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A COMPARISON OF METHODS FOR TREATMENT
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ENDPOINTS
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In an adaptive seamless phase II/III clinical trial interim analysis, data are used for
treatment selection, enabling resources to be focused on comparison of more effective treat-
ment(s) with a control. In this paper, we compare two methods recently proposed to enable
use of short-term endpoint data for decision-making at the interim analysis. The compar-
ison focuses on the power and the probability of correctly identifying the most promising
treatment. We show that the choice of method depends on how well short-term data predict
the best treatment, which may be measured by the correlation between treatment effects on
short- and long-term endpoints.

Key Words: Adaptive seamless design; Multi-arm multi-stage trial; Surrogate endpoints.

1. INTRODUCTION

In recent years, adaptive designs in the various phases of drug development have
gained popularity. Such designs use information from accumulating data in an ongoing
trial to make decisions about the conduct of the rest of the study (Gallo et al., 2006). One
particular form of adaptive design is the combined phase II/III adaptive seamless design.
A trial of this type is conducted in two stages. During the first stage, the exploratory stage,
patients are recruited to several experimental treatments and a control treatment. One or
more interim analyses are then performed, at which treatments that appear ineffective are
dropped. The main objective of this first stage is to identify the most promising treatments,
so that recruitment of further patients can be restricted to only those treatments and the
control. At the end of the second stage, the confirmatory stage, the selected treatment(s) is
(are) compared to the control within a formal testing framework, again possibly involving
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COMPARING METHODS FOR USING SHORT-TERM ENDPOINTS IN PHASE II/III TRIALS 171

a sequence of interim analyses, based on all data from the selected treatment(s) and the
control. Several authors have developed methodology for conducting phase II/III studies
that protects the overall type I error rate of the trial (see, e.g., Bauer and Kieser, 1999;
Stallard and Todd, 2003; Kelly et al., 2005; Posch et al., 2005; Bretz et al., 2006; Koenig
et al., 2008). Reviews of the different approaches are given by Chow et al. (2005), Friede
and Stallard (2008), Bretz et al. (2009), and Stallard and Todd (2011).

In the pharmaceutical setting, adaptive designs continue to gain acceptance.
Regulatory authorities have recently produced guidance documents on the topic (Food and
Drug Administration (FDA), 2010; European Medicines Agency (EMEA) - Committee
for Medicinal Products for Human Use (CHMP), 2007), giving further evidence that they
anticipate more clinical trials will be designed using this framework. Indeed, there are a
number of therapeutic areas where phase II/III seamless adaptive designs have already
been implemented. Schmoll et al. (2010) describe a pharmaceutical trial in oncology that
was designed using the methodology of Stallard and Todd (2003) and Todd and Stallard
(2005). Barnes et al. (2010) discuss the use of a phase II/III design in chronic obstructive
pulmonary disease. In other therapeutic areas adaptive designs have been proposed and pro-
moted. Dragalin (2011) discusses the potential for the use of adaptive designs in all phases
of development, including discussion of phase II/III trials, in central nervous system stud-
ies. Chataway et al. (2011) and Friede et al. (2011) propose a phase II/III seamless adaptive
design for use in secondary progressive multiple sclerosis trials.

A recent area of research in the development of further methodology for phase II/III
designs concerns the question of how to incorporate early endpoint data into the treatment
selection part of such a trial. The desire to do this arises when the primary endpoint of inter-
est for each patient is only available after a number of months or even years and yet there
are more immediately measured endpoints available, building on earlier work on incor-
poration of early endpoints in sequential clinical trials comparing a single experimental
treatment with a control (Cook and Farewell, 1996; Marschner and Becker, 2001; Galbraith
and Marschner, 2003; Sooriyarachchi et al., 2006; Whitehead et al., 2008). An example can
be found in secondary progressive multiple sclerosis, where long-term changes in disability
scales are the main goal, but early evidence of treatment effect may be observed as changes
to lesions in the brain detected using magnetic resonance imaging scanning technology.

Two alternative methods for incorporating early endpoint data in phase II/III clinical
trials have been proposed by Stallard (2010) and Friede et al. (2011). The methods differ
in the way in which the treatment to continue to the second stage is chosen. Treatment
selection under the method described by Stallard (2010) makes use of short-term endpoint
data combined with any available long-term data. In contrast, Friede et al. (2011) propose
a method of treatment selection that uses only short-term endpoint data. Both approaches
base the final inference on the long-term endpoint data only, though they differ in the way in
which data from the two stages of the trial are combined. The aim of this paper is to compare
the methods proposed in these two manuscripts. Since both methods have been shown to
control the type I error rate, we will focus on comparison of the power of the two approaches
in a range of realistic scenarios. This will inform researchers aiming to design a seamless
phase II/III trial in which short-term endpoint data can be used for decision-making at an
interim analysis.

The two methods under consideration are reviewed in detail in Section 2, where a
common notation is also established. Sections 3 and 4 describe comparisons of the two
approaches in the settings of fixed and random treatment effect models, respectively. The
paper concludes with a discussion in Section 5.
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172 KUNZ ET AL.

2. NOTATION AND REVIEW OF METHODS

2.1. Setting and Notation

Consider a clinical trial conducted in two stages. In the first stage, patients are ran-
domized to the control treatment T0 or to one of k experimental treatments, Ti, i = 1, . . . , k.
Suppose that data on the primary, long-term, endpoint are available for n1 patients in each
treatment group, and that in addition, short-term endpoint data are observed for N1 patients
in each treatment group, with N1 ≥ n1. In stage one, we therefore have N1 − n1 patients
with short-term endpoint data only and nl patients with both short- and long-term endpoint
data in each treatment group. Following an interim analysis, one experimental treatment,
denoted by TI, is chosen to continue to the second stage along with the control treatment
with a further n2 − N1 patients recruited to each of these treatment groups, giving a total
of n2 patients per group in all. Two possible ways of making the treatment selection are
described below.

