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[1] Single-column models (SCM) are useful test beds for investigating the
parameterization schemes of numerical weather prediction and climate models. The
usefulness of SCM simulations are limited, however, by the accuracy of the best estimate
large-scale observations prescribed. Errors estimating the observations will result in
uncertainty in modeled simulations. One method to address the modeled uncertainty is to
simulate an ensemble where the ensemble members span observational uncertainty. This
study first derives an ensemble of large-scale data for the Tropical Warm Pool
International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of
error in the best estimate product. These data are then used to carry out simulations with
11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also
performed. All models show that moisture-related variables are close to observations and
there are limited differences between the best estimate and ensemble mean values. The
models, however, show different sensitivities to changes in the forcing particularly when
weakly forced. The ensemble simulations highlight important differences in the surface
evaporation term of the moisture budget between the SCM and CRM. Differences are
also apparent between the models in the ensemble mean vertical structure of cloud
variables, while for each model, cloud properties are relatively insensitive to forcing. The
ensemble is further used to investigate cloud variables and precipitation and identifies
differences between CRM and SCM particularly for relationships involving ice. This
study highlights the additional analysis that can be performed using ensemble simulations
and hence enables a more complete model investigation compared to using the more
traditional single best estimate simulation only.
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1. Introduction
[2] The Tropical Warm Pool International Cloud Experi-

ment (TWP-ICE) took place around Darwin from 20 January
to 13 February 2006 [May et al., 2008]. The data collected
during the experiment provides an opportunity to inves-
tigate several different states of tropical convection. The
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experiment collected sufficient information to derive both
the large-scale heat and momentum and moisture budgets
[Xie et al., 2004] as well as detailed information on the
state of the smaller scale convection and associated clouds.
Such data sets are commonly used in the modeling com-
munity to carry out process-oriented studies in particular
applying cloud-resolving models (CRM) and single-column
models (SCM). One of the primary motivations for TWP-
ICE was to enable the improvement of global climate models
(GCM), which are known to be deficient in the repre-
sentation of cloud and rainfall particularly associated with
tropical convection. The international research community
has conducted a suite of multimodel studies for TWP-ICE.
A hierarchy of experiments enables the investigation of
model errors as discussed in J. Petch et al. (Evaluation
of intercomparisons of four different types of model sim-
ulating TWP-ICE, submitted to Quarterly Journal of the
Royal Meteorological Society, 2012) and includes GCM [Lin
et al., 2012] and Limited Area Models [Zhu et al., 2012]
forced with European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis as well as a CRM study
[Fridlind et al., 2012] performing simulations driven by a
single “best estimate” large-scale budget data set [Xie et al.,
2010]. This paper reports on the SCM component of the
overall modeling strategy. One innovation applied here will
be the use of an ensemble of SCM simulations to elucidate
uncertainties in the estimation of model errors and to explore
model sensitivities to changes in the data set driving the
model simulations.

[3] The investigation of model shortcomings through
SCMs is a well-used method in the model development
research community. Model development studies, which
include a SCM component, have been instigated by the
Global Energy and Water-Cycle Experiment (GEWEX)
Cloud System Study (GCSS) [Randall et al., 2003] in con-
junction with the U.S. Department of Energy Atmospheric
System Research (ASR) to investigate a wide range of test
cases including deep convection over the tropical ocean
using data from the Tropical Ocean Global Atmosphere
(TOGA) Coupled Ocean-Atmosphere Response Experiment
(COARE) [Webster and Lukas, 1992] intensive observation
period [e.g., Woolnough et al., 2010; Bechtold et al., 2000]
and convection over land exploiting extensive observations
[e.g., Grabowski et al., 2006; Xie et al., 2005, 2002; Ghan et
al., 2000]. Investigation of the specific problem of the diur-
nal cycle was conducted by the European Cloud Systems
(EUROCS) project and discussed in Guichard et al. [2004].
These studies focussed on a limited number of model sim-
ulations forced by a single data set, from hereon referred to
as the “best estimate” forcing. While best estimates of the
large-scale atmosphere are usually derived to depict the most
probable state of the large-scale atmosphere, they do contain
errors of usually unknown magnitude. These errors compli-
cate the interpretation of the results of SCM simulations,
as the discrepancies between the model-simulated fields and
observations may be attributed to two sources, from pre-
scribing an incorrect large-scale state or due to errors in
model processes. By using a single-model realization of
the large-scale state, it is impossible to separate these two
error sources.

[4] Ensemble techniques are commonly used in numerical
weather prediction (NWP) and climate models to investigate

model sensitivities and to determine uncertainty. These
ensembles may include perturbed initial conditions or vary-
ing model parameters within a limited range. Multimodel
ensembles have also been used to provide an estimate of
the range of simulations. A limited number of studies also
derived ensemble techniques for use in SCM studies. Hack
and Pedretti [2000] added random perturbations to the initial
conditions of their ensemble simulations and found consid-
erable variations in simulated fields. Similar results were
found when modifying the prescribed vertical motion field in
a similar manner. Given the bifurcations discussed in Hack
and Pedretti [2000], Hume and Jakob [2005, 2007] and Ball
and Plant [2008] determined that an ensemble technique was
appropriate for SCM. Hume and Jakob [2005] found that
after about 18 h of simulation, results were increasingly sen-
sitive to the prescribed forcing rather than differences in the
initial conditions. For this reason, this TWP-ICE study uses
an ensemble of large-scale forcing.

[5] The goal of this study is to apply an ensemble SCM
technique to the TWP-ICE experiment and to highlight
additional opportunities for model evaluation that such a
technique may provide. The technique is applied to a wide
range of SCMs as well as a small number of CRMs, enabling
the investigation of a range of model behaviors. The results
from the ensemble simulation will be compared to those of
single “best estimate” simulations. It will be shown that a
particularly interesting aspect of the use of the ensemble
technique in this context is the possibility to study model
sensitivities with changing forcing data set. It is shown that
the different models exhibit distinctly different ensemble
behavior that is not apparent when comparing simulations
with a single forcing data set. Section 2 summarizes the
experimental design including the methodology used in the
derivation of the ensemble large-scale forcing, the case spec-
ification, and a description of the models. The main results of
the study are discussed in section 3 followed by a summary
and the main conclusions in section 4.

2. Experimental Design
[6] The experiments conducted here use both a best esti-

mate forcing and an ensemble of forcing data sets. The best
estimate data set used is that derived by Xie et al. [2010] and
is identical to that used in Fridlind et al. [2012]. Using an
ensemble approach enables a better understanding of model
accuracy and model sensitivity to be calculated. As this
study includes a number of different models, these character-
istics are determined dependent on model. This section will
detail the design of the study including the ensemble forcing
design, the case specification, and the participating models.

2.1. Ensemble Design
[7] A number of techniques exist to derive budgets from

observational data collected in field campaigns. Here, the
variational analysis technique of Zhang and Lin [1997] is
used in the analysis of TWP-ICE observations. This tech-
nique provides an estimate of area-averaged atmospheric
and surface conditions using a combination of surface obser-
vations, vertical profiles of the atmosphere, satellite obser-
vations, and numerical model data. The variational analysis
process minimizes a cost function for the heat, moisture, and
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Figure 1. Time-averaged vertical profiles of omega over active (left) and suppressed (right) monsoon
for all ensemble members. Broken and light-colored lines show all ensemble members with key ensemble
members (5th, 25th, 50th, 75th, and 95th percentiles) as black continuous lines. The best estimate forcing,
used here and in the CRM intercomparison, is shown by small circles. Note the different x axis.

momentum budgets using constraints of top of atmosphere
and surface energy and moisture.

