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Towards a Parallel Computationally Efficient
Approach to Scaling up Data Stream
Classification

Mark Tennant, Frederic Stahl, Giuseppe Di Fatta, Jodo Béartolo Gomes

Abstract Advances in hardware technologies allow to capture and process data in
real-time and the resulting high throughput data streams require novel data mining
approaches. The research area of Data Stream Mining (DSM) is developing data
mining algorithms that allow us to analyse these continuous streams of data in real-
time. The creation and real-time adaption of classification models from data streams
is one of the most challenging DSM tasks. Current classifiers for streaming data
address this problem by using incremental learning algorithms. However, even so
these algorithms are fast, they are challenged by high velocity data streams, where
data instances are incoming at a fast rate. This is problematic if the applications
desire that there is no or only a very little delay between changes in the patterns of
the stream and absorption of these patterns by the classifier. Problems of scalability
to Big Data of traditional data mining algorithms for static (non streaming) datasets
have been addressed through the development of parallel classifiers. However, there
is very little work on the parallelisation of data stream classification techniques. In
this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time
adaptive and parallel methodology for scalable data stream classification tasks.

1 Introduction

The problem of dealing with ‘Big Data’ for ‘classification’ is that classical methods
of classification are not suitable with respect to the new scale, speed and the vari-
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ety (possible unstructured format) of ‘Big Data’. Traditional data mining methods
for classification of static data take several passes through the training data in or-
der to generate the classification model, which is then applied on previously unseen
data instances. Streaming models differ from this learning procedure of Train and
Test to a system that continuously needs to be evaluated and updated. As the data
is often either too fast to process in depth, or too vast to store, data stream clas-
sifiers must be naturally incremental, adaptive and responsive to single exposures
to data instances. The continuous task of re-learning and adaptation aims to tackle
the problem of concept drift [12] (changes of the patterns encoded in the streams
over time). An ideal data stream classifier should incorporate certain features [18]:
the classifier must limit its size (memory footprint) as streams are theoretically in-
finitely long; the time taken to process each instance is short and constant so as not
to create a bottleneck; each data instance is only seen once by the classifier; the
classification model created incrementally should be equivalent to a ‘batch’ learner
given the same training data; and the classifier must be able to handle concept drift.
Data streams come in all forms as technologies merge and become more intercon-
nected. Classic applications are: sensor networks; Internet traffic management and
web log analysis [13]; TCP/IP packet monitoring [8]; and intrusion detection [15].
However, capturing, storing and processing these data streams is not feasible, as the
data stream is potentially infinite. Systems that could analyse these very fast and
unbounded data streams in real-time are of great importance to applications such as
the detection of credit card fraud [6, 20] or network intrusion. For many data min-
ing problems parallelisation can be utilised to increase the scalability. It is a way
for classifiers to increase the speed of both model creation and usage, notable de-
velopments are for example the tree and rule based parallel classifiers [16, 22, 23].
Working with data streams limits the processing time available for classifications
(both testing and training), to the small window of time in between the arrival of
instances. Parallelisation of data stream mining algorithms offers a potential way
to create faster solutions that can process a much larger amount of data instances
in this small time window and thus can scale up these algorithms to high velocity
data streams. One of the currently fastest streaming decision tree based classifiers
VEFDT (Very Fast Decision Tree) [11] is simple, incremental and has great perfor-
mance. Unfortunately they are not inherently scalable and lack the ability to be
efficiently parallelised. The problem with distributing complex streaming classifier
models (such as decision trees) over a cluster, is that it reduces their ability to adapt
to concept drift and creates new problems such as load imbalance and time delays.
KNN is typically not suited to data stream mining without adaptation (such as em-
ploying KD-Trees,P-Trees, L-Trees, MicroClusters) [26], as they incur a relatively
high real-time processing cost, proportional to their training data size. In this pa-
per we propose KNN as a basis for the creation of a parallel data stream classifier.
The motivation for using KNN is because KNN is inherently parallelisable, for ex-
ample [25] developed a parallel KNN using the MapReduce parallel programming
paradigm [9]. This has been demonstrated in the past for KNN on static data [17],
but not yet on data streams. Versions of KNN for data streams exist, such as [10],
but to our knowledge there are no parallel approaches for KNN on data streams.
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This paper investigates the feasibility of developing a parallel data stream classi-
fier based on KNN. For this we build a simple serial (non-parallel) KNN classifier
for data streams that is able to process and adapt on streaming data in real-time.
We then show that this basic real-time KNN classifier is competitive (in terms of
classification accuracy) compared with other existing well established data stream
classifiers, yet very slow. Next we propose a parallel version of this real-time KNN
classifier and show empirically that it achieves the same level of classification ac-
curacy compared with its serial version, but has the potential to process data much
faster. This parallel real-time KNN method is not only expected to compete well
with the current best classification algorithms in terms of accuracy and adaptivity to
concept drifts, but also in terms of its scalability to future increases in ‘Big Data’ in
terms of volume and velocity [14].

