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Nonlinear Identification Using Orthogonal Forward
Regression With Nested Optimal Regularization

Xia Hong, Senior Member, IEEE, Sheng Chen, Fellow, IEEE, Junbin Gao, and Chris J. Harris

Abstract—An efficient data based-modeling algorithm for
nonlinear system identification is introduced for radial basis
function (RBF) neural networks with the aim of maxi-
mizing generalization capability based on the concept of
leave-one-out (LOO) cross validation. Each of the RBF kernels
has its own kernel width parameter and the basic idea is to
optimize the multiple pairs of regularization parameters and ker-
nel widths, each of which is associated with a kernel, one at a
time within the orthogonal forward regression (OFR) procedure.
Thus, each OFR step consists of one model term selection based
on the LOO mean square error (LOOMSE), followed by the
optimization of the associated kernel width and regularization
parameter, also based on the LOOMSE. Since like our previ-
ous state-of-the-art local regularization assisted orthogonal least
squares (LROLS) algorithm, the same LOOMSE is adopted for
model selection, our proposed new OFR algorithm is also capable
of producing a very sparse RBF model with excellent generaliza-
tion performance. Unlike our previous LROLS algorithm which
requires an additional iterative loop to optimize the regularization
parameters as well as an additional procedure to optimize the
kernel width, the proposed new OFR algorithm optimizes both
the kernel widths and regularization parameters within the sin-
gle OFR procedure, and consequently the required computational
complexity is dramatically reduced. Nonlinear system identifica-
tion examples are included to demonstrate the effectiveness of
this new approach in comparison to the well-known approaches
of support vector machine and least absolute shrinkage and
selection operator as well as the LROLS algorithm.

Index Terms—Cross validation (CV), forward regression,
identification, leave-one-out (LOO) errors, nonlinear system,
regularization.

I. INTRODUCTION

ALARGE class of nonlinear models including some types
of neural networks can be classified as linear-in-the-

parameters models. These models have provable learning
and convergence conditions, are well suited for adaptive
learning, and have clear engineering applications [1]–[3].
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Note that in order to obtain a desired linear-in-the-parameters
structure [4]–[7], however, nonlinear parameters in these mod-
els must be determined by other means as they cannot be
estimated by a linear learning process. For example, the radial
basis function (RBF) centers and kernel centers in the RBF
neural network and the kernel model must be selected or be
restricted to the training input data in order to apply the linear
learning approaches of [4]–[7]. Furthermore, the RBF or ker-
nel width parameter and other so-called hyperparameters, such
as regularization parameters, also have to be learnt typically
via cross validation (CV). One of the main aims of data-based
modeling is good generalization, i.e., the model’s capability
to approximate accurately the system output for unseen data.
The concept of CV is fundamental to the evaluation of model
generalization capability [8], and it is widely embedded either
in parameter estimation, e.g., tuning regularization parame-
ter [9]–[11] and forming new parameter estimates [12], or in
deriving model selection criteria based on information theo-
retic principles [13], which regularizes model structure in order
to produce sparse models.

The orthogonal least squares (OLS) algorithm, which
efficiently constructs sparse models in an orthogonal for-
ward regression (OFR) procedure [14], [15], is a pop-
ular modeling tool in neural networks, such as RBF
networks [4], [16], neurofuzzy systems [17], [18], and wavelet
neural networks [19], [20]. The original OLS algorithm [14]
selects regressors by virtue of their contribution to the max-
imization of the model error reduction ratio. One commonly
used version of CV is the leave-one-out (LOO) CV. For
linear-in-the-parameters models, the LOO errors can be cal-
culated without actually splitting the training data set and
estimating the associated models, by making use of the
Sherman–Morrison–Woodbury theorem [21]. By incorporat-
ing the OFR framework with analytical expression of LOO
errors, the LOO mean square error (LOOMSE) was proposed
as a model term selection criterion, which can be sequentially
optimized within the model construction process [22], [23],
enabling the OFR model construction procedure to automat-
ically terminate with a sparse model that generalizes well,
without resorting to other stopping criterion. It is worth empha-
sizing that for nonlinear system identification at least, the
objective is to obtain sparse models that generalize well.
A system engineer is unlikely to accept a huge-size model
with many model terms for controller design purpose, even
the model is a faithful representation of the underlying non-
linear system that generates the data. Take the engine data
identification of [24], which is also considered in this paper,
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no control engineer will use a model with two hundreds of
model terms to design controller for the lorry engine, but a
small model with 20 model terms is acceptable to a control
engineer, provided that the model is accurate.

