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Fractal geometry of aggregate snowflakes revealed
by triple-wavelength radar measurements
T. H. M. Stein1, C. D. Westbrook1, and J. C. Nicol2

1Department of Meteorology, University of Reading, Reading, UK, 2National Centre for Atmospheric Science, Department
of Meteorology, University of Reading, Reading, UK

Abstract Radar reflectivity measurements from three different wavelengths are used to retrieve
information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios
are calculated for different shape models and compared to observations at 3, 35, and 94 GHz. It is
demonstrated that many scattering models, including spherical and spheroidal models, do not adequately
describe the aggregate snowflakes that are observed. The observations are consistent with fractal
aggregate geometries generated by a physically based aggregation model. It is demonstrated that the
fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close
to 2 are retrieved, consistent with previous theoretical models and in situ observations.

1. Introduction

Most ice phase precipitation at the surface is composed of aggregates of ice crystals [Hobbs et al., 1974], and
aggregation often dominates the formation of large particles in deep ice clouds aloft [Field and Heymsfield,
2003; Westbrook et al., 2007]. In spite of this, the scattering properties of these aggregates (which depend on
their shape) are not well characterized at present, and this leads to uncertainty in remote sensing retrievals
of ice cloud properties and snowfall rates. Similarly, information about the shape of aggregates is needed
to predict their mass and fall speed as a function of size [e.g., Mitchell, 1996], which is key to the
interpretation of in situ observations and the parameterization of the ice phase in numerical weather
prediction and climate models. Idealized theoretical models of the ice crystal aggregation process have
been developed [Westbrook et al., 2004; Maruyama and Fujiyoshi, 2005] which suggest that the aggregates
are fractal in their geometry (with a power law scaling between mass and size); but the predictions from
these idealized models need to be tested against real particles in real clouds.

In this letter we develop an idea recently proposed by Kneifel et al. [2011]. We made measurements of
radar reflectivity Z at three frequencies. The ratio of Z measured at a pair of frequencies is a function of
particle size and particle shape; Kneifel et al. [2011] showed that the relationship between two such ratios
(derived from measurements at three frequencies) allows us to distinguish between different particle shapes
present in a given sample of cloud and hence validate or disprove theoretical models of their structure and
scattering properties. Note that we use “shape” here to mean the complete structure of the aggregate
snowflakes, rather than some qualitative descriptor of their overall form.

The study by Kneifel et al. [2011] was purely theoretical, and there is a lack of suitable triple-wavelength data
available. Leinonen et al. [2012] analyzed a selection of vertical profiles from airborne radar measurements in
convective clouds at 13, 35, and 94 GHz from the Wakasa Bay field campaign in 2003 and concluded the
data were inconsistent with spherical/spheroidal models of the snowflakes. Kulie et al. [2013] extended that
analysis to incorporate more profiles and more case studies from the Wakasa Bay experiment, but they
report numerous practical difficulties in the analysis of these data. In particular, the relative calibration
between the three radars was difficult to assure, and in a number of the clouds there was substantial
attenuation of the 94 GHz data due to supercooled water; as a result their data show a very high degree
of scatter.

The new measurements of aggregate snowflakes presented in this letter were obtained using three sensitive
ground-based radars as part of the Chilbolton Triple-Wavelength Snowflake Experiment at the Chilbolton
Observatory in southern England during 2014. Data were collected at 3, 35, and 94 GHz (wavelengths of
97.5, 8.6, and 3.2 mm, respectively), and the ground-based experiment allows for very close colocation in

STEIN ET AL. ©2014. The Authors. 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2014GL062170
http://creativecommons.org/licenses/by/4.0/


Geophysical Research Letters 10.1002/2014GL062170

space and time, while integration over longer time periods to obtain more accurate reflectivity samples
is possible.

