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Abstract Risk assessment for mammals is currently
based on external exposure measurements, but effects of
toxicants are better correlated with the systemically avail-
able dose than with the external administered dose. So for
risk assessment of pesticides, toxicokinetics should be
interpreted in the context of potential exposure in the field
taking account of the timescale of exposure and individual
patterns of feeding. Internal concentration is the net result
of absorption, distribution, metabolism and excretion
(ADME). We present a case study for thiamethoxam to
show how data from ADME study on rats can be used to
parameterize a body burden model which predicts body
residue levels after exposures to LDs, dose either as a bolus
or eaten at different feeding rates. Kinetic parameters were
determined in male and female rats after an intravenous
and oral administration of '*C labelled by fitting one-
compartment models to measured pesticide concentrations
in blood for each individual separately. The concentration
of thiamethoxam in blood over time correlated closely with
concentrations in other tissues and so was considered
representative of pesticide concentration in the whole body.
Body burden model simulations showed that maximum
body weight-normalized doses of thiamethoxam were
lower if the same external dose was ingested normally than
if it was force fed in a single bolus dose. This indicates
lower risk to rats through dietary exposure than would be
estimated from the bolus LDso. The importance of key
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questions that should be answered before using the body
burden approach in risk assessment, data requirements and
assumptions made in this study are discussed in detail.

Keywords Insecticide - Neonicotinoid - Kinetics -
Body burden modelling

Introduction

Risk assessment for mammals is currently based on eval-
uation of the ratio of the daily exposure divided by the oral
LDs (typical a bolus dose) for acute effects or NOEL for
chronic effects, e.g. reproduction or parental effects.
However, exposure to a chemical does not mean that all of
the dose will be bioavailable, as toxicokinetics (TK) (e.g.
absorption, elimination) strongly influence the received
dose of a toxicant, and it is thus internal concentration at
target sites that drives the effect. It has long been
acknowledged that effects of toxicants are better correlated
with systemically available dose than with the external
administered dose (e.g. Morgan et al. 1994). Toxicity
relationships based on internal tissue concentrations rather
than on external exposure concentrations (e.g. concentra-
tion in food) are often far less variable among species,
among different chemicals that act by similar toxic
mechanisms and among different environmental conditions
(McElroy et al. 2010). Although it has been recognised
recently that TK may be used to refine chemical risk
assessments (EC 2007; OECD 2010), and TK are routinely
and successfully used in pharmaceutical research, few
internal dose data are routinely generated in toxicological
studies of pesticides and biocides, and the use of TK in risk
assessment for crop protection products is relatively new
(Creton et al. 2009). To understand the relationship
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between the external and internal concentrations of toxi-
cant better, we need toxicokinetic models that translate an
external concentration of a toxicant, which can change in
time, to an internal concentration at a target site as a
function of time. Such models allow for predictions of
concentrations of toxicant in the body for different realistic
exposure scenarios and enable interspecies extrapolation,
which may reduce the need for animal testing.

Internal concentration is the net result of absorption,
distribution, metabolism and excretion (ADME), and TK is
a mathematical description of these processes. In its sim-
plest form, a one-compartment model with first-order
kinetics includes the processes of absorption and elimina-
tion, but more complex models may include biotransfor-
mation processes or internal distribution (Jager et al. 2011).
Multi-compartment models, such as physiologically based
pharmacokinetics (PBPK), frequently have many variables
and biochemical and physico-chemical determinants
(Krishnan and Peyret 2009). Although such complex
models that estimate residue levels in specific organs may
be sometimes preferred, relatively simple models that track
total body burden may be more practical and sufficient for
wildlife risk assessment of pesticides where a strong need
is felt for relatively simple models that can be applied in
complex situations (Fite et al. 2001; Hunka et al. 2012).
Nevertheless, the choice of an appropriate TK model
depends on the question addressed.