The remainder of this paper is organised as follows: Section 2 proposes to use
KNN as the basis for a data stream classifier that is parallelisable and provides a
comparative analysis with other data stream classifiers. We go on to highlight its
weakness (processing time), and propose to counter this with parallisation. Section
3 then introduces a parallel version of the KNN based data stream classifier. Section
4 discusses ongoing work and concluding remarks.

2 Adapting KNN for Data Stream Classification

This sections outlines a basic KNN algorithm for data streams and evaluates this
real-time KNN in terms of its predictive performance compared with other currently
leading data stream classifiers. Motivated by the results a parallel version of real-
time KNN is proposed in Section 3.

2.1 A Simple Real-Time KNN Based Classifier for Data Streams

When dealing with data streams of infinite length it is apparent that the size of the
training set needs to be managed, simply adding more and more items into the train-
ing set over time is not feasible for long-term performance. Too many items in the
training set will have a negative effect on the performance of the classifier in terms
of CPU-time, memory consumption but also accuracy as old potentially obsolete
concepts may be used for prediction. Too few items will negatively impact the clas-
sifiers accuracy as well, as new emerging concepts may only be covered partially.
Loosely speaking, the classifier needs to be able to adapt to ‘concept drifts’.

In this section we give a brief overview on the principle of KNN and discuss
the sliding window approach as a means to manage the training pool and sampling
from the data stream. The classifier maintains a training set of previously classi-
fied instances. New instances that require classification are evaluated against each
instance in the training set using a distance measure indicating how ‘similar’ the
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new (test) instance is to each training instance. Once all training items have been
evaluated against the new instance the training instances are re-ordered by their
‘distance’ evaluation. The top ‘K’ training instances (the Nearest Neighbours) are
used as individual votes with their classification labels. The classification label with
the majority vote is assigned to the new instance.

Each training item must be evaluated against the new instances to see how closely
they resemble each other. This resemblance is quantified by the squared Euclidean
distance.

N

Squared Ecludian Distance = Y (X; — X;)?
i=1

where N is the number of attributes, X is the training record and X is the test record.
Categorical attributes are re-quantified to give an equal distance of 1 unit between
any different attribute values. More categorical attribute tailored distance metrics
could be used, however, for showing that KNN is competitive with other existing
data stream classifiers this simple approach is sufficient. A few “Windowing’ tech-
niques exist to manage the number and relevance of training items in a training set.
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Fig. 1 Sliding Windows with KNN. The shapes represent the data instances’ classes (circle and
square) and the number inside the shape is the time stamp. Shaded instances (shapes) are within
the current sliding window and available for KNN.

A popular, yet simple technique is the ‘Sliding Window’ as depicted in Figure 1,
where a buffer of predetermined size is created to hold the training instances accord-
ing to the First In First Out (FIFO) principle w.r.t the timestamps of the instances.
Therefore, as a new instance arrives it replaces the oldest instance in the sliding
window. As the sliding window size (number of items it contains) is fixed it natu-
rally keeps the training focused upon the recently seen instances without the need of
additional management or complex statistical evaluations. Possibly more for KNN
tailored Windowing approaches could be developed, however, Section 2’s purpose
is to show KNN'’s general suitability for data stream classification rather than opti-
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mising windowing. The reader is referred to [13] for a more comprehensive review
of windowing techniques and change detectors.

2.2 Experimental Analysis of Real-Time KNN

This Section evaluates the illustrated simple real-time KNN approach (Section 2.1),
empirically regarding its potential adaptation as a parallel data stream classifier.
Multiple sliding window sizes were used to also evaluate the effects of a larger
training set size upon KNN classifiers. As KNN classifiers only utilise training in-
stances as the basis for classification, we would expect that more training instances
potentially produce better results. The tradeoff we expect is that the classification
times become much larger.