2. Aggregate Models and Dual-Wavelength Ratios

The radar reflectivity at a given wavelength 𝜆 and frequency 𝜈 is

Z𝜈 =
𝜆4

0.93𝜋5 ∫
Dmax

0
N(D)𝜎(D)dD , (1)

where 𝜎(D) is the radar cross section for a particle of maximum dimension D and N(D) the particle
size distribution (PSD). The factor 0.93 is the dielectric factor for liquid water at 3 GHz; we choose
to normalize our 35 and 94 GHz reflectivity measurements by the same factor such that for a cloud
of Rayleigh scattering ice particles,Z3 = Z35 = Z94 (since the magnitude of the dielectric factor for ice is
essentially frequency independent).

The key quantities of interest in this paper are the dual-wavelength ratios DWR3−35 = 10 log10(Z3∕Z35) and
DWR35−94 = 10 log10(Z35∕Z94). For ice particles that are small compared to the wavelength (the Rayleigh
regime) the radar cross-section 𝜎 ∝ 𝜆−4m2, where m is the particle mass [see, e.g., Westbrook, 2014, and
references therein]. For our 3 GHz measurements, ice particles in the atmosphere will always be in the
Rayleigh regime. For the higher frequencies, where particles of maximum dimension comparable to
(or greater than) 𝜆∕4 may exist, interference occurs between the scattered waves originating from the front
and rear of snowflake (as viewed by the vertically pointing radar beam). This leads to an additional
dependence on the ratio D∕𝜆, and we will characterize this deviation from the Rayleigh limit by a factor f so
that 𝜎 ∝ 𝜆−4m2f . From equation (1) it is thus apparent that in this regime dual-wavelength ratios depend
on the mean size of the particles, and their shape, as encapsulated in the function f . Crucially for what
follows, the relationship between DWR3−35 and DWR35−94 depends purely on the shape, and plotting this
relationship will allow us to distinguish between various shape models [Kneifel et al., 2011].

We assumed an exponential PSD in the calculations shown here; almost identical results are found when
the more complex Field et al. [2005] PSD shape is used instead. We set the upper limit of integration to
Dmax = 20 mm since this encompasses the range of aggregate sizes typically observed in the atmosphere.

Dual-wavelength ratios were calculated for several different scattering models, including soft spheres
[Hogan et al., 2000], horizontally oriented oblate spheroids of aspect ratio 0.6 [Matrosov, 1998; Hogan et al.,
2012], and more complex aggregate models [Westbrook et al., 2004; Petty and Huang, 2010].

Westbrook et al. [2004] (from now W04) developed an idealized model of the aggregation process that
generates thousands of synthetic aggregates. These aggregates were found to be fractal with a power law
scaling between mass and size m ∝ Ddf , and a fractal dimension df of 2. Westbrook et al. [2006, 2008]
calculated the radar cross sections for the W04 aggregates using the Rayleigh-Gans approximation (RGA)
and computed the average f for their large ensemble of aggregate geometries, and we find that the
following function provides a close approximation to their simulated data:

f = 1 + 0.159x2

1 + (0.159 + 1∕3)x2 + 0.164x4
, (2)

where x = 4𝜋rg∕𝜆 and the radius of gyration rg ≈ 0.3D for aggregates [Westbrook et al., 2006, 2008]. Tyynelä
et al. [2013] presented radar scattering computations of aggregates generated using a very similar model;
they show that the RGA underestimates the radar cross section of the aggregates a little but that the
fractional bias is approximately independent of frequency, and so the use of the RGA results should not
affect our DWR calculations.