Here we develop a toxicokinetic model for a neonicot-
inoid, thiamethoxam that can be used to predict internal
exposure for a wide range of exposure scenarios including
different timescales of exposure and behavioural factors
such as feeding pattern in study. As there is a general drive
to reduce animal testing, it is desirable if toxicokinetic
models can be parameterised based on existing studies.
Here we show how common studies such as ADME stud-
ies, typically carried out as part of the legal registration
requirements (Tomizawa and Casida 2005), can be used
and we explore how crucial assumptions of the model can
be tested. To illustrate the usefulness of ADME data from
an early stage of a study for higher-tier risk assessment, a
simple model was developed that considers the absorption
of a pesticide across the intestinal wall after oral uptake
and its subsequent elimination from the body. To identify
the main physiological processes and the level of detail
with which organisms have to be described the following
questions were considered: (1) can kinetic processes be
described as first-order for absorption and elimination of
thiamethoxam? (2) how many compartments (tissues or
organs) should be included in the model? Is it necessary to
represent target organ(s) as separate compartment(s) or is
the toxicant concentration in the systemic circulation
(blood) sufficient? Because feeding pattern may determine
toxicity of chemicals for animals living in natural

environment, we also checked (3) how different feeding
scenarios influence the internal dose of toxicant in the
body? Understanding both physiological and ecological
processes will contribute to a better understanding of the
risk of different patterns of use of pesticides.

Materials and methods

All data used in this analysis originate from unpublished
GLP studies on the ADME processes of a neonecotinoid,
thiamethoxam (Syngenta, unpubl.).

Thiamethoxam

Thiamethoxam is one of the seven neonicotinoid insecti-
cides currently on the market (Jeschke et al. 2010). It is a
highly effective systemic and contact insecticide with rel-
atively low mammalian toxicity (Maienfisch et al. 2001).
Neonicotinoids are the most important new class of
insecticides for integrated pest and insect resistance man-
agement programmes (Jeschke and Nauen 2008) that act as
agonists of the insect nicotinic acetylocholine receptors
(AChRs) (Matsuda et al. 2001). Although neonicotinoids
have been extensively studied, ADME studies in mammals
have been published only for clothianidin (Yokota et al.
2003).

Animals

The experiment was performed according to 94/79/EC
(Commission Directive 1994), OECD 417 (OECD 1984)
and US-EPA FIFRA 85-1 (EPA 1984) guidelines. Labo-
ratory rats (Rattus norvegicus) about 7-9 weeks old
derived from laboratory culture (CIBA-GEIGY limited,
Switzerland) were acclimatized to laboratory conditions for
at least 5 days and were separated and individually kept in
metabolism cages 1 day before the experiment started. The
animals were allowed free access to certified standard diet
(Nafag No. 890, NAFAG, Gossau, Switzerland), except the
night before administration of '*C labelled thiamethoxam.
Tap water was offered ad libitum at all times.

Experimental design

Thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-
[1,3,5]oxadiazinan-4-ylidene-N-nitroamine, CAS 153719-
23-4 or CGA 293343 (Syngenta code no) was '“C labelled
in two positions on the molecule, [Thiazol-2-l4C] and
[Oxadiazin-4-'*C]. Radiochemical purity was >97 %.
Three male and three female rats were randomly assigned
to each of the following treatment groups, to receive either
a single intravenous (i.v.) dose of 5 mg kg~' body weight
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(bw), or a single oral (p.o.; Latin per os: by mouth) dose of
5 (low dose) or 100 (high dose) mg kgjl bw. For the
intravenous administration the test substance was dissolved
in 0.9 % NaCl and about 0.3 ml of the solution was
intravenously injected via syringe directly into the tail vein.
For the oral exposure, test substance was suspended in
mixture of polyethylene glycol 200/ethanol 5/3 (v/v) at
expected nominal concentrations and each animal received
about 0.8 ml of administration solution by stomach tube.
Blood samples were collected from three animals of each
group. Samples were taken from the tail at 0.25, 0.5, 1, 2, 4,
8, 12, 24, and 48 h after administration.

