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CAPSULE (35 words):  32 

Human influences have likely already impacted the large-scale water cycle but 33 

natural variability and observational uncertainty are substantial.  It is essential to 34 

maintain and improve observational capabilities to better characterize changes. 35 

 36 

Abstract   37 

Understanding observed changes to the global water cycle is key to predicting future 38 

climate changes and their impacts. While many datasets document crucial variables 39 

such as precipitation, ocean salinity, runoff, and humidity, most are uncertain for 40 

determining long-term changes. In situ networks provide long time-series over land but 41 

are sparse in many regions, particularly the tropics.  Satellite and reanalysis datasets 42 

provide global coverage, but their long-term stability is lacking. However, comparisons 43 

of changes among related variables can give insights into the robustness of observed 44 

changes. For example, ocean salinity, interpreted with an understanding of ocean 45 

processes, can help cross-validate precipitation. Observational evidence for human 46 

influences on the water cycle is emerging, but uncertainties resulting from internal 47 

variability and observational errors are too large to determine whether the observed 48 

and simulated changes are consistent. Improvements to the in situ and satellite 49 

observing networks that monitor the changing water cycle are required, yet continued 50 

data coverage is threatened by funding reductions. Uncertainty both in the role of 51 

anthropogenic aerosols, and due to large climate variability presently limits confidence 52 

in attribution of observed changes. 53 
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1.  Introduction  54 

Climate change, alongside increased demand for water (World Water Development 55 

Report 2003; WHO/UNICEF 2011), is projected to increase water scarcity in many 56 

regions over the next few decades (e.g., Arnell et al. 2013; Kundzewicz et al. 2007). 57 

Extremes linked to the water cycle, such as droughts, heavy rainfall and floods, already 58 

cause substantial damage (e.g. Lazo et al. 2011; Peterson et al., 2012; 2013) and such 59 

events are expected to increase in severity and frequency (Dai 2011a, 2013a; IPCC 60 

2012, Collins et al. 2013a). 61 

Better management of water resources and adaptation to expected changes require 62 

reliable predictions of the water cycle.  Such predictions must be grounded in the 63 

changes already observed. This requires quantification of long-term large-scale changes 64 

in key water cycle variables, and estimation of the contribution from natural climate 65 

variability and external forcings, including through studies that are referred to as 66 

detection and attribution (see Stott et al., 2010; Hegerl and Zwiers 2011).  Successful 67 

examples of detection and attribution are reported in Bindoff et al. (2013). 68 

We discuss how well the available observing capability can capture expected changes in 69 

the global water cycle, including the increasing water content of the atmosphere, 70 

strengthening of climatological precipitation minus evaporation (P-E) patterns, the 71 

pronounced spatial structure and sharp gradients in precipitation change, and increases 72 

of extreme precipitation. We also discuss the challenges inherent in combining an 73 

incomplete observational record with imperfect climate models, to detect 74 

anthropogenic changes in the water cycle.    75 
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Drawing on discussions from a workshop held at the University of Reading, U.K. in June 76 

2012, we focus on long-term large-scale changes in a few key variables that are both 77 

potentially related to climate change, and essential for diagnosing changes in the global 78 

water cycle. These include humidity, precipitation, P-E, and salinity. We also give 79 

recommendations that will lead towards more robust predictions and identification of 80 

the human influence on recent observed changes. It is beyond the scope of this paper to 81 

provide a full review of water cycle changes, or to discuss regional changes (see Parker 82 

2013; Collins et al. 2013b), changes in the biosphere and cryosphere, river discharge 83 

(see Dai et al. 2009), or drought (see Dai 2011a, 2011b, 2013; Trenberth et al. 2014).  84 

We briefly describe the expected physical changes, before discussing the challenges of 85 

observing such changes with present observational capabilities, globally, as well as over 86 

ocean and land separately. We also discuss how physically consistent a picture these 87 

observations draw, and conclude with recommendations to ensure continued and 88 

improved ability to document the changing water cycle.  The supplement provides more 89 

information on available observational data and quality control procedures. 90 

 91 

2.  Expected changes in the global water cycle  92 

Changes in the hydrological cycle are an expected consequence of anthropogenic 93 

climate change.  The Clausius-Clapeyron relationship suggests a strong quasi-94 

exponential increase in water vapor concentrations with warming at about 6-7%/K 95 

near the surface.  This is consistent with observations of change over the ocean (e.g., 96 

Trenberth et al. 2005; Dai 2006a; Chung et al., 2014) and land (Dai 2006b; Willett et al. 97 

2010), and with simulations of future changes (e.g., Allen and Ingram 2002) and 98 
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assumes that on large scales the relative humidity changes little, as generally expected 99 

(see Sherwood et al. 2010; Allen and Ingram, 2002) and approximately seen in models 100 

(Richter and Xie 2008; Collins et al. 2013a). Locally, however, relative humidity changes 101 

may arise where large-scale circulation patterns alter, or when moisture sources are 102 

limited over land (e.g., Dai 2006; Vicente-Serrano et al. 2013).  103 

Changes in global mean precipitation are limited by the energy budget, both through 104 

evaporation and the ability of the atmosphere to radiate away the latent heat released 105 

when precipitation forms (e.g., Trenberth 2011; O’Gorman et al. 2012). This largely 106 

explains why global mean precipitation increases by only 2-3% per K of warming in 107 

climate models (the ‘hydrological sensitivity’; see Figure 1). Broadly, the radiative effect 108 

of greenhouse gas forcing reduces the global precipitation increase driven by warming 109 

itself (e.g., Bony et al., 2013), while the direct radiative effect of aerosols that scatter 110 

rather than absorb sunlight does not influence the rate at which precipitation increases 111 

with warming. Figure 1 illustrates this for climate models run under the Coupled Model 112 

Intercomparison Project 5 (CMIP5) protocol (Taylor et al. 2012) for the 20th century, 113 

and for 4 standard scenarios for the 21st century. These range from RCP8.5, a high-114 

emissions scenario, to RCP2.6, a low-emissions scenario (see Collins et al. 2013a).  With 115 

stronger greenhouse gas forcing, global-mean temperature and precipitation both 116 

increase more, but the hydrological sensitivity becomes slightly smaller (see also Wu et 117 

al. 2010; Johns et al. 2011). Pendergrass and Hartmann (2014) show that the spread in 118 