[8] One of the constraints used in the variational analysis
method is the domain-average surface rainfall. In the case of
the TWP-ICE experiment, this domain-mean surface rainfall
is derived from radar data. Compared to the use of rain gauge
observations, this improves the spatial representativeness of
the estimate, but this comes at the expense of accuracy of
the local rainfall estimates as radar measurements need to be
converted to rainfall. It has been shown [Zhang et al., 2001]
that the surface rainfall has a large effect on the derived
forcing data set; for example, the analyzed vertical veloc-
ity is very sensitive to rainfall. Furthermore, the derivation
of surface rainfall from radar data is also highly complex
and liable to large errors [Joss and Waldvogel, 1990]. These
errors will have a large effect on the derived forcing data set.

[9] One method to address uncertainty in large-scale forc-
ing data is to derive an ensemble of forcing data. Only a
short summary of the method to derive such an ensemble is
given here, with more details provided in the Appendix. The
method is principally based on estimates of errors in the rain-
fall estimates that are a key input to the variational budget
analysis. A comparison of radar-derived and rain gauge data
is carried out to provide an estimate of the error in the radar
estimates of domain-average rainfall. From these error esti-
mates, 100 equally likely alternative domain-mean rainfall
time series are calculated. The 100 rainfall time series are
then used as inputs to the variational analysis to derive 100
alternative versions of the large-scale state using the same
variational technique as is used to derive the best estimate
large-scale state. These 100 large-scale states constitute the
forcing ensemble used in this study.

[10] When deriving the large-scale state using these alter-
nate rainfall time series, all other observations have the
same values as the best estimate, for example, tempera-
ture, moisture, and horizontal wind fields. Given that the
boundary values of temperature and moisture are identical
between all realizations, the horizontal advection terms of
temperature and moisture differ very little. The variational
analysis process generally equates larger values of rain-
fall with increased low-level convergence and upper level
divergence and therefore generally larger values of vertical

velocity. The structure of the derived vertical velocity, how-
ever, is also dependent on other budget terms so that vertical
velocity does not monotonically increase with rainfall.

[11] Figure 1 shows the vertical velocity profile aver-
aged over both the active and suppressed monsoon for each
ensemble member as well as key percentiles of the ensem-
ble. Stronger vertical motion is derived from time series
with larger rainfall. In the active monsoon, there is always
strong upward vertical motion, although the ensemble mem-
bers with weaker rainfall have weaker vertical motion.
During the suppressed monsoon, the ensemble members
with strong rainfall have upward vertical motion at all
levels. The ensemble members with weaker rainfall have
upward motion at lower levels (below 650 hPa) but down-
ward motion above. In addition to the ensemble members,
Figure 1 shows the standard best estimate for vertical veloc-
ity. As is evident, the best estimate results are close, but
not identical, to the 50th percentile of the ensemble forc-
ing. While there is a large spread in omega, it is worth
noting that 50% of the ensemble members lie in the lim-
ited range between the 25th and 75th percentile lines. While
each ensemble member is equally likely, most cluster around
the 50th ensemble member and the best estimate, and the
most extreme omega values are rare. These differences in
omega imply changes in low-level convergence and upper
level divergence through the continuity equation and will
have an effect on convection. These 100 large-scale “forc-
ing” data sets are then used as input to the model simulations
discussed below.

2.2. Case Description
[12] The TWP-ICE experiment experienced a range of

atmospheric conditions. At the start of the experiment, the
region experienced monsoon conditions. Between 23 and
24 January, a strong mesoscale convective system (MCS)
passed through the domain followed by relatively sup-
pressed conditions. There were then clear conditions from
3 to 5 February with little rain followed by monsoon break
conditions to the end of the field campaign. Full details of
the meteorological conditions can be found in May et al.
[2008]. In this study, the focus is on the active period defined
as 20 00Z–25 12Z Jan and the suppressed period defined as
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Table 1. Models Contributing to SCM Studya

Model Full Name Modeler Reference

UM-GR Unified Model-Gregory and Rowntree M. Whitall/R. Plant Davies et al. [2005]
UM-PC Unified Model-Plant/Craig R. Keane/R. Plant Davies et al. [2005]
SCAMS Single-Column Community Atmospheric Model X. Liu/X. Shi Collins et al. [2006]
SCAML Single-Column Community Atmospheric Model X. Liu/X. Shi Wang et al. [2009]
SCAMR Single-Column Community Atmospheric Model X. Song/G. Zhang Collins et al. [2006]
NCEPG NCEP GFS Model W. Wang EMC [2003]
GFDL2 GFDL-AM2 Model Y. Lin GAMDT [2004]
GISS GISS Model A. Wolf/A. DelGenio Schmidt et al. [2006]
CLUBB Cloud Layers Unified by Binormals model B. Nielsen/V. Larson Golaz et al. [2002]
JMA1 Japan Meteorological Agency T. Komori JMA [2007]; Nakagawa [2009]
JMA2 Japan Meteorological Agency T. Komori JMA [2007]; Nakagawa [2009]
2-D LEM UK Met Office Large Eddy Model A. Hill Gray et al. [2001]
3-D SAM System for Atmospheric Modeling L. Davies Khairoutdinov and Randall [2003]

aIncludes the acronym used in this paper, the full model name, contributing author(s), and the main reference for the model.
Further model details are given in the text and the references therein. Note that there are two cloud-resolving models as part of this
study.

28 00Z Jan–2 12Z Feb. The conditions during the clear and
break periods are dominated by a strong diurnal cycle, which
is driven by the land-sea contrast in the experiment domain.
As SCMs cannot usually represent such contrasts in a single
grid box, the later part of the experiment is excluded from
the simulations presented here.

[13] In order to investigate the performance of the ensem-
ble technique proposed here in different meteorological
conditions, the study applies two sets of large-scale forcing
data. The first is a best estimate simulation forced using the
standard data set [Xie et al., 2010]. These simulations can be
directly compared to the CRM results [Fridlind et al., 2012],
and the best estimate simulations also form the basis of dis-
cussion in J. Petch et al. (submitted manuscript, 2012). In
this study, the best estimate simulations will be used to form
a SCM multimodel ensemble. In addition to the best esti-
mate simulations, all models were run using the 100-member
ensemble of forcing data derived above. It was found that
some models showed numerical instabilities for the strongest
forcing data sets (i.e., those derived from the largest rainfall)
when using their standard time-stepping. As a consequence,
the 10 strongest forcing data sets and, for reasons of symme-
try, the 10 weakest ones are excluded from further analysis,
reducing the ensemble size to 80.

[14] The aim when defining the model specification is to
impinge as little as possible on the inherent characteristics
of the individual models, and modelers are encouraged to
use their preferred configurations; however, the following
requirements are made for all simulations:

[15] 1. The TWP-ICE domain has mixed surface types
making the choice of surface type unclear. All simulations
assume an ocean surface consistent with Fridlind et al.
[2012]. Fixed time-invariant SST = 29ıC is used. Interactive
surface fluxes are required to be calculated in the boundary
layer scheme.

[16] 2. Simulations are initialized with observed tempera-
ture and moisture profiles at 0300Z 19 January 2006.

[17] 3. An observed ozone profile is used where possi-
ble, but the McClatchey ozone profile [McClatchey et al.,
1972] is used above the maximum height of observations
(40 mbar).

[18] 4. Full interactive radiation is used with a diurnal
cycle for a domain centered on the Atmospheric Radiation
Measurement (ARM) site (12.425ıS, 130.891ıE).

[19] 5. Mean horizontal winds are relaxed to observed
profiles with a 2 h time scale. There is no nudging of the tem-
perature and moisture fields which are left free to respond to
the forcing.

[20] 6. Horizontal advective tendencies for temperature
and moisture are prescribed, but the vertical terms are calcu-
lated by the models. Sensitivity studies showed a warm tem-
perature bias above the tropopause when prescribing a total
forcing as the model cannot freely evolve vertical advection
associated with this warming and reduce the temperature
bias. This method differs from Fridlind et al. [2012] where
temperature and moisture were nudged towards observed
profiles to avoid such temperature biases.

2.3. Models
[21] In this section, a brief description of all models used

in this study will be given. Table 1 gives a summary of
the models with further details given below. The study also
includes two CRM which also simulate the ensemble. The
CRM provide an important reference for the SCM and link
to the CRM study [Fridlind et al., 2012].