Petty and Huang [2010] constructed four realistic aggregate snowflake geometries and simulated their
scattering properties using the Discrete Dipole Approximation to compute 𝜎(D) for various wavelengths.
These four models are aggregates of dendritic crystals (“DA1,” “DA2,” and “DA3”) and needle crystals (“NA”).
The dimensions of the aggregates were simply scaled up or down to simulate aggregates of various sizes,
and hence, m ∝ D3 for these particles. Data points for 𝜎 were relatively sparsely sampled in D space, and we
interpolated logarithmically between 𝜎 values and extrapolated a limiting Rayleigh scattering behavior to
compute 𝜎 for the small particles in the PSD. Full details can be found in the supporting information.
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Finally, we considered spheres and spheroids composed of homogeneous air-ice mixtures, using Mie theory
to compute 𝜎 for spheres, and Hogan et al.’s [2012] method for oblate spheroids. A mass-size relationship
was used to compute the effective density of these mixtures. Various realistic power law relationships
(m = aDb) were tried: we found that the results were insensitive to the choice of a, and over the range of b
suggested by Mitchell [1996] (1.7–2.2), so only the calculations performed with the Brown and Francis [1995]
relationship will be reported and referred to as “MBF” and “MBF-O” (for oblate spheroids). Kneifel et al. [2011]
also noted a similar insensitivity to mass-size parameters in their calculations. We also performed calcula-
tions with a fixed snowflake density of 100 kg m−3; these results were appreciably different to the Brown and
Francis results and will be referred to as “MFIX” and “MFIX-O.”

3. The Triple-Wavelength Experiment

The Chilbolton Triple-Wavelength Snowflake Experiment was specifically designed to exploit the informa-
tion content from simultaneous radar measurements at three frequencies. The sampling of the three radars
in time was synchronized to within 0.1 s, and full pulse-to-pulse power and phase measurements were
recorded. Spectral processing was used, and ground clutter was minimized by removing stationary targets
from the Doppler spectra. The 35 GHz and 3 GHz radars at Chilbolton have a matched beam width of 0.25◦;
the 94 GHz radar is situated next to the 35 GHz radar and has a beam width of 0.5◦. The cloud radars are
situated immediately adjacent to one another; the 3 GHz radar with its much larger 25 m antenna is sited
less than 50 m away.

In the data presented here, the radar measurements are integrated over 10 s so that with a typical wind
speed at 5 km of about 20 m s−1, a 200 m section of cloud is observed. The range resolution of the radars is
not identical (varies from 60 to 75 m), and so the data were interpolated onto a common 75 m grid.

The pointing of the radar antennas was checked by an engineer before the experiment began; any slight
differences in sample volumes due to mispointing would be negligible compared to the separation of the
radars themselves and the length of cloud sampled over the 10 s integration period.

Five case studies have so far been collected in the experiment; in this letter we present two of these. These
two cases were chosen because they had the largest reflectivities and dual-wavelength ratios, and hence
the best chance of robustly distinguishing between the various aggregate models.

The 3 GHz radar is absolutely calibrated to within 0.5 dB using the method of Goddard et al. [1994]. For the
cloud radars, we adjust the reflectivity data so that the profiles match the 3 GHz values at cloud top where
particles are small and thus Rayleigh scattering at all three wavelengths [Hogan et al., 2000]. The excellent
sensitivity of our 3 GHz instrument (≈ −20 dBZ at 10 km) as well as the higher-frequency radars permits this
very accurate relative calibration, something which was not possible with the Wakasa Bay measurements
[Leinonen et al., 2012].

Specifically, we assumed that measurements near cloud top with Z3 < −10 dBZ should be from Rayleigh
scatterers, i.e., DWR3−35 and DWR3−94 are 0 dB in this region. So we calculated the DWR for our data,
computed the median DWR found in this region, and subtracted it from Z through the entire profile.

We also excluded some of the data points. In some areas of cloud there was strong variability of reflectivity
from profile to profile, which could lead to an unreliable relative calibration. To avoid this, the sample stan-
dard deviation s was calculated (in decibels) from reflectivities measured over a 50 s window at each range
gate. Measurements for which s > 3 dB were excluded from the calibration procedure. The contour of
s = 3 dB is shown in Figures 1a–1c and 3a. Similarly, if there were only one or two measurements in a profile
which fulfilled the Z3 < −10 dBZ condition, we did not feel confident that the relative calibration would be
reliable, and so we exclude such profiles also.