In addition to the collection of blood, samples of urine
and faeces were collected separately from metabolic cages
at time intervals of 0-8, 824, 24-48, 48-72, 72-96,
96-120, 120-144, 144-168 h after dosing. Additionally,
three groups of male and three groups of female rats were
used to study tissue residues of thiamethoxam after oral
exposure to a low dose of [Thiazol-2—14C], a high dose of
[Thiazol-2-'*C] and a low dose of [Oxadiazin-4-'*C]. The
tissues and organs (bone, brain, abdominal fat, testes/ova-
ries, heart, kidney, liver, lungs, plasma, skeletal muscle,
spleen, uterus, whole blood, residual carcass) were sampled
by dissection of euthanized animals at four time points as
follows: time of maximal concentration of radioactivity
(Cna) 1n the blood, time of depletion to ¥2C,,,,, and 12 and
24 h after thiamethoxam administration. Volumes or
weights of each sample were recorded prior to analysis. At
each time point, tissue residues were determined in three
males and three females after oral administration of
[Thiazol-2-"*C] at both 5 and 100 mg kg~' bw and of
[Oxadiazin-4-'*C] at 5 mg kg ™' bw.

The appearance and the behaviour of animals were
observed during the course of experiment to safeguard the
welfare of the animals. The procedures involving animals
were carried out in accordance with a protocol approved by
the UK Home Office Animal Care and Use Committee.

Chemical analysis

Radiopurity was checked by thin layer chromatography
(TLC) and high performance liquid chromatography
(HPLC) at the time of dosing and shown to be stable.
Radioactivity in blood, bone, lungs, gastrointestinal tract,
faeces, and carcass was determined by combustion and liquid
scintillation counting (LSC). Radioactivity in brain, fat,
heart, kidneys, liver, muscle, spleen, gonads, and uterus was
determined after digestion with Irgasolve tissue solubiliser
by LSC. The results were expressed as pg thiamethoxam
equivalents g~ ' wet tissue or jig thiamethoxam equivalents
ml~" wet tissue. All details concerning measurements of
radioactivity, TLC, HPLC and calculations performed on
experimental data are described in Syngenta report
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(Syngenta, unpubl.). The data were analyzed on the basis of
total radioactivity in each studied tissue. The results for
blood samples were recalculated based on the relationship
that 1 ml of blood is approximately equivalent to 1.06 grams
of blood and expressed as pig thiamethoxam ml ™.

Model selection and parameters estimation

Blood concentrations were used to determine kinetics
parameters using a commercial software program Win-
Nonlin Version 5.3 (Pharsight Corporation, Mountain
view, CA, USA) (see Gabrielsson and Weiner 2000 for
more details). Compartmental methods were used and
parameters were estimated from the statistical best-fits of
the model to experimental time-course data. Weighting of
the data using the inverse of the observed plasma con-
centration (i.e. reciprocal of the observed values) improved
the fit of the model and was used in all cases. The model
parameters were estimated using the Marquardt method
and parameters were checked for significance using
asymptotic 95 % confidence intervals.

A one-compartment model was used to calculate toxic-
okinetic parameters separately for each individual in order to
include the variability in TK parameters amongst individuals
in statistical analysis of the data. The primary compartmental
parameters calculated were k, (first-order absorption rate
constant), k, (first-order elimination rate constant) and ratio
V/F where V is a volume of distribution (apparent volume
which a pesticide distributes into) and F' is bioavailability,
which is determined by absorption across gastrointestinal
membranes and hepatic extraction. Degradation of pesticide
in gut and fecal excretion also affects F. The reason for the
ratio V/F is due to the inability to determine F and V sepa-
rately. This is an inherent limitation of the model and unique
values for F and V can be determined only with information
following an intravenous dose.

Area under the zero moment curve (AUC) was calcu-
lated and used to estimate bioavailability. The relative
bioavailability between the two routes of administration,
i.e. the fraction of thiamethoxam that was absorbed (unit
less fractional bioavailability, ) was calculated for each
individual separately according to the following equation:

F = [AUCp,(,,/dose,,A(,,]/[AUCi_V_/doseiAvA]
where p.o and i.v denote oral and intravenous exposure,
respectively. AUC,,, was calculated for each individual

separately and AUC;,, was calculated as a mean value for
male and female rats separately.

Statistical analysis of model parameters

A multifactorial ANOVA with body mass as a covariate was
used to test differences in absorption rate constant (k,) and
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bioavailability (F) between sexes, labelling position
([Thiazol-2-'*C] and [Oxadiazin-4-'*C]) and doses, as well
as interactions between factors for oral exposure. If signifi-
cant differences were concluded among the levels of a factor,
then means were separated with LSD tests. Two-way
ANOVA with body mass as a covariate and exposure route
and sex as explanatory factors was used to check for possible
differences in k. and V. If nonsignificant (p > 0.05), the
covariate was removed from models. A Pearson correlation
was used to test for correlations between thiamethoxam
concentrations in different tissues. Differences in the
regression intercepts and slopes between tissues were tested
for their relationship between residues of thiamethoxam and
time within the exposure groups using comparison of
regression lines. Statistical analyses used the Statgraphics
Centurion XV program version 16.1.11.

