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[1] The surface response to 11 year solar cycle variations is investigated by analyzing the
long-term mean sea level pressure and sea surface temperature observations for the period
1870–2010. The analysis reveals a statistically significant 11 year solar signal over Europe,
and the North Atlantic provided that the data are lagged by a few years. The delayed signal
resembles the positive phase of the North Atlantic Oscillation (NAO) following a solar
maximum. The corresponding sea surface temperature response is consistent with this. A similar
analysis is performed on long-term climate simulations from a coupled ocean-atmosphere
version of the Hadley Centre model that has an extended upper lid so that influences of solar
variability via the stratosphere are well resolved. The model reproduces the positive NAO signal
over the Atlantic/European sector, but the lag of the surface response is not well reproduced.
Possible mechanisms for the lagged nature of the observed response are discussed.

Citation: Gray, L. J., A. A. Scaife, D. M. Mitchell, S. Osprey, S. Ineson, S. Hardiman, N. Butchart, J. Knight, R. Sutton,

and K. Kodera (2013), A lagged response to the 11 year solar cycle in observed winter Atlantic/European weather patterns,
J. Geophys. Res. Atmos., 118, 13,405–13,420, doi:10.1002/2013JD020062.

1. Introduction

[2] Investigations of influences of solar variability on
weather and climate have a long history (see, e.g., the recent
review by Gray et al. [2010]). Influences of relatively
long term solar variations on surface climate have been
demonstrated by paleoclimate data studies [e.g., Mann
et al., 2009], but influences of the 11 year solar cycle varia-
tion are more controversial. In recent years, as data records
have become longer and more accurate, further tantalizing
evidence has emerged for an influence of the 11 year solar
signal although there has been much skepticism and contro-
versy, primarily because of the difficulty of distinguishing a
relatively small solar cycle influence from the internal
decadal-scale variability of the atmosphere-ocean coupled
system [e.g., Pittock, 1978, 1983, 2009; van Oldenborgh
et al., 2013]. The 11 year variation in the Sun’s total output
is small and amounts to only ~0.07% (0.17 Wm�2). The

direct radiative impact of the 11year solar cycle at the Earth’s
surface is therefore very small, but various amplifying mecha-
nisms have been proposed that suggest that regional responses
may be much larger [Haigh, 1996; Meehl et al., 2009].
[3] In the stratosphere, there is a well-documented 11 year

solar signal in temperature associated with variations in UV
absorption and ozone changes [Gray et al., 2010]. These
temperature changes affect the background wind distribution
that influences wave propagation in winter [Kodera and
Kuroda, 2002]. There is growing evidence of an 11 year solar
response in the strength of the Northern Hemisphere (NH)
polar vortex as a result of this, although it is complicated
by the influence of the quasi-biennial oscillation (QBO)
[Labitzke, 1987; Labitzke et al., 2006] and natural internal
variability, which is large in this region [see Gray et al.,
2010, and references therein].
[4] At the surface, the observational evidence is less well

established. At the equator, where the Sun’s radiative input is
largest, there has been much recent debate about the pattern
and timing of the 11year solar signal in the observed tropical
Pacific sea surface temperatures (SSTs), and whether or not
11 year solar irradiance variability at the Earth’s surface can
act as a trigger for El Niño–Southern Oscillation (ENSO) vari-
ability [e.g., van Loon et al., 2007; van Loon and Meehl,
2008; Meehl et al., 2008, 2009; Roy and Haigh, 2010; Zhou
and Tung, 2010;Haam and Tung, 2012;Roy andHaigh, 2012].
[5] At midlatitudes, there has been similar controversy.

Figure 1 shows the time series of normalized December–
January–February (DJF)-averaged North Atlantic Oscillation
(NAO) index [Jones et al., 1997] for the period 1821–2010with
the corresponding sunspot number time series superimposed.
During some periods, for example, around 1840–1860 and
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1980–2005, the 11 year solar cycle and NAO appear to be
reasonably well correlated, but this is by no means the case
throughout the whole data period, and the signals appear to
be anticorrelated in the interval 1910–1930.
[6] Observational studies of the past few decades have

suggested an 11 year cycle in the strength/position of the mid-
latitude jet streams [Kodera, 2002; Haigh, 2003], the North
Atlantic Oscillation (NAO) and Northern Hemisphere (NH)
blocking frequency [Barriopedro et al., 2008; Woollings
et al., 2010], but looking further back in time the signal is less
convincing, giving rise to suggestions that the correlations are
purely coincidental [Rodwell, 2003]. On the other hand, model
studies that include 11 year solar variations and can be run for
many years to overcome the problem of statistical significance
have suggested the possibility of an 11 year solar influence
over the Atlantic/European sector in wintertime [Haigh,
1996; Kodera, 2002; Kuroda and Kodera, 2004; Haigh
and Blackburn, 2006; Matthes et al., 2004, 2006; Ineson
et al., 2011].
[7] In a recent study of the solar signal over Europe

extending back over a 250 year period, Brugnara et al.
[2013] found a statistically significant signal over Europe
but suggested that it was connected to the more meridional
Eurasian pattern rather than the NAO itself. Woollings et al.
[2010] also noted that while the circulation anomalies
strongly resemble the NAO, they also extended deeper into
Eurasia, especially in solar maximum periods [see also
Kodera, 2003].
[8] There are, of course, other factors that could mask the

existence of a solar signal, including simple internal unforced
variability, the ENSO, sporadic volcanic eruptions, the QBO,
and the response to climate forcings such as the growing
levels of CO2 in the atmosphere. Additionally, in a nonlinear
system with multiple complex forcings and feedback pro-
cesses, it should not be surprising if the system displays be-
havior that is highly complex and sporadic [Lorenz, 1963].
[9] Despite the difficulties of isolating and characterizing

the signal that has given rise to the various controversies
outlined above, it is nevertheless important to continue to
examine the observational evidence using whatever practical
analysis tools are available and to investigate possible

amplification mechanisms so that the presence or otherwise
of an 11 year solar cycle influence may be established. The
NAO is the major mode of variability in the North Atlantic/
European sector and serves as a good indicator of seasonal
European weather. Hence, if an 11 year solar-related signal
is confirmed, it offers a potential source of information that
could improve seasonal to decadal weather forecasts, partic-
ularly on regional scales.
[10] In this paper, we address these issues by reexamining