[22] The UK Met Office SCM [Davies et al., 2005] con-
tains parameterizations for radiation [Edwards and Slingo,
1996], layer-cloud microphysics [Wilson and Forbes, 2004;
Wilson and Ballard, 1999], boundary layer processes [Lock
et al., 2000], and convection; see also Martin et al. [2006].
Results were submitted for both the default UM convection
scheme [Gregory and Rowntree, 1990; Martin et al., 2006;
Derbyshire et al., 2011] (UM-GR) and the Plant and Craig
[2008] stochastic spectral mass-flux scheme (UM-PC). In
the default scheme, convection is triggered by instability
of surface parcels at the lifting condensation level (LCL);
a CAPE closure is used for deep convection, and the clo-
sure for shallow convection is based on Grant [2001]. In
the Plant-Craig scheme, convection is triggered by con-
structing potential updraft source layers and evaluating their
buoyancy at the LCL; a CAPE closure is used. The stochas-
tic variability of the Plant-Craig scheme depends upon the
column size—an area of (50 km)2 was used here.

[23] The single-column model of the NCAR CAM3
(SCAM) contains the radiation scheme as described in
Collins et al. [2006]. The treatment of cloud condensa-
tion and microphysics in CAM3 [Boville et al., 2006] is
based on Rasch and Kristjánsson [1998] as updated by
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Zhang et al. [2003] with separate prognostic equations for
the liquid and ice-phase condensate. The boundary layer
scheme is based on Holtslag and Boville [1993] and Boville
et al. [2006]. CAM3 includes the convection scheme of
Zhang and McFarlane [1995] with CAPE closure. CAM3-
Liu (SCAML) [Wang et al., 2009] differs from SCAM
with modification for cloud microphysics by introducing
a double-moment cloud microphysics [Liu et al., 2007],
explicit treatment of ice nucleation [Liu and Penner, 2005],
and water vapor deposition on ice crystals and Bergeron-
Findeisen process in pure ice and mixed-phase clouds.
SCAMR differs most fundamentally from SCAMS as the
deep convection parameterization is replaced by the revised
Zhang and McFarlane [1995] scheme proposed by Zhang
[2002]. The new convection scheme uses CAPE changes
due to large-scale forcing (e.g., large-scale advection, radia-
tive cooling) in the free troposphere, instead of CAPE itself,
for closure.

[24] In the NCEP GFS model, the longwave radia-
tion scheme follows Fels and Schwarzkopf [1975] and
Schwarzkopf and Fels [1991]. The shortwave radiation for-
mulation uses multiband techniques [Slingo, 1989; Chou et
al., 1998; Kiehl et al., 1998]. The cloud condensate is prog-
nosed from a single-moment microphysics scheme [Zhao
and Carr, 1997]. The boundary layer parameterization uses
a nonlocal scheme [Hong and Pan, 1996]. Penetrative con-
vection scheme [Pan and Wu, 1995] is simplified from
Arakawa and Schubert [1974], with a quasi-equilibrium
assumption as a closure. Convection is trigged when a
cloud work function exceeds a threshold. Shallow convec-
tion is parameterized as an extension of the vertical diffusion
scheme [Tiedtke, 1983].

[25] The GFDL AM2 uses the shortwave radiation algo-
rithm of Freidenreich and Ramaswamy [1999], and the
longwave radiation follows Schwarzkopf and Ramaswamy
[1999]. It uses Slingo [1989] and Held et al. [1993] for liq-
uid cloud radiative properties and Fu and Liou [1993] for
ice clouds. The microphysics scheme uses Rotstayn [1979]
with cloud fraction prognosed following Tiedtke [1993]. The
microphysics used for convective clouds is rather crude
with prescribed precipitation efficiencies for shallow and
deep convections. Boundary layer scheme follows Lock
et al. [2000]. GFDL uses the relaxed Arakawa-Schubert
scheme [Moorthi and Suarez, 1992] with a CAPE closure
for shallow and deep convection.

[26] The GISS SCM used here is a developmental
update of the Schmidt et al. [2006] model. Radiation
uses explicit multiple scattering calculations and the k-
distribution approach to absorption. Large-scale clouds are
based on the prognostic cloud water parameterization of Del
Genio et al. [1996], including all relevant microphysical pro-
cesses, detrainment, and cloud top entrainment. Convective
microphysics follows Del Genio et al. [2005], which inter-
actively partitions condensate into precipitating, detrained,
and vertically advected components. The boundary layer
uses dry conserved variables and includes local (diffu-
sive) and counter-gradient flux terms. Moist convection is
parameterized using a mass-flux scheme with convection
triggered when a lifted parcel becomes buoyant. The mass
flux is that required to produce neutral buoyancy at cloud
base, with updraft speeds and entrainment rates based on
Gregory [2001].

[27] The CLUBB model, in these TWP-ICE simulations,
is used in conjunction with the BUGSrad radiative transfer
scheme [Stephens et al., 2001] and a single microphysics
scheme [Morrison et al., 2009] for all clouds. Although in
the prior literature CLUBB was tested only for boundary
layer cloud cases [Golaz et al., 2002; Larson and Golaz,
2005; Larson et al., 2012], here CLUBB is used to sim-
ulate both deep and shallow clouds with a single, unified
equation set. Unlike Larson et al. [2012], here CLUBB is
run as a single-column model and handles all cloud types
without the use of a cloud-resolving model or any other host
model. CLUBB prognoses various higher-order moments
and achieves closure by use of a single multivariate subgrid
PDF of velocity, moisture, and temperature. CLUBB has no
explicit convective trigger; rather, the turbulence and ther-
modynamic variability generated in shallow convection are
intended to evolve into deep convection when and where the
large-scale forcings are appropriate.

[28] The single-column model JMA1 contains the param-
eterizations of the default Global Spectral Model [JMA,
2007; Nakagawa, 2009]. The radiation scheme has two-
stream with delta-Eddington approximation for shortwave
and table look-up and k-distribution methods for long-
wave. Cloud condensation and microphysics are based on
Smith [1990] and Sundqvist et al. [1989]. The boundary
layer scheme is the level 2 closure scheme of Mellor and
Yamada [1974]. The convection scheme is a multiplume type
with cloud work function closure based on Arakawa and
Schubert [1974], two types (for shallow and deep con-
vection) of prognostic equations of the upward mass-flux
[Randall and Pan, 1993] and triggering functions [Xie and
Zhang, 2000]. JMA2 is the same as JMA1, except for using
modified convection and cloud schemes (T. Komori and
K. Yoshimoto, Evaluation from a perspective of spin-down
problem: Moistening effect of convective parameterization,
submitted to CAS/JSC WGNE Research Activities in Atmo-
spheric and Oceanic Modeling, 2012).

[29] There are two CRM in the study which are briefly
described here. The UKMO Large Eddy simulation model
(LEM) uses the shortwave and longwave radiation scheme
of Edwards and Slingo [1996]. The LEM employs a three-
phase microphysics scheme, which is described in Gray
et al. [2001], and the microphysical configuration is the
same as the UKMO-2A setup described in Fridlind et al.
[2012]. The subgrid mixing scheme is a modified first-order
Smagorinksky-Lilly scheme, which is described in MacVean
and Mason [1990].

[30] The model used in the System for Atmospheric Mod-
eling (SAM) is described by Khairoutdinov and Randall
[2003] and uses the BUGSrad radiation scheme described
in Stephens et al. [2001]. Single-moment microphysics were
used as outlined in Khairoutdinov and Randall [2003].
The subgrid mixing scheme is a 1.5-order closure model
[Khairoutdinov and Kogan, 1999]. The SAM model simu-
lates nine ensemble members equally spaced in the range
10–90.