Body burden model
Body burden model description

The values for absorption and elimination rate constants
estimated from fitting one-compartment model to the radio-
labelled data (WinNonlin analysis) were used to simulate the
change of the pesticide body weight-normalized dose in the
body with time for different feeding scenarios. For this pur-
pose, the internal tissues of the organism excluding the gastro-
intestinal tract (the content of which is not strictly ‘in’ the
organism) were treated as a single compartment. Thus the
animal ingests food with residues of a toxicant, the toxicant is
absorbed from the gastro-intestinal tract into the bloodstream
and transported to target organ(s), and then is eliminated from
the body. Elimination may occur by several routes including
loss in urine and faeces. The rates of change in the doses of
thiamethoxam in the gut and bloodstream were described
mathematically as the difference between compartment rates
of uptake and loss. Exchange rates between compartments
represent physical transfers of a substance, as biotransfor-
mation of thiamethoxam to metabolites was not taken into
account in the model. No distinction was made between the
rate of the loss of pesticide from the gastrointestinal tract and
its appearance in the systemic circulation; whatis lost from the
gastrointestinal tract all appears in the systemic circulation
each time unit.

Body burden model implementation

In order to simulate the change of the pesticide dose in the
gut and in the body with time the following equations were
implemented in an Excel spreadsheet:

ADgy = I — kgD F
ADint = kaDgutF — keDiy

where AD indicates change in the body weight-normalized
dose of pesticide in given time interval, here one minute;
subscripts gut and int denote gut and internal (blood-
stream), respectively; I indicates ingestion rate (i.e. the rate
of toxicant transfer from exposure dose to the gut, mg a.i.
kg~! bw min™"); F represents bioavailability, here F = 1
(see Results); k, represents the rate of toxicant absorption
from the gut into the system (min_l), and k,—the rate of
toxicant elimination from the system (min_l).

Body burden model verification

To verify the body burden model was performing in a
reasonable manner (i.e. that implementation was correct)
and could be used regardless of exposure levels (even
though difference in &, between doses was found), we ran
simulations representing both low- and high-level of
exposure (0.5 and 100 mg a.i. kg~' bw, respectively) with
different combinations of k, and k.. The pesticide move-
ment to the gut and bloodstream was monitored and the
predicted shapes of the curve were visually compared with
measured data to check that the model reproduced results
correctly.

Simulation of thiamethoxam doses in the body at different
feeding scenarios

Different scenarios of exposure were tested to check effect
of feeding pattern on the change of thiamethoxam dose
both in the gut and in the system as a function of time: (1)
LDs, given as a bolus dose (i.e. all dose eaten during
1 min); (2) LDs, dose eaten with constant ingestion rate of
13 mg ai. kg~' bw min~' (i.e. all dose eaten within 2 h);
(3) LDs( dose eaten with constant ingestion rate of 6.5 mg
a.i. kg™ bwmin~' (i.e. all dose eaten within 4 h); (4) LDs
dose eaten with constant ingestion rate of 13 mg a.i. kg~'
bw min~" within 2 h in total but with 4 h break after the
first hour of feeding. All simulations were run with high
mean k, and low mean k, rate constants (worst-case). The
acute oral LDs, value calculated after bolus gavage expo-
sure of rats was 1563 mg kg~ (Maienfisch et al. 2001;
EPA 2002). The maximum internal doses (max D;,,) were
used as a metric for comparison between different exposure
scenarios.