observations of mean sea level pressure (mslp) and sea sur-
face temperatures (SSTs) back to the midnineteenth century
with a particular focus on the North Atlantic/European
sector. We employ a multiple linear regression analysis tech-
nique in which the time and spatial variations of the observa-
tions are represented using an optimum least squares fit to a
combination of relevant “forcing” indices that represent the
major possible influences (volcanic, ENSO, solar, and
anthropogenic). Although there are limitations to this tech-
nique, such as the assumption of linearity and the possibility
of degeneracy between the indices employed, the technique
has been usefully employed to investigate the solar signal
in various atmospheric and surface data sets [Haigh, 2003;
Crooks and Gray, 2005; Lean and Rind, 2008, 2009;
Frame and Gray, 2010; Roy and Haigh, 2010].
[11] The prime pitfall of degeneracy between the forcing

indices employed in multiple linear regression analyses
arises when the forcing indices are insufficiently distinct
from one another so the signals may be aliased to give a false
signal [e.g., Ingram, 2006]. This is a particular problem when
trying to extract the signal associated with the long-term un-
derlying trend in solar output which can be difficult to distin-
guish from trends due to increased greenhouse gas levels. For
this reason, we concentrate here only on the 11 year solar var-
iation. Similarly, there is a possibility of aliasing between the
11 year solar and volcanic signals. This is a concern when
analyzing data for the recent past [Frame and Gray, 2010]
since the El Chichon and Pinatubo eruptions occurred ap-
proximately 11 years apart and coincided with solar maxima.
However, over the much longer period examined in this
study (1870–2010), the time evolution of the two indices is
sufficiently distinct that this is no longer an issue. There is
also the possibility that the 11 year solar and the ENSO
signals could be aliased. Sensitivity tests in which one or
other of the solar and ENSO indices was excluded,
confirming that the pattern and magnitude of the two re-
sponses from our study are not unduly influenced by the pres-
ence or absence of the other and increasing our confidence
that the solar signal is not a spurious artifact of the analysis.
Finally, although the influence of the QBO and its possible
(nonlinear) interaction with the solar cycle is important to
represent when examining the stratospheric response, it
cannot be included in the analysis of surface observations
that extend back to 1870 because there are no available
QBO indices that extend far enough back in time.
[12] Our study extends previous analyses by looking

additionally at lagged regressions so that we can characterize
the temporal as well as spatial patterns of the 11 year solar
response. While the results of the analysis are presented over
the entire globe for comparison with previous studies
[notably Roy and Haigh, 2010; Zhou and Tung, 2010], we
concentrate our analysis primarily on the wintertime North
Atlantic/European sector. The study is similar to that of
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Figure 1. Time series of normalized annual-averaged sun-
spot number (blue) and DJF-averaged NAO index (red; thick
line is running 3 year average) for 1821–2011. The NAO
index is derived using the pressure difference between
Gibraltar and Iceland (see text).
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Hood et al. [2013] although they concentrate on the solar
response over the Pacific region and examine lead/lag times
of only ±2 years. Our analysis reveals an emerging signal that
resembles a positive NAO response following solar maxima
with a lag of approximately 3–4 years.
[13] In addition, we compare these observational results

with simulations using the Hadley Centre coupled ocean-
atmosphere climate model (HadGEM2) using the same
regression technique. Although the model captures reason-
ably well the pattern of solar response, it fails to capture
the lagged nature of the response.
[14] The layout of the paper is as follows: In section 2, we

describe the data sets, the model, and the methodology
employed. The observational results are presented in section
3. Climate model simulations are described in section 4 and
compared with the observational results. Section 5 provides
a summary of the main findings and a discussion of
possible mechanisms.

2. Methods and Data Sets

2.1. Observational Data Sets

[15] Mean sea level pressure data (mslp; hPa) for 1850–2004
were analyzed from the UKHadley Centre Sea Level Pressure
(HadSLP2) data set [Allan and Ansell, 2006] and updated to
2010 by the HadSLP2r data set. Sea surface temperature
data (SST; K) for 1870–2010 were from the Hadley Centre
Sea Ice and Sea Surface Temperature (HadISST) data set
[Rayner et al., 2003]. All three data sets are available from
the Hadley Centre website (www.metoffice.gov.uk/hadobs/)
and are based on pure observations rather than reanalysis
to allow a clear distinction to be made from models. The
analysis was also repeated using the extended reconstructed
SST (ERSST) data set (http://www.cdc.noaa.gov/cdc/data.
noaa) with similar results, so only the HadISST results are
shown here. Since the mslp and SST data sets are not the
same in length and the results from the mslp analysis were
found to be unaltered by the inclusion or otherwise of the
first 20 years of the data set, we only show results for
1870–2010.
[16] For the estimation of the observed 11 year solar

variation in equatorial stratopause temperatures (Figure 6),
zonally averaged temperature data from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Re-Analysis data set (ERA-40), updated by the operational
data to cover the period 1979–2008, were employed (see
Frame and Gray [2010] for details).
[17] The NAO values in Figure 1 are the monthly averages

available from 1821 on the University of East Anglia Climate
Research Unit website (http://www.cru.uea.ac.uk/~timo/
datapages/naoi.htm). They have been derived by taking the
mean sea level pressure differences between Gibraltar and
Iceland [Jones et al., 1997].