Suppose that following the second stage, patients are followed up so that primary
long-term endpoint data are available for the total of n2 patients receiving each of treatments
TI and T0.

Denote by Xi,j and Yi,j, respectively, the short-term and long-term endpoint data from
patient j in group i. When both endpoints are observed, that is for j = 1, . . . , n2 for i = 0, I
and j = 1, . . . , n1 for other i = 1, . . . , k, the two endpoints for each patient are assumed to
follow a bivariate normal distribution. When only the short-term endpoint is observed, that
is for j = n1 + 1, . . . , N1, i = 1, . . . , k, i �= I, Xi,j is assumed to follow a normal distribution
so that we have

(
Xij

Yij

)
∼ N

((
μbi

μBi

)
,

(
σ 2

0 ρwσ0σ

ρwσ0σ σ 2

))
, j = 1, . . . , n2, i = 0, I

(
Xij

Yij

)
∼ N

((
μbi

μBi

)
,

(
σ 2

0 ρwσ0σ

ρwσ0σ σ 2

))
, j = 1, . . . , n1, i = 1, . . . , k, i �= I

Xij ∼ N(μbi , σ
2
0 ), j = n1 + 1, . . . , N1, i = 1, . . . , k, i �= I,

(1)

where μbi and μBi denote the true means on the short- and long-term endpoints, respec-
tively, in group i; σ 2

0 and σ 2 denote the true variances for the short- and long-term endpoints,
respectively; and ρw denotes the true correlation between the endpoints within each group.

The variances σ 2
0 and σ 2 and the correlation ρw will be assumed known and equal

for all patients. In the calculation of selection probabilities below, the true variances and
correlation will be used. In the simulations, estimates obtained from the data will be used
in place of the true values, as suggested by Stallard (2010) and Friede et al. (2011).

Given the mean values, individual patients are assumed to be independent so that
cov

(
Xi,j, Xi′j′

) = 0, cov
(
Yi,j, Yi′j′

) = 0, and cov
(
Xi,j, Yi′j′

) = 0 for i �= i′ or j �= j′.
A summary of the parameters in the fixed and random effects models are given in

Table 1. The parameters of interest are the treatment effects relative to the control treat-
ment on the long-term endpoint, that is μB1 − μB0 , . . . , μBk − μB0 , and we wish to test the
null hypotheses denoted Hi : μBi − μB0 = 0 against the one-sided alternative hypotheses
denoted by H′

i : μBi − μB0 > 0 for treatment group i = 1, . . . , k.
Two methods for use of short-term endpoint data for treatment selection in a two-

stage trial have been proposed (Friede et al., 2011; Stallard, 2010). These methods are
described briefly below.
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COMPARING METHODS FOR USING SHORT-TERM ENDPOINTS IN PHASE II/III TRIALS 173

Table 1 Summary of model parameters

Sample sizes
N1 Total number of patients per group with short-term data at interim analysis
n1 Number of patients per group with short-term and long-term data at interim analysis
N1 − n1 Number of patients per group with short-term data only at interim analysis
n2 Number of patients per group with short-term and long-term data at final analysis

Fixed or random effects model parameters
μBi Long-term endpoint treatment mean for group i
σ 2 Long-term endpoint variance
μbi

Short-term endpoint treatment mean for group i
σ 2

0 Short-term endpoint variance
ρw Correlation between long-term and short-term endpoints within each treatment group

Random effects model parameters
θBi Mean long-term treatment mean for group i
σ 2

B Variance of long-term treatment mean
θbi Mean short-term treatment mean for group i
σ 2

b Variance of short-term treatment mean
ρb Correlation between long-term and short-term treatment means

The aim of this paper is to compare these methods. This comparison will be based
on model (1). We will consider two cases. In the first case, the fixed effects model, it is
assumed that the true means μbi and μBi can be specified so that these can be taken to
be constant. And in the second, the random effects model, the means will be taken to be
random and to follow a bivariate normal distribution with

(
μbi

μBi

)
∼ N

((
θbi

θBi

)
,

(
σ 2

bi
ρbiσbiσBi

ρbiσbiσBi σ 2
Bi

))
, (2)

where θbi and θBi denote the true means, σ 2
bi

and σ 2
Bi

denote the true variances, and
ρbi denotes the true correlation between the means for the two endpoints for any given
treatment. We assume that the random treatment means have the same variances and cor-
relations, so we may drop the subscript and denote these by σ 2

b , σ 2
B , and ρb, and are

independent for different treatments, that is cov
(
μbi , μbj

) = 0, cov
(
μBi , μBj

) = 0, and
cov

(
μbi , μBj

) = 0 for i �= j. The random effects model will allow us to model a situation
in which we envisage that the treatments being evaluated are drawn at random from the
distribution given by (2). In this case, the treatment means are considered to be unknown
but correlated for the two endpoints with specified correlation and variance.

2.2. Method of Friede et al. (2011)

Friede et al. (2011) propose a method for selection of the treatment that will continue
to the next stage based on the short-term endpoint only, selecting the experimental treatment
with the largest observed sample mean at the interim analysis.

Let

Z∗
i =

∑N1
j=1

(
Xi,j − X0,j

)
σ0

√
2N1

(3)
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174 KUNZ ET AL.

denote the standardized test statistic for comparison of treatment i, i = 1, . . . , k to the con-
trol in terms of the short-term endpoint only on the basis of data available at the interim
analysis. The experimental treatment group with the highest value of Z∗

i is then chosen to
continue to the second stage along with the control while all other treatments are dropped.