Results

Thiamethoxam was rapidly perfused throughout the body and
rapidly eliminated: the levels of '“C in measured tissues were
close to or less than limit of detection/quantification 24 h after
administration of 0.5 mg kg~' bw. The results indicated no
accumulation in any of the tissues examined. The residues of
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thiamethoxam in blood and other tissues were highly corre-
lated (r > 0.9, p < 0.0001 for all studied tissues) suggesting
that tissues rapidly reach and maintain equilibrium with blood.
Therefore, the kinetics parameters for blood could be used for
other tissues for prediction of internal dose after exposure to
LDsy dose. Moreover, overall elimination from all tissues was
similar and fast and in all exposure groups except two the
differences were found only in intercepts (Pnsercepss < 0.0001,
Pmoder < 0.0001, 7 > 88.5 %). The only two cases in which
significant differences among the slopes were found
(p < 0.0001) were females exposed to 100 mg [Thiazol-
2-]4C] kgfl bw (elimination of thiamethoxam from heart,
bone and kidneys was faster than in other studied tissues), and
males exposed to 0.5 mg [Oxadiazin-4-'*C] kg ™' bw (slower
elimination of thiamethoxam from brain, abdominal fat and
liver in comparison with other tissues).

Model selection and estimation of parameter values

Compartmental analysis was used to determine values of
kinetic parameters for further modelling (Table 1). The
one-compartment first-order model gave the best fit to the
data based on visual examination of the fitted curves,
residual plots, and Akaike’s information criterion (AIC),
regardless of the dose (0.5 or 100 mg ai. kg~' bw),
exposure route (oral or intravenous) or sex. Fits of the one-
compartment model are shown in Figs. 1, 2. Variability
among individuals in toxicokinetic parameters was
observed irrespective of dose and exposure route, so likely
reflects natural variation among individuals. k, was higher
at 0.5 than 100 mg a.i. kg~' bw (p = 0.014) using body
mass as a covariate (p = 0.03). As body weight was con-
founded with sex (females were larger, p < 0.003), it was
not possible to distinguish between them. Therefore, body
mass and sex (continuous variable) was included in the
general linear model as the interaction term. The effect of
interaction between sex and body mass on k, was not
significant (p > 0.7). None of studied variables affected k,
in orally exposed rats, but k., was higher in rats exposed to
0.5 mg kg~' bw [Thiazol-2-'*C] intravenously than orally
(p = 0.05). Sex did not affect AUC.

The relative bioavailability calculated from AUC after
dose-normalization ranged from 0.62 to 0.96 (Table 1) and
was significantly lower in males than females (p = 0.02) as
well as at 0.5 than 100 mg ai. kg=' bw (p = 0.04).
Although the bioavailability determined by the AUC ratio
after oral and i.v. administration was below 1, complete
absorption of thiamethoxam was assumed in body burden
modelling (F = 1), as the samples of urine and faeces
collected separately from metabolic cages indicated that
most of the radiolabel (95 %) was excreted via kidneys and
only 4 % was found in the faeces. Moreover, the amount
eliminated with the faeces was derived from biliary
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excretion, thus proving complete absorption (data not
shown). Therefore the worst-case bioavailability assump-
tion (F = 1) was used for further simulations of thia-
methoxam dose in the body at different feeding scenarios.
None of studied variables affected V, and only body mass
as a covariate was significant in the model (p = 0.04).

Body burden model
Body burden model verification

Because k, and k, varied with dose and exposure route,
respectively, we examined the effects of different combi-
nations of k, and k, on body burden to see how important
this is for risk. Therefore, means (+SD) for k, were cal-
culated separately for rats exposed to low and high doses
(2.2 &+ 1.37 and 1.3 % 0.94, respectively) and means for &,
were calculated for i.v. and orally exposed rats (0.4 + 0.15
and 0.25 £ 0.09, respectively). The predicted internal
dose—time curves for the thiamethoxam levels in the body
at two extreme combinations of &, and k, (i.e. high mean k,
and low mean k, or low mean k, and high mean k,.) are
shown on Fig. 3. The model exhibited the expected general
patterns with regard to thiamethoxam movement to the gut
and bloodstream regardless of which combination of
parameters was used. There was substantial variability
between individuals, but the time at which the peaks were
reached, as well as the shapes of the internal dose—time
curve were reflected correctly. Although for high mean &,
and low mean k, the predicted peaks were higher than the
measurements (probably because the model assumed
F =1 for all individuals), this combination of kinetics
parameters were used for further simulations as the most
protective, i.e. conservative approach (Fig. 3).