2.2.1 Experimental Setup

To evaluate the accuracy and the speed versus the training sizes, multiple sliding
window sizes were created (50,100,250,500,1000,2000 and 5000 instances) and
evaluated. The KNN classifier was set to a fixed K-value of 3 and utilised a ‘Sliding
Window’ approach. Each simulation was run 6 times. Both, the Mean accuracy of
the complete streams and their corresponding Mean processing times were recorded
for evaluation. Our KNN Classifier is implemented using the MOA framework [2].
The MOA framework is an open source environment for evaluating data stream
classification, clustering and regression algorithms and comparing them against one-
another. The framework incorporates the most widely used algorithms for compari-
son, such as Hoeffding Trees [11] and Naive Bayes classifiers.

In this paper we utilise three of MOA’s artificial stream generators with concept
drift. Multiple stream generators were created from which new instances are taken
from for training and testing. Initially all instances were taken from one data stream
generator. As the concept drifts, overlap occurs, increasingly more instances were
taken from a second data stream generator, finally, after the concept drift finished,
all instances were taken from the second generator. Each stream generator was set
to create 35,000 instances sequentially for classification. Three individual tests were
performed on each of the streams: sudden concept drift, where the concept in the
stream switches to a different one immediately after the 10,000 instance, there is
no overlap of instances from both generators; gradual concept drift, where two con-
cepts coexist over a period of 1,000 instances from the 10,000" instance onwards,
instances from both data streams are taken over a period of 1,000 instances; recur-
ring concept drift, which are essentially two sudden concept drifts, where the first
concept is replaced by the second one from the 10,000 instance onwards and then
the second concept is again replaced by the first concept from the 12000 instance
onwards. The MOA stream generators were used to generate unique data instances
at run time. Each instance generated, conformed to the underlying concept of the
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generator at the time of creation. Each instance was tested upon the classifier to
log the classifier’s performance before being used for training: this is also know as
Prequential testing (Test then Train) [4].

The STAGGER data stream [21] consists of three attributes, each valuing one of
three values. The stream generator classes each instance according to the attributes
randomly assigned and the ‘function’ selected at run-time. Only two possible class
labels exist (True and False). Depending on the function preset by the user the gen-
erator labels the instances (True or False). The default value of False is used unless
combinations of attribute values are met to produce True classifications, dependant
on the function selected. For function 1 an attribute pair of ‘Red’ and ‘Small” gives
a True value. Function 2 requires an attribute value of ‘Green’ or ‘Circle’, while
function 3 needs a ‘Medium’ or ‘Large’ value. We have arbitrarily chosen function
1 for the initial concept and function 3 for the concept change.

The SEA data stream [24] contains three continuous attributes and two class
labels. The stream can be set to 1 of 4 function parameters. The function selected
determines the value of a sum threshold of the first 2 continuous attribute values
(Threshold Values: 8,9,7,9.5). A class label of True is given only if the Threshold
level is surpassed, otherwise class label False is given. We have arbitrarily chosen
function 1 for the initial concept and function 3 for the concept change.

The Random Tree Generator [11] creates a random tree with split points using
the attributes associated with the stream. Each tree leaf is labelled with class labels
and then all subsequent randomly generated instances are labelled according to their
traversal of the tree to a leaf node. In our experiments the random tree(s) comprise
five continuous attributes and three distinct class labels. A drift is achieved by simply
generating a different random tree.

2.2.2 Results and Interpretation

All streams were randomly generated by the MOA artificial stream generators with a
finite number of instances (35,000). The classification accuracies are listed in Table
1 for our real-time KNN approach, Naive Bayes and Hoeffding Tree, where the
accuracy is the mean accuracy achieved over the whole 35,000 instances.

The categorical synthetic data stream (STAGGER) on all KNN evaluations was
observed to perform best with a training set size of 250 (Table 1). This is probably
due to the random nature of the generated stream and an overall imbalance of classes
in the training instances.

The SEA dataset [24] represents an interesting problem. On first glance the Ho-
effding Tree produces a good tree quickly with good classification results. Upon fur-
ther investigation of the Hoeffding Tree we found that the underlying tree structure
is larger than expected. For the simple task of summing two attributes for classifica-
tion (True if over a set threshold or False if under) the tree structure contained over
40 decision tree branches, many of which were a split decision based upon the 3™
attribute; an attribute that is known to have no relation to the classification decision
within the stream generator.
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The increase in accuracy of the KNN classifier with respect to continuous at-
tributes is promising. It shows that the real-time KNN approach is competitive with
standard popular data stream classifiers (Hoeffding Trees and Naive Bayes), at the
cost of processing time. In general the results of SEA and Random Tree suggest
that probably even higher accuracies could have been achieved with a larger sliding
window (on the expense of processing time).

