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It has been shown Q3that CyMe4-BTPhen-functionalized
silica-coated maghemite (g-Fe2O3) magnetic nanoparticles
(MNPs) are capable of quantitative separation of Am(III) from
Eu(III) from HNO3 solutions. These MNPs also show a small
but significant selectivity for Am(III) over Cm(III) with a
separation factor of around 2 in 4 M HNO3. The water
molecule in the cavity of the BTPhen may also play an
important part in the selectivity.
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Effective Q1 Q2separation of Am(III) and Eu(III) from HNO3

solutions using CyMe4-BTPhen-functionalized
silica-coated magnetic nanoparticles†

Ashfaq Afsar,a Laurence M. Harwood,*a Michael J. Hudson,a Petr Distlerb and
Jan Johnb

It has been shown that CyMe4-BTPhen-functionalized silica-coated

maghemite (c-Fe2O3) magnetic nanoparticles (MNPs) are capable of

quantitative separation of Am(III) from Eu(III) from HNO3 solutions.

These MNPs also show a small but significant selectivity for Am(III)

over Cm(III) with a separation factor of around 2 in 4 M HNO3. The

water molecule in the cavity of the BTPhen may also play an

important part in the selectivity.

A key step in closing the nuclear fuel cycle may involve the
partitioning and transmutation of irradiated nuclear fuel. In the
case of the minor actinides (Am and Cm) this requires their
selective separation from the chemically similar trivalent lantha-
nides.1 One approach to this has resulted in the development of a
combination of two partitioning processes to be applied to post
PUREX raffinate. This protocol is based on the co-separation of
trivalent actinides and lanthanides by a diamide-based ligand
(DIAMEX) process, followed by selective separation of trivalent
actinides in a SANEX (Selective ActiNide EXtraction) process.2 One
of the SANEX processes considered utilizes liquid–liquid extraction
using nitrogen bearing ligands such as the 2,6-bis(1,2,4-triazine-3-
yl)pyridines (BTPs),3–5 or 6,60-bis(1,2,4-triazin-3-yl)-2,2’-bipyridines
(BTBPs)4–8 (see Fig. 1) dissolved in an organic diluent.

In a recent development, the 2,20-bipyridine moiety was replaced
by a 1,10-phenanthroline moiety (BTPhens).9–13 This ligand has

specific differences from the BTBPs. CyMe4-BTPhen is more pre-
organized for complex formation; it has a dipole moment and so is
more surface active at the interface.12 Consequently CyMe4-BTPhen
shows faster rates of metal ion extraction and stripping together
with distribution ratios that are two orders of magnitude higher for
An(III) extraction in liquid–liquid extraction experiments than its
non-preorganized BTBP counterpart.12

However, selective extraction of minor actinides by a liquid–
liquid extraction process comes with certain disadvantages,
such as the requirement for substantial liquid storage and
containment and generation of significant amounts of second-
ary waste.14,15 Thus there is a requirement for new systems that
are capable of polishing the raffinates from the SANEX and
related processes as well as for dealing with low level activity of
liquid wastes.

Recently magnetic separation technology has attracted
attention in the area of spent nuclear fuel separation.14,16 It is
proposed that when magnetic nanoparticles (MNPs) are com-
bined with ligands such as CyMe4-BTPhen, these function-
alized MNPs could be used to extract the minor actinides and
the radioactive material could then be collected magnetically
in preference to centrifugation. Finally, the MNPs could be
recycled by stripping the radioactive elements from the con-
jugates, generating a very small amount of secondary waste.

Owing to the acidic nature of the post-PUREX aqueous
raffinate (typically 4 M HNO3), unmodified iron or iron oxide
based MNPs cannot be used in this medium. It was proposed to
solve this problem by using a silica coating in order to provide a
chemically unreactive surface to the MNPs whilst not affecting
the core.17,18 Furthermore, the free Si–OH surface groups can allow
effective covalent binding of organic functional groups.17,18 In the
work reported herein, we have investigated the separation of minor
actinides from lanthanides using CyMe4-BTPhen-functionalized
SiO2-coated MNPs.

Iodoalkyl-functionalized SiO2-coated MNP 3 was prepared
according to our previous work.17 Iron oxide (g-Fe2O3) MNPs
were freshly prepared19–21 and the protective silica layer was then
coated onto the surface of the MNPs by a sol–gel procedure.19–21
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Fig. 1 Structures of CyMe4-BTP, CyMe4-BTBP and CyMe4-BTPhen.
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Subsequently, the silica surface was modified with 3-iodo-
propyltrimethoxysilane (3-IPTMS) (Scheme 1).