2.2. The Model

[18] The climate simulations described in section 4 were
generated by the UK Met Office Hadley Centre coupled
ocean-atmosphere Global Environment Model (HadGEM).
The version employed was the HadGEM2-CCS version, as
described by Martin et al. [2011]. The atmospheric compo-
nent has horizontal resolution of 1.875° longitude × 1.25°
latitude with 60 vertical levels extending from the surface

to approximately 84 km. A detailed examination of the
stratospheric climatology and variability in this model
has been reported by Hardiman et al. [2010] and Osprey
et al. [2010]. The model includes a momentum-conserving
nonorographic gravity wave drag parameterization [Warner
and McIntyre, 1999; Scaife et al., 2002] and has a self-
generated quasi-biennial oscillation (QBO) as a result of
this. The oceanic component Hadley Centre Ocean Carbon
Cycle has a horizontal resolution of 1° × 1° increasing in
the tropics to 0.3° with 40 vertical levels and a lower bound-
ary at 5.3 km. The model includes a coupled carbon cycle,
but there is no explicit interactive chemistry apart from
methane oxidation.
[19] The climate simulations cover the period 1860–2100 and

were prepared as input to the Coupled Model Intercomparison
Project (CMIP5). They include a representation of all known
forcings as described in detail by Jones et al. [2011] with real-
istic increases of greenhouse gases, imposed variations of vol-
canic aerosol optical depths using the updated Sato et al.
[1993] data set and a representation of solar variability.
During the historical period, the prescribed CO2, methane,
and other greenhouse gases are specified according to the
CMIP5 recommendations, and in the future, they followed
the Representative Concentration Pathway RCP8.5. The
imposed historical stratospheric ozone amounts included a re-
alistic seasonal cycle and ozone hole development since the
1980s and used the average estimation from chemistry-climate
model projections for the future [Cionni et al., 2011].
[20] Solar irradiance variations were imposed by partitioning

the total solar irradiance (TSI) variations across the six short-
wave spectral bands in the model (0.2–10 μm)with the associ-
ated Rayleigh scattering and ozone absorption variations [Stott
et al., 2006]. The TSI data for the historical period were those
recommended by CMIP5 [Wang et al., 2005; Lean, 2009] and
include both an 11 year variation and a longer-term underlying
variation. After 2005, a repeating cycle was employed with no
underlying long-term variation. The repeated cycle had a
period of 11years whose mean and maximum-minimum
values corresponding to solar cycle 23. An 11 year solar cycle
in ozone amounts was also imposed, based on the observa-
tional analysis of Randel and Wu [1999], as described by
Jones et al. [2011, section 4.2].
[21] The solar signal in three-ensemble simulations has

been analyzed. The first member extends from 1860 through
to 2100. The two additional members extend from 1960 to
2100 and were initialized from the first simulation by using
the atmospheric and oceanic model states from different
dates in November 1959 [Hardiman et al., 2012]. As a result,
520 years of model simulations were available for analysis,
approximately forty-seven 11 year solar cycles.

2.3. The Regression Analysis

[22] The multilinear regression analysis employed an
identical approach to earlier work [Haigh, 2003; Crooks and
Gray, 2005; Frame and Gray, 2010; Roy and Haigh, 2010].
For the surface observational analysis, four independent “forc-
ing” indices were employed to represent the major sources of
variability in the analyses of the observational data sets:
ENSO, volcanic eruptions, the 11 year solar cycle, and the
long-term trend. The QBO was not included in the surface ob-
servational analysis because there are no estimates of the QBO
that extend back to 1870. However, analysis of more recent,
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shorter periods in which the QBO was included showed that
the QBO response at the surface was relatively small.
[23] As in Roy and Haigh [2010], we employ monthly sun-

spot numbers to represent the 11 year solar variability in the
observational analysis, thus avoiding complications that arise
from using total solar irradiance (TSI) data, which has an un-
derlying long-term variation and includes assumptions about
solar behavior and the relationship between solar irradiance
and sunspot numbers. To represent ENSO variability, we
use monthly averaged sea surface temperatures averaged
over the Niño 3.4 region from the HadISST data set. The
major volcanic eruptions are represented by the updated time
series of monthly mean aerosol optical depth [Sato et al.,
1993]. Finally, a linear trend is included to represent anthro-
pogenic warming over the period. A number of sensitivity
tests were performed and showed that the results were not
sensitive to the exact nature of this trend term—more realistic
representations, e.g., following greenhouse gas emission or
concentration pathways or including a modified trend term
to include tropospheric aerosol trends had little effect on
the overall results.
[24] For the stratospheric temperature regression analysis

(used in Figure 6), two additional indices were included to
represent QBO variability. Reliable stratospheric tempera-
ture observations are only available since 1979 so the analy-
sis of the solar response in the stratosphere was carried out
only for the period since 1979 (using ERA data; see section
2.1). The two QBO indices were obtained by computing
the first two empirical orthogonal functions (EOFs) of the
equatorial lower stratospheric zonal wind field from the
ERA data (for details, see Crooks and Gray [2005]). The in-
clusion of these two additional indices is important when
characterizing the signal in the stratosphere, but sensitivity
tests showed that their presence made little or no difference
to the solar signal at the surface.
[25] The regression analysis of the model simulations was

performed using the same regression technique and all six in-
dices. For the solar index, however, the TSI time series of
Lean [2009] was used instead of sunspot number, for consis-
tency with the fact that these TSI values were used to impose
the solar variations in the climate simulations. In order to
examine only the 11 year component, an 11 year running
mean of the TSI values was computed and subtracted from
the data so that the underlying long-term solar variation
was removed. The results were not sensitive to the exact
length of this smoothing average provided it was sufficiently
long to adequately smooth out the 11 year cycle. The
extended Sato et al. [1993] volcanic aerosol index was
employed for the volcanic eruption index. The ENSO index
was derived by averaging the modeled SSTs over the Niño
3.4 region. The two QBO indices were derived by computing
the first two EOFs of the modeled lower equatorial strato-
spheric zonal winds.
[26] An autoregressive AR(1) noise model was employed

in all of the regression analyses so that the noise coefficients
were calculated simultaneously with the other components of
variability and were consistent with a red noise model of or-
der one. Sensitivity tests with different orders up to AR(3)
did not show significant differences. A two-tailed Student’s
t test was used to determine the 95% and 99% probabilities
that the regression coefficients are significantly different
from noise. The analysis concentrates on the NH winter

period, so the results are shown for DJF averages unless oth-
erwise stated. Note that the regression coefficients associated
with the 11 year solar cycle from Figure 4 onward have been
rescaled by the standard deviation and multiplied by the max-
imum peak-to-trough sunspot number in the appropriate data
interval to obtain an estimate of the maximum likely response
to variations in the Sun’s output.

