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Abstract 

The urban heat island is a well-known phenomenon that impacts a wide variety of city operations. With greater availability of 

cheap meteorological sensors, it is possible to measure spatial patterns of urban atmospheric characteristics with greater 

resolution. To develop robust and resilient networks, recognizing sensors may malfunction, it is important to know when 

measurement points are providing additional information and also the minimum number of sensors needed to provide spatial 

information for particular applications. Here we consider the example of temperature data, and the urban heat island, through 

analysis of a network of sensors in the Tokyo metropolitan area (Extended METROS). The effect of reducing observation points 

from an existing meteorological measurement network is considered, using random sampling and sampling with clustering. The 

results indicated the sampling with hierarchical clustering can yield similar temperature patterns with up to a 30% reduction in 

measurement sites in Tokyo. The methods presented have broader utility in evaluating the robustness and resilience of existing 

urban temperature networks and in how networks can be enhanced by new mobile and open data sources. 

 

Keywords: meteorological measurement network, random sampling, hierarchical clustering, IDW (Inverse Distance Weighting), 

urban heat island 

 

1. Introduction 

The urban heat island is a well-known phenomenon (Stewart, 2011) that impacts a wide variety of city operations (e.g. energy 

usage, need for snow clearance). With the drive to develop both “Smart Cities” and the “Internet of Things” (Perera, 2014), and 

the availability of relatively cheap meteorological sensors, it is now desirable and possible to observe the spatial pattern of 

atmospheric variables with much more detail than in the past. Many cities now have multiple sensors installed (see the examples 

in Table 1). Such networks allow the spatial dynamics of air temperature to be considered. 

 
Table 1. Examples of air temperature networks that have been installed in cities. Table ordered by year first installed. Note that some cities have 

had multiple networks installed, these are listed separately. 

City Number of 

sensors 

Spatial 

extent 

Period of operation Project Reference 

Tokyo,  Japan 120 2187 2002-2005 METROS Mikami et al., 2003 

Taipei, Taiwan 60 271.79 2003-present TWIN Chang et al, 2010 

Washington. DC, USA 16 177 2003-present DCNet Hicks et al., 2012 

Helsinki, Finland 102 150 2005-present Helsinki Testbed Koskinen et al., 2011 

Cambridge, MA, USA 25 18.47 2006-2010 CitySense Murty et al., 2008 

Tokyo,  Japan 200 7000 2006-present Extended METROS Yamato et al., 2009 

Oklahoma City, USA 40 1440 2007-2010 OKCNET Basara et al., 2010 

Hong Kong 105 1104 2007-present Co-WIN Hung and Wo, 2012 

London, UK 91 1577 2009-present OPAL Davies et al., 2011 

Worldwide N/A N/A 2013-present Weather Signal Overeem et al, 2013 

Shanghai, China 200 6340.5 N/A-present SUIMON Tan et al., 2014 

 

In the design and operation of a meteorological measurement network for spatial characterization of the urban heat island, many 

questions arise. In the planning stage, key questions include what is the optimal number of measurement points and what is their 

optimal distribution? Should measurement points be distributed evenly or unevenly? Are there important features which must be 

measured? Once measurements are initiated, if instruments malfunction or are withdrawn, questions need to be answered as to 

whether sensors should be substituted at these points or is this unnecessary? How significant are missing data to the overall 

performance of the network? A priori it might be expected that a larger number of measurement points is better, but what is the 

trade-off with respect to resources, such as labor to service and sustain the network? 

 

In this study, we analyse an existing meteorological measurement network around the Tokyo metropolitan area - Extended 

METROS (Yamato et al., 2009) to consider optimal network design for urban heat island measurements to address some of these 

questions. 

 

2. Material and Methods 

2.1 Data sets 

The measurement points of Extended METROS are shown in Fig.1. The area is one of the most populated in the world, with more 

than 30 million people. The area analyzed extends from 35.3° to 36.3°N latitude (about 90.4 km) and from 139.2° to 140.2°E 

longitude (about 111.3 km) and includes Tokyo Bay (Fig 1, note 1 station is beyond the specified area). To the east of the study 

area is the Pacific Ocean. Elevation varies from mean sea level to 300 m. The density of the stations is approximately 1 station per 
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50 km2 or a mean separation of 7 km. However, given no measurement points are located in 30% of the area (Tokyo Bay: 9%, 

mountain area and unpopulated areas 20 %), the mean separation of sensors is actually about 6 km. 