CMIP5 model response of precipitation to increases in carbon dioxide is related to 119 

differences in atmospheric radiative cooling, which are in turn related to changes in 120 

temperature profiles and water vapor amounts. Forced changes in global-mean 121 
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precipitation are expected to be relatively small at present (Fig. 1b) and are therefore 122 

hard to distinguish from natural variability.  123 

Spatial patterns are important both for identifying fingerprints of forced changes in 124 

precipitation and for impacts. Since global-mean evaporation and precipitation are 125 

expected to increase more slowly with temperature than implied by water vapor 126 

content, this implies slightly increased water vapor residence times and reduced 127 

atmospheric mass convergence (Vecchi et al. 2006; Held and Soden 2006). However, 128 

increasing water vapor more than offsets the weakened atmospheric wind convergence 129 

in the tropics (Vecchi et al. 2006; Held and Soden 2006; Allan 2012; Kitoh et al. 2013).  130 

Thus, where E exceeds P in the mean (such as over the sub-tropical oceans), it would do 131 

so even more, while areas where P exceeds E (such as the Intertropical Convergence 132 

Zone, ITCZ, and high latitudes) would receive yet more precipitation excess (Manabe 133 

and Wetherald 1980; Held and Soden 2006; Seager and Naik 2012; Bengtsson et al. 134 

2011, Bintanja and Selton, 2014). Simulations of future climate changes broadly confirm 135 

this, particularly when zonally averaged (see Fig. 2, bottom panel) and show rainfall 136 

generally increasing at latitudes and seasons that currently have high rainfall and less in 137 

dry regions (Collins et al. 2013a).   This ‘wet get wetter, dry get drier’ paradigm involves 138 

a range of atmospheric processes, including an increased vertical gradient of 139 

atmospheric water vapor, which leads to intensified convective events in the deep 140 

tropics (see Chou et al. 2009).  141 

However, simple P-E enhancement does not necessarily apply to dry land, where 142 

moisture is limited (Greve et al. 2014). It also does not hold true at regional scales, 143 

where atmospheric circulation changes may displace the geographical positions of 144 
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"wet" and "dry" regions (Xie et al., 2010; Chadwick et al., 2013; Allan 2014). GCMs 145 

generally simulate an expansion of the Hadley Cells as the globe warms, with associated 146 

poleward migration of subtropical aridity and storm tracks, but the size varies, and 147 

there is limited agreement on the mechanisms (Yin 2005; Lu et al. 2007; Seidel et al. 148 

2008; Scheff and Frierson 2012a, 2012b).  149 

Anthropogenic aerosol effects counteract some of the anticipated greenhouse-gas driven 150 

warming, and hence the associated increase in precipitation (Liepert et al., 2004; Wu et 151 

al., 2013). Aerosols reduce the available energy for evaporation, and absorbing aerosols 152 

such as black carbon locally heat the atmosphere, effectively short-circuiting the 153 

hydrological cycle. Pendergrass and Hartmann (2012) show how black carbon forcing 154 

influences the inter-model spread in global-mean precipitation change in CMIP3 155 

models. The aerosol indirect effect may account for almost all aerosol cooling in models 156 

(Zelinka et al. 2014), and so be key to the aerosol-driven decrease in precipitation 157 

(Liepert et al., 2004; Levy et al 2013), although this is model-dependent (e.g., Shindell et 158 

al., 2012). The radiative effect of anthropogenic aerosols is also expected to affect the 159 

spatial pattern of precipitation and evaporation changes. As surface emissions of 160 

aerosol are spatially heterogeneous, and atmospheric residence times are relatively 161 

short, the direct radiative impact of aerosol is geographically variable, with the largest 162 

concentrations in the Northern Hemisphere (NH). The geographical heterogeneity of 163 

aerosol distribution is expected to affect the interhemispheric temperature gradient, 164 

and hence the atmospheric circulation – which should shift the ITCZ (e.g., Rotstayn et al. 165 

2000; Ming and Ramaswamy 2011; Hwang et al. 2013) and change the width of the 166 

Hadley cell (Allen et al. 2012).  Models’ representation of aerosols, and their 167 

interactions with clouds in particular, affect their ability to reproduce trends in the 168 
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interhemispheric temperature gradient (e.g. Chang et al., 2011; Wilcox et al. 2013). 169 

Modeling studies also suggest that aerosols may have contributed to the drying of the 170 

Sahel from 1940 to 1980 (Rotstayn and Lohmann, 2002; Ackerley et al. 2011; Hwang et 171 

al. 2013; Dong et al. 2014), and influence the East Asian monsoon (e.g. Lau et al. 2006; 172 

Meehl et al. 2008; Bollasina et al. 2011; Guo et al. 2012), and mid-latitude precipitation 173 

(Leibensperger et al. 2012; Rotstayn et al. 2012). 174 

Stratospheric aerosols from explosive volcanic eruptions also influence the water cycle. 175 

Sharp reductions in observed global-mean land precipitation and stream flow were 176 

observed after the Mt Pinatubo eruption in 1991 (Trenberth and Dai 2007) and other 177 

20th century eruptions (Gu et al. 2007).  This effect is particularly evident in 178 

climatologically wet regions, where the observed reduction in precipitation following 179 

eruptions appears significantly larger than simulated (Iles et al. 2014). Volcanoes may 180 

also contribute to regional drought by influencing the inter-hemispheric energy budget 181 

(e.g., Haywood et al. 2013).  182 

 183 

3.  Observing and attributing changes in the global-scale water cycle 184 

Increases in atmospheric moisture are a key fingerprint of climate change. Surface 185 

specific humidity at global scales is reasonably well observed over land since 1973 186 

(HadISDH; Willett et al., 2013), and over ocean since 1971 (NOVSv2.0; Berry and Kent 187 

2009, 2011) using in situ data (for measurement techniques and more background as 188 

well as dataset information, see supplement); and results are quite robust across 189 

different data products (e.g., Dai 2006; Willett et al. 2007, 2013). Combined land and 190 

ocean surface specific humidity over the 1973-1999 period shows widespread 191 
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increases. This change has been attributed mainly to human influence (Willett et al. 192 