3. Observational Results

[27] Figures 2 and 3 show the global regression coefficient
distributions of observed SST and mslp anomalies, respec-
tively, for December–January–February (DJF) averages over
the period 1870–2010 associated with each of the four re-
gression indices (11 year solar cycle, volcanic, anthropo-
genic, and ENSO). No lags have been applied to any of the
regression indices. The patterns of the responses are consis-
tent with previous studies. For example, the ENSO SST re-
sponse (Figure 2) displays the well-known warm tongue
extending across the equatorial Pacific together with the cor-
responding mslp anomalies (Figure 3) that show the typical
ENSO modulation of the Walker circulation. The volcanic
signal shows generalized cooling over much of the globe in
the SST response and a weak but statistically significant
NAO-like response in mslp, as noted by several studies
[e.g., Driscoll et al., 2012, and references therein]. The linear
trend term shows generalized warming over most of the
globe and a dipole in the mslp response over the Southern
Ocean, consistent with patterns of observed changes associ-
ated with anthropogenic warming and ozone depletion
[Intergovernmental Panel on Climate Change, 2007].
[28] Zhou and Tung [2010] carried out an extensive study

of the solar signal in SST observations using a multiple com-
posite mean difference approach so the distributions of the
volcanic, ENSO, and anthropogenic regression coefficients
in Figure 2 can be usefully compared with their results
[Zhou and Tung, 2010, Figure 6]. As expected, the ENSO
pattern agrees very well, and also, the volcanic signals have
similar cooling distributions in equatorial/subtropical lati-
tudes and a region of generalized warming near 60°S. The
anthropogenic terms have a similar region of maximum
warming around the southern tip of South Africa and along
the NHwestern ocean boundaries, but the warm Pacific equa-
torial tongue in the Zhou and Tung results is missing
from Figure 2.
[29] The 11 year solar SST response in Figure 2 is rela-

tively weak compared with the ENSO and trend terms, but
note that the significance values (dots) are plotted at the
99% level, for consistency with the other terms (larger re-
gions are significant at the 95% level). In the east equatorial
Pacific, there is a region of statistically significant weak
cooling similar to that discussed by van Loon et al. [2007]
[see also van Loon and Meehl, 2008; Meehl et al., 2008,
2009; Meehl and Arblaster, 2009], but it does not show a
close resemblance to the ENSO distribution since the pattern
shows no particular symmetry about the equator nor does it
extend as far westward as the ENSO signal. In addition, the
signal along the west coast of North America is of the oppo-
site sign. In the Southern Hemisphere, there is a band of weak
warm anomalies at around 50–60°S (significant at the 95%
level; see Figure 5) in good agreement with the results of
Zhou and Tung [2010] and Hood et al. [2013]. Although
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there is some evidence of a similar anomaly in the results of
Roy and Haigh [2010] who analyzed the ERSST data set
[Roy and Haigh, 2010, Figure 2a], it is less clear in their study.
In addition, there is a statistically significant signal in Figure 2

in the northwest Pacific SSTs with a SW-NE-oriented banded
structure. This response also features prominently in the anal-
ysis of Hood et al. [2013, Figure 4]. Zhou and Tung [2010]
also have this tripolar SW-NE banded structure, but it is less

Trend ENSO

Figure 3. Regression coefficients at zero lag from the analysis of the HadSLP mean sea level pressure
observational data set for DJF averages over the 1870–2010 period for each of the four indices employed
in the regression analysis: 11 year solar cycle, volcanic, trend, and ENSO. Units are hPa per standard
deviation for the linear trend, volcanic, and ENSO terms and K per 100 sunspot number for the 11 year solar
cycle terms. Black dots denote 99% statistical significance using a two-sided Student’s t test.

Trend ENSO

Figure 2. Regression coefficients at zero lag from the analysis of the HadISST sea surface temperature
observational data set for DJF averages over the 1870–2010 period for each of the four indices employed
in the regression analysis: 11 year solar cycle, volcanic, trend, and ENSO. Units are K per standard devia-
tion for the linear trend, volcanic, and ENSO terms and K per 100 sunspot number for the 11 year solar
cycle terms. Black dots denote 99% statistical significance using a two-sided Student’s t test.
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distinct. Although not the primary focus of this study, we
note that this feature is similar in its structure to the horse-
shoe-shaped anomaly associated with the Pacific Decadal
Oscillation [see, for example, Schneider and Cornuelle,
2005; Deser et al., 2010].
[30] The 11 year solar response in mslp (Figure 3) shows a

statistically significant response only in the North Pacific in
the region of the Aleutian Low with a region of opposite sign
just south of it, so that the Aleutian Low is weaker and the
Hawaiian High is slightly farther north during periods of
solar maximum. This is in good agreement with the results
of Christoforou and Hameed [1997], van Loon et al.
[2007], Roy and Haigh [2010], and Hood et al. [2013]. We
note that Zhou and Tung [2010] did not examine mslp fields.
[31] In the North Atlantic sector, the mslp analysis

(Figure 3) shows no sign of any statistically significant mslp
response to the 11 year solar signal. There is a region of neg-
ative anomaly centered to the north of the UK, similar to that
seen in the composite analysis of Brugnara et al. [2013,
Figure 3], but it is not statistically significant.
[32] A different picture emerges, however, when the

lagged 11 year solar response in mslp is calculated. The
lagged response was calculated simply by shifting the solar
index a month at a time so that the surface data lag the solar
index. All other indices were kept at zero lag. Figure 4 shows
the 11 year solar cycle regression coefficients at yearly inter-
vals for lags of up to 11 years. Note that the coefficients have
been rescaled by the standard deviation and multiplied by the
maximum peak-to-trough sunspot to give an estimate of solar
maximum minus solar minimum differences.
[33] In this case, a coherent positive anomaly emerges over

the Atlantic, centered over the region of the Azores (2 year
lag), which then strengthens (3 year lag) and extends across
into Europe (3–4 year lags). The positive signal over the
Azores is statistically significant at the 95% level at all lags
between 3 and 5 years, and its maximum amplitude reaches
a peak of ~3 hPa at 3–4 years lags with 99% significance.
[34] The standard deviation of the full wintertime sea level

pressure data (which includes all sources of variability) is
~3–4 hPa at 45°N over the North Atlantic so the 3 hPa solar
signal represents a substantial shift (although note that this
is a maximum estimate for the solar response and its average
response is likely to be closer to half this). A corresponding
anomaly of opposite sign is evident over Iceland, but the
standard deviation in this region is larger so the statistical sig-
nificance is not as high. The pattern of the 11 year solar
response resembles the NAO, with a positive NAO phase
lagging the solar maximum by ~3 years. The signal reverses
in sign as the lag increases, consistent with the oscillatory na-
ture of the solar cycle, and is statistically significant at the
95% level at 7–10 year lags and at the 99% level at 8–9 year
lags. We note that although the spatial pattern of the response
resembles the NAO, our analysis does not conclusively de-
tect a solar response in the NAO index itself, because the
response over Iceland is weak and statistically insignificant.