 
Fig. 1 The location of measuring points of the Extended 

METROS network in the greater Tokyo area. Lines within the 

land indicates borders of local governments, i. e., ward, city, 

and town. 

Thermometers (T&D, TR5106 thermistor sensor with 

RTR-52a data logger) are housed in unaspirated 

Stevenson screens at 1.5 m above ground level sited in 

elementary schools. The individual network, which is 

operated/coordinated by METROS Research Project, 

was set up by 12 independent groups. No individual 

has been to every site, as will be the case for many 

large networks that are being established (formally or 

ad hoc networks of opportunity). The temperature 

measurements, collected since 2006, consist of samples 

taken every 10 min from approximately 200 sites. The 

actual number at any given time varies because of 

instrument related issues (malfunctions etc.).  

For the analysis presented here, examples from the 

hottest and coldest periods are selected to consider the 

implications of network distribution and density. The 

data were sampled at 4:00, 10:00, 16:00, 22:00 (local 

time, note Japan does not use summer time) on 15 and 

16 August 2007 (8 summer cases) and 13 and 14 

February 2008 (8 winter cases) as explained in Table 2. 

The mean and standard deviation of the temperature 

and locations of the heat island of the cases are also 

reported. The numbers of measurement points were 183 in the summer cases and 200 in the winter cases. Histograms of the 

original data are shown in Fig. 2. 

 
Table 2. The mean and standard deviation of the air temperature for the 183 (summer) and 200 (winter) sensors for the 16 cases analysed. 

Case 

No. Time and Day 

Temp 

Mean (°C) 

Temp 

SD (°C)  Heat Island (HI) location 

1 4:00 15th Aug. 27.22  0.92   HI at the city center 

2 10:00 15th Aug. 33.60  1.19   transition 

3 16:00 15th Aug. 35.28  1.69   HI at inland 

4 22:00 15th Aug. 30.36  1.14   transition 

5 4:00 16th Aug. 28.64  0.98   HI at the city center 

6 10:00 16th Aug. 35.06  1.14   transition 

7 16:00 16th Aug. 34.29  2.33   HI at inland 

8 22:00 16th Aug. 30.63  1.36   transition 

9 4:00 13th Feb. 1.19  0.74   HI at the coast 

10 10:00 13th Feb. 3.39  1.05   no HI 

11 16:00 13th Feb. 4.65  1.10   no HI 

12 22:00 13th Feb. 0.67  1.29   HI at the coast 

13 4:00 14th Feb. -1.02  1.77   HI at the coast 

14 10:00 14th Feb. 6.36  0.98   no HI 

15 16:00 14th Feb. 8.81  0.79   no HI 

16 22:00 14h Feb. 2.64  1.18   HI at the coast 

 

 

2.2 Random sampling and analysis of mean temperature 

Random sampling was undertaken to analyse the effect of reducing the number of measurement points. Each station (183 in 

summer; 200 in winter) was numbered and for each case a selection of stations was sampled for a pre-determined percentage of 

the data 1000 times. The percentage of data analysed varied from10% to 90%, in 10% increments. Sampling 10% of the data 

resulted in a 90% reduction of the data.  

 

Air temperature data Ti,c measured at site i of then sites (summer=183, winter=200) at a particular time and date c (c =1 to 16, 

Table 2) were analysed. For the random sampling, a set of random order ri,j was used, where i is from 1 to n (as specified above), 

which belong to the j random sampling set (j= 1 to 1000). Same sets of random order were used for these cases and random 

sampling from 10% to 90% considering real situation of networks. When the different sets of random order were used in pre-

calculation, characteristics were same with the usage of same sets. The selected data Tsk,l,c from the original data can be 

expressed with rk,l (k=1 to m, l=1 to 1000) as follows, 
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𝑇𝑆𝑘,𝑙,𝑐
=  𝑇𝑟𝑘,𝑙,𝑐

         (1) 

𝑚 = 𝑛 ∙ 𝑠         (2) 

where s is a sampling ratio from 0.1 to 0.9 with 0.1 interval, and m is the number of sampled points. Thus when n=183 and s=0.2, 

m=37. If s is 1, the original data Ti,c all are used instead of Tsk,l,c.. From the sampled data, mean temperature is calculated: 

 

𝑇𝑎𝑙,𝑐
=  ∑ 𝑇𝑆𝑘,𝑙,𝑐

/𝑚𝑚
𝑘=1         (3) 

 

In the analysis of mean temperature with random sampling, 1000 cases of mean temperature are calculated in each sampling ratio 

(x 9) and each case (x 16). 

