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� A framework to calculate aerosol optical properties at a given RH is presented.
� Calculations are made based on the aerosol composition and size distribution.
� FAAM BAe-146 aircraft data are used in a closure study for 2 different aerosol types.
� Uncertainties associated to the calculated aerosol optical properties are discussed.
� Sources of uncertainty are refractive indices, hygroscopicity and size distribution.
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a b s t r a c t

We present a flexible framework to calculate the optical properties of atmospheric aerosols at a given
relative humidity based on their composition and size distribution. The similarity of this framework to
climate model parameterisations allows rapid and extensive sensitivity tests of the impact of un-
certainties in data or of new measurements on climate relevant aerosol properties. The data collected by
the FAAM BAe-146 aircraft during the EUCAARI-LONGREX and VOCALS-REx campaigns have been used in
a closure study to analyse the agreement between calculated and measured aerosol optical properties for
two very different aerosol types. The agreement achieved for the EUCAARI-LONGREX flights is within the
measurement uncertainties for both scattering and absorption. However, there is poor agreement be-
tween the calculated and the measured scattering for the VOCALS-REx flights. The high concentration of
sulphate, which is a scattering aerosol with no absorption in the visible spectrum, made the absorption
measurements during VOCALS-REx unreliable, and thus no closure study was possible for the absorption.
The calculated hygroscopic scattering growth factor overestimates the measured values during EUCAARI-
LONGREX and VOCALS-REx by w30% and w20%, respectively. We have also tested the sensitivity of the
calculated aerosol optical properties to the uncertainties in the refractive indices, the hygroscopic growth
factors and the aerosol size distribution. The largest source of uncertainty in the calculated scattering is
the aerosol size distribution (w35%), followed by the assumed hygroscopic growth factor for organic
aerosol (w15%), while the predominant source of uncertainty in the calculated absorption is the
refractive index of organic aerosol (28e60%), although we would expect the refractive index of black
carbon to be important for aerosol with a higher black carbon fraction.

� 2014 Elsevier Ltd. All rights reserved.
e la Terra i Termodinàmica,
assot, Valencia, Spain.
1. Introduction

Atmospheric aerosols affect the Earth’s climate both directly,
through the scattering and absorption of radiation (Charlson et al.,
1992; Haywood and Shine, 1997), and indirectly, via changes to
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cloud microphysics and properties (Kaufman et al., 2005). More-
over, aerosols also affect visibility and air quality (Horvath,1995), as
well as human health (Lelieveld et al., 2002; Chu et al., 2003; Wang
and Christopher, 2003).

In order to estimate the direct effect, climate models generally
require aerosol optical properties such as the extinction coefficient,
the single scattering albedo and the asymmetry parameter. For
these, they need to quantify first the spectral refractive index, the
size distribution, the hygroscopicity and the mixing state (internal
or external) of atmospheric aerosols. Each of these properties is a
complex function of aerosol size, composition, and chemical and
physical processing (including impacts of humidity and clouds).
Thus, due to this complexity of the atmospheric aerosols, we need
to use models and measurements combined together in order to
provide the information needed in climate models.

Closure between the measured aerosol scattering and absorp-
tion and that calculated with a scattering code using chemical
composition and particle size information has been attempted
before by several studies (Cai et al., 2011; Highwood et al., 2012; Liu
et al., 2013; Quinn and Coffman, 1998; Sciare et al., 2005;Wex et al.,
2002). However, recent additions to the instrumentation aboard
the Facility for Airborne Atmospheric Measurements (FAAM) BAe-
146 aircraft have made possible the measurement of aerosol scat-
tering as a function of relative humidity and black carbon mass,
allowing more accurate closure studies to be performed.

In this work we present a flexible framework for assessing pa-
rameterizations of optical properties and hygroscopic growth of
aerosols. This framework is used to calculate the optical properties
of atmospheric aerosols at a given relative humidity based on their
composition and size distribution, which can then be compared
with measured values of the same quantities. In our case, the FAAM
BAe-146 aircraft provides measurements of the chemical compo-
sition, microphysical, optical and hygroscopic properties of the at-
mospheric aerosols (Johnson et al., 2000; Osborne et al., 2007;
McMeeking et al., 2010; Morgan et al., 2010a), which allow us to
explore here the agreement between models and measurements of
the aerosol optical properties for two very different aerosol types.
Section 2 of this paper describes the framework and the data from
the FAAM BAe-146 aircraft used. Section 3 presents the closure
study of the aerosol optical properties. Section 4 discusses the
uncertainties associated to the calculated aerosol optical proper-
ties. The work’s conclusions are presented in Section 5.