[35] The results shown in Figure 4 are generally consistent
with those of Brugnara et al. [2013]. They examined the
11 year solar signal over Europe and the Atlantic using a dif-
ferent mean sea level pressure data set that extends back to
1749 [Luterbacher et al., 2002] and covers only the
Atlantic/European region (30–70°N latitude and �30 to
+40° longitude). They examined the late winter response
(January–February–March as opposed to DJF) at zero lag
only. At solar maximum, they found a strengthening of the
Icelandic Low and a positive anomaly over northwest
Africa, consistent with a positive NAO-like response, but
the response over northwest Africa was not statistically sig-
nificant. Their response is therefore consistent with our anal-
ysis at zero lag (Figure 4, top left), but the added years in their
analysis enabled the Icelandic response to be confirmed as
statistically significant. An extension of their study to include
the lagged response so that the time evolution of the response
over the region of the Azores can be examined would be
extremely interesting. The pattern of evolution in Figure 4
is also consistent with the analysis of Hood et al. [2013],
who noted that the mslp response evolves from a negative
Arctic Oscillation (AO) response several years prior to solar
maxima to a positive AO-like response following solar max-
ima, although their investigation only extended to lead/lag
times of ±2 years.
[36] The lagged SST analysis (Figure 5) shows a spatial

pattern consistent with the NAO-like sea level pressure pat-
tern [Visbeck et al., 2001], and the time evolution corre-
sponds well. A cold anomaly develops in the Labrador Sea
(southwest of Greenland) at 0–1 year lags, and this deepens
and extends eastward into the Atlantic (2–3 year lags) with
99% statistical significance. At lags of ~3 years, a tripolar
pattern of SST anomalies is present in the Atlantic which is
the typical SST response to a positive NAO [Bjerknes,
1964] and is also associated with anomalously warm ob-
served temperatures over northern Europe. We note that the
methods of SST data collection are independent of the mslp
data collection, and hence, the 11 year signal in the SST anal-
ysis provides a good validation of the 11 year signal seen in
the mslp analysis.
[37] The lagged distributions in Figures 4 and 5 show re-

gional anomalies that wax and wane at different times during
the 11 year cycle. In order to encapsulate the time evolution
of these anomalies, Figure 6 shows the scaled solar regres-
sion coefficients averaged over selected regions of the globe
as a function of various lag and lead times (in years). A max-
imum positive value at zero lag signifies a signal whose
maximum positive anomaly coincides with solar max. The
evolution of the Azores mslp anomaly is representative of
the evolution of the positive NAO-like response at lags of
3–4 years after solar maximum. The maximummslp anomaly
in the Aleutian Low region, on the other hand, peaks at
around lag zero, which explains why it has been easily iden-
tified in earlier studies that examined only the zero lag
response. The East Pacific SST anomaly is also shown for

Figure 4. The 11 year solar cycle signal in DJF HadSLP mean sea level pressure data set (mslp; hPa) from the regression
analysis for 1870–2010 with the mslp data lagging the sunspot index by different numbers of years. Regression coefficients
have been rescaled by the standard deviation and multiplied by the maximum peak-to-trough sunspot number to give an
estimate of solar maximum minus minimum differences. Black (white) dots denote 95% (99%) statistical significance using
a two-sided Student t test.
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Figure 5. As Figure 4 but from the regression analysis of the HadISST sea surface temperature (K) data set.
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comparison with studies that have concentrated on this
region. Our analysis suggests a negative SST response
approximately 2 years before the peak of the 11 year solar
cycle and a positive response approximately 3–4 years after
solar maximum.
[38] In addition, we include in Figure 6 the solar response

in the region of the equatorial stratopause derived from a
lagged regression analysis of zonally averaged stratospheric
temperatures using ECMWF Re-Analysis data (see section
2 for details). One candidate mechanism for a surface solar
cycle response at high latitudes is via anomalous heating of
the equatorial upper stratosphere that alters the winter
stratospheric circulation (the so-called top-down mechanism)
[Gray et al., 2010; Haigh, 1996; Kodera, 1995; Kodera and
Kuroda, 2002]. Increased irradiance at solar maximum
generally results in warmer equatorial temperatures and a
stronger, less disturbed stratospheric polar vortex although
the relationship is complicated by the QBO [Labitzke, 1987;
Labitzke et al., 2006]. The influence of an anomaly in the
strength of the polar vortex can extend down to the surface,
giving a positive NAO anomaly at the surface [Baldwin and
Dunkerton, 2001; Matthes et al., 2006; Ineson et al., 2011;
Mitchell et al., 2013]. Radiative timescales in the upper
stratosphere are relatively short, and Figure 6 confirms that
equatorial stratopause temperatures respond rapidly to the
irradiance variations (although it is not clear why the maxi-
mum temperature anomalies occur slightly before the solar
maximum rather than coincident with it). If the mslp response
in the region of the Azores is due primarily to atmospheric
forcing via the upper stratosphere, then Figure 6 suggests an
unexpected lag of 3–4 years between the stratospheric
response and the timing of the peak response at the surface.
This is discussed further in section 5.

[39] Interestingly, the timing of the observed Aleutian
mslp solar signal in Figure 6 closely follows the evolution
of the stratospheric signal, with a small delay. This is consis-
tent with it being at least partially forced via a “top-down”
mechanism from the stratosphere. There may also be an addi-
tional influence from the Pacific SST solar anomaly since the
Pacific SSTs are known to influence the Aleutian region
through the generation of an anomalous planetary wave train
in the troposphere. However, closer examination shows that
the Aleutian Low solar signal increases as the East Pacific
solar signal decreases, with an approximately 1–2 year lag
between the peak Pacific SST solar response and the peak
Aleutian Low solar response. It is not obvious why the
Aleutian region would take 1–2 years to respond to a
Pacific SST solar anomaly.