3. Results
3.1. Simulations of Humidity and Precipitation

[31] This section gives an overview of both the tempo-
ral evolution and the vertical structure of the simulation
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Figure 2. Time series of precipitation for the active period (left) and suppressed period (right) for each
model type. Colored lines show the average for each model type (e.g., all UM SCM, all SCAM, and all
JMA models are averaged together) and gray lines the 80-member ensemble for all models. The best
estimate observed precipitation is given in the heavy black line. Note the different y axis.

of several moisture-related variables in the various models.
Particular focus is given to comparing moisture-related vari-
ables as large errors can arise in models potentially due to the
dependence of moisture on error-prone parameterizations.
The convective component of total surface precipitation is
discussed to highlight the different roles of model parame-
terization between the active and suppressed periods. Model
accuracy will be discussed by comparison to observations
for each model. The ensemble is then used to investigate
model sensitivity in terms in the sources and sinks in the
moisture budget. The best estimate is contrasted with the
ensemble mean to directly determine how using an aver-
age of many simulations might affect results compared to a
single simulation.

3.1.1. Overall Simulation Behavior
[32] Figure 2 shows time series of surface precipitation for

the active and suppressed periods. Model ensemble means
are shown as colored lines with individual ensemble mem-
bers from all model simulations overlaid in gray. In this
figure, all UM-type, SCAM-type, and JMA-type models are
averaged together as they are very similar. Observations are
shown as a heavy black line. This plot allows broad interpre-
tation of the characteristics of each model while capturing
the spread of the ensemble. Figure 2 shows that all mod-
els have a similar precipitation during the active period with
moderate precipitation before the passage of the MCS on
23–24 January. All models have similar heavy rain associ-
ated with the MCS. The ensemble is spread around this mean
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Figure 3. Mean precipitation averaged over the active and suppressed periods. The left box is the mul-
timodel ensemble constructed from the best estimate simulations (MM BE) averaged over the period for
each model. There are nine individual ensemble SCM with 80 members and two ensemble CRMs, a 2-D
Met Office LEM simulation with 80 members, and a 3-D SAM model with 9 members. The far right has
the ensemble of observations. The box represents the 25th, 50th, and 75th percentiles with the 5th and
95th percentiles being shown by the horizontal bars. The ensemble mean data are shown by the small
asterisk. The best estimate is shown for the SCM data and observations as large asterisks. The ensemble
is averaged for each ensemble member over all times.
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with the largest spread occurring during the MCS. Modeled
precipitation is close to observations which may be antici-
pated, as in strongly forced conditions precipitation will be
predominantly driven by forcing in all ensemble members
[Xie et al., 2005; Xu et al., 2002; Woolnough et al., 2010].

[33] Period-mean precipitation during the suppressed
period is lower than during the active period. It is evi-
dent that the relative differences in the ensemble mean time
evolution between models as well as the differences from
observations are larger than those in the active period. This
might be expected as the forcing is weaker and as a conse-
quence has less of an influence on the model solutions. In
weakly forced conditions, it is expected that the details of
the parameterizations in the various models exert a stronger
influence, which explains the larger differences in the sup-
pressed period. The ensemble spread is rather uniform and
does not increase substantially with rainfall, which remains
light throughout the period. The CRM behave similarly to
the SCM. In the active period, solutions from the two model
types track each other closely, again highlighting that pre-
cipitation is constrained by the forcing in that period. Just as
for the SCM, the differences between CRMs as well as to
observations increase (in a relative sense) in the suppressed
period. The CRM results in the active period strongly resem-
ble the results of the larger CRM comparison [Fridlind et al.,
2012], indicating that the CRMs shown here provide a
representative sample for this family of models.

[34] Figure 3 provides a comparison of the multimodel
best estimate ensemble and individual model ensembles for
the time-mean surface precipitation averaged over the active
and suppressed periods for all simulations used in this study.
Each model is included as a box-whisker plot constructed
from the time-averaged precipitation for each ensemble
member. Observations are also included. It can clearly be
seen that the ensemble SCM and CRM encompass a wide
range of surface precipitation values. The models capture
the spread seen in the observations. This is due to strong
coupling between the forcing, which is primarily through
vertical velocity, and rainfall.

[35] The multimodel ensemble has a limited spread of
surface precipitation as all models are simulating the same
forcing. Figure 3 provides a useful check that the multimodel
ensemble has limited spread compared to the SCM and
CRM simulations. This result supports findings of Hume and
Jakob [2005] that largest spread in an SCM ensemble will
be found by varying the forcing (the boundary conditions).
Figure 3 also shows the ensemble mean (small asterisk)
and best estimate mean (large asterisk) precipitation for the
observations and models. For most models, the magnitude
of the best estimate observed precipitation is very close to
the 50th percentile (median) precipitation with the ensemble
mean larger. This is due to the ensemble having a distribu-
tion which is skewed towards high values of precipitation
leading to larger means than medians.

[36] Figure 4 shows time-height cross sections of the
observed, SCM-mean and CRM-mean modeled relative
humidity. Relative humidity provides a useful perspective
on the model simulations, since unlike precipitation, which
is primarily driven by forcing, relative humidity is less con-
strained by the forcing and more affected by model physics
[Emanuel and Zivkovic-Rothman, 1999]. Given the model
setup (section 2.2), the models have freedom to develop

Figure 4. Time-pressure relative humidity (with respect to
water) for the active and suppressed periods for observa-
tions and SCM and CRM simulations. The SCM and CRM
data are averaged over all models and all available ensemble
members in the range 10–90.
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certain moisture source/sink terms such as moisture con-
vergence and surface evaporation. The ensemble sensitivity
to these terms will be addressed in section 3.1.3. Relative
humidity with respect to water has been calculated using
Teten’s formula [Lowe, 1977, equation 6] for each individ-
ual simulation from values of temperature, water vapor, and
pressure to ensure consistency across models. The modeled
data shown in Figure 4 is an average over all models and all
ensemble members used. Detailed investigation shows that
relative humidity differences are primarily caused by dif-
ferences in moisture as temperature varies little across the
simulations and is close to observations.

[37] Observations show that the atmosphere has high rel-
ative humidity through a deep layer during the active period,
but the models generally underestimate humidity particu-
larly at low levels. During the suppressed period, observa-
tions show lower humidity above 800 hPa but large values
in the boundary layer. All models capture the reduction in
relative humidity caused by drying on the transition to the
suppressed period above 700 hPa, although the SCM over-
estimate the reduction in humidity. Both SCM and CRM
persist with low values of humidity in the boundary layer
compared to observations.

[38] While Figure 4 shows the evolution of the mean state,
the ensemble simulations also allow investigation of model
sensitivity. Figure 5 shows time series of 500 mbar relative
humidity for all ensemble members for each model com-
pared to their best estimate simulations, ensemble mean, and
observations. Relative humidity at 500 mbar is chosen, as
accurate representation of moisture in midlevels is important
if models are to correctly represent cloud. All models have
high 500 mbar relative humidity during the active period
consistent with the observations, but most SCM tend to
have lower relative humidity than the CRM. The JMA and
GISS models have particularly low relative humidity which
is about 10% and 15% lower than the observations, respec-
tively. The CLUBB and NCEP models have slightly larger
relative humidity compared to the observations. All models
have very limited spread during the active period.

[39] Observations show that during the transition to the
suppressed period, humidity reduces to around 60% after the
passage of the MCS. Relative humidity increases slightly
before it reduces again from 70% to 30% between days 27
and 31 (27–31 January). There is a big difference between
the responses of the SCM and CRM during this period. The
CRM capture the transition to the suppressed period rea-
sonably well with relative humidity 10% too low but its
temporal evolution well captured. SCM generally reduce rel-
ative humidity too much in the transition period with mean
values after the transition ranging from 40% (UM) to 10%
(JMA). An exception to this is the CLUBB model which
does not excessively reduce relative humidity during the
transition and is then too moist during the suppressed period.