2. Methodology

2.1. Framework

We have developed a flexible framework to calculate the scat-
tering and absorption by atmospheric aerosols at a given relative
humidity based on the composition and size distribution. The
framework can be used with different scattering codes and mixing
states, but here we use Mie scattering for homogeneous internally
mixed spheres. Although aerosols, and particularly black carbon
(Hess et al., 1998), are not always spherical, this assumption is valid
for well-mixed anthropogenic aerosols, especially in moderately
humid environments (Highwood et al., 2012), and is frequently
used for most anthropogenic aerosol types (Quinn and Coffman,
1998; Wex et al., 2002; Sciare et al., 2005; Cai et al., 2011;
Costabile et al., 2013). The way in which the different compo-
nents are distributed within the aerosol particles is referred to as
mixing state, which ranges from external to homogeneous internal
mixture. An external mixing state is an appropriate assumption for
freshly emitted aerosols, which have not had time to undergo
chemical reaction or coalescence. An internal mixture is a better
assumption for older, well-mixed aerosol (Raes et al., 2000). Well-
mixed anthropogenic aerosols can usefully be modelled as having a
homogeneous internal mixing state, while a core and shell model
would be more appropriate if a large mass of black carbon was
present (Abel et al., 2003). Although our framework includes the
possibility of choosing between this whole range of mixing states,
since the cases considered here are of well-mixed anthropogenic
aerosols with none or small amounts of black carbon, we will focus
on the homogeneous internal mixing case.

In this framework, the mass concentration of the different
aerosol components, as measured by an AerosolMass Spectrometer
(AMS), and hygroscopicity values for each component taken from
literature, are combined using the ZdanovskiieStokeseRobinson
(ZSR) volume mixing rule (Zdanovskii, 1948; Stokes and Robinson,
1966). This assumes that the components of the mixed aerosol do
not interact, in order to calculate the hygroscopic growth factor of
the internally mixed aerosol following the equation

HGFmix ¼
 X

i

εiHGF
3
i

!1=3

(1)

where εi is the volume fraction of component i in the dry particle
and HGFi is the hygroscopic growth factor of the pure component i.

The ambient size distribution is then calculated by applying this
mixed growth factor to the dry size distribution. Next, the mass of
water taken up by the aerosol is calculated by comparing the
average volume of the dry aerosol (based on the average radius
from the dry size distribution) with that of the ambient aerosol
(based on the average radius from the ambient size distribution). By
including this water as an additional chemical component, it is then
possible to calculate the refractive index of the internally mixed
aerosol at a given relative humidity, and for a variety of wave-
lengths, by applying the ZSR volume mixing rule. The resultant
ambient size distribution and refractive index are then passed in
this case to the Mie scattering code of Wiscombe (1979) in order to
calculate the aerosol optical properties.

Although other similar frameworks exist, including OPAC (Op-
tical Properties of Aerosols and Cloud) by Hess et al. (1988) which is
still widely used to specify aerosol for use in satellite retrievals, this
framework is much more flexible, allowing the use of composition
and size distributions directly. In addition, since it is closer to the
parameterisations used in climate models, it allows convenient and
rapid testing of the impact of uncertainties in data, or new mea-
surements on climate relevant aerosol properties.
2.1.1. Refractive indices
The refractive indices of major aerosol components such as