 

2.3 Inverse distance weighting (IDW) method with random sampling 

To understand the spatial influence of reducing the measurement points, interpolation is necessary to obtain a contour map or 2-D 

image of the distribution. Frequently used method, especially in soil science and hydrology but also applied to meteorological 

data, are kriging and inverse distance weighting (IDW) algorithm.  

 

Kriging and IDW have been compared in many studies. Kriging shows better results in some studies (e.g. Zimmerman et al., 

1999; Chaplot et al., 2006), while IDW better results in others (e.g. Weber and Englund, 1992; Nalder and Wein, 1998). In other 

studies, the differences were insignificant (Jarvis and Stuart, 2001; Kravchenko, 2003; Mueller et al., 2004). In this study, a simple 

interpolation method, IDW was used. 

 

With IDW the interpolated temperature Tl,c(x) was calculated from sampled data Tsk,l,c by: 

T𝑙,𝑐(𝑥) =
∑ 𝑤𝑘

𝑚
𝑘=1 (𝑥)𝑇𝑠𝑘,𝑙,𝑐

∑ 𝑤𝑘
𝑚
𝑘=1 (𝑥)

        (4) 

where the weighting function 

 

𝑊𝑘(𝑥) =
1

𝑑(𝑥,𝑥𝑘)𝑝         (5) 

is related to x, the coordinate vector of an interpolated point, xk is a measurement point, d(x,xk) denotes the distance from x to xk, 

m is the number of sampled points, and the positive number p=2 is used in this study to reflect the local temperature variation. To 

obtain an interpolated image of the original data, Ti,c is used instead of Tsk,l,c. The same IDW method is used after sampling 

with hierarchical clustering in section 2.4. 

Using the IDW method, spatial domains with 201 x 201= 40401 interpolated points were generated for analysis. These can also be 

visualized. To estimate the similarity between two spatial domains or interpolated images, normalized cross-correlation, Rncc 

(hereafter the correlation) and root-mean-square error (RMSE) were used: 

𝑅𝑛𝑐𝑐 =
∑ ∑ 𝑇1(𝑖𝑥,𝑖𝑦)𝑇2(𝑖𝑥,𝑖𝑦)𝑁

𝑖𝑦=1
𝑁
𝑖𝑥=1

√∑ ∑ 𝑇1(𝑖𝑥,𝑖𝑦)2𝑁
𝑖𝑦=1

𝑁
𝑖𝑥=1 ∑ ∑ 𝑇2(𝑖𝑥,𝑖𝑦)2𝑁

𝑖𝑦=1
𝑁
𝑖𝑥=1

    (6) 

𝑅𝑀𝑆𝐸 = √
∑ ∑ (𝑇1(𝑖𝑥,𝑖𝑦)−𝑇2(𝑖𝑥,𝑖𝑦))2𝑁

𝑖𝑦=1
𝑁
𝑖𝑥=1

𝑁2  

    (7) 

whereT1 (ix,iy)and T2 (ix,iy)are the 

interpolated values of air temperature from 

the original and sampled data, respectively; ix 

and iy are coordinates of the interpolated 

image; and N is the number of pixels in the x-

y dimension (N=201). For the analysis of the 

IDW method with random sampling, 1000 

images were made and compared in each 

sampling ratio (x 9) and each case (x 16). 
 

Fig. 2 Histograms of original temperature (◦C) 

distribution when 183 (summer, cases 1-8) and 200 

(winter, cases 9-16) sensors are used. See Table 1 

for details of each case. 

 

2.4 IDW method with hierarchical 

clustering and sampling 

In many studies, optimal sampling or 

selection of measurement points is undertaken 

using spatial simulated annealing (SSA) with 
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a criterion like mean kriging variance (Van Groenigen, 1999;Heuvelink et al., 2006;Brus and Heuvelink, 2007). Baume et al. 

(2011) indicated “greedy algorithms” perform better than SSA for optimal spatial measurement network design. These studies 

have primarily considered soil and water quality, not meteorological data which fluctuates more temporally.  

