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Abstract. We discuss the modelling of dielectric responses of amorphous biological samples. 

Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, 

IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many 

occasions, the samples may display quenched absorption bands. A systems identification 

framework may be developed to provide parsimonious representations of such responses. To 

achieve this, it is appropriate to augment the standard models found in the identification 

literature to incorporate fractional order dynamics. Extensions of models using the forward 

shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart 

models are highlighted. We also discuss the need to extend the theory of electromagnetically 

excited networks which can account for fractional order behaviour in the non-linear regime by 

incorporating nonlinear elements to account for the observed non-linearities. The proposed 

approach leads to the development of a range of new chemometrics tools for biomedical data 

analysis and classification. 

1. Introduction 

Many broadband spectroscopic investigations of biomedical interest are performed using femtosecond 

transient pulse systems, as well as using continuous wave and Fourier domain mode-locked lasers. 

These spectrometers ensure a persistent excitation of all the modes of the sample across each spectral 

bin. In these experiments, one often observes Jonscher-like responses that display a fractional order 

behavior as a function of excitation frequency [1-8]. Furthermore, Havriliak-Negami or Fröhlich 

mixture [9, 10] type responses are also more faithfully described using fractional order calculus [11, 

12]. The use of parametric models to the dielectric spectra of biological tissues has been often 

discussed in the medical physics community. For example permittivity and conductivity measurements 

of blood, bone, kidney, liver, spleen, tendon, muscle, skin, fat and brain (Grey and White matter) as 

well as heart muscle have been characterized and Cole-Cole models have been fitted to those datasets 

over a large range of frequencies (10 Hz to 100 GHz) by separating the datasets into four different 

regions and fitting a model for each region [13].   

 This work provides an overview of modeling approaches that are of relevance to the signal 

processing of this type of broadband spectra. System identification techniques may be used as a 

chemometric tool to infer the composition of the sample and observe subtle differences in composition 
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between samples on the basis of studying the input and output waveforms from the associated 

experiments. Modeling techniques enable very parsimonious expressions of the dynamics of the 

excited samples. On the basis of the generated models, guidelines for optimal excitation using tailored 

chirped or PRBS sequences can be subsequently developed ensuring optimal signal-to-noise ratio in 

the experiments. Optimal excitation can be conveniently implemented experimentally using well-

established pulse shaping techniques. 

 The work also highlights the utility of using random RLC networks to model the dynamics of 

multiple excitation/de-excitation processes. These networks can emulate complex diffusive charge 

transport processes and provide alternatives to existing percolation and spectral density approaches, as 

well as Archie’s law and Kohlrausch-Williams-Watts models. As a consequence, they can also form a 

basis to extract chemometric information for classification tasks. 

2. Fractional order calculus and system identification algorithms for the study of the interaction 

of excitatory waves with biological tissue  

In the following sections we discuss generic methodologies for studying the interaction of excitatory 

waves with biological tissue. The approach considers an emerging area in applied mathematics, that of 

fractional order calculus and discusses its application within a wider signal processing framework 

applicable within a biomedical context. We also propose to use 3-dimensional networks containing a 

different composition of resistive, capacitive and inductive elements to model the dynamic response of 

biological tissue to excitatory waves. This approach is justified on the basis that the associated 

dynamics of such networks are of fractional order.  

2.1. Fractional order models using the forward shift operator 

In linear spectroscopies, the output of a deterministic linear system that describes a biological or 

chemical process at time instance k can be computed by filtering the excitation input u(k) through a 

linear filter G(q) which has the dynamic of the system under study. In this formulation, q denotes the 

forward shift operator q
-1

x(k)=x(k-1) which may be associated with its time domain counterpart z=e
 j

 

in the frequency domain [14-16]. Fractional order linear system identification can be based on 

parametric methods which would need to describe the true process behavior exactly with a finite 

number of parameters based on fractional order differential or difference equation models, or non-

parametric methods where an infinite number of parameters would be needed to describe the process 

exactly. Normally, parametric methods will be most appropriate when a relatively low number of 

parameters need to be determined. Non-parametric methods, however, are generally more flexible, as 

less structure is imposed on the model in an a priori basis.  

Usually, the parameters described in parametric models can be extracted in the time, frequency or 

wavelet domains using least squares, nonlinear optimization or repeated least squares, whereas non-

parametric methods would require impulse or transient response analysis or correlation analysis in the 

time domain, or frequency response, Fourier and spectral analysis in the frequency domain; these 

techniques are also extendable in the wavelet domain. A general linear fractional order model based on 

the forward shift operator is shown below:  

 

Figure 1. Linear fractional order model in generic form. 

 

This generic structure forms the basis for all linear fractional order models that are based on the unit 

forward shift operator. The fractional order autoregressive with exogenous input (FO-ARX), 
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autoregressive moving average with exogenous input (FO-ARMAX), output error (FO-OE), Box-

Jenkins (FO-BJ), autoregressive-autoregressive with exogenous input (FO-ARARX) and finite 

impulse response (FO-FIR) models are special cases of the above structure. The identification of the 

above models is a direct extension from integral order calculus but it also requires an additional step 

for the estimation of the associated exponents. 

2.2. State space fractional order models 

The dynamics of an unknown medium may also be modeled using an input-output state space 

representation where a subspace multiple input-multiple output (MIMO) model may be fitted [16-20]. 