ammonium sulphate, ammonium nitrate, black carbon and organic
aerosol assumed by the framework are based on a literature review
of field observations and laboratory studies. The refractive index for
sulphate, which is a scattering aerosol with no absorption in the
visible spectrum, is taken from Toon et al. (1976). However, the
refractive index for nitrate, another scattering aerosol with no ab-
sorption in the visible spectrum, is not well characterized although
it is an important contributor to light scattering in the atmosphere
(Diederen et al., 1985; Brink et al., 1996). In this framework, we use
a single value with no absorption component from Weast (1985)
below 0.7 mm, the values from Gosse et al. (1997) in the interme-
diate range and the values from Jarzembski et al. (2003) in the
infrared. Due to technical issues in the measurement of the abun-
dance and optical properties of black carbon, which is highly
absorbing in the visible spectrum, there is considerable debate
regarding the most appropriate value for its refractive index (Stier
et al., 2007). We use here the more absorbing refractive indices
from Bond and Bergstrom (2005). The refractive index of organic
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aerosol is difficult to define because its properties vary according to
source, location, combustion type and aerosol age. In this frame-
work, we use a refractive index based on that of Swannee River
Fulvic Acid (SRFA) at 532 nm (Dinar et al., 2008), with the wave-
length dependence of Kirchstetter et al. (2004) in the imaginary
part between 350 and 700 nm, and being wavelength independent
in the real part between 400 and 700 nm. For wavelengths above
4 mm, the wavelength dependence for the water soluble type from
Hess et al. (1998) is used. SRFA was assumed since it can be
considered to be representative of aged organic aerosol (McFiggans
et al., 2005), which was found in the measurement campaigns
considered here. The refractive indices at 550 nm assumed by the
framework for these major aerosol components are specified in
Table 1.

2.1.2. Hygroscopic growth factors
The hygroscopic growth factors of major aerosol components

such as ammonium nitrate, ammonium sulphate and black carbon
have beenwell studied; that of organic aerosol is worse known. The
hygroscopic growth factors of sulphate and nitrate depend strongly
on the ambient relative humidity, and the values reported in the
literature are either derived from or in agreement with the values
reported in Tang (1996). However, while the growth factors of
ammonium sulphate and ammonium nitrate depend on the initial
size of the aerosol, data relating growth factor and initial aerosol
size are very limited. Black carbon is a hydrophobic aerosol, and it is
generally accepted that its growth factor is approximately 1, and
independent of the ambient relative humidity or the initial aerosol
size (Forster et al., 2007; McMeeking et al., 2011). The growth factor
of organic aerosol is a complex function of its component organic
compounds, the combustion processes which produced them,
chemical processing in the atmosphere and mixing with ambient
aerosol (Forster et al., 2007). Studies of individual organic com-
pounds (Brooks et al., 2004; Prenni et al., 2003; Kanakidou et al.,
2005), as well as various hygroscopic closure studies (Gysel et al.,
2004, 2007; McFiggans et al., 2005), have generally found a
modest growth factor for organic aerosol, and it is not thought to
depend on the initial aerosol size (Brooks et al., 2004). The hygro-
scopic growth factors at a relative humidity of 80% assumed by the
framework for these major aerosol components are specified in
Table 1.

2.2. FAAM BAe-146 aircraft data

The instrumentation aboard the FAAM BAe-146 aircraft mea-
sures the chemical composition, microphysical, optical and hygro-
scopic properties of the atmospheric aerosols, and it has been
described in detail in Johnson et al. (2000), Osborne et al. (2007),
McMeeking et al. (2010) and Morgan et al. (2010a). In this study,
we have used the data collected by the FAAM BAe-146 aircraft
during the European Integrated Project on Aerosol Cloud Climate
Table 1
Refractive indices and hygroscopic growth factors for aerosol components assumed
by the framework.

Component Refractive index at 550 nm Hygroscopic growth
factor at RH ¼ 80%

Ammonium sulphate 1.53e0i (Toon et al., 1976) 1.50 (Tang, 1996)
Ammonium nitrate 1.611e0i (Weast, 1985;

Gosse et al. 1997;
Jarzembski et al. 2003)

1.50 (Tang, 1996)

Black carbon 1.95e0.79i (Bond and
Bergstrom, 2005)

1.00 (Forster
et al., 2007)

Organic aerosol 1.538e0.02i (Dinar et al., 2008;
Kirchstetter et al., 2004)

1.07 (Brooks
et al., 2004)
and Air Quality Interactions Long Range Experiment (EUCAARI-
LONGREX, Kulmala et al., 2009) and the VAMOS Ocean-Cloud-
Atmosphere-Land Regional Experiment (VOCALS-REx, Wood
et al., 2011). The EUCAARI-LONGREX campaign consisted of 15
flights over central Europe or off the UK coast (47e57�N and
12�We22�E) during May 2008, and its meteorology and aerosol
measurements have been fully discussed by McMeeking et al.
(2010), Morgan et al. (2010a, 2010b), Hamburger et al. (2011) and
Highwood et al. (2012). The VOCALS-REx campaign consisted of 10
flights over the South East Pacific region (20�S and 70e85�W) be-
tween October and November 2008, and the aerosol measurements
made by the FAAM BAe-146 aircraft during this campaign have
been described by Allen et al. (2011). Each flight for both campaigns
consisted of a number of straight level runs (SLR) at different alti-
tudes with varying time durations.