 

Brus et al. (2006) suggested that simple methods with k-means clustering could be an attractive alternative to optimization by SSA 

with the kriging variance. Examples of designing spatial coverage with k-means clustering are provided by Walvoort (2010). One 

of the difficulties in k-means clustering is that the method does not always produce same sampling results because of problems of 

convergence to local minima and the influence of initial conditions.  

 

An alternative approach is hierarchical clustering. Measurement points are classified into m categories over the measurement 

domain and then stations within each category of the network are selected (Fig. 3) - hereafter referred to as clustering. In this case, 

the longitude and latitude of the measurement points were used for the classification by the clustering. In this study, hierarchical 

clustering was used for sampling instead of k-means clustering and the results of classifications are always same. 

 

After the clustering and calculation of the center position of each category, the nearest point to the center position of each category 

was chosen as the sampled point and the temperature of that point was used as the representative value of the category. 

 

By using the sampled point with clustering, and the same procedures as section 2.3, 201 x 201 interpolated data were obtained 

with IDW. The correlation and RMSE were also calculated from the interpolated data. In the analysis of the IDW method with 

clustering, one image was made and compared in each sampling ratio (x 9) and each case (x 16). 

 
Fig. 3 Example of choosing m=8 points from n=183 measurement points by sampling 

with hierarchical clustering. First, n points are classified into m categories expressed 

as different colors. Second, center points of each category are selected as sampled 

points. 

3. Results 

Although data from only four days and four times of day were analysed 

(Table 2), a large number of different calculations have been performed to 

assess the spatial features of the air temperature at these times. In summer, 

the mean air temperature shows the expected pattern of being coolest at 04:00 

local time (27 to 29°C) and warmest at 16:00 (34 to 35°C), with the least and 

greatest spatial variability, respectively, also being recorded at these times 

(Table 2). For both days, urban heat island maxima were seen both at the city 

center (04:00) and inland (16:00), with transitions occurring at the other two 

times (10:00, 22:00). As expected, the winter temperatures were much cooler, 

ranging from means of -1°C to 9°C for the eight sample times. In the winter, 

the spatial standard deviations were generally smaller and the UHI was 

evident at the coast. 

 

The overall analysis considers the impact of sensor location and density. To 

ensure the results are robust, the 1000 randomly selected cases were 

analysed. This was repeated for each case (Table 2, c =1 to 16) and sampling 

ratio (s = 0.1 to 0.9) for both the random and clustered network patterns. For each, the mean air temperature was determined. 

 

3.1 Random sampling and analysis on mean temperature 

First we consider a network with randomly located sites (Fig. 1), so any sensor in the domain could be sampled in the analysis 

with equal probability. For each sample the mean temperature deviation, which is the difference in mean air temperature 

compared to the original mean temperature, was determined. In Fig. 4, the distributions of the mean temperature deviations are 

shown for Case 1. In other cases, similar distributions were obtained (not shown). The deviation indicates the error of estimating 

mean temperature with random sampling. In Fig. 4, all the data are symmetrically distributed and show a high density near zero 

deviation according to central limit theorem. The ranges are larger when the sample numbers are smaller. When the sampling ratio 

is 0.9, most of the deviations are within a +0.05°C range, whereas for the 0.7 sampling ratio, most of the deviations are within a 

+0.1°C range. Thus, a reduction in the network of 30% is acceptable if a 0.1°C deviation is allowable for the application at hand. 

In this example, such a reduction corresponds to a change in mean sensor spacing from 7.1 to 8.5 km (assuming the whole area is 

10000 km2 and there are 200 original measurement points). 

 

For all 16 cases, the standard deviation of mean temperature across all sampling ratios (each with 1000 values) shows a clear 

decrease in size as the number of sensors increases (Fig. 5). The maximum standard deviation, when the sampling ratio is s= 0.1, 

varies from 0.21 to 0.51°C in summer, and 0.16 to 0.37°C in winter. The case with the largest standard deviation in both summer 

(Case 7, Fig. 5a) and winter (Case 13, Fig. 5b) is consistent with the time when there was the largest standard deviation observed 

in the original data (Table 2). When the standard deviation of mean temperature is divided by the original standard deviation as 

shown in Fig. 5c, the values of all cases are very similar. This shows the temperature distributions of histograms (Fig. 2) were 

similar although their spatial patterns were different. 
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Fig. 4 Histograms of temperature deviation (sampled 

mean temperature - original mean temperature) (°C) in 

random sampling (Case 1, Table 1).Compare with Fig. 