2007).  As expected, globally, changes in relative humidity between 1973 and 1999 are 193 

small or negative (Hartmann et al., 2013). Since 2000, however, a decrease has been 194 

observed over land,- likely related to the greater warming of land relative to the ocean 195 

(Joshi et. al., 2008; Simmons et al., 2010; Willett et al., 2014). 196 

In situ measurements of atmospheric humidity from radiosonde data provide time-197 

series of Total Column Water Vapor (TCWV) from the 1950s. Increasing water vapor is 198 

apparent although spatial sampling is limited and temporal inhomogeneities are 199 

problematic (Dai et. al. 2011; Zhao et al. 2012). Global-scale patterns of change became 200 

observable only when the satellite era began. Since the 1980s, near-global satellite-201 

based estimates of TCWV over the ice-free oceans and of clear-sky upper tropospheric 202 

relative humidity have allowed variability in tropospheric water vapor to be explored 203 

(e.g., Trenberth et al. 2005; Chung et al. 2014).  The satellite-based Special Sensor 204 

Microwave Imager (SSMI) TCWV data for 1988-2006 has enabled a robust 205 

anthropogenic fingerprint of increasing specific humidity to be detected over the oceans 206 

(Santer et al. 2007; 2009).   207 

Satellite-based sensors, in combination with in situ data for best results, provide the 208 

only practical means for monitoring precipitation over land and ocean combined (e.g., 209 

Fig 1). Satellite precipitation passive retrievals are restricted to the thermal infrared 210 

(IR) and microwave (MW) spectral bands.  IR-based estimates are available from 211 

geostationary satellites at high frequency, but have modest skill at instantaneous 212 

rainfall intensity (e.g., Kidd and Huffman, 2011). Passive MW data, available since mid-213 

1987, have made precipitation retrievals more reliable, and are particularly successful 214 
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over oceans. Retrievals over land are more approximate, since coasts and complex 215 

terrain increase uncertainty, and the accuracy of current algorithms deteriorates 216 

polewards of 50°. The latter is because these algorithms are tuned to lower-latitude 217 

conditions and because they cannot identify precipitation over snowy/icy surfaces.  218 

Combined-satellite algorithms have been developed to merge individual estimates, 219 

either as relatively coarse-resolution, long-period climate data records (the Global 220 

Precipitation Climatology Project, GPCP, monthly dataset on a 2.5°x2.5° 221 

latitude/longitude grid begins in 1979; Adler et al. 2003), or, alternatively, as high-222 

resolution precipitation products that  start with the launch of the Tropical Rainfall 223 

Measuring Mission (TRMM) in late 1997 and will be continued with the successful 224 

launch of the Global Precipitation Mission (GPM) in early 2014.  A recently released 225 

high-resolution dataset covers a somewhat longer period (Funk et al, 2014). Some 226 

products use rain-gauge data, where available, as input and to calibrate satellite-based 227 

rainfall estimates (Huffman et al. 2007). Therefore, satellite-derived products are not all 228 

independent of in situ data, and trends based on the satellite record may be affected by 229 

inhomogeneities in both the satellite and the surface data used (Maidment et al, 2014). 230 

The satellite record has been very useful for understanding precipitation changes. A 231 

study sampling blended satellite observations of the wet and dry regimes as they shift 232 

spatially from year to year indicates enhanced seasonality (Chou et al. 2013), while Liu 233 

and Allan (2013) found tropical ocean precipitation increased by 1.7%/decade for the 234 

wettest 30% of the tropics in GPCP data, with declines over the remaining, drier, regions 235 

of -3.4%/decade for 1988-2008. Polson et al. (2013b) detected the fingerprint of a 236 

strengthening contrast of wet and dry regions in the GPCP satellite record since 1988, 237 
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and attributed this change largely to greenhouse gas increases.  Marvel and Bonfils 238 

(2013) arrive at a similar conclusion, explicitly accounting for circulation changes and 239 

using the full record. Some of the changes detected in observations were significantly 240 

larger than modelled, for example, in wet regions over ocean (Polson et al. 2013b; see 241 

also Chou et al. 2013; Liu and Allan 2013).  242 

Atmospheric reanalyses provide a global 3-dimensional and multi-decadal 243 

representation of changes in atmospheric circulation, fluxes and water vapor by 244 

assimilating observations (satellite, in situ, radiosondes, etc) into numerical weather 245 

prediction models.  Notably, global quasi-observed P-E estimates are available only 246 

from reanalyses.  Reanalyses, however, are affected by biases in the models and by long-247 

term inhomogeneity of the observations, particularly, changing input data streams 248 

(Trenberth et al. 2005, 2011; Dee et al. 2011; Allan et al. 2014). These factors lead to 249 

inconsistencies between reanalyses and substantial uncertainties in their long-term 250 

trends; uncertainties that can be explored by using water budget closure constraints 251 

(e.g., Trenberth and Fasullo 2013a, b). The issues of long-term homogeneity will be 252 

improved in future developments (e.g. ERA-CLIM, http://www.era-clim.eu). 253 

In conclusion, the satellite record is essential for monitoring the changing water cycle 254 

on a near-global scale, while future climate quality reanalyses hold considerable 255 

promise. Uncertainty estimates on long-term trends are difficult to provide (see 256 

supplement) but would be very useful.  257 

 258 

4.  Interpreting changes over ocean 259 
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Changes in P-E and precipitation by climate models are particularly consistent over the 260 

oceans (Fig. 1b; Meehl et al. 2007; Bony et al. 2013).  In terms of observations, in 261 

addition to the satellite record, limited in situ records are available, such as evaporation 262 

analyses (although fraught with discontinuities and global lack of closure) (Yu and 263 

Weller 2007; Yu et al. 2008) and precipitation from island stations and buoys (e.g., CRU, 264 

precipitation data as used in Josey and Marsh 2005). Overall, however, the in situ 265 

observations lack the spatial and temporal coverage needed to measure global changes 266 

(see Xie and Arkin 1998 for precipitation), and satellite and reanalysis data are 267 

consequently indispensable. 268 

Both evaporation and precipitation affect local sea surface salinity. Thus, patterns and 269 

changes in the net freshwater flux, P-E, contribute to its temporal variations, and long-270 

term changes to ocean salinity provide an important independent measurement from 271 

which the water cycle can be monitored.  It should be noted, however, that in-situ ocean 272 

salinity is strongly influenced by changes to the ocean’ circulation (which is influenced 273 

by ocean warming and surface wind changes), and thus that care must be taken when 274 

using in-situ salinity to infer P-E (Durack and Wijffels 2010; Skliris et al. 2014).  275 