At the end of the trial, long-term endpoint data are available from all n2 patients
randomized to the selected treatment and the control. Thus, as the parameters of interest
are the long-term endpoint means μBi , only the long-term endpoint data will be used in
the final analysis. In this method, then, the short-term data are thus only used for treatment
selection, and the long-term data are used only for the final comparison of the selected
treatment with the control. In order to control the type I error rate, the final analysis must
allow for the treatment selection. Friede et al propose using a combination test approach to
combine all data from those patients with any data observed at the interim analysis with the
data from new patients observed at the end of the second stage, with a Dunnett correction
applied to the first stage test statistics.

In detail, let

Zi,1 =
∑N1

j=1

(
Yi,j − Y0,j

)
σ
√

2N1

denote the standardized test statistic for comparison of group i to the control group based on
the long-term endpoint data from the N1 patients per group who have short-term endpoint
data available at the interim analysis. Let pi,1 = 1 − �(Zi,1) denote a p-value based on Zi,1.

Similarly, let

ZI,2 =
∑n2

j=N1+1

(
YI,j − Y0,j

)
σ
√

2(n2 − N1)

denote the standardized test statistic for comparison of group I and the control group based
on the additional long-term endpoint data observed at the end of the trial and let pI,2 =
1 − �(ZI,2).

Note that the p1,1, . . . , pk,1 are based on some data not observed at the time of the
interim analysis and that pI,2 is independent of all pi,1 and of any data available at the
interim analysis.

To allow for the treatment selection at the first stage, in order to test a null hypothesis
HI , where I is some nonempty subset of {1, . . . , k} and HI denotes the intersection hypoth-
esis ∩i∈IHi, the stage one p-value is obtained from a Dunnett test (Dunnett, 1955) using the
test statistic Zmax

1 = maxi∈IZi,1 in, for instance, equation (1) of Friede and Stallard (2008).
This gives a stage one p-value for the test of HI , pI,1 corrected for the multiple compar-
isons. If the selected treatment, I, is in I, a stage two p-value for testing HI , pI,2 is just that
for testing the selected treatment, pI,2. If I /∈ I, pI,2 is set to one to give a conservative test
(Posch et al., 2005). The stage one and stage two p-values may then be combined, for exam-
ple, using the weighted inverse normal combination function (Lehmacher and Wassmer,
1999)

C
(
pI,1, pI,2

) = 1 − �
(
w1�

−1(1 − pI,1) + w2�
−1

(
1 − pI,2

))
(4)

for predefined weights w1 and w2 with w2
1 = w2

2 = 1, which may be used to test HI .
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COMPARING METHODS FOR USING SHORT-TERM ENDPOINTS IN PHASE II/III TRIALS 175

The construction of the p-values ensures that the stage two p-values are independent
of any data available at the interim analysis, and hence of the treatment selection. The
p-values obtained thus satisfy the weaker p-clud condition (Brannath et al., 2002), so
that no further correction for the treatment selection is necessary and the combination
test provides a test of HI that controls the type I error rate at the nominal level for any
treatment selection method.

If the null hypothesis Hi is rejected and if all HI with i ∈ I are rejected, the type I
error rate for the family of hypotheses Hi, i = 1, . . . , k, is controlled in the strong sense
(Marcus et al., 1976).

2.3. Method of Stallard (2010)

Stallard (2010) proposes basing treatment selection on the maximum likelihood esti-
mate of the long-term treatment effects, μBi − μB0 , i = 1, . . . , k calculated at the interim
analysis.

Let Si,1 denote the standardized score statistic for μBi − μB0 obtained from all data
available at the interim analysis. In the case that N1 > n1, this depends on the short-term
data in addition to the long-term data. If ρ, σ , and σ0 are unknown, Si,1 may be estimated
using the double regression method proposed by Engel and Walstra (1991) (see, Stallard,
2010), in which results of regression of X on group membership for j = 1, . . . , N1 and of Y
on X and group membership for j = 1, . . . , n1 are combined to give Si,1. For known ρ, σ ,
and σ0, Si,1 is shown by Hampson and Jennison (2013) to be given by

Si,1 =
∑n1

j=1

(
Yi,j − Y0,j − ρw

σ
σ0

(
Xi,j − X0,j − X̄i + X̄0

))
/n1

σ
√

2/N∗
1

(5)

where

N∗
1 = n1N1

N1 − ρ2
w (N1 − n1)

= n1

1 − ρ2
w (1 − n1/N1)

(6)

and X̄i denotes the sample mean of the N l short-term endpoint observations from group i
observed at the interim analysis.

The quantity N∗
1 given by expression (6) can be viewed as an effective sample size per

group, corresponding to the number of long-term observations per group that would give
the same amount of information on μBi − μB0 as that available from the nl long-term and N l

short-term responses allowing for the correlation ρw. If ρw = 0 so that long-term and short-
term responses for any given patient are independent, and the short-term observations give
no information on μBi − μB0 , N∗

1 = n1. If ρw = ±1, so that short- and long-term responses
are perfectly correlated, N∗

1 = N1, so that the amount of information on μBi − μB0 is the
same as if long-term data had been observed for all patients.

In the method described by Stallard (2010), treatment selection is based on statistics
Si,1 with the treatment group with the highest value for Si,1 being selected to continue to
the second stage together with the control group. Note that, unlike the Friede et al. method,
this method requires that at least some long-term endpoint data are available at the time of
the interim analysis.

At the end of the trial, long-term endpoint data are available from all n2 patients ran-
domized to the selected treatment and the control, so that as with the Friede et al. method,
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176 KUNZ ET AL.

only the long-term endpoint data will be used in the final analysis. However, the final anal-
ysis using the Stallard method combines the evidence from the two stages in a different
way to that suggested by Friede et al.

Suppose that treatment TI is selected to continue with the control to the second stage.
Let SI,2 denote the standardized score test statistic for μB1 − μB0 based on all data available
at the end of the trial, that is,

SI,2 =
∑n2

j=1

(
YI,j − Y0,j

)
/n2

σ0
√

2/n2
.

