve on these solutions so as to find
better estimates of the state and so produce better forecasts.

One particularly active area in numerical weather prediction is the desire to use
more information from ensembles of forecasts to provide time-varying covariances
for the background errors, combining the advantages of ensemble filtering methods
with the advantages of 4D-Var. ECMWF have implemented a system in which an
ensemble of 4D-Var assimilations are run and the statistics from this ensemble are
used to update the variances of the background errors [15]. Extensions to this method
to calculate also the covariance information are being sought. An alternative approach
is to use information from ensembles of forecasts to calculate covariance information
throughout the whole assimilation window. This method was proposed by [81] and
tested in a global weather prediction model by [19], [20]. An advantage of this method
is that the tangent linear and adjoint models are not required in the 4D-Var, since all
the evolution information comes through the ensemble of nonlinear model forecasts.
Hence this makes development of the system much easier.

Besides the many great challenges that we have discussed in this article, new chal-
lenges are arising for the future evolution of variational data assimilation systems. The
advent of massively parallel computers means that the algorithms used currently to
solve the assimilation problem may no longer be efficient on future computer architec-
tures. Hence work is needed to develop new algorithms to solve the problem, particu-
larly with respect to efficient minimization and preconditioning methods. This may be
easier as systems move to a weak-constraint form of 4D-Var but, as discussed above,
that introduces its own difficulties [40]. Another challenge comes from the move to-
wards more integrated Earth-system models, with different environmental models cou-
pled to each other. For example, for seasonal to decadal prediction it is now common
to use coupled atmosphere-ocean models, but the initialization of these models with
data assimilation is still in its infancy. Particular problems arise from the very different
time scales in the atmosphere and ocean system and from the model biases in atmo-
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sphere and ocean models. Some work has been done to implement 4D-Var in such
systems in order to estimate the ocean state and coupling parameters [106], [89], but
the estimation of the complete state in coupled atmosphere-ocean models remains an
open problem for the coming years.
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reading of the manuscript helped lead to many improvements in the final version.
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