Ocean salinity observations have been made since the late 19th century by research 276 

cruises. Historical observational coverage is, however, sparse in the early part of the 277 

record, with near-global coverage achieved only recently (Supplementary Fig. 1), largely 278 

due to the Argo network of 3600 free-drifting floats initiated in 1999 (Freeland et al. 279 

2010). These floats measure the salinity and temperature of the upper 2000 m of the 280 

global ocean almost in real time. The Aquarius and Soil Moisture Ocean Salinity (SMOS) 281 
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satellite missions have provided global estimates of ocean surface salinity since late 282 

2009 and June 2011 respectively. 283 

The observed pattern of salinity change at high latitudes and in the subtropics is 284 

broadly consistent with the expected changes in P-E, although the observational 285 

uncertainty is also clear (Fig. 3). These observed changes, broadly speaking, reflect an 286 

amplification of the climatological pattern of salinity – with salty regions getting saltier, 287 

and fresh regions getting fresher (Durack et al. 2012; Skliris et al. 2014). Observed 288 

salinity changes in the Atlantic and Pacific Ocean since the mid-20th century have been 289 

found to be outside the range of internal climate variability in model simulations, and 290 

have been attributed to anthropogenic influences (e.g. Stott et al. 2008; Terray et al. 291 

2012; Pierce et al. 2012). The attribution of salinity changes to anthropogenic factors 292 

was important evidence for the Intergovernmental Panel on Climate Change (IPCC)’s 293 

conclusion that there has been ‘likely’ a human contribution to the changing water cycle 294 

(see Bindoff et al., 2013). However, further work is required to better understand the 295 

effects of unforced variability on ocean salinity and their influence on the patterns of 296 

reported long-term changes, 297 

It is essential that satellite-based, ship-based and Argo float measurements continue to 298 

monitor the ocean. Reliance on a single record type would hamper the identification of 299 

errors introduced by changes in coverage and measurement methods. 300 

 301 

5.  Interpreting changes over land 302 

Over land, in situ data provide a long-term record of changing humidity and 303 

precipitation. However, the lack of reliable homogeneous terrestrial evapo-304 
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transpiration data hampers studies of changes in the terrestrial water balance. Flux 305 

towers provide direct measurements of water, energy and carbon fluxes at a few points, 306 

but only for short periods (typically 5-15 years – e.g., Blyth et al. 2011). Pan evaporation 307 

can easily be diagnosed from general circulation climate models (GCMs; as “potential 308 

evaporation”) and effectively measures evaporative demand, which is very relevant to 309 

some crops and natural ecosystems.  Long time-series would therefore be valuable (e.g. 310 

Greve et al. 2014), but measurements are sparse, and as it is not part of the actual 311 

energy or moisture budget it cannot be deduced from other measurements.  Pan 312 

evaporation has decreased in many regions studied (related, at least partly, to wind 313 

stilling; McVicar et al. 2012), in contrast to actual evapotranspiration measured at 314 

Fluxnet sites, which increased until recently (Hartmann et al. 2013). Inferring 315 

evaporation from the atmospheric moisture budget in reanalyses (Trenberth et al. 316 

2011; Trenberth and Fasullo 2013b) is the most realistic option to analyse large-scale 317 

changes in P-E over land.  As was mentioned above, however, reanalyses are affected by 318 

model error and their trends by changing data streams, and thus reanalysis evaporation 319 

data should be treated with caution.  320 

The most widely used record of the changing water cycle over land is from long-term 321 

precipitation station data (e.g. Peterson and Vose 1997; Menne et al. 2012).  Several 322 

gridded products are available (see Supplementary Table 1; Harris et al. 2014; Becker et 323 

al. 2013; Zhang et al. 2007), of which this paper shows three that have been processed 324 

differently, some completely interpolating precipitation over land (GPCC, Becker et al., 325 

2013; CRU; Harris et al., 2014; with information on support available), or only providing 326 

values where long-term stations are available (Zhang et al., 2007). An additional dataset 327 

(VASCLIMO, Beck et al. 2005) uses a subset of GPCC stations that are considered long-328 



15 

term and homogeneous. Figure 4 shows the density of the station network used in the 329 

CRU dataset, supplementary Fig. 2 for GPCC. Generally, data availability increased until 330 

1990, but has dropped since, especially in the tropics. For the GPCC this dramatic drop 331 

occurs a decade later. Country-specific readiness to share data is the biggest constraint 332 

for data density in the most recent decade.  333 

The gridded precipitation datasets available vary also in their methods of quality 334 

control and homogenization (see Supplementary Material). This diversity leads to 335 

substantial differences in trends and discrepancies between datasets, and contributes to 336 

our uncertainty in how drought has changed (Trenberth et al. 2014).  337 

Figure 5 illustrates similarities and differences in precipitation change from these 338 

datasets for high latitudes, and Figure 2, upper panel, for zonal mean changes.  The 339 

zonal mean increase in northern high latitudes shown by most datasets (with the 340 

exception of the GPCC Full Data V6 dataset, which was not constructed with long-term 341 

homogeneity as a priority) agrees with expectation (see Fig. 2, lower panel), and is 342 

supported by Arctic regional studies (Rawlins et al. 2010). Min et al. (2008) detected the 343 

response to anthropogenic forcing in the observed moistening of northern high 344 

latitudes, using the Zhang et al. (2007) dataset. Figure 5, however, suggests substantial 345 

observational uncertainty, which may be partly due to coverage and data processing, 346 

and may contain a small contribution by changing liquid-to-solid ratio of precipitation 347 

(see discussion in supplement).  348 

A substantial fraction of the differences between zonal changes recorded in different 349 

datasets can be explained by differences in spatial coverage (Polson et al. 2013a).  The 350 