Stallard derives the joint distribution of
(
S1,1, . . . , Sk,1, SI,2

)
, showing that this is sim-

ilar to that for test statistics in a seamless phase II/III trial with the primary endpoint
alone used at an interim analysis with N∗

1 patients per group. The joint distribution of
maxi=1,. . .,kSi,1 and SI,2 can thus be obtained, allowing a critical value c to be constructed so
as to control the type I error rate if H0 is rejected whenever SI,2 ≥ c.

3. COMPARISON OF METHODS: FIXED EFFECTS MODEL

We are interested in comparing the methods proposed by Stallard (2010) and Friede
et al. (2011). We first consider the fixed effects model setting and explore the properties of
the two methods for fixed treatment effects on the short- and long-term endpoints.

The methods will be compared in terms of the probability of selecting an effective
treatment in Section 3.1 and of the resulting power of the final analysis in Section 3.2.

3.1. Selection Probability

Although we wish to focus on the probability of selecting the correct treatment, we
can define this in two different ways. For given treatment means for the long-term end-
points, μB0 , . . . , μBk , we could consider either the probability of selecting any effective
treatment, that is choosing I to be any i with μBi − μB0 > 0, or the probability of select-
ing the most effective treatment, that is choosing I to be the i that maximizes μBi − μB0 .
Throughout this paper, we will focus on the latter. Furthermore, we will, without loss of
generality, generally consider scenarios in which T l has the best effect, and report the
probability of selecting treatment T1.

The probability of selecting treatment T1 with the Friede et al. method based on
equation (3) is equal to

Pr (Z∗
1 > Z∗

2 , . . . , Z∗
1 > Z∗

k ) = Pr (Z∗
1 − Z∗

2 > 0, . . . , Z∗
1 − Z∗

k > 0), (7)

while the probability of selecting treatment T1 with the Stallard selection method based on
equation (5) is equal to

Pr (S1,1 > S2,1, . . . , S1,1 > Sk,1) = Pr (S1,1 − S2,1 > 0, . . . , S1,1 − Sk,1 > 0). (8)

These probabilities could be estimated via simulation. Alternatively, for σ and σ0

assumed known, they can be calculated exactly from the joint distributions of Z∗
1 −

Z∗
2 , . . . , Z∗

1 − Z∗
k and S1 − S2, . . . , S1 − Sk, respectively. These distributions are given in
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the Appendix. Selection probabilities can thus be found using standard numerical routines
for calculation of multivariate normal tail areas, for example using pmvnorm in R (Genz
et al. 2012). Computer code to perform these calculations and the simulations described
below in R can be obtained from the corresponding author.

For the Friede et al. method, the selection probability depends only on N1 and
the standardized short-term endpoint treatment effects, μb1/σ0, . . . , μbk/σ0, while for the
Stallard method, the selection probability depends on n1, N1, and the correlation between
the endpoints, ρw, through N∗

1 , the standardized long-term endpoint treatment effects,
μB1/σ , . . . , μBk/σ , but not on μb1 , . . . , μbk .

The upper panels (panels A1 and B1) of Fig. 1 show the probability of selecting
treatment T1 using the Friede et al and Stallard selection methods when three experimen-
tal treatments are included in the first stage and μbi = μBi = 0, i > 1. Panel A1 gives the
selection probability with μb1/σ0 = μB1/σ = 0.5 for different stage one sample sizes for
a a range of ρw values. Panel B1 gives the selection probability with n1 = 5, N1 = 100,
and σ = σ0 = 1 for a range of μb1 = μB1 values (with σ = σ0 = 1 so that these are the
standardized values), again for a range of ρw values.

As indicated above, the probability of selection with the Friede et al. method does not
depend on ρw. With μb1/σ0 = μB1/σ , the probability of selection with the Stallard method
is equal to that with the Friede et al. method when ρw = ± 1, when the most information is
obtained from the N1 − n1 observations per group for whom only short-term endpoint data
are available and N∗

1 = N1. For ρw �= ±1, the probability of selecting treatment T1 is lower
for the Stallard method than that for the Friede method when μb1 and μB1 exceed 0, so that
treatment T1 is actually the most effective, with the difference between the two methods
larger for larger N1 − n1. The selection probability for the Stallard method is smallest,

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

se
le

ct
io

n 
pr

ob
ab

ili
ty

−1 −.8 −.6 −.4 −.2 0 .2 .4 .6 .8 1

ρw

Stallard n1= 5 n1= 15 n1= 15
Friede N1= 100 N1= 20 N1= 50

μB1= μb1= 0.5, μB2= μb2= μB3= μb3= 0, σ= σ0= 1

(A1) different sample sizes

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

se
le

ct
io

n 
pr

ob
ab

ili
ty

−1 −.8 −.6 −.4 −.2 0 .2 .4 .6 .8 1
ρw

Stallard μB1= 0.5 μB1= 0.25 μB1= 0.1
Friede μb1= 0.5 μb1= 0.25 μb1= 0.1

n1= 5, N1= 100, μB2= μb2= μB3= μb3= 0, σ= σ0= 1

(B1) different standardized effects

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

po
w

er

−1 −.8 −.6 −.4 −.2 0 .2 .4 .6 .8 1
ρw

Stallard n1= 5 n1= 15 n1= 15
Friede N1= 100 N1= 20 N1= 50

μB1= μb1= 0.5, μB2= μb2= μB3= μb3= 0, σ= σ0= 1

(A2) different sample sizes

0
.1
.2
.3
.4
.5
.6
.7
.8
.9
1

po
w

er

−1 −.8 −.6 −.4 −.2 0 .2 .4 .6 .8 1
ρw

Stallard μB1= 0.5 μB1= 0.25 μB1= 0.1
Friede μb1= 0.5 μb1= 0.25 μb1= 0.1

n1= 5, N1= 100, μB2= μb2= μB3= μb3= 0, σ= σ0= 1

(B2) different standardized effects

Figure 1 Probability to select treatment 1 (panels A1 and B1) and power (panels A2 and B2) for the Stallard
(2010) and Friede et al. (2011) methods for different parameter settings under the fixed effects model.
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178 KUNZ ET AL.

and most different from that for the Friede et al. method, when ρw = 0 and N∗
1 = n1. The

selection probability in this case is equal to that for a method that selects the best treatment
solely on the basis of the long-term endpoint data from n1 patients per group available at
the interim analysis and so, unsurprisingly, decreases with decreasing n1.