[40] The CRM show limited spread during the active
period and the passage of the MCS. The spread in both
model types is largest during the suppressed period. The
SCM show larger but limited spread in the active period and
in the transition associated with the MCS. Just like the CRM,
they show increased spread during the suppressed period.
This suggests a hypothesis that the simulation of midlevel
relative humidity may be more sensitive to changes in the
forcing when the forcing is weak. Furthermore, this sensi-

tivity results in nonlinearity between the ensemble members
which is particularly apparent during the suppressed period.
For example, around 30 January, the SCAMS model shows
that ensemble members with weaker (stronger) forcing have
the lowest (highest) relative humidity despite the forcing not
being the weakest (strongest) forcing.

[41] Figure 5 shows that in general the ensemble mean
and best estimate simulation results follow each other quite
closely so that their differences from observations are sim-
ilar. On some limited occasions, the ensemble mean is
closer to the observations than the best estimate, for exam-
ple, UM-PC during both the active and suppressed periods
and CLUBB and SCAMS during the suppressed period.
To further investigate the ensemble mean to best estimate
behavior, Figure 6 shows profiles of the difference between
the best estimate and the ensemble mean relative humid-
ity for all SCM for the active period. Figure 6 shows that
when averaged over this period most models have similar
best estimate and ensemble mean relative humidity. How-
ever, there are some important exceptions. For example, the
UM-PC has larger ensemble mean relative humidity than its
best estimate throughout the depth of the troposphere. This
larger relative humidity in the ensemble mean represents an
improvement in the model simulations by bringing the val-
ues closer to observations. As UM-PC is the only SCM to
include a stochastic parameterization, this result highlights
that ensemble simulations are necessary when using models
with stochastic components. The usefulness of the ensemble
approach will be investigated further below.

[42] When comparing the ensemble simulations with
observations (Figure 5), it is possible, for some models and
periods, to determine whether the errors are due to the pre-
scribed forcing or are models errors. Given that the observed
forcing spans the range of possible observations, none of the
JMA ensemble members closely approximate the observed
relative humidity during the active period. Therefore, this
model clearly has limitations correctly simulating relative
humidity during this period. For many models (includ-
ing SCAM, NCEP, GISS, and JMA), the ensemble shows
that the transition to the suppressed period is likely to be
attributable to model error rather than errors in the forcing.
The GISS model also consistently underestimates relative
humidity during the suppressed period.
3.1.2. Precipitation Partitioning

[43] An interesting question in the simulation of tropical
convection is how the various SCMs partition the precip-
itation between convection and the resolved scale motion.
Furthermore, given the construction of the ensemble used
here, it is possible to study how this partitioning changes
with forcing strength and meteorological situation. Figure 7
shows the time average convective precipitation fraction
(CPF), defined as the ratio of convective precipitation to total
precipitation at the surface, against total precipitation for
both the active and suppressed periods. Each SCM is shown
by a color with different symbols used for the different
models. Each point represents a single ensemble member
averaged over the period of interest. An increase in total pre-
cipitation (x axis) indicates an increase in forcing strength.
The multimodel best estimate ensemble is shown as large
asterisks.

[44] Generally, there is a wide spread in the magnitude
of CPF between the models ranging from 0.2 to 0.9 in the
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Figure 5. Time series of RH at 500 mbar for all SCM and CRM. Blue lines show best estimate sim-
ulations, red lines ensemble mean simulations, and the black line is observations. Gray lines show all
ensemble members in the range 10–90. Key ensemble members, the 25th, 50th, and 75th percentiles of
the 80-member large-scale “forcing,” are highlighted as thin black lines which are dash-dotted, solid, and
dashed, respectively. Note that the CRM do not report best estimate data.
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Figure 6. Mean period-averaged difference between the
best estimate and ensemble mean relative humidity for the
active period for each SCM.

active period and 0.5 to 1 in the suppressed period. In the
active period, the models also show a very diverse behavior
with forcing strength, with some showing an increase in CPF
(e.g., GISS, UM-GR), some showing a near-constant CPF
(e.g., NCEP, SCAM), and some showing a decrease (e.g.,
UM-PC). The GFDL2 model shows a somewhat erratic
behavior. Models of the same type show different behav-
ior depending on the parameterization scheme used (e.g.,
UM-PC versus UM-GR).

[45] In the suppressed period, all SCMs have a CPF of
greater than 50%. There is a tendency in almost all mod-
els for the CPF to increase with increasing forcing although
there is much scatter in the relationship. There are two
groups of models, with either very high or relatively low
CPF. There is some consistency between the periods, with
the GISS and UM-PC models showing the lowest CPF
in both.

[46] The rather wide spread in model behavior is likely
indicative of large differences in the assumptions made in the
different convection treatments on how to partition rainfall

between convection and the larger scales. As this will likely
have an impact on the vertical distribution of heating and
moistening, an important issue for future work is to provide
observational constraints for the relationships shown here.
3.1.3. Ensemble Moisture Budget Characteristics

[47] The ensemble provides an opportunity to investigate
the interplay between modeled moisture and the moisture
budget terms. In particular, this study permits a compari-
son between how the models control their moisture budgets.
Given that the models are forced by prescribing horizon-
tal advection terms and vertical velocity, they independently
develop moisture budget terms such as vertical advection
terms and moisture convergence in addition to the moisture
contributions from parametrized processes such as convec-
tion and surface evaporation. This is an important difference
between this study and previous intercomparisons [e.g.,
Woolnough et al., 2010; Guichard et al., 2004] where the
total moisture forcing was prescribed. Furthermore, given
that this study also includes both best estimate and ensemble
simulations, comparison can be made about the additional
model characteristics exposed using an ensemble compared
to a single best estimate simulation.

[48] Figure 8 shows time average precipitable water
against various terms in the moisture budget for the active
period for all models and ensembles in this study. Very
similar results are obtained for the suppressed period (not
shown). Figure 8a shows that during the active period, the
SCMs tend to divide into models in which lower precip-
itable water is associated with larger precipitation (GISS and
SCAM), models where precipitable water is higher for larger
values of precipitation (UM and CLUBB), and those models,
including CRM, where precipitation is independent of pre-
cipitable water. The GFDL model is somewhat an exception
as its relationship shows significant scatter.

[49] The largest term in the moisture budget is the mois-
ture convergence term which is shown in Figure 8b. In
all models, the moisture convergence term shows a similar
magnitude and characteristics to precipitation which is not
surprising as it is the largest source of moisture for the grid
box exceeding surface evaporation by an order of magnitude
(see below). Furthermore, Figure 8b shows that the moisture

Figure 7. Time-averaged scatter plots of surface precipitation against convective precipitation (shown
as a fraction of the total surface precipitation) over the active (left) and suppressed (right) periods for
ensemble members 10–90. Each model type is represented by a color and each model of a given type by
a symbol. The multimodel best estimate ensemble is represented by a large asterisk. The CLUBB model
and CRM do not submit partitioned precipitation data.
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Figure 8. Time-averaged scatter plots of PW against (a)
precipitation, (b) moisture convergence, and (c) surface
evaporation over the active period for ensemble members
10–90. Each model type is represented by a color and each
model of a given type by a symbol. The CRM are rep-
resented by large open symbols and the multimodel best
estimate ensemble by a large asterisk.

convergence acts as feedback mechanism where SCM with
larger values of precipitable water enhance moisture sup-
ply and produce more precipitation. Other models, despite
the strong forcing, have lower precipitable water and lower
moisture convergence. Petch et al. (submitted manuscript,
2012) discusses a likely reason by investigating the method
used to force the SCM compared to the method used to force
the CRM as used in Fridlind et al. [2012]. It was found that
given a positive moisture bias, convergence (which occurs
during the active period) increases that positive bias, and
similarly convergence enhances a negative moisture bias.
Models forced by prescribing the total moisture forcing, as
used in Fridlind et al. [2012], do not develop these biases.
The ensemble results shown in Figure 8b support the find-
ings of Petch et al. (submitted manuscript, 2012). This model
response to bias is not, however, apparent when only the
best estimate simulations are considered. GISS and SCAM
both have a drier atmosphere during the active period com-
pared to the observations and other SCM which result in
reduced precipitation compared to those SCM with a moister
atmosphere.