Simulation of thiamethoxam doses in the body at different
feeding scenarios

According to our expectations, the highest max D;,, were
reached when the LDsy, was given as a bolus dose
(1193 mg kg~' bw). In the two feeding scenarios with
continuous feeding, maximum doses of thiamethoxam in
the body were: 1102 and 939 mg kg~ bw, for scenario 2
and 3, respectively. The lowest max D,,, was obtained in
the scenario when LDsq was eaten in two one-hour feeding
bouts separated by a four-hour non-feeding break
(777 mg kg~' bw) (Fig. 4).

Discussion

We developed a simple toxicokinetic model to predict
internal doses of thiamethoxam in rats after oral exposure.
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Fig. 1 Concentration of thiamethoxam in the blood of three male rats
(left-hand column) and three female rats (right-hand column)
administered 100 mg kg™ bw [Oxadiazin-4-'*C]. Lines are the

concentrations in other tissues, the blood could be used as a
single compartment. This compartment represents all tissues
(i.e. the whole body burden excluding the digestive tract) in
which an internal concentration reaches equilibrium with the
concentration in blood within a few hours. However if target
tissue/organ(s) concentrations are poorly correlated with
blood concentration, such simple models may produce
unreliable predictions, as toxicological responses may be a
function of residue levels in specific tissues. Moreover, if
metabolites significantly influence the overall toxicity of a
chemical, the more elaborate analysis of TK may be
required.

One important limitation from this type of ADME study
is that all measurements were based on total '*C radioac-
tivity as a surrogate for the test substance, meaning that the
fractions of parental thiamethoxam and its metabolites
were not characterized separately. Therefore both the par-
ent chemical and its metabolites contributed to the reported
tissue concentrations. In general, without quantification of

the parent compound, the data are unsatisfactorily
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compartmental toxicokinetic model fits to the experimental blood
data. Note different scales on y axis; NS non-significant

nonspecific (Barton et al. 2006), as such data may not be
representative of the kinetics of the relevant metabolite at
the target site (Rubach et al. 2011). Fischer (2005) recently
suggested that for modern pesticides, that generally do not
bioaccumulate, a TK model capable of realistically mod-
elling metabolic processes and the site of toxic action needs
to be developed. However, after oral dosing of rats, up to
90 % of the applied thiamethoxam at 100 mg kg~' bw is
readily eliminated as parent compound in the urine (Mai-
enfisch et al. 2001). It may be assumed with rapid excretion
that exposure to biotransformation enzymes is limited.
Therefore, the metabolizing tissue (liver) was not charac-
terized as a separate compartment in our model. For highly
metabolised pesticides, the more elaborate analysis should
be linked to the metabolic organisation of the organism and
more complex models (e.g. PBPK) can be useful (Krishnan
and Peyret 2009). Moreover, different species may respond
differently: after systemic administration of thiamethoxam
(20 mg kg~") in mice at least 44 % of this pesticide was
metabolised (Ford and Casida 2006).
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Fig. 2 Concentration of thiamethoxam in the blood of three male rats
administered 0.5 mg kg~' bw [Thiazol-2-'*C] (left-hand column) or
0.5 mg kg~ bw [Oxadiazin-4-'*C] (right-hand column). Lines are

Thiamethoxam concentration in the body
[mg kg! bw]

the compartmental toxicokinetic model fits to the experimental blood
data. Note different scales on y axis
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Fig. 3 Comparison of body burden levels of thiamethoxam predicted
by the model with measured data for rats exposed to 0.5 mg kg_l bw
(left-hand graph) and 100 mg kg~' bw (right-hand graph) showed

Under field conditions, animals are not likely to eat all
their dietary requirements in one bite (i.e. as a bolus dose)
but rather via ingestion with a slower feeding rate over
much longer periods. Because we showed that higher

0 200 400 600 800 1000 1200 1400
Time [min]

for two extreme combination of k, and k,: k, = 2.2 and k, = 0.25
(solid line) and k, = 1.3 and k, = 0.4 (dotted line)

maximum internal doses were reached when LDsy dose
was given as an oral gavage bolus (standard dosage in LDs,
test on mammals, e.g. OECD 2001), it can be expected that
the use of gavage dosing results in high systemic levels that