2a (case 1) when 100 % of the data are used to show 

the actual values. Frequency is the number of a 

particular temperature deviation with all subplots 

having 1000 samples. The number above each subplot 

indicates the percentage of sensors (from the original 

183) randomly sampled to be analysed for statistics to 

be calculated.  

 

The maximum change (decrease) of standard 

deviation between sampling ratios occurs 

consistently when the ratio increases from 0.1 and 

0.2, which doubles the number of sensors 

analysed. If a certain standard deviation is 

specified as the desired accuracy of estimation of 

mean temperature, the appropriate sampling ratio 

or reduction of the data in each case from Fig. 5 

can be selected. 
 

 

 

 

 

 

 
Fig. 5 Standard deviation (°C) of mean temperature 

(from the 1000 samples) and normalized standard 

deviation (the standard deviation of mean 

temperature divided by the original standard 

deviation) with changing proportion of sensors 

present. Numbers on lines refer to the case number. 

See Table 2 for more details. 

 

3.2 IDW method with random sampling 

The IDW interpolated images when all sensors 

are included (Fig. 6) show clearly the spatial 

distributions of the temperature. The location of 

the UHI maxima can be seen to change with 

time (Table 2, Fig 6). For each case (Table 2), 

sampling ratio and random sampling 

combination, a map of the air temperature 

pattern can be created. 

 

With random sampling here, this creates 

144,000 maps (16 cases x 9 sampling ratios x 

1000 samples), thus it is not possible to show 

even close to 0.1 % of these. Moreover, there 

are many more possible combinations beyond 

this subset of the 1000 per c/s; with a population 

of n sensors with a sampling ratio s, there are 
nCsn combinations1: 

 
nCsn=[n!]/ {[n-(sn)]! (sn)!}     (8) 

In addition to the images, the correlations (eq. 6) and the RMSEs (eq 7) were calculated. 

 

Thus, it is possible to identify the best and worst correlations for a case and sampling ratio. In Fig.7, for Case 1 (Table 2) with a 
1sampling ratio of 0.2 (c/s= 1/0.2), despite the low sampling rate, there are images with high correlations (>0.9) which are visually 

very similar to the original image (compare to Fig. 6a- Case 1).  

                                                           
1 Note with n=30 and s=0.1 there are 4060combinations 
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Fig. 6 Spatial pattern of air temperature 

based on inverse distance weighted (IDW) 

using all available sensors for the 16 cases 

(see Table 2 for more details of the cases). 

The shading from red to yellow indicates 

change of temperature from low to high. See 

Fig.1 for location of Tokyo Bay and sensor 

locations etc. 

Through analysis of all the images with 

spatially equal probability sampling, 

those with the highest or best correlations 

compared to those with the poorest 

correlation or biased sampling can be 

identified (e.g. Fig. 7). To review all 

1000 combination analysed for a c/s set 

histograms of the correlation and the 

RMSE statistics, along with the relation 

between the two are used (e.g. Fig. 8). 

This allows determination of whether the 

“best” or “worst” (e.g. Fig. 7) outcomes 

are unlikely or not. For c/s=1/0.2 (Fig 8a, 

b) and c/s=9/0.2 (Fig. 8d, e), we see that 

the correlation is positively skewed and 

the RMSE negatively skewed. The 

relation between the correlation and 

RMSE is strong, with little scatter above 

a clear lower limit (Fig. 8c, f). In all c/s 

sets similar distributions and relations are 

observed. Thus it is possible to make 

some estimate of what the poorest 

relation maybe independent of the 

specific combination of sites used. This allows a probable error estimate across the network to be determined. 

 
Fig. 7 As for Fig. 6 but for Case 1 with a sampling ratio of 0.2, with four 

of the possible 1000 randomly (homogenous) selected sensors points. The 

four are chosen based on the statistical analysis of their properties 

relative to Fig.6a pixels using equations 6 and 7. They represent the two 

best (highest correlation) and worst (lowest correlation).  

Summarizing this for all the c/s sets, for all cases higher 

correlations and lower RMSEs were evident for higher sampling 

ratios (Fig. 9a, b). The four lowest correlations all occur at 10:00 

(c=2, 6, 10 and 14, Fig 9a) when no clear temperature maximum 

area (heat island) existed (Table 2, Fig 6).  