4. Climate Model Simulations

[40] The 11 year solar signal response has also been ana-
lyzed in climate model simulations using the HadGEM2
ocean-atmosphere model with a version that has its upper
boundary at approximately 85 km. This means that the mech-
anism for impact of solar variability on the stratosphere via
changes in UV irradiance and ozone distributions has been
included (the “top-down” mechanism) in addition to the im-
pact of variations in the visible region of the solar irradiance
spectrum that influence the surface directly (the “bottom-up”
mechanism). The model also includes a self-generated QBO
which compares well with the observed QBO [Osprey
et al., 2010].
[41] The HadGEM2 simulations were prepared as input to

the recent Coupled Model Intercomparison Project (CMIP5).
They include representation of all known forcings, including
greenhouse gases, ozone, volcanic eruptions, solar cycle, and
aerosol prescribed from observations for the historical period
and estimated in the future following the Representative
Concentration Pathway RCP8.5 (see section 2 for more de-
tails). An ensemble of three simulations were analyzed.
One extended for the full period 1860–2100 and the other
two for the shorter 1960–2100 period, providing a total of
520 years with approximately forty-seven 11 year solar cy-
cles. As expected, there was some interensemble variability
in the analyzed results, but all ensembles showed the same
broad behavior so only results that employed all three ensem-
bles are presented. Similarly, although we found subperiods
within the model data when the solar signal was different
from that of the full 520 year period (in either amplitude
and/or timing), none of the subperiod results were statisti-
cally significant, so they are not presented here. Further in-
vestigation of the sporadic nature of the modeled solar
cycle response would require extending the number and/or
length of the model simulations.
[42] We note here that these simulations differ from those

analyzed by Ineson et al. [2011]. In that study, a 20-member
ensemble of short-duration sensitivity simulations were car-
ried out in which a relatively large step change in UV solar
irradiance (alone) was imposed. The step change was greater
than the standard Lean [2009] values in order to test the re-
sponse to the larger variation indicated by measurements
from the Spectral Irradiance Monitor instrument, and no
ozone variations were imposed. In contrast, the simulations
analyzed here are long-duration climate simulations that
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Figure 6. Regression coefficients of DJF 11 year solar cycle
signal from the observational analyses at different lags and
lead times for selected regions of the atmosphere and oceans
mslp solar regression coefficients averaged over the Aleutian
Low region (hPa; long dash) and over the Azores region
(hPa; short dash) from the HadSLP analysis, SST solar coeffi-
cients averaged over the East Pacific (K; dash dot) from the
HadISST analysis, and ERA analyses equatorial stratopause
temperature regression coefficients (K; dots) from the ERA
reanalysis. Regression coefficients have been rescaled by
the standard deviation and multiplied by the maximum peak-
to-trough sunspot number to give an estimate of solar maxi-
mum minus minimum differences.
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employ the Lean [2009] irradiance variations at all wave-
lengths (following CMIP recommendations) and also include
11 year variations in the imposed ozone distributions (see
section 2). For a more detailed discussion of the effects of in-
cluding different solar variability data sets on the modeled
solar cycle response, see Ermolli et al. [2013].
[43] Figure 7a shows the modeled height—latitude cross

section of the annual-averaged 11 year solar response in zon-
ally averaged temperature. The annual average is shown for
ease of comparison with observational analyses such as
Frame and Gray [2010]. The primary response at the equato-
rial stratopause shows a 1.5K increase in temperature at solar
maximum compared with solar minimum, in good agreement
with the observational analyses. At polar latitudes and at the
equator near 10 hPa (where the QBO maximizes), statistical
significance is not achieved even with 520 years of data, be-
cause of high background variability. Secondary weak max-
ima are present in the subtropical lower stratosphere centered
around 30 hPa 30–40°N and 30 hPa 40°S, in reasonably good
agreement with observations, although they are slightly
weaker than those observed. Gray et al. [2009] examined
the temperature responses associated with 11 year variations
in UV irradiances and with the 11 year variations in ozone
abundances. They found that both the irradiance and the
ozone influences contribute to the primary temperature re-
sponse at the equatorial stratopause, but the secondary tem-
perature response in the lower stratosphere was dominated
by the ozone variations, because the UV irradiance does not
penetrate down to those levels. This suggests that the under-
estimation of the modeled temperature response at these
lower stratospheric levels is most likely associated with the
imposed 11 year ozone variations, which may have been
underestimated. The lower equatorial stratosphere is also
the region affected by volcanic, QBO, and ENSO influences,

so an inadequate representation of these factors and their
nonlinear interactions could also impact on the extracted
solar signal in this region.
[44] Interestingly, the model also shows a significant posi-

tive temperature response in the equatorial troposphere, with
a maximum in the upper troposphere. A similar upper tropo-
spheric equatorial warming at solar max is present in the ob-
servational analysis of the NCEP data set by Zhou and Tung
[2013] who used a composite mean difference approach, but
it is not present in the regression analysis of the ECMWF data
set by Frame and Gray [2010]. Zhou and Tung [2013] inter-
pret this feature as evidence for the predominance of the
“bottom-up” mechanism. Resolution of this difference be-
tween the observational analyses of Zhou and Tung [2013]
and Frame and Gray [2010] is therefore required but is out-
side the scope of the current study.
[45] The modeled DJF-averaged solar response in zonally

averaged zonal wind is shown in Figures 7b and 7c for the
stratosphere and troposphere, respectively. A NH polar
vortex that is stronger in solar maximum years is evident
(Figure 7b), and this positive wind anomaly extends down
into the troposphere (Figure 7c). The banded structure of
the anomalies in the troposphere agrees well with the ob-
served response [Haigh and Blackburn, 2006] and signifies
a poleward shift of the midlatitude jet and a broadening of
the Hadley circulation in solar maximum years. However,
the maximum magnitude of the response (~0.6ms�1) is
smaller than the NCEP analysis of Haigh and Blackburn
[2006] who found a maximum response of ~2ms�1.
[46] The modeled surface response to the 11 year solar cy-