@ Springer
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Fig. 4 Body burden (i.e., body weight-normalized internal dose)
levels of thiamethoxam predicted by the model for rats exposed to
LDsy according to different feeding scenarios (see Materials and
methods for scenarios description); vertical dotted line indicates
maximum internal dose of thiamethoxam in the body after bolus
gavage exposure to LDsg; all simulations run for k, = 2.2 and
k. = 0.25

induce more adverse effects than if an equivalent dose is
given via the diet at slower feeding rates. Here, we propose
the use of maximum internal dose (max D;,;) to estimate
risk, as for compounds that are excreted rapidly (such as
thiamethoxam) acute effects are usually associated with
peaks (Barton et al. 2006). However, for other modes of
action, the cumulative exposure (AUC) may be a more
valid endpoint for comparison between different exposure
scenarios. TK is only the first part of risk estimation, as
toxicodynamics also affects risk. Recovery is not neces-
sarily immediate; effects can be additive over time at a
constant internal dose and might not disappear once the
toxicant leaves the system. Therefore, the body burden
model should be interpreted with care for different pesti-
cides especially with very different physico-chemical
properties in relation to what is known about a toxicant’s
mode of action in the species of interest.

When laboratory data are extrapolated to field situations,
it is important to know what rates of feeding occur in the
field and how they vary. This can be difficult to measure in
practice. Animals in the wild are often under pressure to
feed fast in order to compete effectively for food, and/or to
minimise the time of being exposed to predators. There-
fore, the feeding rates achieved in laboratory study (or
assumed in the model) have to correspond to maximum
rates occurring in the field (EFSA 2009). Methods already
exist for estimating food intake rate based on allometric
equations for daily energy expenditure of wild eurythermal
animals combined with energy and moisture contents and
assimilation efficiencies for different foods (Crocker 2005).
If information about feeding habit of studied species is not
available, hypothetical scenarios may be tested for realistic
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feeding patterns. The constant uptake of toxicant per unit
time was used in all presented scenarios, but testing sce-
narios with varying ingestion rates would also be possible.
Moreover, probabilistic approach allowing to incorporate
the full range of values for ingestion rates, and to quantify
impacts of variability and uncertainty on risk seems to be
good option for real field situations. Similarly, the possible
way to include high variability in kinetics parameters
between individuals can be by replacing worst-case com-
bination of single fixed values for k, and k. with their
distributions and cover the full range of outputs.

One of the major challenges for birds and mammals is
long term risk assessment, where endpoints estimated from
long-term laboratory studies carried out under constant
exposure have to match field exposures, where both con-
centrations in the food and the amount of the food eaten
may vary substantially both temporally and spatially.

TK provides additional information if there is strong
variation of exposure and/or if internal exposure changes
slower than external (rates of TK processes are limiting).
Therefore TK is especially relevant for birds and mammals
usually exposed by uptake of contaminated food only
during feeding times, so usually in the range of a few
hours. If long-term exposure needs to be tested, growth of
an animal may also need to be taken into account together
with the chemical’s half-life; and the amount of pesticide
incorporated naturally into food may differ from what is
observed in gavage dosing (Smith et al. 2009). Moreover,
some animals have developed mechanisms that enable
them to avoid contaminated food. Although it is hard to
determine precise mechanisms for any given pesticide,
avoidance is commonly seen in dietary studies and has the
potential to reduce exposure, and hence risk, in the field as
it prevents body burdens from reaching harmful thresholds
(EFSA 2009; Thompson 2007).

Conclusion

Simple one-compartment model with first-order kinetics
can be used to predict the internal dose of thiamethoxam in
small mammals for the purposes of risk assessments. Our
results indicate that rats exposed to thiamethoxam via diet
will have lower maximum body burden than those exposed
via oral gavage, and the slower they eat the lower the
systemic exposure. The model may be re-parameterized for
further mammal and avian risk assessment of different
chemicals and used to describe TK for other chemicals and
for a range of feeding rates that cover animals’ feeding
behaviour in the field. We have outlined some critical
assumptions that need to be checked before developing
such models for other chemicals, and made suggestions to
how the assumptions may be checked. We conclude that
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toxicokinetic models are promising for wildlife risk
assessments, but good understanding of feeding patterns is
needed for accurate estimation of chronic risk.
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