Since the selection probability for the Stallard method depends on μB1 and not on μb1 ,
whilst that for the Friede et al. method depends on μb1 and not on μB1 , panel B1 of Fig. 1
enables comparison of selection probabilities in settings with μb1/σ0 �= μB1/σ . Although
when μb1/σ0 = μB1/σ the probability of selecting treatment T l with the Friede et al. is
always as great at that for the Stallard method, it can be seen that this probability may be
lower for the Friede et al. method when μb1/σ0 < μB1/σ .

3.2. Power

As was the case with the probability of correct selection, we can define the power
in different ways. In order to be consistent with the definition of selection probability, we
define the power as the probability of rejecting the false null hypothesis corresponding to
the most effective treatment, that is to rejecting HI when I is the i that maximimes μBi −
μB0 . This definition is closely related to the “individual power” defined as the probability
of rejecting a particular false null hypothesis (Westfall et al., 2011). The difference is that
in the case of the individual power the null hypothesis we are interested in is specified
in advance. Note that other definitions for the power are possible, such as, for example,
defining the power as the probability to reject any false null hypothesis. For a discussion of
different power concepts in the context of multiple testing see Westfall et al. (2011).

Assuming as above, without loss of generality, that the treatment effect on the
long-term endpoint, μBi − μB0 , is largest for i = 1, the power for the Friede et al. method
is equal to

Pr(Z∗
2 > Z∗

2 , . . . , Z∗
1 > Z∗

k , C(pI,1, pI,1) ≤ α for all I � 1), (9)

where C(pI,1, pI,2) is the combination function defined by (4) so that C(pI,1, pI,2) ≤ α for
all I � 1 corresponds to rejection of H1 in the Friede et al. method using the combination
test and closed testing procedure as described above.

For the Stallard method, the power is equal to

Pr (S1,1 > S2,1, . . . , S1,1 > Sk,1, S1,2 ≥ c), (10)

where c is the critical value obtained to control the type I error rate using the method of
Stallard (2010).

For the Stallard method, the power depends on N∗
1 , n2, and the standardized long-

term endpoint treatment effects, μB1/σ , . . . , μBk/σ , but not on the short-term endpoint
effects μb1 , . . . , μbk . For the Friede et al. method, as the selection is based on the short-
term endpoint data and the final test of the long-term endpoint data, the power depends on
μB1/σ , . . . , μBk/σ in addition to N1, n2, μb1/σ0, . . . , μbk/σ0 and ρw.

As (9) and (10) involve data from both stage one and stage two, analytic calculation
of the power is less straightforward than that for the selection probabilities. The power
values can most easily be estimated through simulation of data from the fixed effects model
(1). This also allows the assumption of known σ and σ0 to be relaxed.
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COMPARING METHODS FOR USING SHORT-TERM ENDPOINTS IN PHASE II/III TRIALS 179

Simulated power values for the two methods are shown in the lower panels (panels
A2 and B2) of Fig. 1 in the same settings as the selection probabilities shown in the upper
panels and discussed above with n2 = 200. Estimated power values plotted are based
on 10,000 simulations for each of the scenarios considered. For the larger effect sizes as
shown in the panel A2 and the upper curves in panel B2, the power is very similar to the
selection probability shown in the upper two panels. In this case if treatment T1 is selected
in stage one, the combination of the larger stage two sample size and the large effect size
mean that it is very likely to be shown to be superior to the control. For smaller effect
sizes, there is a larger chance of failing to demonstrate superiorioty even if the treatment
T l is correctly selected, so that power values are smaller than the selection probabilities.
In this case for extreme values of ρw or for very small treatment effects the Friede et al.
method may be less powerful than the Stallard method. It is also interesting to note that
while the power for the Stallard method is the same for positive and negative values of ρw

of the same magnitude, for the Friede et al. method the power appears to be slightly lower
for negative ρw than for positive ρw.

Figure 1 shows power values for μB1/σ = μb1/σ0. As the power cannot exceed the
selection probability, we may note, as above, that the Stallard method will be more powerful
than the Friede et al. method if μB1/σ is sufficiently large compared to μb1/σ0.

4. COMPARISON OF METHODS: RANDOM EFFECTS MODEL

For the fixed effects model, the distributional forms and calculated values given above
show that the probability of selecting treatment T1 and the power to reject the null hypoth-
esis for this treatment, H1, is higher for the Friede et al. selection method than that for
the Stallard method when μb1/σ0 = μB1/σ ≥ μb2/σ0 = · · · = μbk/σ0 = μB2/σ = · · · =
μBk/σ , but can be lower when μb1/σ0 < μB1/σ . Unsurprisingly, given that the Friede et al.
selection method relies solely on short-term endpoint observations, the performance of the
method is good when the effects on the short-term endpoint are similar (or larger) to those
on the long-term endpoint, but may be poor when they are smaller or reversed. In order to
capture the relationship between the treatment effects μbi and μBi , it is therefore interesting
to consider the random effects model introduced above, in which the correlation between
the treatment means is explicitly included in the statistical model.