The motivation for using these two campaigns to explore the
agreement between modelled and measured aerosol optical
properties comes from the very different chemical composition of
the atmospheric aerosols. Fig. 1 shows the mean mass concentra-
tion (in percentage) of the main aerosol components (nitrate, sul-
phate, organic matter and black carbon) for each of the flights
during the two campaigns. During EUCAARI-LONGREX, aerosols
were mainly composed of nitrate (26%), sulphate (27%) and organic
matter (46%), with small concentrations of black carbon (1%)
(Morgan et al., 2010a; McMeeking et al., 2011). However, during
VOCALS-REx, the aerosol composition was clearly dominated by
sulphate (85%) (Allen et al., 2011), thus potentially representing a
Fig. 1. Average mass concentration (in percentage) of main aerosol components for
each flight of a) EUCAARI-LONGREX and b) VOCALS-REx (Morgan et al., 2010a;
McMeeking et al., 2011; Allen et al., 2011). During VOCALS-REx, nitrate concentra-
tions were not registered above the detection limit of the measurement instrument
and black carbon concentrations were not measured.
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“simpler” aerosol system, although there are subtle differences
between composition data reported by the various VOCALS-REx
studies (Hawkins et al., 2010; Lee et al., 2010; Allen et al., 2011;
Kleinman et al., 2012; Twohy et al., 2013). Ammonium sulphate,
found during EUCAARI-LONGREX (Morgan et al., 2010a), is
assumed for VOCALS-REx, and the differences regarding the
composition of the sulphate aerosol (e.g. sulphuric acid reported by
Lee et al. (2010)) show little impact on our results. Nitrate is not
reported for VOCALS-REx since its concentrations were not regis-
tered above the detection limit of the AMS. Additionally, the in-
strument aboard the FAAM BAe-146 aircraft to measure black
carbon was not operational during the VOCALS-REx campaign.
Furthermore, additional motivation for using these two campaigns
is the different ambient relative humidity conditions, which would
be expected to also have a significant impact on the aerosol prop-
erties. The ambient relative humidity for the SLR used in this study
during the EUCAARI-LONGREX campaignwas in the range 29e87%,
with an average value of 52%, while during the VOCALS-REx
campaign it was in the range 70e92%, with an average value of 85%.
Fig. 2. Comparison of calculated with measured scattering at 550 nm for “ambient”
aerosol averaged for each run in every flight from a) EUCAARI-LONGREX and b)
VOCALS-REx. The 1:1 line is indicated (solid line) and also the �30% tolerances (dashed
lines). Horizontal error bars show the 30% uncertainty in measured scattering.
3. Results

The aerosol scattering and absorption measured by the FAAM
BAe-146 aircraft are averaged for each SLR of each flight of the
EUCAARI-LONGREX and VOCALS-REx campaigns. These are
assumed to be applicable to “dry” aerosol, and subsequently the
scattering for “ambient” aerosol at a given relative humidity is
derived from the dry and wet nephelometer system aboard the
BAe-146 aircraft following the procedure described in Highwood
et al. (2012). In this, a hygroscopicity curve is obtained for each
flight of the campaign by plotting the hygroscopic scattering
growth factor, f(RH), which is the ratio of the scattering coefficient
measured in the wet nephelometer to the scattering coefficient
measured by the dry nephelometer, as a function of relative hu-
midity, and fitting the data to Model 2 from Kotchenruther et al.
(1999)

f ðRHÞ ¼ ss;d

 
1þ a

�
RH
100

�b
!