The 5-BrCyMe4-BTPhen ligand 4 was synthesized by a pro-
tocol previously described11 with the modification that the final
step was performed using tetramethylcyclohexane-1,2-dione.
Replacement of the bromine with a 4-hydroxyphenol linking
group was successfully achieved by Suzuki coupling22 with
4-hydroxyphenylboronic acid to give 5 (Scheme 2). This
5-(4-hydroxyphenyl) functionalized CyMe4-BTPhen ligand 5
was then immobilized onto the iodoalkyl-functionalized SiO2-
coated MNP 3 by nucleophilic substitution (Scheme 3).

Each surface modification step was followed by FT-IR (ESI†),
demonstrating a clear distinction between iodoalkyl-functionalized
SiO2-coated MNP 3 and CyMe4-BTPhen-functionalized SiO2-coated
MNP 6. Absence of the C–I stretching at 688 cm�1 and presence
of bands at 1500–1600 cm�1 owing to CQC aromatic vibrations
are indicative of the covalent incorporation of CyMe4-BTPhen
onto the MNP.

Elemental analysis was also used to evaluate surface incor-
poration of 3-IPTMS in 3 and also the composition of the target
CyMe4-BTPhen-functionalized MNP 6. Percentages of C, H, N
and I in iodoalkyl-functionalized SiO2-coated MNP 3 and
CyMe4-BTPhen-functionalized SiO2-coated MNP 6 are shown
in Table 1. Immobilization of CyMe4-BTPhen onto the surface
of the SiO2-coated MNP was confirmed on the basis of the
presence of nitrogen in 6 but not in 3 (i.e. 3.43% for CyMe4-
BTPhen-functionalized SiO2-coated MNP 6 and 0.10% for
iodoalkyl-functionalized SiO2-coated MNP 3). Elemental analysis

also indicated that the surface modification of iodoalkyl-
functionalized SiO2-coated MNP 3 with 5-phenol-CyMe4-
BTPhen ligand 5 had resulted in a ca. 80% of the iodoalkyl
groups being successfully substituted.

The organic content on the MNPs was further investigated
using thermal gravimetric analysis (TGA) under nitrogen
(Fig. 2). Below 150 1C, the mass loss is quite small, probably
corresponding to removal of absorbed water. After that, there is
a more-or-less linear mass loss between ca. 250–700 1C corre-
sponding to decomposition of the organic components. From
this, it can be estimated that the amount of CyMe4-BTPhen
bound onto the MNP is about ca. 20% w/w (ESI†). Further mass
loss above ca. 800 1C can be attributed to the loss of carbon –
perhaps during the formation of iron carbide.23,24

The aqueous solutions for the solvent extraction experiments
were prepared by spiking nitric acid solutions (0.001–4 M) with
stock solutions of 241Am, 152Eu and 244Cm and then adding
600 mL of spiked aqueous solution to 18 mg of CyMe4-BTPhen-
functionalized MNP 6. The suspension was sonicated for 10 min
and shaken at 1800 rpm for 90 min. After centrifuging for
10 min, aliquots of the aqueous solutions (supernatant) were
separated and taken for measurements. The distribution ratios,
D, were calculated as the ratio between the radioactivity (a- and
g-emissions) of each isotope in the standard solution and the
supernatants Q4after removal of MNP 6. The separation factor is
SFAm/Eu = DAm/DEu or SFAm/Cm = DAm/DCm (Table 2).

Extractions were studied at nitric acid concentrations of
0.001 M, 0.1 M, 1 M and particularly 4 M. The distribution
ratios and separation factors for the extraction of Am(III) and
Eu(III) from nitric acid solutions at these concentrations are
shown in Fig. 3. High distribution ratios (D 4 700) were
obtained for both Am(III) and Eu(III) at 0.001 M HNO3 solution
with no significant selectivity (SFAm/Eu = 1.7 � 0.1) for Am(III)
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Scheme 1 Synthesis of iodoalkyl-functionalized SiO2-coated MNPs 3.17

Scheme 2 Synthesis of 5-phenol-CyMe4-BTPhen 5.

Scheme 3 Immobilisation of CyMe4-BTPhen on MNPs.

Table 1 Results of elemental analysis for iodoalkyl-functionalized SiO2-
coated MNP 3 and CyMe4-BTPhen-functionalized SiO2-coated MNP 6