The standard error of the reflectivity measurements was calculated following Hogan et al. [2000] using the
Doppler spectral widths to compute the number of independent pulses in each sample. The measurement
error was less than ±0.5dB at 3 GHz, and an order or magnitude smaller at the higher frequencies.

Specific gaseous attenuation between cloud base and cloud top was estimated using model output over
Chilbolton provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Over the range
of interest in this study, the maximum specific gaseous attenuation at 94 GHz above 3 km for case 1 and case
2 was 0.09 and 0.13 dB km−1, respectively. We neglected these small losses in our analysis.

STEIN ET AL. ©2014. The Authors. 3
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Figure 1. Radar reflectivity profiles of a deep stratiform ice cloud observed on 17 April 2014 between 1430 and 1630 UTC. (a) Z3, (b) Z35, and (c) Z94, all without
relative calibration. A black contour shows where s = 3 dB, which encloses the data used in Figure 2. (d) Radar reflectivity profiles at 1617 UTC, relatively calibrated
to Z3 near cloud top. (e) DWR35−94 for the same profile as Figure 1d and reflectivity-weighted diameter, DZ , retrieved using the W04 model.

Because of the large antenna, it is necessary to apply a near-field correction to the 3 GHz data at heights
below ∼ 6 km. This correction factor was derived by comparing 3 GHz reflectivity profiles against those
measured by the 35 GHz instrument (which has a much smaller antenna) in a number of Rayleigh scattering
ice clouds. The magnitude of the correction was 1 dB at 5 km, rising to 3 dB at 3 km. We chose not to
consider data below 3 km height, since our results would have become increasingly sensitive to the
precision of this correction factor.

3.1. Case Study 1: 17 April 2014
Figures 1a–1c show radar reflectivity profiles measured at Chilbolton for a thick stratiform ice cloud
observed on 17 April 2014, ahead of a large-scale frontal rainband. Cloud top is approximately 9 km; reflec-
tivity values increase from ≈ −15 dBZ near cloud top, to as much as +25 dBZ near the cloud base indicating
substantial ice particle growth as the particles fall through the cloud layer; finally, there is a shallow region at
cloud base where the particles sublimate and the reflectivity decreases sharply. Temperature profiles from
the ECMWF model show that cloud top was at ≈ −45◦C, while the cloud base temperature increased from
≈ −15◦C to −5◦C over the observation period. The 0◦C isotherm was at approximately 2.7 km (below cloud
base). Liquid water path retrieved from colocated microwave radiometer measurements were less than
50 g m−2, which implies negligible liquid water attenuation of the radar beams.

Figure 1d shows an example vertical profile from the cloud. At cloud top, all three reflectivities are matched
and track one another closely. As one moves down through the profile Z94 becomes systematically smaller
than Z3 and Z35, indicating the presence of larger particles. Below 4.3 km, Z35 becomes significantly smaller
than Z3, indicating that the particles are now large enough that the 35 GHz reflectivities are no longer
dominated by Rayleigh scattering. At 4 km, DWR35−94 ≈ 8 dB and DWR3−35 ≈ 6 dB. It is in this region where
DWR35−94 and DWR3−35 are both significantly greater than 0 dB that we can apply our triple-wavelength
analysis.