Table 1 Simple real-time KNN classification accuracy and overall processing time needed for
the 35,000 instances. A sudden (or gradual) concept drift occurs at instance 10,000, the gradual
concept drift lasts until instance 11,000. A recurring concept drift appears 12,000 instances. The
run-time s is listed in seconds.

Concept  |Learner (Training Size)[STAGGER % (s)| SEA % (s) |Random Tree %(s)
Naive Bays 83.24(0.08) | 94.15(0.11) 69.87(0.12)
SUDDEN  [Hoeffding Tree 96.65(0.20) | 95.59(0.36) 78.65(0.36)
KNN(50) 96.53(0.22) | 90.35(0.25) 68.53(0.21)
KNN(100) 98.14(0.38) | 92.56(0.37) 71.86(0.35)
KNN(250) 99.25(0.90) |94.66 (0.94) 75.03(0.96)
KNN(500) 98.87(1.76) | 95.70(1.97) 77.32(2.03)
KNN(1000) 97.76(3.55) | 96.37(4.33) 78.75(4.46)
KNN(2000) 95.58(6.70) |96.80 (9.05) 79.84(9.25)
KNN(5000) 90.65(15.65) [97.12(23.53)| 79.18(24.00)
Naive Bays 83.24(0.08) | 94.15(0.11) 69.86(0.11)
GRADUAL |Hoeffding Tree 96.65(0.21) | 95.57(0.33) 78.36(0.33)
KNN(50) 96.35(0.18) | 90.33(0.19) 67.97(0.18)
KNN(100) 98.14(0.36) | 92.51(0.34) 71.32(0.35)
KNN(250) 99.25(0.86) | 94.63(0.92) 74.56(0.95)
KNN(500) 98.87(1.71) | 95.71(1.96) 77.01(2.00)
KNN(1000) 97.76(3.48) | 96.35(4.34) 78.48(4.39)
KNN(2000) 95.58(6.66) | 96.80(9.02) 79.75(9.20)
KNN(5000) 90.11(15.93) [97.12(23.42)| 79.13(23.90)
Naive Bays 83.62(0.08) | 94.20(0.11) 71.07(0.16)
RECURRING |Hoeffding Tree 88.00 (0.2) 95.37(0.27) 77.60(0.31)
KNN(50) 95.10(0.18) | 90.31(0.16) 68.98(0.18)
KNN(100) 97.17(0.35) | 92.55(0.34) 72.13(0.34)
KNN(250) 98.45(0.85) | 94.64(0.94) 75.04(0.95)
KNN(500) 98.01(1.69) | 95.67(1.96) 77.17(2.03)
KNN(1000) 96.61(3.40) | 96.37(4.30) 78.38(4.41)
KNN(2000) 93.53(6.57) | 96.78(9.08) 79.14(9.25)
KNN(5000) 85.63(15.55) |97.00(23.50)| 77.82(24.14)

As expected, Figures 2 to 4 show that as the sliding window size increases the
time taken to process all 35,000 instances increases linearly. This is because test
instances have to be compared with a larger number of training instances, which
involves more distance calculations. In each graph the STAGGER data stream is
quicker to process due to its categorical variables.

We expect a rise in computational cost due to the training size increase. However,
KNN is inherently parallel as each training item can be independently evaluated.
Motivated by the analysis results of this section, Section 3 discusses how real-time
KNN can be parallelised.



Mark Tennant, Frederic Stahl, Giuseppe Di Fatta, Jodo Bartolo Gomes

Timeis)
Time(s)

al " [~-STAGGER] | al " [~—STAGGER ] |
8 = SEA 5 = SEA
ol — R-TREE || ok — R-TREE ||
T 1000 2,000 3,000 4000 5,000 0 1.000 2,000 3,000 4,000 5,000
Training set Size Training set Size

Fig. 2 Simple real-time KNN processing Fig. 3 Simple real-time KNN processing
time with respect to training set size : sud- time with respect to training set Size : grad-
den concept drift ual concept drift

Timeis)

——STAGGER
—=  SEA
—= R-TREE

L L L L L
O 1,000 2,000 3,000 4,000 5,000

Training set Size

Fig. 4 Simple real-time KNN processing
time with respect to training set size : recur-
ring concept drift

3 Parallel Data Stream Classifier Based Upon KNN

As the process of calculating the distance of a test instance to a training instance is an
isolated function, with no other information required other than these two instances;
it is a data parallel problem. We propose to utilise the open source MapReduce
framework (Hadoop) to create a distributed real-time KNN classifier.