(2)

where ss,d, a, and b are fitting parameters to the data. Only data
where RH < 30% were used to ensure that the measurements were
as reasonable a representation of dry aerosol as possible. The
scattering for “ambient” aerosol at a given relative humidity can
then be derived by increasing the scattering from the nephelometer
by the growth factor indicated by the hygroscopicity curve. These
aerosol optical properties can also be calculated by the framework
presented in Section 2 using the composition and size distribution
measurements made by the FAAM BAe-146 aircraft at each SLR in
every flight of both campaigns. Fig. 2 shows the comparison of the
calculated values of the aerosol scattering at 550 nm with the
measured values for “ambient” aerosol averaged for each SLR in
every flight of EUCAARI-LONGREX and VOCALS-REx. There is very
good agreement for all flights of EUCAARI-LONGREX, with the
calculated scattering being within the 30% uncertainty of the
measured scattering (assuming a measurement uncertainty of 20%
and variability in the scattering during each SLR in the range 12%e
35% (Highwood et al., 2012)), and slightly underestimating the
measured values by w11%. These results are in agreement with
those obtained by Highwood et al. (2012) for dry aerosol during the
EUCAARI-LONGREX campaign. However, the agreement for the
flights of VOCALS-REx is very poor, with the calculated scattering
clearly overestimating the measured values, and being outside of
the 30% measurement uncertainty. The bias between the calculated
and measured scattering could be due to the uncertainty in the
choice of hygroscopic growth factors, especially those for organic
aerosol and sulphate. Moreover, the different sign of this bias
observed between EUCAARI-LONGREX and VOCALS-REx could be
due to the different aerosol size distributions used to calculate the
scattering and absorption for both campaigns. An aerosol size dis-
tribution with 15 bins ranging from 0.1 to 3 mm particle diameter
recorded aboard the FAAM BAe-146 aircraft was used for each SLR
of each flight of EUCAARI-LONGREX. However, the lognormal fit
parameters to campaign-mean aerosol size distributions fromAllen
et al. (2011) were used for each SLR of each flight of VOCALS-REx.
The sensitivity of our results to the different type of aerosol size
distribution will be tested in Section 4.

Fig. 3 shows the comparison of the calculated values of the
aerosol absorption at 550 nm with the measured ones for “dry”
aerosol averaged for each SLR in every flight of EUCAARI-LONGREX.
The comparison for VOCALS-REx is not reported because the ab-
sorption registered for all flights of the campaign was below the
detection limit of the Particle Soot Absorption Photometer (PSAP),
in agreement with the fact that the aerosol composition during
VOCALS-REx was clearly dominated by sulphate, which is a scat-
tering aerosol with no absorption in the visible spectrum. The
calculated absorption underestimates the measured values for
most of the flights of EUCAARI-LONGREX, although the agreement
between calculated and measured absorption is within the 50%
uncertainty of the measurements (assuming a measurement un-
certainty of 30% and variability in the absorption during each SLR in



Fig. 4. Comparison of calculated with measured hygroscopic scattering growth factor
at 550 nm averaged for each run in every flight from a) EUCAARI-LONGREX and b)
VOCALS-REx. The 1:1 line is indicated (solid line) and also the �60% tolerances (dashed
lines). Horizontal error bars show the 60% uncertainty in measured f(RH). The hy-
groscopic scattering growth factor, which is the ratio of the scattering of the “ambient”
aerosol to the scattering of the “dry” aerosol, must be always greater than 1.0, although
the error bars showing the 60% uncertainty in the measured values extend below this
value.

Fig. 3. Comparison of calculated with measured absorption at 550 nm for “dry” aerosol
averaged for each run in every flight from EUCAARI-LONGREX. The 1:1 line is indicated
(solid line) and also the �50% tolerances (dashed lines). Horizontal error bars show the
50% uncertainty in measured absorption.
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the range 16%e48% (Highwood et al., 2012)). These results are in
agreement with those obtained by Highwood et al. (2012) for dry
aerosol during the EUCAARI-LONGREX campaign. The bias between
the calculated and measured absorption could be due to the un-
certainty in the choice of refractive indices, especially those for
black carbon and organic aerosol, although we expect the effect of
the refractive index of black carbon to be weak here due to the
small concentrations of black carbon registered during EUCAARI-
LONGREX.