cle is indicated by the mslp and surface (1.5m) air tempera-
ture responses in Figures 8 and 9. The mslp response
(Figure 8) can be compared with the observations in
Figure 4 and shows a broad pattern of increased pressure over
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Figure 8. As Figure 4 but from the climate model simulations.
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Figure 9. As Figure 5 but from the climate model simulations.
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the region of the Azores similar to that seen in the observa-
tions, but the maximum anomaly coincides with the solar
maximum (zero lag) instead of at the observed 3–4 year lag
after solar maximum. A positive anomaly in the Aleutian
Low region is present around lag zero, but it is much weaker
and has less statistical significance. The surface temperature
response (Figure 9) shows the typical quadrupole tempera-
ture distribution at lag zero in response to a positive NAO
signal, with significant cooling/warming over the Labrador
Sea/North America region and corresponding (but not statis-
tically significant) warming/cooling over northern/southern
Europe. The Labrador Sea anomaly and the extension of
the North American anomaly across the Atlantic, e.g., at zero
lag, are similar to the lower part of the tripolar signal that de-
velops in the observed SST response at 2–4 year lags (see
Figure 5). At equatorial regions, in contrast to the observed
signal (Figure 5), the model shows a broad region of anoma-
lous warming that maximizes at 1–2 year lags across virtually
the entire equatorial region, approximately 2 years earlier
than in the observations. We note that this broad region of
warming across the Pacific does not show a particular resem-
blance to the ENSO signal, for example, the warming along
the west coast of North America is missing. The model also
shows a significant signal in the high Arctic region that max-
imizes at 2–4 years which is not evident in the observational
analysis. Finally, the SW-NE banded structure seen in the
North Pacific in the observational analysis is absent.
[47] In order to better compare the time evolution of the

simulated solar signal with the observations in Figure 6,
Figure 10 shows the time evolution of the corresponding
modeled regional solar anomalies in mslp over the Azores
and Aleutian Low region, the SST anomaly in the East
Pacific and the equatorial stratopause temperature anomaly.
Comparison with the observations in Figure 6 shows some
interesting differences. The stratospheric response maxi-
mizes at around 1–2 years before solar maximum, slightly
earlier than in the observations. As already noted, the model
captures the solar mslp response in the Azores region except
that the response is much too rapid when compared with ob-
servations, peaking at lag zero instead of at lags of 3–4 years.
Similarly, the Aleutian mslp response is rather earlier in the
model than in the observations, with a maximum response
2–4 years before solar maximum instead of around zero lag,
and precedes the stratospheric response instead of following

it. The East Pacific SST response is also too rapid in the
model, with a peak response approximately one year after
solar max instead of 3–4 years after solar maximum.
[48] Previous climate model experiments have had mixed

results in terms of their representation of the 11 year solar
response at the Earth’s surface. For example, Meehl et al.
[2009] examined the Pacific response in the Whole
Atmosphere Community Climate Model (WACCM) and
simulated a La Niña-like SST response to solar maximum
conditions (i.e., opposite to the signal in Figure 9) but do
not show the North Atlantic region nor the mslp response
in either region. Bal et al. [2011] using the relatively coarse
EGMAM model (ECHO-G with Middle Atmosphere Model;
T30 horizontal; 39 levels to 80km) reproduced the observed
mslp anomaly in the vicinity of the Aleutian Low and also
found a La Niña-like anomaly in the tropical Pacific but did
not examine the Atlantic/European sector. Petrick et al.
[2012] analyzed the solar signal in the WACCM model with
and without a QBO; their main signal in mslp was over the
Southern Ocean, but nothing of statistical significance was
simulated elsewhere (and they do not show SST responses).
Misios and Schmidt [2012] examined the SST response (but
not the mslp response) in the MAECHAM5 (Middle
Atmosphere version of the ECHAM5model) model and found,
in contrast to the WACCM and EGMAM models, a broad
warming over equatorial regions in phase with the 11year solar
cycle, similar to that seen in the HadGEMmodel (Figure 8), but
they did not examine the lagged response. Thus, there is little
consensus among the model simulations.

5. Summary and Discussion

[49] Observational data for the period 1870–2010 have been
analyzed using a lagged multilinear regression technique to
isolate the spatial and temporal characteristics of the 11 year
solar cycle signals in mslp and SSTs. At zero lag, the mslp
analysis confirms the positive anomaly during solar maximum
previously identified in the region of the Aleutian Low. In the
Atlantic/European sector, there is a weak negative response in
the Icelandic region, similar to that found by Brugnara et al.
[2013], but the signal is not statistically significant. A weak
response in the equatorial Pacific sea surface temperatures was
identified, similar to the results of van Loon et al. [2007], but
it is not identical to the ENSO response pattern. In the North
Pacific, SST anomalies were identified that resemble the
signature of the Pacific Decadal Oscillation.
[50] When the regression analysis was repeated with the sur-

face observations lagging the solar index, an additional major
feature was identified in the North Atlantic/European sector.
The lagged signal (see Figure 4) resembles a positive NAO re-
sponse and maximizes approximately 3–4 years after the solar
maximum. The signal over the Azores region is statistically
significant at the 99% level. The corresponding SST anomalies
in the North Atlantic (Figure 5) are consistent with this, both
spatially and temporally. Although evidence for a lagged re-
sponse was noted in a previous study by Qun and Quiming
[1993], their result has largely gone unnoticed. A similar
lagged response is identified in the recent study by Hood
et al. [2013], although they concentrated on the Pacific re-
sponse and only extended their analysis to lags of up to 2 years.
[51] Having identified a lagged NAO-like response in ob-

servations over the Atlantic/European sector, the challenge
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is to identify a possible mechanism. As noted in section 3, a
prime mechanism for a surface solar influence at high lati-
tudes is via the stratosphere, but Figure 6 shows that the
observed stratospheric temperature anomaly maximizes at
approximately zero lag or slightly before. While there may
be a small time delay for this anomaly to transfer from the
stratosphere down to the surface, this is unlikely to be more
than a year, so cannot explain a 3–4 year lagged response.
[52] One possibility is that the index employed may not be