As noted in section 3, the errors on the reflectivity data are very small. However, the colocation of the radars
is not perfect despite their close proximity, and some small-scale inhomogeneity is always present between
the sample volumes, leading to additional noise in the DWR data. As an indication of the magnitude of this

STEIN ET AL. ©2014. The Authors. 4
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Figure 2. Curves of DWR3−35 versus DWR35−94 predicted by the dif-
ferent ice particle models W04 (red), DA1 (solid blue), DA2 (dashed
blue), DA3 (dash-dotted blue), NA (dotted blue), MBF (solid gray), MFIX
(dashed gray), MBF-O (solid green), and MFIX-O (dashed green). Single
dots show the individual Chilbolton measurements for the 17 April
2014 case for observations where s ≤ 3 dB, distinguished by reflectivity
with 5 < Z3 ≤ 10 dBZ (light gray), 10 < Z3 ≤ 20 dBZ (dark gray dots),
and Z > 20 dBZ (large black dots). Error bars in the top left corner indi-
cate the median sample standard deviation in decibels of a Z35 sample
in a 50 s by 75 m window.

noise we use the parameter s computed
earlier: typical values of s for the two
DWR pairs are plotted as error bars
in Figure 2.

We calculated the DWR for all of the
pixels inside the black contour on
Figures 1a–1c and compared the mea-
surements against theoretical curves
from the aggregate models; the results
are shown in Figure 2. To avoid clutter-
ing the figure, data with reflectivities Z3

below +5 dBZ are not shown since these
data have DWR ≈ 0 dB and contain
no shape information. We find that the
measurements are in close agreement
with the W04 fractal aggregate model.
The sphere and spheroid models predict
DWR35−94 which are several decibels too
large. The Petty and Huang DA3 and NA
aggregate models also show poor agree-
ment with the radar observations, again
predicting DWR35−94 values which are
too high. The DA1 and DA2 aggregate

models lie closer to the measurements; however, DWR35−94 increases monotonically with DWR3−35 in the
measurements, while the DA1 and DA2 models increase at small DWR3−35 before curving back again at large
DWR3−35, which we do not observe.

In addition to aggregate models, Kneifel et al. [2011] considered the pristine crystal models provided in the
Liu [2008] scattering database. We did initially perform this comparison as well; all but one of the models
were inconsistent with our data. We found that their dendrite crystal model did give results compatible with
the measurements; however, the high reflectivities and Doppler velocities of ≈ 1 m s−1 observed in our data
convinced us that the particles were likely to be aggregates. Further evidence to support this assumption is
provided in Figure 1e which shows the reflectivity-weighted mean particle diameter DZ

DZ ≡ ∫ Dmax
0 D𝜎(D)N(D)dD

∫ Dmax
0 𝜎(D)N(D)dD

. (3)

Using an exponential PSD and the W04 model, DZ can be derived as a function of DWR, since both quantities
are independent of particle concentration [see, for example, Matrosov, 1998]. Retrieval of DZ from DWR35−94

using this function shows that the radar reflectivities (Z3) were dominated by particles up to 10 mm in size,
which is consistent with large aggregated particles, rather than single vapor-grown pristine crystals.

Interestingly, we observe that DZ increases sharply below 4.5 km height (corresponding to a temperature
of ≈ −10◦C). This may suggest an increase in aggregation efficiency as the particles become warmer as
suggested by Hosler et al. [1957].

3.2. Case Study 2: 22 May 2014
We present a second case observed on 22 May 2014, when thick stratiform cloud associated with a complex
system of convective cells and heavy rain passed northward over Chilbolton. The 3 GHz reflectivities for
this case are shown in Figure 3, with the DWR3−35 versus DWR35−94 data in Figure 3c. Cloud top was 8 km
(≈ −40◦C), while the melting layer was at approximately 1.9 km.

Compared to the first case, higher values of reflectivity Z3 (up to +30 dBZ) and DWR are observed. In terms
of the relationship between DWR35−94 and DWR3−35 the results closely resemble those for the 17 April 2014
case: the majority of high DWR values lie close to the behavior predicted by the W04 model, although the
center of the distribution appears to lie at slightly higher values of DWR35−94 for a given DWR3−35.