Fig. 4 shows the comparison of the calculated values of f(RH)
(derived from the calculated scattering for “dry” and “ambient”
aerosol) at 550 nm with the measured ones (derived from the
measured scattering for “dry” and “ambient” aerosol) averaged for
each SLR in every flight of EUCAARI-LONGREX and VOCALS-REx.
There is poor agreement for all flights of EUCAARI-LONGREX,
with the calculated f(RH) clearly overestimating the measured
values by w30%. There is slightly better agreement for all flights of
VOCALS-REx, with the calculated f(RH) overestimating the
measured values byw20%. However, due to the large uncertainty of
the measured f(RH) of 60%, the agreement between calculated and
measured values is well within the uncertainty of the measure-
ments. The bias between the calculated and measured hygroscopic
scattering growth factor would be due to the same factors causing
the bias between the calculated and measured scattering, i.e., the
uncertainty in the choice of hygroscopic growth factors, especially
those for organic aerosol and sulphate, and in the aerosol size
distribution.

Although in Figs. 2e4 we have shown the uncertainty in the
measurements but not in the calculations, uncertainty also exists in
the calculated values mainly due to uncertainties in the refractive
indices, the hygroscopic growth factors and the aerosol size dis-
tribution. Probably the uncertainty is higher for the EUCAARI-
LONGREX campaign since it is chemically more complex than the
VOCALS-REx campaign, the latter being dominated by sulphate
which has been moderately well studied. In the following section
we assess the sensitivity of the calculated scattering and absorption
to these factors.

4. Discussion

To test the sensitivity of the calculated scattering and absorption
to the choice of refractive indices, particularly those for black car-
bon and organic aerosol, we have repeated our calculations using
different values of those refractive indices, and we have compared
the new results with the old ones. There is still considerable debate
regarding the most appropriate value for the refractive index of
black carbon (Stier et al., 2007). Originally we used the “high
absorbing” refractive index from Bond and Bergstrom (2005)
(1.95e0.79i), but we could have used the value from Hess et al.
(1998) (1.77e0.44i) or the “medium absorbing” refractive index
suggested by Stier et al. (2007) (1.85e0.71i). Only the flights for the
EUCAARI-LONGREX campaign have been used in this test. The
sensitivity (in percentage) of the calculated scattering and ab-
sorption to assumptions in refractive indices of black carbon
(RI_BC) and organic aerosol (RI_OC), hygroscopic growth factors of
organic aerosol (GF_OC) and sulphate (GF_SU) and aerosol size
distribution (SIZE_DISTR) is shown in a box diagram in Fig. 5. The
dividing segment in the box is the median. The bottom/top box
limits represent the 1st and 3rd quartiles. The box bars represent
the minimum and maximum. Absorption is more sensitive than
scattering to the refractive index for black carbon, but the effect
here is very weak (w2% on average and up to w5% for absorption)
due to the small concentrations of black carbon present during
EUCAARI-LONGREX (McMeeking et al., 2011). The refractive index
for organic aerosol has therefore much more impact, especially in
the absorption. All flights for both the EUCAARI-LONGREX and
VOCALS-REx campaigns have been used in this test. Removing all
absorption by organic aerosol as suggested in some previous



Fig. 5. Sensitivity (in percentage) of the calculated (a) scattering for “ambient” aerosol
and (b) absorption for “dry” aerosol to assumptions in refractive indices of black car-
bon (RI_BC) and organic aerosol (RI_OC), hygroscopic growth factors of organic aerosol
(GF_OC) and sulphate (GF_SU) and aerosol size distribution (SIZE_DISTR). The dividing
segment in the box is the median. The bottom/top box limits represent the 1st and 3rd
quartiles. The box bars represent the minimum and maximum.
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studies (1.538 e 0i) produces changes in the calculated absorption
of w60% on average and up to w81%, while the changes in the
calculated scattering are ofw3% on average and up tow9%. Having
someweak absorption by organic aerosol (1.538e0.01i) reduces the
changes in the calculated absorption and scattering to w28% and
w1.4% on average, respectively. These observed changes worsen
the agreement between the measured and calculated scattering
and absorption. Following Highwood et al. (2012), RI_OC (NOOC)
and RI_OC (MIDOC) in Fig. 5 refer to an assumption of no absorption
and some weak absorption by organic carbon, respectively.