The fractional state space representation for the system is given from:  
 

( ) ( ) ( )aD t A t B t x x u      (1a) 

( ) ( ) ( )t C t D t y x u      (1b) 

where nx is the state vector, mu  is the input vector, py  is the output vector and n nA  , 

n mB  , p nC   and p mD   are the state, input, output and feed-through system constant 

matrices to be determined. As discussed in [21], such fractional order system is stable if 0 2   and 

  2arg /k   and  arg k      where k  corresponds to the k
th
 eigenvalue of A . For time-

domain simulations of a system, a recursive distribution of poles and zeros is obtained to approximate 

the frequency behavior of as  over an interval ,A B    . Because the asymptotic behavior at the low 

and high limits of the above frequency interval can have a static error between the fractional order 

model and its approximation, it is common to minimize this using an integrator operating outside that 

interval. Given a large number of inputs and outputs related to the unknown dielectric system, the goal 

of the subspace algorithms is to determine the order of the system, , , ,A B C D  (to a similarity 

transformation). For simplicity, one may only consider the deterministic case where there is no noise 

in the measured inputs or process (estimated state) although the proposed approach is also valid to the 

stochastic case where an explicit augmented model in innovation form can be considered. In that case, 

an additional step is required to obtain an estimate of covariance matrices of the noise sequences. 

Simulations using the associated formulations are mentioned elsewhere [22]. 

2.3. Combining fractional order calculus models with non-linear system identification models  

Advances in instrumentation and measurement methods have also resulted in a new surge of interest to 

extend chemometrics algorithms to describe the non-linear phenomena observed in biological 

sciences. Such problems, arise in 2-photon microscopy, four-wave mixing studies, saturation 

absorption spectroscopies, Raman spectroscopies, fluorescence lifetime methods or other non-linear 

spectroscopies using high power laser sources e.g. synchrotrons, free electron lasers etc. Non-linear 

models need also to be assumed in femtosecond pulse pump-probe experiments where the pump pulse 

introduces a static non-linearity in the sample which is then observed by the probe pulse at various 

phase delays. Hammerstein and Wiener models (Figure 2) have been extensively used by the systems 

identification communities for such purposes. In previous works our group has used integral order 

calculus with polynomial fitting for the derivation of a static non-linearity [23]. Neural networks, 

however, are also appropriate to describe the non-linearity in the identification process. Since solute 

interactions can involve non-linear processes as well as forces acting at a distance, it is quite 

appropriate to extend such framework to account for processes displaying fractional order dynamics.   

Taking into consideration the generic framework shown above, it is appropriate to extend existing 

Hammerstein-Wiener algorithms to account for fractional order dynamics.  
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Figure 2. Pulse excited systems described by a linear dynamic model 

preceded and/or followed by static non-linearities. 

2.4. Simulations with randomly connected RLC networks  

In previous works [22, 24] we have discussed the possibility to simulate dynamic processes 

encountered in spectroscopy experiments using 2-dimensional and 3-dimensional random RLC 

networks. Our work reconfirmed results in the existing dielectrics literature [9, 25-28] and has paved 

the way for generating parsimonious representation of the excitation and de-excitation dynamics as 

well as place experimental results within a chemometrics context. For example, it is possible to 

distinguish between batches of samples prepared in powder form and compressed into pellets as is 

customary in the pharmaceutical industries by assuming each element in the composition is associated 

with a capacitive or resistive behavior. Such framework is also of particular relevance to the 

interpretation of results from laser-induced fluorescence lifetime experiments. By converting the state 

space responses of these networks into input/output transfer function formulations, it is possible to link 

the overall admittance observed for the system to few resistive and capacitive components [29]. 

Classification can then be conveniently performed using very parsimonious representations [30-32]. 

This work may also be extended to RLC networks [33] to account for resonant structures, as would be 

the case for molecular optics experiments where the electric field resonantly excites the studied 

molecules. Current work aims to further extend these simulators to Fröhlich mixture type responses as 

encountered when polarized structures such as membranes are probed, since the observed responses 

can be highly non-linear. This should be possible by incorporating in the existing networks 

memristive, memcapacitive and memductive elements.  

3. Discussion 

Although systematic studies of dielectric responses of tissue across the electromagnetic spectrum are 

regularly being performed using acoustic, nuclear (including functional) magnetic resonance, electron 

spin resonance, positron emission tomography as well as several other dielectric spectroscopic 

modalities, in the hope that malignant or diseased tissue can be identified and localized at early stages 

so that it can be isolated and targeted by therapeutic pharmaceutical modalities in a systematic or in a 

non-invasive manner through radiation therapies, there is a diverse range of tools currently available to 

perform parametric and non-parametric identification of such datasets. None of these, however, can 

fully capture the dynamics of the physical processes associated with the complex observed responses 

in most samples. This is due to the compositional complexity of the associated tissues. Fractional 

order modelling approaches can accommodate more complex responses in a manner that is not 

possible using standard integro-differential equation models. The associated fractional order 

expressions can capture the dynamics of an arbitrarily complex medium with a greater fidelity (a much 

smaller residual error in a least squares sense) so small differences in the model structure or 

parameters can be associated to small changes in the condition of the tissue. The proposed approach 

should be further explored in a systematic manner within a biomedical dataset classification context 

e.g. using support vector machine methodologies [34], taking advantage of the parsimonious fractional 

order expressions so that the generalization ability of the inference engines are not compromised. 
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