IPCC 5th Assessment report concluded that there is ‘medium’ confidence in precipitation 351 
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change averaged over land after 1951 (and lower confidence before 1951) due to data 352 

uncertainty (Hartmann et al. 2013). Simulated changes in land precipitation are also 353 

uncertain, as evident from Fig. 1 (right panel).  354 

The incomplete spatial coverage of precipitation changes in observations tends to 355 

increase noise and hence delay detection of global and large-scale changes (e.g., for 356 

precipitation changes, Balan Sarojini et al. 2012; Trenberth et al. 2014; note that in 357 

detection and attribution, only regions covered by observed data are analysed in both 358 

models and observations). Since station-based records are point measurements and 359 

precipitation tends to be highly variable spatially (e.g., Osborn, 1997), many stations are 360 

required to correctly reflect large-scale precipitation trends (e.g., Wan et al. 2013). In 361 

general, the variability in grid cells based on few stations is higher than if a larger 362 

number of stations are used, and changes may be recorded incompletely (see Zhang et 363 

al.,2007). 364 

Despite these difficulties, zonal-mean precipitation changes agree better with the 365 

expected response to forcing than expected by chance, and show detectable  changes for 366 

boreal winter and spring data (Polson et al. 2013a), as well as for annual data (see Fig. 2; 367 

Zhang et al. 2007; Polson et al. 2013a) for most datasets.  These findings contributed to 368 

the IPCC 5th assessment’s conclusion of ‘medium confidence’ that a human influence on 369 

global-scale land precipitation change is emerging (Bindoff et al. 2013). Wu et al. (2013) 370 

argue that the lack of an increase in Northern Hemispheric (NH) land precipitation over 371 

the last century is because aerosols induce a reduction in precipitation that counteracts 372 

the increase in precipitation expected from increases in greenhouse gases. 373 



17 

Due to data uncertainty, it is currently difficult to decide whether observed 374 

precipitation changes are larger than model simulated changes (Polson et al. 2013a).  375 

Averaging across mis-located precipitation features in models may reduce the 376 

magnitude of multi-model mean simulated precipitation change.  This bias can be 377 

reduced by expressing changes relative to climatological precipitation (Noake et al., 378 

2011; Liu and Allan, 2013; Polson et al. 2013b; Marvel and Bonfils, 2013), or by 379 

morphing model changes onto observed features (Levy et al. 2013a). However, in some 380 

cases, results still show observed changes that are large compared to model simulations 381 

(e.g., Polson et al. 2013a,b). 382 

In summary, the record over land is extensive in time, but has serious limitations in 383 

spatial coverage and homogeneity. The drop in availability of recent in situ precipitation 384 

data (Fig. 4; supplementary Fig. 2) is of real concern. Data are particularly sparse in the 385 

tropics and subtropics, where substantial and spatially variable changes are expected. 386 

In addition to improving gauge density, more data-rescue funding and improved data-387 

sharing practices and capabilities would help to address this problem. 388 

 389 

6.  Intensification of precipitation extremes 390 

Since storms are fuelled by moisture convergence, storm-related extremes are expected 391 

to increase in a moister atmosphere (Emanuel 1999; Trenberth et al. 2003). It is less 392 

clear how large this increase will be, as limited moisture availability over land and 393 

possible stabilization of atmospheric temperature profiles tend to reduce the 394 

empirically derived response in precipitation extremes below the Clausius-Clapeyron-395 

based increase in water vapor of 6-7%/K, while feedbacks of increased latent heat 396 
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release on storm intensity may amplify the response for sub-daily precipitation 397 

extremes (Lenderink and van Meijgaard 2008; Berg et al. 2013; Westra et al. 2014). 398 

Overall, under global warming, a substantial increase in the intensity of the stronger 399 

storms and precipitation events is expected. This increase is expected to be larger for 400 

more intense events (see Allen and Ingram 2002; Pall et al. 2011; Kharin et al. 2013; 401 

IPCC 2012), and is a robust fingerprint for the detection of climate change (Hegerl et al. 402 

2004). 403 

This larger increase in intense precipitation than annual total precipitation implies light 404 

or no rain must become more common, suggesting longer dry spells and increased risk 405 

of drought, exacerbated by increased potential evapotranspiration (Trenberth et al. 406 

2003). How this intensification of extremes of the water cycle will be expressed is 407 

uncertain, as climate models still struggle to properly depict the diurnal cycle, 408 

frequency, intensity, and type of precipitation (see Flato et al. 2013), a problem which 409 

may be improved in part with the use of higher resolutions (e.g. Kendon et al. 2012; 410 

Strachan et al. 2013; Demory et al. 2014; Arakawa at el. 2011). Accurate representation 411 

of local storm dynamics may be an essential requirement for predicting changes to 412 

convective extremes (Kendon et al. 2014). 413 

Worldwide in situ data for analysing changes in daily precipitation extremes have been 414 

collected by the CLIVAR Expert Team on Climate Change Detection and Indices (Donat 415 

et al. 2013). However, the record is far from complete in covering the global land 416 

masses, and is particularly sparse in key tropical regions. Increases in precipitation 417 

intensity have been identified in observations over many land regions (Fowler and 418 

Kilsby 2003; Groisman et al., 2005; Min et al. 2011; Zolina et al. 2010). Analysis of 419 
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observed annual maximum 1-day precipitation over land areas with sufficient data 420 

samples indicates an increase with global mean temperature of about 6-8%/K; Westra 421 

et al. 2013). Min et al. (2011) and Zhang et al. (2013) report detection of human 422 

influence on widespread intensification of extreme precipitation over NH land, although 423 

with substantial uncertainty in data and estimates of internal variability. Observed 424 

responses of daily precipitation extremes to interannual variability (e.g., Liu and Allan 425 

2012) potentially offer a constraint on climate change projections for future changes in 426 

extremes (O’Gorman 2012).  427 

Characterizing sub-daily precipitation variability is difficult on large scales, given the 428 

limitations of the satellite record (see above), and agreement is poorer on short 429 

timescales than for multi-day averages (Liu and Allan 2012). However, a number of 430 

regional studies show recent increasing sub-daily precipitation intensities in response 431 

to rising temperatures (e.g., Lenderink and van Meijgaard 2008; Utsumi et al. 2011; see 432 

Westra et al., 2014). In the future, radar data exchanged globally show promise, if 433 

remaining technical and administrative problems can be resolved (e.g., Winterrath et al. 434 