3.1 The MapReduce Parallelisation Paradigm

Apache Hadoop [1] is a programming framework and implementation for process-
ing large data, based on Google’s MapReduce framework. The MapReduce frame-
work can be simplified into 2 logical steps (Mapping and Reducing). Mapping,
refers to the ‘bulk’ processing that needs to be parallelised. The function to be pro-
cessed (Map function) is sent to each node (worker) in the cluster, along with a
subset of the data to be processed. Each Mapper works independently upon its sub-
set of the data and reports its findings to the Reducer. The Reducer collates all the
information from each Mapper and merges it into a logical order (using a Reduce
function) before further processing and/or reporting final results. Apache Spark [3]
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is an open source implementation of MapReduce tailored for streaming data, which
we utilise in this research.

3.2 Adaptive Parallel real-time KNN for Data Streams

To show parallel real-time KNN’s classification performance we have created a set
of KNN classifiers in the form of Mappers, each employing a sliding window of
size:

size of the total sliding window
number of Mappers

Each Mapper holds a unique subset of the training data and an instance of our
serial real-time KNN classifier as Map function (described in Section 2). Training
upon the cluster involves the additional step of splitting the training data evenly
across the cluster. Each Mapper keeps its local training data in its own local ‘Sliding
Window’ to manage its size and recency. As long as additional training data is evenly
distributed across the cluster each Mapper will only hold the most relevant (latest)
instances. Each Mapper does not have any direct access or communication with
other Mappers, or their data. All data input and output is facilitated through the
MapReduce paradigm.

MOA Stream Generator I

¥ SPARK Cluster
[ Job Scheduler and Load Balancing

[ - -~ ~—°- a

¥ ¥ v Y
WMapper #1 Mapper #2 Mapper #3 Mapper N
SlidingWindow SlidingWindow, SlidingWindo: Sliding\Wind ow|
Training Set Training Set Training Set Training Set
T
[ JI' L ___ '
[ Reducer

T l Best ‘K’ Classifications

Fig. 5 Parallel real-time KNN Classifier Architecture.

The complexity of KNN is approximately O(N) where N is the number of train-
ing instances. An overview of the cluster layout and process path can be seen in
Fig. 5. By distributing the training set out over different Mappers the costly distance
evaluations for each of the training items can be calculated in parallel. As shown
in Algorithm 1, each Mapper only posts the locally ‘K’ required best classification
/ distance metrics pairs. Thus reducing the internal communication of the cluster
down to a minimum level, as there is no expensive communication required between
the Mappers in order to find the overall ‘K’ best candidates. This results in m * K
instances to be forwarded to the Reducer (if m is the number of Mappers), amongst
which the ‘K’ best candidates are contained. The Reducer phase ensures that the
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globally best ‘K’ instances’ class labels are returned to the ‘MOA Stream Genera-
tor’. This ensures that always the globally ‘K’ best candidates are returned. Please
note that this approach ensures that the parallel real-time KNN will always return
the same ‘K’ best candidates as the serial real-time KNN would, irrespectively of
how many Mappers have been used.

Algorithm 1: Parallel real-time KNN Process

Data: Test Instance
Result: Closest Neighbour(s) Class Labels
Broadcast(Test Instance);
foreach Parallel Mapper KNN Classifier do

foreach Training Instance in the Sliding Window do
Evaluate Test Instance( TrainingInstance[i] );

end
Sort Evaluations by Distance();
Send K Best Evaluations to Reducer();
end
Reducer;
foreach MapperResultSet do
‘ MergeSort(MapperResults);
end
ReturnKBestEvaluations();