STEIN ET AL. ©2014. The Authors. 5
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Figure 3. (a) As in Figure 1 but for the 22 May 2014 case and only show-
ing the 3 GHz measurements. Note that Z3 values below 2 km are likely
to be underestimated due to near-field effects. (b) Doppler velocity
observed with the 3 GHz radar. (c) As in Figure 2 but for the 22 May
2014 case. The 24 profiles for which relative calibration was possible are
marked with filled triangles in Figure 3a.

Unlike case 1 there was low-level cloud
and rain present, and only 24 profiles
had successful relative calibration. For
the period prior to 1150 UTC, the depth
over which −20 < Z3 < −10 dBZ was
regularly less than 180 m. For the period
between 1150 UTC and 1200 UTC,
both Z35 and Z94 were completely
extinguished before Z3 < −10 dBZ.
Echoes below 3 km were not consid-
ered in the analysis as noted earlier.
Since we perform a relative calibration
at cloud top, this attenuation should
not affect our results unless there is
significant attenuating liquid water
mixed with the ice particles above
3 km. Such attenuation would lead to
a value of Z94 that is artificially high at
lower altitudes and therefore artificially
decrease DWR35−94 for a given DWR3−35

(which are affected much less by
liquid water).

The reason for the slightly higher values
of DWR35−94 may be microphysical as
Doppler velocities, shown in Figure 3b,
were higher than case 1, with particles
falling at ≈ 2 m s−1 in regions of higher
dual-wavelength ratio, suggesting that
the aggregates in this case are rimed.

4. Retrieving the Fractal
Dimension

We note that both in Figures 2 and
3b, the value of DWR35−94 appears to
approach an asymptotic limiting value
as DWR3−35 (and hence the size of the

particles) increases. Similar behavior was observed by Leinonen et al. [2012] (although they noted saturation
values for DWR35−94 of 7 dB and 13 dB for their two profiles).

The origin of this “saturation” effect may be explained by the fractal geometry of the aggregates. Sorensen
[2001] shows that for aggregates which are comparable to 𝜆∕4 in dimension or larger, we can expect the
function f to approach a power law scaling f (x) ∝ x−df . For large particle diameters, we can approximate

Z𝜈 ∝ ∫ m2f (D∕𝜆)N(D)dD ≈ 𝜆df × ∫ m2D−df N(D)dD . (4)

Under these assumptions, we obtain

DWR → df × 10 log10(𝜆1∕𝜆2) . (5)

For 𝜆1 = 8.6 mm (35 GHz) and 𝜆2 = 3.2 mm (94 GHz) we obtain DWR35−94 = df × 4.3 dB. We observe approx-
imately 8 dB for case study 1 and 9 dB for case study 2, and we may therefore retrieve an estimate of the
fractal dimension of the snowflakes of df = 1.9 and df = 2.1, consistent with the theoretical model of W04.
However, the data are inconsistent with the predictions of the Maruyama and Fujiyoshi [2005] aggregation
model which found df between 1.1 and 1.3.

STEIN ET AL. ©2014. The Authors. 6
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The retrieved values of df close to 2 are consistent with aircraft image analysis [Schmitt and Heymsfield, 2010]
and several mass-size power laws from the literature which have an exponent close to 2 [Brown and Francis,
1995; Mitchell, 1996; Heymsfield et al., 2010; Cotton et al., 2013].

We also note that theory restricts df < 3, which implies that we should always expect DWR35−94 < 13 dB if
the particles are fractal.

This effect furthermore implies that there is a limit to the extent that DZ can be retrieved from DWR35−94

alone if the particles are sufficiently large; for the W04 model, this corresponds to a DZ of approximately
10 mm; above this value increasing particle size leads to a negligible increase in DWR35−94.