2012a, 2012b; Michelson et al. 2013; Berg et al. 2013).  435 

In short, it is essential to observe precipitation extremes to understand changing 436 

precipitation characteristics and quantify human-induced changes. However, 437 

uncertainties are substantial, and temporal and spatial scales reliably observable at 438 

present fall short of what is necessary for characterizing global changes. 439 

 440 

7.  The challenge of climate variability  441 
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Natural variability generated within the climate system can cause multi-decadal 442 

features in precipitation that are difficult to separate from the response to long-term 443 

forcing – especially in view of the relatively short observational record (e.g., Dai 2013).  444 

When determining if an observed change is significant relative to climate variability, a 445 

large sample of variability realizations from climate model simulations is generally 446 

used, since the observed record is short. However, discrepancies between simulated 447 

precipitation variability and that estimated from observations are substantial, 448 

particularly in the tropics (Zhang et al. 2007, see supplement) because of a combination 449 

of observational and model limitations. This introduces substantial uncertainty in 450 

detection and attribution results, even when model estimates of variance are doubled 451 

(as is often done; e.g., Zhang et al. 2007; Polson et al. 2013a). Long-term observed data 452 

obtained, for example, through data rescue are critical when evaluating simulations of 453 

multi-decadal variability (www.oldweather.org; www.met-acre.org, Allan et al. 2011).  454 

Figure 6 illustrates how natural modes can induce apparent trends in precipitation over 455 

large regions (after Dai 2013). The Inter-decadal Pacific Oscillation index (IPO; closely 456 

related to the Pacific Decadal Oscillation, Liu 2012), for example, corresponds to an 457 

index of Southwest U.S. precipitation in observations and model experiments forced by 458 

sea surface temperatures (e.g. Schubert et al. 2009). This suggests that both an increase 459 

in Southwest U.S. precipitation from the late 1940s to early 1980s, and a subsequent 460 

decrease are largely caused by internal variability. El Niño and the IPO also influence 461 

precipitation patterns globally (Gu and Adler 2012; Dai 2013), which can influence 462 

trends over short periods such as those from satellites (Polson et al. 2013b; Liu and 463 

Allan 2013). This strong climate variability makes it difficult to detect the expected 464 

http://www.oldweather.org/
http://www.met-acre.org/
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long-term regional precipitation response to greenhouse gas forcing using historical 465 

data (see also Deser et al. 2012).  466 

For understanding and attributing changes in the water cycle it is therefore important 467 

to account carefully for natural decadal climate variability, be it internally generated or 468 

volcanically forced. This is particularly true when using short records. Because un-469 

forced internal variability is realization-dependent, discrepancies between model-based 470 

and observed records of variability should be expected and need to be accounted for in 471 

comparing models with observations for climatology, variability and trends. 472 

 473 

8.  Conclusions and Recommendations 474 

There is strong evidence that changes are underway in aspects of the water cycle, which 475 

are consistent with theoretical expectations of the hydrological response to increased 476 

greenhouse gases and a warming planet. Many aspects of water cycle change, however, 477 

remain uncertain owing to small expected signals relative to the noise of natural 478 

variability, limitations of climate models, and short and inhomogeneous observational 479 

datasets.  480 

Uncertainty may be reduced by cross-validating changes between multiple datasets and 481 

across variables, by putting these comparisons in the context of the theoretical 482 

expectation of the response of the water cycle to global climate change, and by exploring 483 

closure constraints. The observations, for example, suggest increases in high latitude 484 

precipitation, global-scale atmospheric humidity, and precipitation extremes that are 485 

consistent with expected changes. Furthermore, satellite data show signals of 486 

precipitation increases over wet regions and decreases over dry regions, corroborated 487 
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by in situ data over land, and physically consistent with an amplification of salinity 488 

patterns over the global ocean.  The consistency in the evidence of changes of 489 

precipitation over land and from changes in ocean salinity is reflected in the IPCC’s 490 

conclusion that human activity has ‘likely’ influenced the global water cycle since 1960 491 

(Bindoff et al. 2013), even though confidence in individual lines of evidence, such as 492 

attribution of precipitation changes to causes, is lower.  493 

Observational uncertainty and a low signal-to-noise ratio pose serious difficulties when 494 

determining the magnitude of the human contribution to observed changes. Several 495 

studies report observed changes that are significantly larger than those simulated by 496 

climate models. However, these findings were generally not robust to data uncertainty. 497 

The uncertainty arises because the satellite record is short compared to decadal climate 498 

variability, and affected by calibration uncertainty; and because the available in situ 499 

record has many gaps, particularly in the tropics and subtropics, and is sparse on sub-500 

daily timescales. Thus while observations can place constraints on future temperature 501 

changes, this is not yet possible for future precipitation projections (see Collins et al. 502 

2013 and Bindoff et al. 2013). 503 

To improve the situation, we recommend: 504 

1) The satellite record is vital, particularly to capture the strong changes over ocean 505 

that are robustly predicted by models. Only the full constellation can capture the 506 

intermittent nature of precipitation and capture extremes. The new GPM mission 507 

has exciting prospects for better calibration of space-based observations. Improved 508 

sampling by the constellation should enable the intermittency of precipitation to be 509 

better handled. Planning for future missions, providing continuity and temporal 510 



23 

overlap of measurements is essential to be able to reliably determine long-term 511 

trends.  512 

2) In situ stations are vital both for cross-validating and calibrating satellite datasets 513 

and for long-term monitoring. However, the drop in available in situ data in recent 514 

decades, as illustrated for precipitation (Fig. 4), is alarming and needs to be 515 

addressed. Many observations are not made available for analysis, while some 516 

remain in paper form only and are not catalogued.  It is necessary to strengthen 517 

efforts to rescue, scan and digitize data. Also, impediments to data sharing need to 518 

be overcome, and data delivery needs to be more timely in order to monitor the 519 

changing water cycle in near-real time, as is done for temperature.  520 

3) There is need for better global coverage and higher time resolution data to capture 521 

changing precipitation extremes. Hourly datasets are needed to track and identify 522 

changes in short-term extremes, which are another important fingerprint of 523 

anthropogenic changes, and critical for flood management.  524 

4) Gridded products of in situ precipitation change show substantial differences (Figs. 2, 525 