the optimum index to represent solar variability. To check
this, results of the multilinear regression analysis of the
observations using different solar indices were compared.
Using sunspot number and TSI, Lean [2009] gave nearly
identical results, with a 3–4 year lagged response at the sur-
face in the Atlantic/European sector. Open solar flux (OSF)
peaks slightly later than the TSI and has been proposed as
an alternative index that better characterizes UV variability
[Woollings et al., 2010]. Repeating the analysis with OSF
as the solar index gives a maximum mslp response at
2–3 year instead of 3–4 year lags, so this can account for a
1 year lag at most.
[53] Scaife et al. [2013] proposed that a feedback between

the atmosphere and ocean might explain the lagged response
in the North Atlantic/European region. Almost 50 years ago,
Bjerknes [1964] demonstrated that interannual variability in
Atlantic SSTs is primarily a response to atmospheric forcing
through wind stress and heat fluxes, but he also conjectured
that the SST variations would in turn feed back onto the at-
mosphere. The latter has since been confirmed by observa-
tional studies [Rodwell and Folland, 2002; Taws et al.,
2011]. Thermal anomalies created in the ocean mixed-layer
by atmospheric forcing in winter were found to be sub-
merged and preserved below the shallow summer mixed
layer, subsequently reemerging in the following autumn, thus
serving to reinforce and perpetuate the original NAO anom-
aly into the next winter. In addition, multimodel ensemble
studies of coupled atmosphere-ocean climate simulations
have highlighted the influence of multidecadal stratospheric
variability on the North Atlantic Ocean [e.g., Eden and
Jung, 2001; Keenlyside et al., 2008; Reichler et al., 2012;
Greatbach et al., 2012], and model studies specifically
investigating stratosphere-ocean feedbacks [Yukimoto and
Kodera, 2007] found that the oceanic response had a positive
feedback effect on the NAO, implying enforcement/mainte-
nance of the surface response to the stratospheric forcing.
All of these studies support a mechanism whereby a rela-
tively weak NAO anomaly forced in consecutive years by a
stratospheric circulation anomaly could be amplified and
perpetuated through local ocean-atmosphere feedback pro-
cesses. Examination of the timing of the signals in Figures 3
and 4 supports this mechanism, since the SST response
(Figure 4) peaks slightly earlier at 2–3 year lags than the mean
sea level response (Figure 4) which peaks at 3–4 year lags.
[54] This hypothesis was tested by Scaife et al. [2013] by

looking at the transient response to solar forcing using a ver-
sion of the same HadGEM coupled atmosphere-ocean cli-
mate model [see also Ineson et al., 2011]. They found that
the response to a step change in solar forcing has an immedi-
ate atmospheric signature (that projected onto the NAO) but
accumulated in the ocean over several years, during which
time the atmospheric response also increased, similar to that
seen in Figure 3. They proposed a coupled positive feedback

between the atmosphere and Atlantic Ocean in which the
Atlantic Ocean provides the means by which the solar anom-
aly is able to persist. They found plausible parameters for the
coupled interactions of the different components, i.e., the
strength and persistence of the various feedbacks, but noted
that stronger atmosphere-ocean coupling than implied by
the climate model is required to reproduce the lagged re-
sponse seen in the observations.
[55] This suggestion of insufficiently strong coupling be-

tween atmosphere and ocean in the climate model is further
supported by the modeling results presented in section 4, in
which the 11 year solar signal was examined in very long
simulations of the HadGEM ocean-atmosphere coupled cli-
mate model. The upper boundary of the model is at 84 km,
so that the (top-down) mechanism for solar influence via
UV irradiance influence on the stratosphere is included in
the model, in addition to the more standard (bottom-up)
mechanism via changes in the visible part of the spectrum
that penetrate directly to the surface. The model simulation
of the solar response in the stratosphere compares reasonably
well with observational analyses, with equatorial stratopause
temperatures rapidly responding to the solar cycle variations,
although it is not clear why the response occurs (in both the
model and the observations) slightly before the solar maxi-
mum. One possibility is that there is a feedback between
the solar response in equatorial SSTs that then generates
anomalous tropospheric wave forcing from the troposphere
into the stratosphere.
[56] The model also reproduces the spatial pattern of the

surface response in the North Atlantic/European sector, with
a positive NAO-like response in solar maximum years and a
corresponding surface temperature quadrupole response that
is consistent with this. However, the modeled mslp field
responded almost immediately to the solar variations so that
the maximum response coincided with solar maximum, in-
stead of the observed 3–4 year lagged response (Figure 10).
This suggests that if the mechanism proposed by Scaife
et al. [2013] is responsible for the lagged response, then the
coupling between the atmosphere and Atlantic Ocean in the
HadGEM model is far too weak.
[57] In addition, the study shows that the model reproduces

the mslp response over the Aleutian region and an SST re-
sponse in the equatorial Pacific, but the timing of these
solar-induced anomalies did not agree well with observa-
tions, suggesting a possible problem with the relative influ-
ences of the various mechanisms and/or teleconnections
that influence the anomalies in these different regions. We
also note that there are other mechanisms and interactions
that are not well represented in the model. For example, the
model has a self-generated QBO, but investigation shows
that there is very little interaction between the modeled
QBO and solar cycle signals in the polar winter stratosphere.
Additionally, there is no representation in the model of alter-
native mechanisms, e.g., involving geomagnetic variability
[Seppala et al., 2009].
[58] If the apparent lagged influence of 11 year solar vari-

ability on the Atlantic/European sector suggested by the ob-
servational analysis is real, it has implications for seasonal
to decadal predictability in Europe. There have been some
suggestions that the recent solar minimum in 2009 may have
contributed to the cold European winters of 2009 and 2010
[Lockwood et al., 2010], so improved representation of solar
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variability in seasonal weather forecasting models may help
to improve their predictive skills. However, there are still
many uncertainties, not only in the characterization of the
observational signal but also in our understanding of the
mechanisms for solar influence. There is currently no consen-
sus between climate models, and this clearly needs to be re-
solved before implementation in weather prediction models
is likely. In addition, there may also be implications for
predicting future climate change. If the Sun descends from
its current “Grand Maximum” phase toward lower output
levels and variability [Jones et al., 2012; Meehl et al.,
2013], then regional impacts of solar variability could poten-
tially mask some of the predicted changes associated with
increased levels of greenhouse gases.
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