[50] Another important term in the moisture budget is
surface evaporation. Figure 8c shows this term for each
model and ensemble member as before. Note that the surface
evaporation term is an order of magnitude smaller than the
moisture convergence contribution. It is evident that there
is a fundamentally different relationship between forcing
strength and evaporation in the SCMs and the CRMs indicat-
ing differences in the physical mechanisms at work in these
two classes of models. All SCMs approximate a quasi-linear
relationship of evaporation to precipitable water, albeit of
varying strength, with larger surface evaporation at lower
values of precipitable water and lower surface evaporation
when precipitable water is high. This is consistent with the
formulation of the SCMs as, given that low level winds
and SST are prescribed in all models, evaporation can only
change in response to atmospheric moisture. The CRMs on
the other hand show a very different response to changes
in the forcing. Here, the values of evaporation are inde-
pendent of precipitable water. This indicates the importance
of small-scale wind variability in driving surface evapora-
tion. In the SCMs, this variability is not resolved. Unless
it is parametrized, SCM surface fluxes are determined by
the mean wind alone. In the CRMs, this wind variability is
resolved and hence will enhance the surface fluxes. From
the results, it is evident that the SCMs do not deal effec-
tively with the subgrid variability. This result highlights the
usefulness of the ensemble approach as this “error” in the
SCMs would not have been evident from a set of single best
estimate simulations.

[51] By using an ensemble approach, several interesting
conclusions about model performance as well as simula-
tion setup could be drawn. Given that strong precipitation
in the models (and in nature) is strongly linked to moisture
convergence, this exposes some interesting model behav-
ior. By design of the simulations, moisture convergence
is calculated by the models. Consequently, those mod-
els that develop a dry bias cannot develop large moisture
convergence and do not produce as much precipitation,
with the opposite effect occurring in models with a moist
bias. The SCMs require a drier atmosphere to develop
stronger surface evaporation. In contrast, the CRMs develop
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Figure 9. Mean period-averaged cloud fraction (left) for the active period (top) and suppressed period
(bottom) for each model. For a limited number of models, the right-hand panels show the period mean
together with ensemble members. Colored lines show the average for each model and gray lines ensemble
members in the range 10–90. (Note that the CLUBB model does not include ice in cloud fraction and the
LEM includes rain in cloud fraction.)

evaporation changes independent of atmospheric moisture
likely due to the development of subgrid scale wind variabil-
ity not present in the SCMs.

3.2. Clouds
[52] This section investigates the simulation of cloud-

related variables in the CRMs and SCMs. Initially, the
vertical structure of liquid water and ice clouds are discussed
in both the active and suppressed monsoon. Following on
from this, once again use of the ensemble will be made
to investigate relationships between cloud-related variables
as the forcing strength changes. This will expose several
interesting characteristics of the various model parameteri-
zations.
3.2.1. Profiles of Cloud Properties

[53] Figure 9 shows vertical profiles of the ensem-
ble mean model cloud fraction for all models during
the active (top left) and suppressed (bottom left) period
as well as selected examples of the full ensemble from
three models for the active (top right) and suppressed
(bottom right) periods. Cloud fractions generally reflect the
meteorological conditions shown in Figure 4 with cloud
throughout the troposphere during the more moist, active
period and two cloud layers during the suppressed period
which are low cloud between 950-750 hPa, and high ice
cloud above 200 hPa.

[54] During the active period, there are large differences
in CRM cloud fraction of around 30% at all levels, and
the SCMs mostly fall within the range of the CRMs. This
can largely be explained by the definition of cloud fraction,
which in the LEM includes both cloud and precipitating
hydrometeors, while in the SAM model it only includes
cloud water and ice. All SCMs have cloud fraction less than
30% below 600 hPa and more cloud (with the exception of
JMA) above. There are large differences between the mod-
els with slightly better agreement in lower levels than in the
upper troposphere.

[55] The differences in cloud fraction in the SCMs are also
large in the suppressed period. One noticeable feature of the
selected full ensembles (right panels) is that the difference
of individual ensemble members from their mean tends to
be smaller than the differences between models. This indi-
cates that the differences in the simulated cloud structures
are dominated by the structural properties of the models, not
by the forcing data set, and shows that model representation
of cloud is liable to error independent of the meteorologi-
cal conditions. Best estimate simulations are therefore likely
sufficient to expose model differences in this variable. This
is investigated in Figure 10, which shows the differences
of profiles of cloud cover between the ensemble mean and
the best estimate simulation. As for relative humidity, most
models show only small differences although with notable
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Figure 10. Mean period-averaged difference between the
best estimate and ensemble mean cloud fraction for the
active period for each SCM.

exceptions, the UM-PC around 400 hPa and GFDL below
700 hPa.

[56] Figure 11 shows profiles of ice water content in all
models for the active period. Again, the ensemble means
for all models are shown in the left panel, while selected
full ensembles are shown in the right panel. The suppressed
period is omitted from this Figure as the ice cloud during
this period is not linked to local convection and is not well
simulated. There are large differences between ice water
content in both the CRMs and the SCMs during the active
period which will impact on the model radiation budgets.
Modeled ice water content differs in terms of both mag-
nitude and vertical structure. Differences in the structural
properties can again be noted in modeled ice water content
with each SCM clustering around its ensemble mean. Diffi-
culty in representing ice microphysics has been noted in all
other TWP-ICE intercomparison studies and has been unan-
imously suggested as a focus for future model development.

[57] This section has shown that there are substan-
tial differences in the vertical structure of parameterized
cloud variables which may be attributable to systematic

differences in the representation of clouds between the mod-
els. Structure in the cloud variables is clearly identifiable
using the ensemble in both the active and suppressed peri-
ods. These persistent structures show that the models are not
sensitive to changes in the forcing and that for most mod-
els best estimate simulations are likely sufficient to expose
the mean model behavior in both periods. It is clear from the
large differences between them that the CRMs only provide
a limited estimate of the truth, especially during the sup-
pressed period, as their representations of clouds are limited
themselves [Fridlind et al., 2012].
3.2.2. Ensemble Cloud Characteristics

[58] While the previous section showed that it is likely
that the mean cloud properties of each model can be exposed
by a single best estimate simulation, the full ensemble
results provide a useful tool to investigate how relation-
ships between variables might change within each model
as the forcing varies across ensemble members. Represent-
ing the correct relationships between variables is a greater
challenge for models than representing means, but it is also
a necessary condition for applying the models over a wide
range of conditions, such as a full GCM. This subsection
will investigate how the ensemble developed here can be
used to investigate relationships between different variables.
Each ensemble member, experiencing different forcing data,
can be considered as a separate test case, albeit spaced in
controlled manner from all other ensemble members.

[59] Figure 12 shows the mean liquid water path (LWP)
as a function of the mean surface precipitation averaged over
the active (left) and suppressed (right) periods for all mod-
els. Each symbol represents an individual ensemble member.
While there are generally different relationships between the
two periods (note the change in scale between periods in
the Figure), the CRMs show that relationship between LWP
and precipitation is linear (with a gradient of approximately
250 kg m–3 h in both the active and suppressed period).
The CRMs agree very well during the suppressed period
but differ at the larger precipitation rates during the active
period.

[60] Most, but not all, SCMs also produce a linear rela-
tionship between LWP and surface precipitation. Notable
exceptions are the GFDL, SCAM, and JMA models. The
relationships in the SCMs differ somewhat between the

Figure 11. Mean period-averaged ice water content for the active period (left) for each model type. For a
limited number of models, the right-hand panels show the period mean together with ensemble members.
Colored lines show the average for each model and gray lines ensemble members in the range 10–90.
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Figure 12. Time-averaged scatter plots of surface precipitation against liquid water path over the active
(left) and suppressed (right) periods for ensemble members 10–90. Each model type is represented by a
color and each model of a given type by a symbol. The CRM are represented by large open symbols and
the multimodel best estimate ensemble by a large asterisk.

active and suppressed periods with a tendency for mod-
els to have tighter and more linear relationships during the
active period. In the suppressed period when precipitation
is small, both the UM and NCEP models tend to have pre-
cipitation independent of LWP, which itself is at an almost
constant value. The GFDL and SCAM models tend to dis-
play significant scatter in LWP with only a weak relationship
to precipitation. In fact, only the CLUBB, GISS, and JMA
models increase LWP with precipitation as the CRMs sug-
gest during the suppressed period. A linear relationship was
observed between LWP and precipitation in Fridlind et al.
[2012].