4.1. Selection Probability

As with the fixed effects model, we will consider the probability of selecting treat-
ment T1. Since the mean effect for this treatment, μB1 , is now considered to be a random
variable, however, treatment T1 might not always be the most effective even if θB1 > θBi

for i = 2, . . . , k. We will therefore focus on the probability of selecting treatment T1 given
that it is the most effective treatment, that is given that μB1 > μBi for all i = 2, . . . , k. This
is given by

Pr (select T1) = Pr (Z∗
1 − Z∗

i > 0, for i = 2, . . . , k|μB1 − μBi > 0 for i = 2, . . . , k)
(11)

in the case in which selection is made using the Friede et al. method, and by

Pr (select T1) = Pr (S1 − Si > 0 for i = 2, . . . , k|μB1 − μBi > 0 for i = 2, . . . , k) (12)
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in the case when selection is made using the Stallard method. These probabilities may be
evaluated using the joint distributions of Z∗

1 − Z∗
2 , . . . , Z∗

1 − Z∗
k and μB1 − μB2 , . . . μB1 −

μB2 or of S1 − S2, . . . , S1 − Sk and μB1 − μB2 , . . . μB1 − μB2 given in the Appendix.
Figure 2 shows the probability of selecting treatment T1 given that this is actually

the most effective treatment when selection uses either the Friede et al. or the Stallard
method. Selection probabilities are shown for a range of ρw values in the setting in
which σB1 = · · · = σBk = σb1 = · · · = σbk = 1. In panels A1 and A2, θB1 = θb1 = 0.5
and θBi = θbi = 0 for i = 2, . . . , k, so that on average the first treatment is effective
on both endpoints and all others are not, and σ = σ0 = 1. The separate lines give the
treatment selection for different sample sizes. In panels B1 and B2, σ = σ0 = 1, n1 = 5
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Figure 2 Probability to select treatment 1 based on the methods by Stallard (2010) and by Friede et al. (2011) for
different parameter settings under the random effects model (given that treatment 1 is the most effective).
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and N1 = 100, θBi = θbi = 0 for i = 2, . . . , k and θB1 = θb1 with different lines on the plot
corresponding to different treatment effects. In panels C1 and C2, θB1 = θb1 = 0.5 and
θBi = θbi = 0 for i = 2, . . . , k, n1 = 20 and N1 = 100 and the different lines correspond
to different values of σ and σ0. The right-hand column in the figure shows selection
probabilities for ρb = 1, that is when there is perfect correlation between the means on the
two endpoints, and the left-hand column those for ρb = 0.9.

The selection probabilities for ρb = 1 shown in the right-hand column are generally
similar to those for the fixed effects model with μB1 = μb1 given in Fig. 1. The best treat-
ment is more likely to be selected using the Friede et al. method than the Stallard method,
with the two methods coinciding when ρw = ±1. The main difference between the selec-
tion probabilities under the random effects model and the fixed effects model in this case
is that under the random effects model there is very little effect of the average treatment
effect, θB1 = θb1 , in contrast to the results for the fixed effects model considered above.
This is reasonable given that the figure shows the probability of selecting T1 given that the
actual treatment effect is largest for that treatment, that is given μB1 ≥ μBi , i = 2, . . . , k.
An increase in σ for the Stallard method or in σ0 for the Friede et al. method does, how-
ever, reduce the probability of selecting treatment T l, as the standardized average difference
between the treatments on the long- or short-term endpoint, respectively, is reduced.

As the Friede et al. method uses only the short-term endpoint data for the selection,
it is not surprising that it performs well when the means on the two endpoints are perfectly
correlated, since the selection is based on a larger number of observations and a treatment
performing well on the short-term endpoint is more likely to have a large long-term
endpoint mean. The left-hand column shows selection probabilities for ρb = 0.9. The
selection probabilities for the Stallard method do not depend on ρb, so that these are
exactly the same as those in the panels in the right-hand column. The Friede et al. method
selects the correct treatment with lower probability than when the short-term and long-term
treatment means are perfectly correlated; in this case the short-term endpoint means
are less predictive of the treatment with the largest long-term responses. In this case,
the Stallard method can lead to a higher probability of correctly selecting treatment T1,
particularly when ρw is high. Smaller values of the correlation ρb will result in worse
performance of the Friede et al. method.

The latter point is illustrated more clearly in Fig. 3. This shows the probability under
the random effects model of correctly selecting treatment T1 given that this is the most
effective for n1 = 5, N1 = 100, σ = σ0 = 1, k = 3, σB1 = · · · = σBk = σb1 = · · · = σbk =
1, θB1 = · · · = θBk = θb1 = · · · = θbk = 0.5 for the Stallard method for a range of ρw values
and for the Friede et al. method for a range of ρb values. Since the selection probabilities
for the Stallard method do not depend on ρb and for the Friede et al. method do not depend
on ρw, the two lines are shown on the same graph. Comparing the two lines, we see that
the Stallard method always has a higher selection probability than the Friede et al. method
if ρw = ρb except when ρw = ρb = 1, when both probabilities are the same. The three
horizontal lines represent selection probabilities for the Friede et al. method where ρb is
fixed to either 1 (short dash), 0.95 (dash dot), or 0.9 (long dash). Comparing these lines with
those for the Stallard method, we observe that if ρb = 1 the Friede et al. method is always
better than the Stallard method regardless of ρw (with the exception of ρw = ±1, when the
selection probabilities for the two methods are again equal). If ρb = 0.95, the Friede et al.
method is only better than the Stallard method if ρw is small. While if ρb = 0.9, the Stallard
method is always better than the Friede et al. method regardless of ρw.
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Figure 3 Probability to select treatment 1 based on the methods by Stallard (2010) for a range of ρw values and
by Friede et al. (2011) for a range of ρb values under the random effects model (given that treatment 1 is the most
effective).