5. Discussion and Conclusions

We have used ground-based measurements from radars at three different wavelengths to evaluate different
models of aggregate geometry and retrieve the fractal dimension. We have shown that two different
case studies had a similar relationship between DWR3−35 and DWR35−94, consistent with the fractal model
proposed by W04. The observation that DWR35−94 approaches a limiting value is consistent with fractal
geometry and allows the fractal dimension of the aggregates to be estimated from observations: df ≈ 2
in our cases. The result that ice particles can be modeled as fractal snowflakes rather than oblate spheroids
is important for radar retrievals of ice water content or snowfall rates. For instance, Hogan and Westbrook
[2014] show that ice water content retrieved from 94 GHz radar reflectivities may be in error by as much
as a factor of 5 approximating the particle by a soft spheroid model rather than representing the true
(fractal) structure.

Much less scatter in the ground-based radar measurements is observed than previously reported from
aircraft observations [Kulie et al., 2013], and we feel our data are the most convincing evidence thus far that
Kneifel et al.’s [2011] idea of distinguishing between different snowflake shapes is feasible in practice. Unlike
results from Leinonen et al. [2012] and Kulie et al. [2013], there is no indication that a mixture of different
types of aggregates are present for either of the cases studied. Indeed, the similarity of the results in the
two different clouds reported here, despite the rather different meteorological conditions, suggests that the
variability between aggregate shape populations from cloud to cloud may be modest, which is an impor-
tant result for radar retrieval algorithms and microphysics parameterization if true. The measurements in this
letter form part of the Chilbolton Triple-Wavelength Snowflake Experiment, and we plan to collect a number
of additional case studies in the coming months to quantify this further.

It would be useful to compare the observations to other aggregate scattering models. Hogan and Westbrook
[2014] used W04’s aggregates to derive an equation for the scattering behavior of the particles. They decom-
posed the distribution of mass along the radar beam into a mean shape (which determines the scattering at
small size parameters) and smaller-scale deviations from that mean (which determines the scattering behav-
ior at large size parameters). The power spectrum of the deviations had a power law form. The equation
contains three fitted constants, with different parameters recommended for horizontal or random orienta-
tion. We found that their equation gave results compatible with our data, provided that their parameters
for aggregates of plates and random orientation were assumed. Using the parameters for orientated aggre-
gates led to DWR35−94 values which were too high compared to the observations. Similarly, Leinonen et al.
[2013] generated aggregate geometries and parameterized the mass distribution within the aggregate in
terms of Gaussian functions. Again, a number of fitted constants were required to characterize the mass
distribution functions. It seems likely that triple-wavelength measurements such as those reported here can
be used to refine these parameterized models.

We have neglected attenuation due to the aggregate snowflakes themselves in our analysis: this could be
a source of error. However, the RGA used by Westbrook et al. [2006] also allows an estimate of this attenu-
ation from the retrieved particle size and concentrations (Tyynelä et al. [2013] shows that RGA estimates of
extinction are accurate to ∼20%.). At 94 GHz, the maximum specific attenuation thus calculated for case 1
and case 2 was 0.05 and 0.14 dB km−1, respectively. The two-way integrated attenuation due to snow over
the depth of the cloud was nowhere greater than 0.12 and 0.66 dB, respectively. Given these small values,
the attenuation due to snow should not significantly affect the results of this study. Likewise, although
significant attenuation could occur due to rainfall and liquid clouds in case 2, the relative calibration method
applied in our study effectively accounts for these losses.

STEIN ET AL. ©2014. The Authors. 7
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One limitation of this kind of analysis is the minimum size of particle for which the shape can be distin-
guished. The current experimental setup limits the possibilities for retrievals to millimeter-sized particles, for
which there is appreciable non-Rayleigh scattering at 35 GHz. In theory, experiments such as this could be
used to retrieve much smaller particle sizes if measurements at higher frequencies were used (e.g., 150 GHz
or 220 GHz [Battaglia et al., 2014]). Unfortunately, such data are not currently available at the time of writing.

Comparing the triple-wavelength signatures from aggregates with coincident in situ measurements would
be very valuable, and this is an avenue that we would like to pursue in future work.

The triple-wavelength data shown in this letter are freely available to other academic researchers: please
contact the authors if you would like a copy.
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