If a threshold of acceptable (good) similarity for the correlation of 

0.9 is chosen, this would suggest a sampling ratio of 0.7 is the 

lower limit (Fig. 9a), which corresponds to a mean distance 

between sensors of 12.9 to 13.5 km as sufficient. Given there are 

no stations located in Tokyo Bay currently, the land based 

separation is effectively smaller (section 2.1). Even at the 

sampling ratio 0.2, the correlations were sometimes more than 0.9. 

The network can be considered to be very robust to the loss of 

measurement data in these cases. Given the nature of the sites and 

instruments used in this network, this suggests it is measuring 

local scale features well, but not necessarily micro-scale 

variability (vertical and horizontal) in and around each of the sites. 
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Fig. 8 Example of the statistics (correlation (-), RMSE (°C)) 

determined from analysis of the IDW spatial domains for two c/s 

(a-c) Case 1 sampling ratio=0.2 and (d-f) Case 9, sampling ratio: 

0.2). Histograms of (a,c) correlation (eq. 6) and (b,d) RMSE (eq 7) 

plus the relation between the (c,f) correlation and RMSE. 

 

Visual evaluation by human eye is complicated, but when 

the correlation is more than 0.9, the images are recognizably 

very similar visually. If the correlation is 0.8, the images 

show good visual similarity with the original images. The 

correlation can be used as a criterion of spatially good 

selection of the data. 

 

In Fig. 9b, the largest mean RMSE across all the c/s is 

0.8°C, which was associated with c/s= 7/0.1 for the summer 

afternoon situation (16:00). This was the case studied with 

the largest spatial standard deviation (Table 2) with only 18 

sensors used to characterize the pattern. Across all cases, 

selecting the 0.7 (s) as above, results in a RMSE of about 0.2 

°C or less. 

 

 

3.3 IDW method with hierarchical clustering and 

sampling 

 

In virtually all urban areas there are known variations in 

topography (e.g. changes in elevation, distance of sites to 

water bodies like lakes or sea, etc.) which will affect 

meteorological variables such as temperature. Knowledge of 

these should guide sensor network design and installation. In 

this study the presence of large water bodies (Tokyo Bay 

and the Pacific Ocean) and hills surrounding Tokyo (Fig. 1) 

are expected to impact the thermodynamics of the city’s 

atmosphere, as well as constrain where the city has and can 

develop. 

 

In the prior section, it was possible for all sensors randomly 

selected to be clustered together in a relatively small area. 

For example, with 37 sensors selected in c/s= 1/0.2, the 

poorest points (lowest correlation) in Fig. 7a or Fig. 8c likely 

reflected that situation. In the following analysis, the same 

methods are used as section in 3.2 except that the sampling 

is once with hierarchical clustering for each s and c. 

Selection of sensors was required to include geo-location of 

a specified density based on s as shown in Fig. 10. Thus a 

distributed pattern at the larger scale (related to s) is forced and this 

ensures that the stations are spread across the spatial domain. Sensors 

could still cluster in certain areas but maintain an overall coverage 

across the domain (Fig 10c, d). 

 
Fig. 9. The mean (a) correlation and (b) RMSE for each c/s based on the 1000 

samples. The lines join a sampling ratio (1 is 0.1, 2 is 0.2 and 9 is 0.9) across 

the cases (Table 1). The results of IDW with hierarchical clustering are also 

shown in (c) correlation and (d) RMSE. 

 

 

Fig.11 allows direct comparison between the IDW interpolated images 

and one example of clustered selection c/s=1/0.1, 1/0.2, 1/0.5 (and 

equivalently for cases 2, 9, 10). First, the placement of sensors selected 

for analysis can be compared between the original (Fig.6a, b, i, j or 

Fig. 11 row 4 c/s =1/1), randomly sampled (Fig.7 c/s= 1/0.2) and the 

sampling with clustering (Fig.11 row 2 c/s=1/0.2) schemes. With the 

hierarchical clustering, the sensors selected are forced to cover the 
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whole domain at each sampling ratio. Images of sampling ratio 0.5 and 1 are 

similar in all cases. Even at the sampling ratio 0.2, some images are similar to 

the original images. 

 
Fig. 10 Sampled points from measurement points by sampling with hierarchical 

clustering at the sampling ratio, s of 0.1, 0.2, 0.5 and 0.7 in summer Cases (n=183) with 

the same method explained in Fig. 3. 