When ρb < 0, the probability of selecting treatment T1 using the Friede et al. method
can be low. The probability approaches zero as ρb approaches −1 and the treatment effects
on the long- and short-term endpoints consistently go in opposite directions.

4.2. Power

In a similar approach to that used for evaluation of the treatment selection probabili-
ties, we consider the power defined to be the probability that treatment T1 is selected at the
interim analysis and found to be significantly superior to the control at the final analysis
conditional on it actually being the best treatment, that is on μB1 ≥ μBi , i = 2, . . . , k. As in
the fixed effects model, the power will again be estimated via simulation. In this case, data
are simulated from the random effects model given by (1) and (2). In detail, for each simu-
lation, treatment means μb0 , . . . , μbk , μB0 , . . . , μBk are first simulated from (2) then, given
these treatment mean values, data are simulated from (1).

Simulated power values are shown in Fig. 4 under the same scenarios as Fig. 2. As in
the fixed effects setting, for reasonably large standardized effect sizes, the power is similar
to the selection probability, but is slightly lower when the standardized effect is smaller,
either because of a reduction in the effect size or an increase in the within-treatment
variance.

5. DISCUSSION

There has been much recent interest in adaptive seamless phase II/III clinical tri-
als in which randomization is initially between a number of experimental treatments and
a control, with less effective treatments dropped from the study on the basis of results
from an interim analysis. Building on methods using short-term information to supplement
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Figure 4 Power for the Stallard (2010) and Friede et al. (2011) methods for different parameter settings under
the random effects model (given that treatment 1 is the most effective).

long-term information originally developed in the context of interim analyses for early stop-
ping, two methods have been proposed for using short-term endpoint data in the treatment
selection (Stallard, 2010; Friede et al., 2011). In this paper, we have compared these two
methods. Our aim has been to provide a comparison that will enable choice of the most
appropriate method when designing an adaptive seamless phase II/III design.

In the Friede et al. method, only the short-term endpoint data are used for the treat-
ment selection. In contrast, the Stallard method uses a combination of short- and long-term
endpoint data. The latter method can thus only be used when some long-term responses
are available for inclusion in the interim analysis. In both methods, the final analysis is
based on the long-term endpoint data alone from the selected treatment and control. This
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Table 2 Summary impact of model parameters on selection probabilities

Sample sizes
n1 Larger values reduce impact of short-term endpoint data.
N1 Larger numbers increase impact of short-term endpoint data.
n2 Larger values increase power but do not influence treatment selection.

Fixed or random effects model parameters
μBi More disperse values increase differences between treatments making treatment selection

easier.
σ 2 Larger values increase variability making treatment selection harder.
μbi More disperse values increase differences between treatments making treatment selection

easier with Friede et al. method. No impact on Stallard method.
σ 2

0 Larger values increase variability making treatment selection harder.
ρw Larger values (of ρ2

w) increase influence of short-term endpoints in Stallard method. No
impact in Friede et al. method.

Random effects model parameters
θBi More disperse values increase differences between treatments making treatment selection

easier.
σ 2

B Larger values make treatment means more disperse making treatment selection easier.
θbi More disperse values increase differences between treatments making treatment selection

easier with Friede et al. method. No impact on Stallard method.
σ 2

b Larger values make treatment means more disperse making treatment selection easier with
Friede et al. method. No impact on Stallard method.

ρb Larger values make treatment effects on two endpoints more closely related and improve
treatment selection with Friede et al. method. No impact on Stallard method.

is in contrast to other group-sequential methods in which it is desired to draw inference on
both endpoints, for example requiring both to be sufficiently promising (see, e.g., Jennison
and Turnbull, 1993; Kimani et al., 2009) or with early and late observations of the same
endpoint treated as a longitudinal data (see, e.g., Spiessens et al., 2000; Lee et al., 1996).

Our comparison has considered scenarios in which the treatment means are taken
to be fixed, with one treatment more effective than all others and the control, which are
equally effective, and scenarios in which the treatment means are taken to be random but
are correlated. A summary of the effects of the different model parameters on the selection
probability based on the simulations reported above is given in Table 2. Our results indicate
that under the fixed effects model, if the treatment effect on the short-term endpoint is as
large or larger than that on the long-term endpoint for the effective treatment, the Friede
et al. method is more likely to lead to selection of the most effective treatment, and is
correspondingly more powerful. If the effect on the short-term endpoint is less than that
on the long-term endpoint, the Stallard method may be more likely to select the correct
treatment and more powerful, particularly when the within-group correlation between the
endpoints is high.

Under the random effects model, the effect of correlation between the treatment
means on the two endpoints can be considered. This parameter gives an indication of the
extent to which treatment effects on the long- and short-term endpoints go in the same
direction. In this case, our results indicate that the Friede et al. method leads to a higher
probability of selecting the best treatment and to higher power only when the correlation
between the treatment means is sufficiently high. The threshold depends on the sample
sizes and variances, but we have shown that even when the number of patients for whom
long-term endpoint data are available at the interim analysis is small, under the scenarios we
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have considered, the Friede et al. method is less powerful unless the correlation between the
means is relatively high; for the scenario we considered above 0.9 when the within-group
variance and between-group variance are both equal to 1.

In order to be able to choose between the different methods, some estimates of the
model parameters, including the variances and correlations in (1) and (2) are required.
In some cases, data from other trials will be available, particularly to give information on
the parameters in (1). The correlation can vary considerably depending on the setting and
endpoints chosen. Julious and Mullee (2008), for example, report a ρw of 0.67 between
the same endpoint measured at baseline and at the end of the trial, so that the correlation
between an early and final measurement of this endpoint would presumably be higher than
this, whereas Chataway et al. (2011) report a ρw of 0.13 between two different endpoints,
though it was still proposed to use the early endpoint for treatment selection. The param-
eters in (2) are harder to estimate since their estimation requires data from a number of
different trials or treatments.