[61] The CRMs tend to lie in the middle of the SCM
distribution, suggesting that the SCM ensemble mean may
approximate the correct values of LWP, although individual
models may differ quite considerably from the CRMs. The
UM and NCEP models are biased low at all times, whereas
the GISS and one of the JMA models have a LWP that is too
large during the suppressed period. Unlike for cloud frac-
tion before, the best estimate simulations do not always fall

close to the center of the ensemble (note the large asterisks
for GFDL and one JMA model to their associated ensem-
ble during the suppressed period). The ensemble results also
expose interesting nonlinearities in some of the models. For
instance, there is a discontinuity in LWP in the GFDL around
0.15 kg m–2 during the active period. This possibly relates
to the discontinuity in the convective precipitation fraction
in Figure 7. While magnitude differences are apparent in
the multimodel ensemble, the relationships between LWP
and precipitation are only found in the full ensemble show-
ing a potential usefulness of an ensemble technique when
identifying model behavior.

[62] Figure 13a shows the relationship between IWP and
precipitation during the active period. It can be seen that
similar to LWP, IWP generally has a linear relationship
with precipitation. Unlike the relationship of precipitation
with LWP, the one with IWP is not consistent between the
CRMs. There are very different magnitudes of IWP in the
CRMs, and the slope of the relationship to precipitation
varies strongly as well. Large differences in the simulation of

Figure 13. Time-averaged scatter plots of surface precipitation against ice water path (left) and liquid
water path against ice water path (right) over the active period for ensemble members 10–90. Each model
type is represented by a color and each model of a given type by a symbol. The CRM are represented by
large open symbols and the multimodel best estimate ensemble by a large asterisk. Note: GISS model is
not shown in these plots. GISS IWP exceeds all other models by a factor of 2.
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Figure 14. Location of rain gauges used in this study in
and around the pentagon-shaped TWP-ICE domain. Com-
parison of radar-derived rainfall data to gauge rainfall data
is conducted at all stations. Representative results are shown
for Batchelor station (YBCR, 131.0252W, 13.0545S) and
Charles Point (CHAP, 130.6309W, 12.389S). The colored
area around each gauge shows the region of the TWP-ICE
domain area closest to that gauge.

IWP in CRMs have been identified in other studies [Fridlind
et al., 2012]. The existence of those discrepancies makes it
difficult to use the CRM results in assessing the SCM behav-
ior. The LEM has approximately double IWP compared to
SAM with a gradient of 300 kg m–3 h (LEM) compared
to 50 kg m–3 h in SAM. Most SCM have gradients around
this range, although in the NCEP model IWP is relatively
insensitive to forcing.

[63] The ensemble enables the comparison not only
between models but also of different versions of the same
model. For example, SCAMS and SCAMR have very

similar IWP, whereas SCAML, using a different micro-
physics scheme, has twice the IWP of the other SCAM
models. There is a more marked difference between the two
versions of the UM. UM-PC follows closely the gradient
and approximate magnitude of the LEM (which is the UK
Met Office’s CRM) and which was used in the formulation
of the Plant and Craig [2008] stochastic convection param-
eterization scheme. The UM-GR, on the other hand, is close
to the SAM CRM which shows that there is complex inter-
play between the parameterization schemes. The UM SCM
only differ in their convection parameterization, but this has
a large effect on the IWP produced. In general, there is a
split between models that follow the strong slope of the LEM
and those closer to the weaker slope of the SAM. It is not
possible, however, to attribute the relationship between pre-
cipitation and IWP simply based on the model microphysics
scheme.

[64] Figure 13b shows the relationship between LWP
and IWP and shows different aspects of the relationships
between the variables in the models. There is a clear spilt
between some models that have larger ranges in LWP (e.g.,
SCAM and JMA models) and others that have larger ranges
in IWP (e.g., UM-PC and CLUBB). Fridlind et al. [2012]
found that 2-D CRMs have a weaker relationship than 3-
D CRMs between IWP and LWP, which is contrary to
Figure 13a. However, the 2-D version of the LEM used here
was not part of the Fridlind et al. [2012] study, and fur-
thermore, the SAM here used a single-moment microphysics
scheme, whereas the SAM in Fridlind et al. [2012] used a
double-moment scheme [Morrison et al., 2009] so a direct
comparison is not possible.

[65] Interestingly, considering only the multimodel
ensemble (Figure 13b) shows a different relationship
between LWP and IWP compared to the relationship shown
in the individual ensemble simulations. The ensemble
within each model suggests increasing IWP with LWP,
whereas the multimodel ensemble would suggest a tendency
for IWP to increase with decreasing LWP. This shows the
differences and potential limitations of using a multimodel

Figure 15. Distributions of radar-derived rainfall normalized by rain gauge rainfall for two rain gauges
for TWP-ICE. A log-normal fit is shown in the solid line. Statistics of the observed data and the fit data
are given in the top right corner of each panel.
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Figure 16. Ensemble cumulative rainfall time series for TWP-ICE derived from error estimates in radar-
derived rainfall. Broken and light-colored lines show all ensemble members with key ensemble members
(5th, 25th, 50th, 75th, and 95th percentiles) as black continuous lines. The best estimate forcing, used
here and in the CRM intercomparison, is shown by small circles.

ensemble. Using a multimodel ensemble would suggest the
reverse characteristic relationship between variables to that
suggested by CRM and SCM each simulating their own
ensemble.

4. Summary and Discussion
[66] This study presents an ensemble of SCM and CRM

simulations for the TWP-ICE period. The first purpose of
the study was to derive an ensemble of model forcings based
on observational uncertainty. This data set was then applied
to a variety of models to assess what new information about
model behavior and model error might be gleaned from an
ensemble approach that could not be attained by a single
realization commonly used in CRM and SCM studies. It was
found that the overall model behavior in terms of the time
evolution of thermodynamic variables or the time-averaged
vertical structure of those variables generally changes lit-
tle between the ensemble mean and a single “best estimate”
simulation. However, there were some notable exceptions
to that finding. In some model simulations, like those with
the UM-PC, ensemble means deviate from the best esti-
mate simulations throughout the troposphere. Given that the
ensemble mean forcing is close to that of the best esti-
mate, this indicates nonlinearities in the simulation behavior
possibly due to the stochastic component of the model.
The ensemble also shows that models have greater sen-
sitivity when weakly forced, and therefore, an ensemble
is necessary. Perhaps the main value the ensemble adds
to single simulations is the possibility to investigate the
changes in model behavior with changes in forcing. This
has proved invaluable in highlighting several aspects of
model behavior in this study, namely, (i) a distinctly different
behavior in the SCMs from that in the CRMs in achiev-
ing changes in surface evaporation; (ii) the sensitivity to
the particular forcing method applied, (iii) a wide spread
in the convective precipitation fraction in models and its
sensitivity to forcing strength, and (iv) distinctly different
model behavior in the relationships between cloud variables
and precipitation.

[67] Examining the terms of the moisture budget using
the ensemble enabled interesting conclusions about model
behavior for two important terms; the surface evaporation

and the moisture convergence. A clear distinction exists
between the CRMs and the SCMs. In the CRMs, evapora-
tion increases for constant atmospheric moisture, whereas
the SCMs can only increase evaporation by drying the atmo-
sphere. This suggests a role of subgrid variability likely
brought about by cold pools in the CRMs that is not param-
eterized in SCMs. A representation of cold pool dynamics
in SCMs would allow surface evaporation to occur in a
moist atmosphere. Studying the moisture convergence term
as a function of forcing strength revealed an interesting
feedback between model error and the particular forcing
approach chosen here. As the models are forced with hori-
zontal moisture advection and vertical motion profiles (and
hence profiles of mass convergence and divergence), they
develop their own vertical moisture advection and moisture
convergence terms. In models that develop a moist/dry bias,
this bias is reinforced by an increase/decrease of the mois-
ture convergence into the region. This behavior limitation
can easily be deduced using the ensemble approach, while
it would go largely unnoticed in single simulations with a
number of models.