In [6], empirical evidence is provided to suggest that using
the LOOMSE to optimize the kernel width and regularization
parameter leads to overfitting for the least squares support
vector machine (LSSVR), which uses all the training data
as model base. From a model selection viewpoint based on
bias and variance analysis, [6] shows that this overfitting phe-
nomenon is due to the resultant LSSVR models having a large
variance. We argue that it is very unlikely for the sparse models
identified by our local regularization assisted OLS (LROLS)
algorithm based on the LOOMSE [23] to overfit, because our
model selection framework is very different from the one used
in [6]. In fact, the nonsparse LSSVR model with all the train-
ing data as its kernels is inherently prone to overfitting. By
contrast, our subset model selection based on the LOOMSE
criterion constructs a sparse model, exactly aiming to avoid
overfitting. While the results of [6] show that the LOOMSE
continuously decreases as the iterations of the hyperparame-
ter optimization increases, a classical sign of overfitting, it has
been shown in [22] and [23] that in our subset model selection
procedure, the LOOMSE reaches an optimal value at certain
model size.

Generally, better model generalization can be achieved using
parameter regularization, which penalizes the norm of param-
eters. The effect of parameter regularization is to add a small
bias in order to gain advantage in combating the problem of
large variance which is often associated with an oversized
model structure. Although a very small positive regulariza-
tion parameter based on the l2-norm is often used to improve
numerical condition, more advanced techniques aim at the
regularization design with respect to given data, leading to
sparser model structure. For example, sparse models can be
constructed using the l1-norm penalized cost function, e.g.,
the basis pursuit or least absolute shrinkage and selection
operator (LASSO) [25]–[27]. However, the optimization of
the l1-norm regularizer with respect to model generalization
analytically is less studied. Alternatively, the l2-norm reg-
ularization technique has been incorporated into the OLS
algorithm to produce a regularized OLS (ROLS) algorithm
that carries out model term selection while reducing the vari-
ance of parameter estimates simultaneously [10], [11]. It has
been shown [28], [29] that the l2-norm parameter regular-
ization is equivalent to a maximized a posterior probability
estimate of parameters from Bayesian viewpoint by adopting
a Gaussian prior for the parameters, leading to an itera-
tive evidence procedure for solving the optimal regularization
parameters [29], [30]. Further adopting the LOOMSE as the
model selection criterion leads to our state-of-the-art LROLS
algorithm [23], which is capable of producing a very sparse
nonlinear model with excellent generalization performance.

Similar to all the other existing regularization assisted sparse
model construction algorithms, the optimization of the regular-
ization parameters in the LROLS algorithm [23] includes the
OFR procedure as an inner loop, and therefore several itera-
tions of the OFR procedure are needed. More specifically, with

all the regularization parameters initially set to a very small
positive value, the OFR procedure in the inner loop constructs
a sparse model. The regularization parameters are then updated
at the outer loop using for example the efficient evidence pro-
cedure of [30], and the inner-loop OFR algorithm is started
again with the new regularization parameters. A few outer-loop
iterations, typically no more than 10, will ensure that a set of
near optimal regularization parameters are found. Therefore,
the require computational complexity approximately equals to
the complexity of single OFR procedure scaled up by the
number of outer-loop iterations for computing near optimal
regularization parameters. Moreover, other hyperparameters,
such as the RBF widths, must also be optimized in order to
ensure an excellent generalization capability. For the RBF or
kernel model which employs a single common RBF width for
all model regressors, a grid search procedure based on CV
is typically used to find a near-optimal RBF width and this
adds an extra third iterative loop to the model construction.
Thus, the true total complexity is scaled up by the number of
grid searches for the RBF width. For the RBF model where
each model regressor has an individual RBF width, the non-
linear search space for all the RBF width parameters becomes
too large for a grid-based procedure, and other nonlinear opti-
mization means must be adopted [31]–[33]. It is, therefore,
highly desirable that the hyperparameters, including nonlinear
regularization parameters and RBF widths, can be analytically
optimized within the single OFR model construction process.
This motivates our current study.