The sensitivity to the choice of hygroscopic growth factors,
particularly those for organic aerosol and sulphate, is tested here
for the calculated scattering. Most studies report hygroscopic
growth factors for organic aerosol in the range of 1e1.65 (Topping
et al., 2005a; Kanakidou et al., 2005; Varutbangkul et al., 2006),
with a mean value of 1.20 (Gysel et al., 2007). We have repeated our
scattering calculations for all flights of EUCAARI-LONGREX and
VOCALS-REx using this mean value, which is independent of the
ambient relative humidity, and we have compared them with the
scattering calculated using the hygroscopic growth factor from
Brooks et al. (2004). The observed change in the calculated scat-
tering is of w15% on average and up to w37%, slightly improving
the agreement between the measured and calculated scattering.
The hygroscopic growth factors for sulphate depend on both the
ambient relative humidity and the initial size of the aerosol.
However, information on the latter is very limited. Originally we
used the hygroscopic growth factors for sulphate from Tang (1996),
who reported values in the range 1.20e1.75 with dependence on
the ambient relative humidity, but not on the initial aerosol size.
Topping et al. (2005b) reported values in the range 1.66e1.73
depending on the initial aerosol size for a fixed ambient relative
humidity of 90%, which involve a variation of approximately�4% in
the hygroscopic growth factor for sulphate. We have repeated our
scattering calculations for all flights of VOCALS-REx, which were
clearly dominated by sulphate, using this variation of �4% on the
hygroscopic growth factor from Tang (1996), and we have
compared themwith the original calculations. The sensitivity of the
calculated scattering to the hygroscopic growth factor of sulphate is
small, of only w8.5% on average and up to w9.4%, although we
would expect the hygroscopic growth factor of sulphate to be much
more sensitive to the ambient relative humidity than to the initial
aerosol size.

To test the sensitivity of the calculated scattering and absorption
to the aerosol size distribution, we have repeated our calculations
for EUCAARI-LONGREX using flight-mean size distributions instead
of the measured ones for each SLR of each flight of the campaign,
and we have compared both sets of results. The change in the
calculated scattering and absorption is significant, w35% on
average for both the scattering and the absorption and up to 134%
and 122% for the scattering and the absorption, respectively. Thus
the use of a campaign mean as for VOCALS is likely to be a signif-
icant hindrance to obtaining a meaningful model of aerosol optical
properties.

5. Conclusions

Climate models often require aerosol optical properties to be
prescribed. We have presented a flexible framework for calculating
aerosol optical properties from commonly made measurements of
aerosol composition and size distribution. For two different aerosol
types, a complex multicomponent aerosol dominated by organic
aerosol and ammonium nitrate and a simpler sulphate dominated
aerosol, we have assessed the degree to which we can achieve
closure with measured aerosol optical properties. We have also
identified and quantified the largest sensitivities of the optical
properties calculated in this way.

Our framework can replicate ambient scattering to within the
measurement uncertainty for the complex EUCAARI-LONGREX
aerosol, although the agreement is less good for the simpler
VOCALS-REx aerosol. However, we do not have access to detailed
size distributions for individual SLR from VOCALS-REx and our
sensitivity tests show that size distribution is a large source of
uncertainty in scattering. The second largest source of uncertainty
in scattering is the growth factor assumed for organic aerosol. Our
framework can also replicate dry absorption to within measure-
ment uncertainty for EUCAARI-LONGREX, however no closure
study was possible during VOCALS-REx because of the unreliable
absorption measurements below the detection limit of the mea-
surement instrument. For absorption, the refractive index of the
organic aerosol is the predominant source of uncertainty (although
it should be noted that we expect the refractive index of black
carbon to be important for aerosol with a higher black carbon
fraction). The hygroscopic scattering growth factors, f(RH), pre-
dicted by the framework seem at odds with the relative agreement
in scattering. The calculated hygroscopic scattering growth factors
seem much larger than the measured values. The reason for this is
unclear, but measurement uncertainty in f(RH) is large.

Our results indicate that improvements in the accuracy of the
aerosol radiative impact would come from better representation of
aerosol size distributions and measurements of growth factors at a
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variety of sizes and relative humidities for organic aerosol. Mea-
surements of hygroscopicity of real atmospheric aerosol alongside
optical properties and refractive indices measurements would be a
significant advance.
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