The scalability of this approach can be broken down into several steps that con-
sume time for both, the maintenance of a sliding window (training data) and per-
forming classifications: communication of instances to the computer cluster Tcopn;
adding and removing instances to the sliding window Ty y; process instances (dis-
tance calculations) Tp;s7; communication of the K locally best instances from each
Mapper to the Reducer Teopour; rank the K - m instances and determine the clas-
sification based on the majority vote of the K top ranked instances on the Reducer
Trank- Thus the total online training and testing time consumed can be summed up
as follows:

Trorar = Tcomin + Twin + Tpist + Tcomout + Trank

whereas we currently parallelised the computationally most expensive steps Ty y
and Tp;st. The times Teopour and Trank are negligibly small, Teopour only re-
quires the communication of only K - m instances to the Reducer on a classification
request; and Trang essentially performs a sort on only the K - m instances also only
on a classification request. Tcopmyn is currently not parallelised but required in order
to get the training and test data into the cluster. Thus the total time needed is:

Trorar = Tcomin + vani + % + Teomout + Trank

3.3 Initial Experimental Analysis of Parallel KNN Prototype

3.3.1 Experimental Setup

The experimental setup is the same used for the evaluation of the serial real-time
KNN in Section 2.2.1, this allows comparing parallel real-time KNN against its se-
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rial version. The purpose of this preliminary evaluation is to show that our parallel
approach is able to reproduce the same accuracy as serial real-time KNN. The eval-
uation in this Section is based on a real parallel implementation, however, with only
one physical computer node. The empirical scalability analysis is subject to ongoing
work.

3.3.2 Results and Interpretation

As the results in Table 2 show, our parallel real-time KNN is just as accurate as the
serial real-time KNN classifier (see Table 1), but has the ability to be scaled up to
faster data streams through the use of a computer cluster. Please note that both, the
serial and parallel versions of real-time KNN are deterministic on the same data;
and that the parallel version always produces exactly the same classifications as the
single real-time KNN classifier does. However, the parallel verison is expected to
be faster. The small discrepancies in accuracy between the single real-time KNN
classifier and the parallel version exist because MOA’s stream generators are non-
deterministic.

Table 2 Parallel real-time KNN Classification Accuracy for 35,000 Instances (Sudden Concept
Drift occurs at Instance 10,000. Secondary Concept Drift for Recurring occurred at 12,000 In-
stances).

Concept  |Learner (Training Size)|[STAGGER %(s)| SEA %(s) |Random Tree %(s)
SPARK-NN(50) 96.87(39.39) (90.53(41.70)| 67.45(40.86)
SUDDEN |SPARK-NN(100) 98.75(39.03) (92.65(39.97)| 70.28(41.37)
SPARK-NN(250) 99.26(40.48) (94.37(40.05)| 73.85(42.03)
SPARK-NN(500) 98.84(40.36) (95.49(40.06)| 75.70(40.15)
SPARK-NN(1000) 97.73 (40.12) [96.22(37.69)| 77.56(38.97)
SPARK-NN(2000) 95.53(38.98) (96.34(39.67)| 78.56(40.79)
SPARK-NN(5000) 76.02(44.77) (96.89(39.89)| 78.46(40.45)
SPARK-NN(50) 95.88(41.23) (90.56(41.56)| 66.88(41.35)
GRADUAL |SPARK-NN(100) 97.88(41.97) (92.64(42.34)| 69.77(41.37)
SPARK-NN(250) 98.70(41.52) (94.30(41.72)| 73.35(42.84)
SPARK-NN(500) 98.46(41.26) |95.40(41.87)| 75.23(41.35)
SPARK-NN(1000) 97.62(41.16) (96.16(42.25)| 77.23(42.34)
SPARK-NN(2000) 95.54(41.17) (96.71(41.82)| 78.40(41.54)
SPARK-NN(5000) 90.52(42.80) (96.83(42.69)| 78.35(42.86)
SPARK-NN(50) 95.68(40.91) 190.49(40.43)| 67.76(39.81)
RECURRING |SPARK-NN(100) 97.76(39.29) (92.60(40.01)|  70.38(40.06)
SPARK-NN(250) 98.47(40.57) |94.43(39.93)| 73.84(41.33)
SPARK-NN(500) 97.96(40.17) (95.47(39.94)| 75.54(41.76)
SPARK-NN(1000) 96.75(38.87) 196.19(40.22)|  77.22(39.75)
SPARK-NN(2000) 93.47(39.90) (96.67(40.53)| 77.93(40.35)
SPARK-NN(5000) 85.58(40.41) [96.70(41.25)| 77.09(41.47)