If detailed information on parameter values is unavailable, it may still be possible
to make some guess of possible ranges for parameters, or to use the methods described
above to conduct sensitivity analyses. We are currently working on approaches that use the
data from the first stage of the trial to estimate the parameters of (1) and (2) and to decide
between the different treatment selection strategies on the basis of these estimates.

Our comparison of the procedures has used a combination of analytic calcula-
tions based on multivariate normal distributions to calculate selection probabilities and
simulations to estimate the power. The simulations can be time-consuming when an
extensive search for an appropriate sample size is required, or when it is desirable to
explore the tradeoff between patients in stages one and two of the trial. The power
is bounded above by the selection probability and in many of the settings considered
above, the two probabilities are quite similar. This is likely to be particularly true when
the assumed effect size is relatively large and the sample size for the second stage is
substantially larger than that for the first stage. For example, in the settings described
above with three treatments compared to a control treatment on the basis of long-term
data on 5 or 15 patients per group and short-term data on 100, 20, or 50 patients
per group at the interim analysis with a final sample size of 200 per group, when the
standardized effect size on both endpoints for the sole effective treatment of 0.5, we
found that the estimated power was at least 97.5% of the selection probability. In such
cases, an approximate sample size calculation could be based on the selection prob-
ability using the analytic calculations described. If necessary, this could be followed
by a much more restricted set of simulations to confirm the power of the final design
chosen.

A. APPENDIX: DISTRIBUTIONS REQUIRED FOR CALCULATION OF

TREATMENT SELECTION PROBABILITIES

A.1. Fixed Effects Model

Calculation of the probability of selecting treatment T1 using the Friede et al.
and Stallard methods under the fixed effects model require the joint distribution of(
Z∗

1 − Z∗
2 , . . . , Z∗

1 − Z∗
k

)
and

(
S1,1 − S2,1, . . . , S1,1 − Sk,1

)
, respectively. Detailed deriva-

tions of these are given in the online Supplementary Material, leading to
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⎛
⎝

Z∗
1 − Z∗

2
...

Z∗
1 − Z∗

k

⎞
⎠ ∼ N

⎛
⎜⎜⎝

⎛
⎜⎜⎝

μb1 −μb2
σ0

√
N1
2

...
μb1 −μb3

σ0

√
N1
2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1/2 · · · 1/2
1/2 1 1/2

...
. . .

...
1/2 · · · 1/2 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ (A.1)

and

⎛
⎝

S1,1 − S2,1
...

S1,1 − Sk,1

⎞
⎠ ∼ N

⎛
⎜⎜⎝

⎛
⎜⎜⎝

μB1 −μB2
σ

√
N∗

1
2

...
μB1 −μB3

σ

√
N∗

1
2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 1/2 · · · 1/2
1/2 1 1/2

...
. . .

...
1/2 · · · 1/2 1

⎞
⎟⎟⎠

⎞
⎟⎟⎠ . (A.2)

A.2. Random Effects Model

Treatment selection probabilities using the Friede et al. and Stallard methods under
the fixed effects model may be evaluated using the joint distributions of Z∗

1 − Z∗
2 , . . . , Z∗

1 −
Z∗

k and μB1 − μB2 , . . . μB1 − μB2 or of S1 − S2, . . . , S1 − Sk and μB1 − μB2 , . . . μB1 − μB2 ,
respectively.

The joint distribution of Z∗
1 − Z∗

2 , . . . , Z∗
1 − Z∗

k and μB1 − μB2 , . . . μB1 − μB2 is
given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Z∗
1 − Z∗

2
...

Z∗
1 − Z∗

k
μB1 − μB2

...
μB1 − μBk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θb1 −θb2
σ0

√
N1
2

...
θb1 −θbk

σ0

√
N1
2

θB1 − θB2

...
θB1 − θBk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �(F)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.3)

where

�(F) =
(

�
(F)
1,1 �

(F)
1,2

�
(F)
1,2 �

(F)
2,2

)

with

�
(F)
1,1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
σ 2

b1
+σ 2

b2

)
2σ 2

0
+ 1

σ 2
b1

N1

2σ 2
0

+ 1
2 · · · σ 2

b1
N1

2σ 2
0

+ 1
2

σ 2
b1

N1

2σ 2
0

+ 1
2

(
σ 2

b1
+σ 2

b3

)
N1

2σ 2
0

+ 1
σ 2

b1
N1

2σ 2
0

+ 1
2

...
. . .

...
σ 2

b1
N1

2σ 2
0

+ 1
2 · · · σ 2

b1
N1

2σ 2
0

+ 1
2

(
σ 2

b1
+σ 2

bk

)
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2σ 2
0

+ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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�
(F)
12 =

⎛
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√
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2 ρb
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√
N1
2

ρb
σb1 σB1

σ0

√
N1
2 ρb

σb1 σB1 +σb3 σB3
σ0

√
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√
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and

�
(F)
22 =

⎛
⎜⎜⎜⎝

σ 2
B1

+ σ 2
B2

σ 2
B1

· · · σ 2
B1

σ 2
B1

σ 2
B1

+ σ 2
B3

σ 2
B1

...
. . .

...
σ 2

B1
· · · σ 2

B1
σ 2

B1
+ σ 2

Bk

⎞
⎟⎟⎟⎠ .

The joint distribution of S1 − S2, . . . , S1 − Sk and μB1 − μB2 , . . . μB1 − μB2 is given
by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S1 − S2
...

S1 − Sk

μB1 − μB2

...
μB1 − μBk

⎞
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∼ N

⎛
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(A.4)

where
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�
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�
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)
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1 given by (6).
Detailed derivations are again given in the online supplemental material.
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