[68] The ensemble was also shown to be useful in inves-
tigating cloud variables and their relationships. Ensemble
vertical profiles generally highlight structural differences
between different models in that all ensemble members
of a particular model tend to lie closer to its mean than
to that of other models, even with large variations in the
forcing. Consistent with the results in the accompanying
modeling studies for TWP-ICE [Lin et al., 2012; Fridlind
et al., 2012; Zhu et al., 2012], large differences are found in
the models’ simulation of cloud ice, highlighting this area
once again as one warranting further study. The ensemble
is used to identify relationships between liquid water, cloud
ice, and precipitation. CRM simulations, while varying in
magnitude, show clear linear relationships between those
variables. This behavior is not reproduced in all SCMs, some
of which show strongly nonlinear behavior or even jumps.
The ensemble also reveals that the ice water path to liquid
water path relationships are very different between models,
with one group of models showing a very strong increase
of IWP with LWP, while in others IWP is almost indepen-
dent of LWP. This conclusion applies to both CRMs and
SCMs. Using the multimodel best estimate ensemble only,
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the important relationship of increasing ice water path with
liquid water path in individual models is reversed.

[69] This study shows that the introduction of an ensem-
ble to a modeling study provides more information than
might be gathered by simulating only simple best estimate
forcing. While the method does not replace the standard
best estimate approach to single-column modeling, it com-
plements it by (i) providing an easy framework to study
model sensitivities and (ii) increasing confidence in detect-
ing model behavior that is likely due to model, rather than
forcing, limitations. Future SCM studies should therefore
consider adding ensemble simulations in addition to, rather
than instead of, the more conventional best estimate method.
Despite the additional information provided by the ensem-
ble, it remains difficult to conclusively link model behavior
in an SCM to parameterization assumptions, highlighting the
need to embed studies like the one presented here into a
larger framework of model evaluation.

Appendix A: Derivation of the Large-Scale
Forcing Ensemble

[70] An important part of this study is the use of an
ensemble of large-scale forcing data sets. The motivation
for doing so is to assess the inherent uncertainty in deriv-
ing a single best estimate of the large-scale atmosphere
from observations and in its subsequent application to drive
model simulations. This appendix describes the construction
of the ensemble used in this study, which is based on two
steps: (i) estimate errors in the estimate of area-mean rain-
fall and construct alternative rainfall scenarios and (ii) apply
a constrained variational analysis to each of the rainfall sce-
narios derived in the first step to yield the final ensemble of
large-scale atmospheric states.

A1. Deriving an Ensemble of Rainfall Estimates
[71] The main source area-mean rainfall information in

this and other TWP-ICE studies [e.g., Xie et al., 2010] are
rainfall estimates from a C-band polarimetric radar located
near Darwin [Keenan et al., 1998]. The algorithm used
to estimate rainfall from radar variables is that of Bringi
and Chandrasekar [2001]. While the radar provides excel-
lent spatial coverage to estimate area means, deriving rain
rates from radar variables will lead to errors in the rainfall
estimates. A first step in the ensemble construction is to esti-
mate these errors. To do so, we use rain gauge observations
around Darwin and apply a method very similar to that of
Jordan et al. [2003].

[72] Radar rain rates vary in space and time, and radar
errors may vary considerably based on location and tim-
ing of rain events. The array of rain gauge data shown in
Figure 14 is used as a reference for the radar-derived rain-
fall data. A grid of 3� 3 radar pixels (approximately 9 km2)
are averaged and compared to rain gauge measurements over
an accumulated period of 180 min where both rain rates are
greater than 1 mm. By performing this analysis at many loca-
tions over the TWP-ICE domain, it is anticipated that the
differing sources of error may be better accounted for.

[73] Examples of the ratio of radar-derived rainfall data
to rain gauge rainfall data are shown in Figure 15 for two
rain gauges. Assuming that rain gauge data may be a better
estimate of rainfall than radar-derived data, ratios close to 1

suggest small errors in the radar data, with smaller standard
deviations showing the clustering of the errors. The statistics
in Figure 15 for the observed data show differences in the
mean values and standard deviations at the two locations,
suggesting that indeed errors have different spatial patterns.
As the data tend to cluster about 1, the two observed data sets
predominantly agree on the magnitude of rainfall, although
the long tails of the error distribution show that on occasions
large errors can be identified.

[74] A log-normal distribution is fitted to the errors shown
in Figure 15. The log-normal distribution parameters are
estimated and used to construct an ensemble of rain rates
at each radar pixel as follows. The distribution of radar to
gauge rainfall ratios is divided into 100 percentiles. Then the
ratio for each percentile is used to multiply the radar rain val-
ues, providing 100 rainfall values (one for each percentile) at
each radar pixel. For each radar pixel, the error distribution
derived at the nearest rain gauge is used. Figure 14 shows the
areas (colored) for which error characteristics are assumed
constant in space based on the nearest rain gauge behavior.

[75] Having derived rainfall error estimates at each radar
pixel, which is expressed as 100 values of rainfall from the
lowest to the highest, the next task is to estimate the error
in the area-mean rainfall. This requires assumptions about
the spatial correlation of the individual pixel errors. As our
goal is to span the widest range of possibilities, we will
assume the worst case scenario of maximum correlation.
In other words, we assume that whenever the largest pos-
sible error occurs at 1 pixel, the largest error in the same
direction occurs at all radar pixels. This is an extremely
simple assumption and will maximize the possible error in
the area-mean rainfall, consistent with our goal to maxi-
mize ensemble spread. Using this assumption, 100 values of
area-mean rainfall are derived by simply averaging the pixel-
rainfall rates within each percentile, i.e., the first percentile
of the area-mean rainfall distribution is simply the average
of all first-percentile values at each pixel and so on stepping
through all percentiles. Figure 16 shows the 100 cumulative
rainfall time series in this way for TWP-ICE. For compari-
son, the figure includes the best estimate rainfall time series
as derived by Xie et al. [2010], which falls close to the 50th
percentile as might be anticipated from the method the dis-
tribution was constructed. While the error estimates allow
for a large range of possible rainfall values, 50% of the dis-
tribution falls between the 25th and 75th percentiles of the
distribution which has a limited range of rainfall.

A2. Deriving the Large-Scale Atmospheric State
[76] Each of the 100 rainfall scenarios derived above

is used separately in the variational analysis algorithm of
Zhang et al. [2001] (all other observations, such as thermo-
dynamic variables, horizontal winds, and radiation terms,
are unchanged and are the same for each scenario) to pro-
duce 100 separate forcings that are all equally possible given
the uncertainty in area-mean rainfall. The higher (lower)
percentile corresponds to stronger (weaker) surface pre-
cipitation and generally stronger (weaker) vertical motion.
The characteristics of the vertical motion for the active and
suppressed periods are discussed in the main text.

[77] Investigations were made into whether the additional
variational analysis inputs should be modified in order to
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be more physically consistent. For example, an estimate
of rainfall error has been used to derive alternative rain-
fall time series, but increased rainfall may, in the simplest
terms, also be associated with more deep cloud and therefore
reduced top-of-the-atmosphere longwave radiation, which is
also an input to the variational analysis. Sensitivity studies
where the radiation was varied in conjunction with rainfall
had little impact on the resulting large-scale atmosphere.
This supports Zhang et al. [2001], who suggested that rain-
fall provided the largest contribution term in the variational
analysis.

[78] The 100 large-scale data sets so derived are used to
provide forcing data for SCM and CRM as described in the
main text.
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