On average using the same classification metrics and settings on a single ma-
chine the SPARK framework adds approximately 40s to the task of classification
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regardless of the training sets sizes as can be seen in Table 2. This shows that the
times taken for classifications do not follow a linear increase as we would expect.
This may be partly due to using MOA and SPARK frameworks together. The MOA
framework generates single instances for classification while SPARK works more
efficiently with batch broadcasts. The internal communications and data handling
of the MapReduce jobs inside the SPARK framework are therefore overly large. As
mentioned above, we have used MOA in this implementation in order to evaluate
the accuracy of our approach, but it will be removed in the future in order to allow
an evaluation regarding parallel real-time KNN’s scalability to fast data streams on
areal cluster. An interesting feature has been observed with the continuous data sets
(Random Tree and SEA). When the training data is set to 1,000 instances, a small
reduction in overall time can be seen in the sudden and recurring results. We believe
this is due to the data propagation through the SPARK framework and internal data
handling.

Our further works will aim to improve the performance of the classifier. As we
have highlighted that our parallel real-time stream classifier performs with simi-
lar accuracy as our single real-time classifier we can remove the feedback loop
to MAO for testing (see Figure 5) the MOA framework. This should increase the
SPARK performance as multiple classification broadcasts and evaluations can be
batch transmitted throughout the cluster.

4 Conclusions and Ongoing Work

In this research we developed a data stream classifier that is highly parallelisable
and hence can be applied to high velocity data streams. So far there are very few
approaches of parallel data stream classification algorithms. In our algorithm we
have proposed to use KNN as a basis, due to the fact that it is inherently parallel.
We have introduced real-time KNN as a simple non-parallel data stream classifier
and compared it to existing popular non-parallel data stream classifiers. The results
showed that our simple real-time KNN is competitive in terms of the average mean
accuracy; however, as expected, on the expense of processing time. Yet, processing
time is crucial in many high velocity real-time applications. Motivated by real-time
KNN'’s competitiveness in terms of its mean accuracy we further proposed a parallel
version of real-time KNN that is expected to increase the scalability of the classifier
to much larger high velocity data streams compared with existing data stream clas-
sification algorithms. A prototype implementation of this parallel real-time KNN
classifier has been evaluated in terms of its accuracy and it has been found that it
achieves a very similar level of accuracy compared with the serial real-time KNN.

We are currently migrating our implementation to a dedicated server cluster. We
have created a SPARK cluster of 64 nodes capable of running our real-time parallel
KNN classifier. We aim to show that the SPARK overhead can be mitigated with
large enough data streams of high velocity. We propose to use both, artificial stream
generators and real stream data for parallel classification.
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Also a new data structure for real-time parallel KNN, based on ‘Micro-Clusters’
similar to those used in the CluStream [5] data stream clustering algorithm, is cur-
rently in development. The Micro-Clusters are intended to be used in real-time sta-
tistical summaries of the training instances in terms of their attributes values and
time stamps. This is expected to make real-time KNN as well as its parallel version
computationally more efficient in terms of processing times, as well as memory
consumption. The second objective of using these Micro-Clusters is to improve the
accuracy and speed of adaptation to concept drifts, as Micro-Clusters present a more
dynamic way of dealing with the recency of data instances compared with a simple
sliding window. Currently the size of the sliding window is set by the user; how-
ever, the micro clusters would allow us to take the actual recency of a Micro-Cluster
into account as a weight for the distance calculation to test instances. Furthermore
Micro-Clusters present a memory efficient way of storing obsolete concepts that
could be reactivated quickly in the case an old concept suddenly recurring, which in
turn is expected to improve the speed of adaptation in the case of recurring concepts.
KNN queries can also be accelerated by using efficient data structures such as mul-
tidimensional binary search trees (KD-Trees) [7]. KD-Trees are very efficient and
effective for many problems in Computer Graphics and Image Processing where the
space dimensionality is intrinsically low. Binary Space Partitioning (BSP) trees are
a general technique for recursively dividing a multidimensional space into convex
sets by means of hyperplanes. Every non-leaf node of a BSP-tree defines a splitting
hyperplane that divides the space into two subspaces. KD-Trees are a particular case
where each hyperplane is perpendicular to an axis. BSP-trees can be built by means
of approximate Hierarchical Clustering [19] and have been shown to be better suited
to improving the efficiency of KNN queries even in high dimensional spaces.
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