5), related to numbers of stations used, their homogeneity, manner of analysis, 526 

quality control procedures and treatment of changing data coverage over time. This 527 

uncertainty needs to be better characterized and best practices developed.  528 

5) Observations in key regions are still sparse, particularly in the tropics, where the 529 

observing system is insufficient to record the anticipated changes in the water cycle. 530 

For the Asian monsoon, data sparsity is partly related to practical and 531 

administrative issues with data sharing. An improved international capacity to 532 

monitor all aspects of observed changes is important.   533 
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6) Ocean salinity observations provide an independent insight into the changing water 534 

cycle. Continued maintenance and improved coverage of the Argo Program, along 535 

with the development of satellite missions to follow Aquarius/SMOS for ocean 536 

salinity will strongly improve our understanding of global water cycle changes.  537 

7) Key diagnostics, such as P-E, are not directly observable on large scales. Therefore, 538 

reanalysis data are vital, and their homogeneity in time and reliability for study of 539 

long-term changes need to be improved. Climate quality reanalysis will be very 540 

useful and are strongly encouraged. Closure of the water cycle using multiple 541 

variables provides a physical constraint that should be exploited to help quantify 542 

uncertainties. 543 

8) Analyses of observed changes are more powerful if they make use of and diagnose 544 

physical mechanisms which are responsible for the atmospheric and oceanic change 545 

patterns. Studies need to investigate the robustness of results across data products, 546 

and evaluate the physical consistency of recorded changes across water cycle 547 

variables.  Process studies may be able to constrain and better understand the fast 548 

circulation response to CO2 forcing, which is a source of uncertainty.  549 

9) Uncertainty in the role of aerosols on precipitation is central when quantifying the 550 

human contribution to observed changes. Aerosols vary enormously in space and 551 

time and in composition. Covariability with water vapor and clouds remain issues. 552 

Interactions between aerosol and cloud microphysics need to be better understood 553 

and represented in models, and the role of aerosol on precipitation changes needs to 554 

be better understood. This requires scientists from aerosol and water cycle 555 

communities to work together. 556 
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10) Variability generated within the climate system, particularly regionally on 557 

interannual to multidecadal timescales, has a large effect on water cycle variables 558 

and delays detection and emergence of changes. There is substantial uncertainty in 559 

present understanding about the magnitude and structure of variability in the water 560 

cycle which, if addressed, will improve the reliability of detection and attribution 561 

studies, and help societies in managing the impacts of decadal variability and 562 

change.  563 

 564 
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Figure Captions 1072 

Figure 1 left panel: Projected global-mean precipitation change (mm/day) against 1073 

global-mean 2m air temperature change (K) from CMIP5 models, for four 1074 

representative concentration pathways (RCP) scenarios. Values are means over 1075 

successive decades between 2006 and 2095 and all ensemble members of each model. 1076 

Anomalies are relative to mean values over 1986-2005 in the CMIP5 historical runs. 1077 

Right panel: Precipitation sensitivity for future (RCP scenarios) and past (Historical and 1078 

Atmospheric Model Intercomparison Project, AMIP) change in precipitation amount [%] 1079 

per degree global-mean warming. Trends are calculated from the linear least squares fit 1080 

of annual global-mean precipitation change (%) against temperature (K) change 1081 

relative to the period 1988-2005 (without decadal smoothing). Crosses indicate 1082 

ensemble means for each CMIP5 model, circles indicate multi-model mean. 1083 

Precipitation sensitivity is also shown for historical periods; comparing GCMs with 1084 

GPCP, GPCC and CRU data (see text), using temperature changes from HadCRUT4 1085 

(Morice et al., 2012; note that land and ocean dP/dT values use global-mean 1086 

temperature). Whiskers indicate 95% confidence intervals for observed linear trends 1087 

(model trend confidence intervals are not shown, but are often large).  1088 

Figure 2: Observed and model simulated annual and zonal mean precipitation change 1089 

(%/decade) for: top, observations where they exist over land; bottom, GCMs, all 1090 

gridboxes. Top panel: Observed 1951-2005 changes (solid colored lines) from 4 1091 

datasets CRU TS3.0 updated, Harris et al. 2014; Zhang et al. 2007 updated; GPCC 1092 

VasClimO, Beck et al. 2005; and GPCC Full data V6, Becker et al. 2013). Range of CMIP5 1093 

model simulations (grey shading, masked to cover land only) and multi-model ensemble 1094 
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mean (black dashes, ‘MM’). Blue shading shows latitudes where all observed datasets 1095 

show positive trends and orange shading shows where all show negative trends. 1096 

Interpolated data in the CRU dataset are masked out. Bottom panel:  Trends based on 1097 

global coverage from climate models from the Historical simulations (grey dashed lines 1098 

are individual simulations, black dashed line multi-model mean; blue dashes multi-1099 

model mean from simulations forced by natural forcing only) compared to the 2006-1100 

2050 trend from the RCP4.5 multimodel simulations (green shading: 5-95% range, 1101 

green dashes: multimodel mean). Blue (orange) shading indicates where more than two 1102 

thirds of the historical simulations show positive (negative) trends. 1103 

Figure 3: Three observed estimates of long-term global and basin zonal-mean near-1104 

surface salinity changes, nominally for the 1950-2000 period. Positive values show 1105 

increased salinities and negative values freshening. Changes are expressed on the 1106 

Practical Salinity Scale (PSS-78) per 50-years. The data coverage, as used in Durack and 1107 

Wijffels (2010), is shown in Supplementary Figure 1. Reproduced from Durack et al. 1108 

(2013). 1109 

Figure 4: Number of in situ stations over time for the CRU TS 3.21 gridded precipitation 1110 

dataset (updated from Harris et al., 2014).  Evolution over decades of the latitudinal 1111 

density of stations per zonal band for the Americas (orange), Europe/Africa (green) and 1112 

Asia/Australasia (blue), stacked to indicate the zonal total.  Incomplete data series are 1113 

included as a fraction of available data.  The black line indicates the number of stations 1114 

per zonal band required to obtain an average zonal coverage of 1 station per (100km)2 1115 

of land at that latitude.  This figure shows the station numbers in absolute terms and in 1116 
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relation to the latitudinally-varying land area. Other datasets have similar differences in 1117 

coverage over time (see supplementary figure 2 for GPCC). 1118 

Figure 5:  High latitude (55-90N) annual mean precipitation trends [mm/decade] from 1119 