 

Fig. 11 As for Fig. 6 but for Cases 1, 2, 9 and 10 with 

sampling ratio of (row 1) 0.1, (row 2) 0.2, (row 3) 0.5 

and (row 4) 1.0 (all/original) and images made by IDW 

with selected points by sampling with hierarchical 

clustering. For rows 1-3 of Case 1 and Case2, selected 

sensors points shown in Fig. 10 are used. 

 

Following the approach in section 3.2, after 

analysis of all the c/s combinations, the mean 

correlations and RMSEs are summarized in Fig. 9c, 

d. The characteristics are very similar to the 

randomly sampled results of previous section (Fig. 

9a, b), with higher correlations and lower RMSEs 

with higher sampling ratios. The cases with 

high/low values were almost the same using both 

methods (Fig. 9). At the sampling ratio 0.7, the 

correlations are over 0.9 and RMSEs are less than 0.2°C for all cases. Again, this means very similar IDW images were obtained 

with 30 % data loss. Even at the sampling ratio 0.5, the correlations are over 0.8 and IDW images are very similar to the original 

one (Fig. 9, 11). 

 

3.4 Implications for designing an urban air temperature network 

 

From this analysis of the two sampling strategies (random and clustering), it is clear that the 

sampling with hierarchical clustering improves the network’s capability to reproduce the full 

network results with fewer sensors (Fig. 12). The correlations are larger and RMSEs lower 

than with only random sampling. This indicates the hierarchical clustering is effective in 

guiding where sensors should be located. 

 

 
Fig. 12 Comparison of the Correlation and the RMSE in random sampling and sampling with 

hierarchical clustering. 

 

These results inform how we should approach air temperature network design in the future. 

Many meteorological networks evolve drawing on stations originally installed for a wide 

variety of purposes (e.g. case of London, Grimmond, 2013). Techniques, such as those 

presented here, allow us to evaluate the spatial data recorded by such networks, and 

importantly how they can best be enhanced. Also, given it is inevitable that instruments will 

fail, need to be replaced and site access lost, the sampling methods and analyses in this study 

that introduces some redundancy and resilience to the network, may be useful from the 

outset of network design in guiding better use of resources. Through ongoing use of the type 

of analyses presented here, QA/QC (quality assurance/quality control) processes also can be 

enhanced as this approach can also be used as a tool to identify sensors in need of attention.  

Here only one type of sampling with hierarchical clustering has been considered (based on 

location). However, it is highly likely that further gains can be made drawing on more 

detailed metadata (e.g. Muller et al., 2013a; Muller et al.,2013b) and siting characteristics 

(e.g. Stewart and Oke, 2012) . This will become even more important as a wider spectrum of 

sensors types are used (e.g. smart phones, Overeem et al., 2013) and mobile settings (Mahoney et al., 2010) which will yield 

temporally and spatially more dynamic data. This will enhance data for both near real-time (e.g. energy related decision making) 

or long-term climate (e.g. architectural and engineering design) users. 
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4. Conclusions 

 

Extended METROS data gathered in Tokyo were used to analyze the effect of reducing observation points from an existing 

meteorological measurement network. For the analysis of estimation of mean temperature and interpolation with IDW, random 

sampling was undertaken. Generally, it was possible to obtain almost the same result with a 30% reduction in the number of 

sensors. IDW with hierarchical clustering was used to select points homogeneously. 

 

The original network instrument siting in Tokyo, sensors in elementary schools across the city, capture local scale variations in 

temperature, but not detailed vertical and horizontal variability at each of the sites. Thus this analysis has allowed us to look at 

local scale features. From this analysis, a mean instrument spacing of the order 13 km (at the time of 30% reduction) allows the 

key features of Tokyo’s temperature domain to be reproduced. As all cities have their own distinct geographical setting, which 

will impact the evolution of the urban heat island, we suggest that methods presented in this study like application of IDW with 

hierarchical clustering improves the ability to characterize spatial sampling. It allows either improved performance with the same 

number of sensors or sustains the same level of performance with fewer sensors (Fig. 

12). 

 

The techniques used here allow assessments of networks as new sensors are added or existing networks combined, to ensure 

robust and resilient networks not dependent on individual sensors. With the development of open data policies and crowdsourcing 

of meteorological data (e.g. Weather Observation Website, http://wow.metoffice.gov.uk/; Weather Signal, 

http://weathersignal.com/; AMeDAS, http://www.jma.go.jp/jma/indexe.html, etc.) such techniques will allow adaptive but 

rigorous use of available data. 
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