Iodoalkyl-functionalized
SiO2-coated MNP 3

CyMe4-BTPhen-functionalized
SiO2-coated MNP 6

Experimental Theoretical Experimental Theoretical

C (%) 11.59 10.66 23.20 22.79
H (%) 2.50 1.79 3.48 2.14
N (%) 0.10 0 3.43 4.94
I (%) 38.92 37.54 8.28 0

Fig. 2 TGA curve of MNP 6.
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over Eu(III). At 0.1 M HNO3, the D value for Am(III) remained
high (DAm = 1857 � 153.5), but the D value for Eu(III) was
significantly lower (DEu = 101 � 2.3), resulting in SFAm/Eu =
18.4 � 1.6. Decreases in the D values for both Am(III) and Eu(III)
were observed (DAm = 623.1� 31.2, DEu = 9.6� 0.6) at 1 M HNO3

solution, but a higher separation factor (SFAm/Eu = 65.2 � 5)
resulted. Finally, at 4 M HNO3 a further decrease in D value for
Am(III) gave DAm = 55.4 � 1.5 but, in this case the D value
observed for Eu(III) of DEu = 0.03 � 0.4, meant that only Am(III)
was retained on the MNP 6. The resulting separation factor
(SFAm/Eu = estimated to be 41300) is far superior to that
observed for CyMe4-BTPhen (SFAm/Eu = 400)9,10 in solvent
extraction experiments under similar conditions and means
that quantitative separation of Am(III) from Eu(III) is possible at
this concentrationQ5 of HNO3 (Table 3).

Distribution ratios for Am(III) and Cm(III), and the separation
factors at different nitric acid concentrations were also exam-
ined (Fig. 4). The D values for both Am(III) and Cm(III) decreased
with increasing nitric acid concentration, in agreement with
the earlier results, resulting in a small but significant SFAm/Cm =
2.2 � 0.4 at 4 M HNO3.

We propose that the shortness of the linking-chain on the
MNP constrains the CyMe4-BTPhen ligand to form 1 : 1 complexes
with M(III) cations.25 For the quadridentate CyMe4-BTPhen ligand,
the dominant metal–ligand complex stoichiometry in solution
is 1 : 2 however, species proposed to be 1 : 1 complexes can be

observed by 1H-NMR titrations at high Ln(III) loadings and a
crystal of a 1 : 1 complex [Y(CyMe4-BTPhen)(NO3)3]. MeCN has
been isolated and structurally characterized in the solid state.12,26

In the crystal, the yttrium(III) cation is 10-coordinate being bonded
to the tetradentate CyMe4-BTPhen and to three bidentate
nitrate ions.

In the BTPhen moiety, the strongly bound water molecule in
the central cavity may also play an important role in the
separation of Am(III) from Eu(III). The initial attack of the cation
is probably on the N(2) of the triazine ring in the trans-rotamer
(Fig. 5). This bound metal then seeks to bind with other
nitrogens and as the cis-rotamer is forming, the strongly bound
water molecule is displaced. The Am(III) subsequently binds to
all four nitrogen atoms in the BTPhen, while the Eu(III) cations
are unable to bind, particularly at higher nitric acid concentra-
tions, thus providing for the quantitative separation of Am(III)
from Eu(III). Further studies into this proposed mechanism are
continuing.

In summary, the CyMe4-BTPhen ligand has been covalently
bound to SiO2-coated MNPs by a phenyl ether linkage after
functionalization at C-5 of the phenanthroline. The MNP 4
exhibits very high selectivity for Am(III) over Eu(III) at 4 M HNO3

(with a separation factor in excess of 1300). This MNP also
shows a small but significant selectivity for Am(III) over Cm(III)
with a nominal separation factor of around 2 in 4 M HNO3. We
propose that this technology may well prove effective for
polishing the raffinate from SANEX-type processes and for
remediation of contaminated water or soils.

The authors acknowledge the EPSRC for financial support
(A.A.). Use of the Chemical Analysis Facility (CAF) and Centre
for Advanced Microscopy (CfAM) at the University of Reading is
also gratefully acknowledged. We also would like to thank Dr
Peter Harris for his assistance with Transmission Electron
Microscopy (TEM).
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Fig. 3 Extraction of Am(III) and Eu(III) by MNP 6 as a function of nitric acid
concentration.

Table 3 Extraction of Am(III) and Cm(III) by MNP 6 as a function of nitric
acid concentration

[HNO3] DAm DCm SFAm/Cm

0.001 1212.9 � 204.4 1117.4 � 195.6 1.1 � 0.3
0.1 2348.8 � 525.7 1561.1 � 331.5 1.5 � 0.5
1 690.7 � 88.2 444.1 � 50.7 1.6 � 0.3
4 69.6 � 4.8 31.4 � 2.9 2.2 � 0.4

Fig. 4 Extraction of Am(III) and Cm(III) by MNP 6 as a function of nitric acid
concentration.

Fig. 5 Preferred rotamer of [M(III)CyMe4-BTPhen].9,12

Table 2 Extraction of Am(III) and Eu(III) by MNP 6 as a function of nitric
acid concentration

[HNO3] DAm DEu SFAm/Eu

0.001 1162.8 � 79.1 701.4 � 32.4 1.7 � 0.1
0.1 1857.0 � 153.5 101.1 � 2.3 18.4 � 1.6
1 623.1 � 31.2 9.6 � 0.6 65.2 � 5.0
4 55.4 � 1.5 0.03 � 0.4 1675.6 � 335.1
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