1951-2005 for three observational datasets: Zhang et al. (2007; updated; 5x5 degree 1120 

grid); GPCC Full data V6 (Becker et al., 2013), CRU TS3.0, updated (Harris et al., 2013; 1121 

grid points with CRU station data available for >95% of the time are stippled) compared 1122 

to the CMIP5 multimodel mean trend of Historical runs with all external forcings 1123 

(‘Multi-model Mean’). Note that both GPCC and CRU use spatial interpolation to varying 1124 

extents, while Zhang et al., 2007 average a subset of stations only, considered to be 1125 

homogeneous in the long-term within grid-boxes. 1126 

 1127 

Figure 6: Top: The 2nd EOF of global sea surface temperature (3-yr running mean) data 1128 

from 1920-2011 based on the HadISST data set. The red line is a smoothed index 1129 

representing the inter-decadal Pacific Oscillation (IPO). The bottom panel shows 1130 

smoothed precipitation anomalies averaged over the Southwest U.S. (black line) 1131 

compared with the IPO index, scaled for comparison. (Reproduced from Dai 2013b). 1132 
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 1134 

Figure 1 left panel: Projected global-mean precipitation change (mm/day) against 1135 

global-mean 2m air temperature change (K) from CMIP5 models, for four 1136 

representative concentration pathways (RCP) scenarios. Values are means over 1137 

successive decades between 2006 and 2095 and all ensemble members of each model. 1138 

Anomalies are relative to mean values over 1986-2005 in the CMIP5 historical runs. 1139 

Right panel: Precipitation sensitivity for future (RCP scenarios) and past (Historical 1140 

and Atmospheric Model Intercomparison, AMIP) change in precipitation amount [%] 1141 

per degree global-mean warming. Trends are calculated from the linear least squares fit 1142 

of annual global-mean precipitation change (%) against temperature (K) change 1143 

relative to the period 1988-2005 (without decadal smoothing). Crosses indicate 1144 

ensemble means for each CMIP5 model, circles indicate multi-model mean. 1145 

Precipitation sensitivity is also shown for historical periods; comparing GCMs with 1146 

GPCP, GPCC and CRU data (see text), using temperature changes from HadCRUT4 1147 

(Morice et al., 2012; note that land and ocean dP/dT values use global-mean 1148 

temperature). Whiskers indicate 95% confidence intervals for observed linear trends 1149 

(model trend confidence intervals are not shown, but are often large).  1150 
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 1152 

Figure 2: Observed and model simulated annual and zonal mean precipitation change 1153 

(%/decade) for: top, observations where they exist over land; bottom, GCMs, all 1154 

gridboxes. Top panel: Observed 1951-2005 changes (solid colored lines) from 4 1155 

datasets CRU TS3.0 updated, Harris et al. 2013; Zhang et al. 2007 updated; GPCC 1156 

VasClimO, Beck et al. 2005; and GPCC Full data V6, Becker et al. 2013). Range of CMIP5 1157 

model simulations (grey shading, masked to cover land only) and multi-model ensemble 1158 

mean (black dashes, ‘MM’). Blue shading shows latitudes where all observed datasets 1159 

show positive trends and orange shading shows where all show negative trends. 1160 

Interpolated data in the CRU dataset are masked out. Bottom panel:  Trends based on 1161 

global coverage from climate models from the Historical simulations (grey dashed lines 1162 

are individual simulations, black dashed line multi-model mean; blue dashes multi-1163 

model mean from simulations forced by natural forcing only) compared to the 2006-1164 

2050 trend from the RCP4.5 multimodel simulations (green shading: 5-95% range, 1165 

green dashes: multimodel mean). Blue (orange) shading indicates where more than two 1166 

thirds of the historical simulations show positive (negative) trends. 1167 
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1168 
Figure 3: Three observed estimates of long-term global and basin zonal-mean near-1169 

surface salinity changes, nominally for the 1950-2000 period. Positive values show 1170 

increased salinities and negative values freshening. Changes are expressed on the 1171 

Practical Salinity Scale (PSS-78) per 50-years. The data coverage, as used in Durack and 1172 

Wijffels (2010), is shown in Supplementary Figure 1. Reproduced from Durack et al. 1173 

(2013). 1174 
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 1176 

1177 
Figure 4: Number of in situ stations over time for the CRU TS 3.21 gridded precipitation 1178 

dataset (updated from Harris et al., 2013).  Evolution over decades of the latitudinal 1179 

density of stations per zonal band for the Americas (orange), Europe/Africa (green) and 1180 

Asia/Australasia (blue), stacked to indicate the zonal total.  Incomplete data series are 1181 

included as a fraction of available data.  The black line indicates the number of stations 1182 

per zonal band required to obtain an average zonal coverage of 1 station per (100km)2 1183 

of land at that latitude.  This figure shows the station numbers in absolute terms and in 1184 

relation to the latitudinally-varying land area. Other datasets have similar differences in 1185 

coverage over time (see supplementary figure 2 for GPCC). 1186 
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 1187 

Figure 5:  High latitude (55-90N) annual mean precipitation trends [mm/decade] from 1188 

1951-2005 for three observational datasets: Zhang et al. (2007; updated; 5x5 degree 1189 

grid); GPCC Full data V6 (Becker et al., 2013), CRU TS3.0, updated (Harris et al., 2013; 1190 

grid points with CRU station data available for >95% of the time are stippled) compared 1191 

to the CMIP5 multimodel mean trend of Historical runs with all external forcings 1192 

(‘Multi-model Mean’). Note that both GPCC and CRU use spatial interpolation to varying 1193 

extents, while Zhang et al., 2007 average a subset of stations only, considered to be 1194 

homogeneous in the long-term within grid-boxes. 1195 
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 1196 

Figure 6: Top: The 2nd EOF of global sea surface temperature (3-yr running mean) data 1197 

from 1920-2011 based on the HadISST data set. The red line is a smoothed index 1198 

representing the inter-decadal Pacific Oscillation (IPO). The bottom panel shows 1199 

smoothed precipitation anomalies averaged over the Southwest U.S. (black line) 1200 

compared with the IPO index, scaled for comparison. (Reproduced from Dai 2013b). 1201 
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