In this paper, we propose a new OFR algorithm in which
the optimization of kernel widths and regularization parame-
ters is nested within the OFR procedure, so that only a single
OFR iteration is needed for the estimation of these hyperpa-
rameters. Specifically, we use the Gaussian RBF model that
has individually tunable kernel width for each kernel, and both
the kernel width and associated regularization parameter are
optimized one kernel at a time within the OFR procedure.
An l2-norm locally ROLS cost function [23], [28] is used
for model parameter estimation, and the resultant LOOMSE
measures the model generalization performance. By exploit-
ing the analytical expression of LOO errors, we derive a new
approach for successively estimating the two hyperparameters
of RBF width and regularization parameter associated with
each selected regressor using the LOOMSE criterion based on
a simple line search and gradient descent algorithm, respec-
tively, which is embedded naturally in each regressor selection
step of the OFR procedure. Consequently, a computationally
efficient and fully automated procedure can be achieved with-
out resorting to any other validation data set for iterative model
evaluations. Since the same LOOMSE criterion of the LROLS
algorithm [23] is adopted, our proposed new OFR algorithm
is also capable of producing a very sparse similar RBF model
with excellent generalization performance. Unlike our previous
LROLS algorithm [23], the new proposed algorithm constructs
a sparse model within a single OFR procedure and conse-
quently the required computational complexity is dramatically
reduced.

This paper is organized as follows. Section II outlines
the concept of the OFR using a regularized cost function.
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In Section III, we present the nth stage of the OFR model
representation and the concept of LOO CV for model
term selection using the LOOMSE, followed by a line
search for tuning the kernel width and a gradient descent
algorithm to estimate the regularization parameter for the
selected regressor. Both the line search and gradient descent
algorithm are also based on minimizing the LOOMSE.
Section IV presents the entire proposed OFR algorithm with
the nested LOOMSE-based optimal regularization, referred to
as the OFR + LOOMSE, for constructing sparse models. In
Section V, the empirical results demonstrate the effectiveness
of our proposed OFR + LOOMSE algorithm. The conclusion
is given in Section VI.

II. PRELIMINARIES

Consider the general nonlinear system represented by the
nonlinear model [34]

y(k) = f (y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu))

+ v(k) = f (x(k)) + v(k) (1)

where y(k) and u(k) are the system output and control input
with the lags ny and nu, respectively, at sample time index k,
and v(k) denotes the system white noise, while m = ny + nu,
x(k) = [y(k − 1) · · · y(k − ny) u(k − 1) · · · u(k − nu)]T =
[x1(k) x2(k) · · · xm(k)]T ∈ R

m denotes the m-dimensional sys-
tem input vector, and f (•) is the unknown system mapping.
The unknown nonlinear system (1) is to be identified based
on an observation data set DN = {x(k), y(k)}N

k=1 using some
suitable functional which can approximate f (•) with arbitrary
accuracy. Without loss of generality, in this paper, we use the
data set DN to construct a RBF network model of the form

ŷ(M)(k) = f (M)(x(k)) =
M
∑

i=1

θiφi(x(k)) (2)

where ŷ(M)(k) is the model prediction output for the input
vector x(k) based on the M-term RBF model, M is the total
number of regressors or model terms, and θi are the model
weights, while the regressor φi(x) takes the form of Gaussian
basis function given by

φi(x) = exp

(

−‖x − ci‖2

2τ 2
i

)

(3)

in which ci = [c1,i c2,i · · · cm,i]T is the center vector of the ith
RBF unit and τi > 0 is the ith RBF unit’s width parameter.
We assume that each RBF kernel is placed on a training data,
namely, all the RBF center vectors {ci}M

i=1 are selected from
the training data {x(k)}N

k=1.
Denote e(M)(k) = y(k) − ŷ(M)(k) as the M-term modeling

error for the input data point x(k). Over the training data
set DN , further denote y = [y(1) y(2) · · · y(N)]T, e(M) =
[e(M)(1) e(M)(2) · · · e(M)(N)]T, and �M = [φ1 φ2 · · · φM] with
φn = [φn(x(1)) φn(x(2)) · · · φn(x(N))]T, 1 ≤ n ≤ M. We have
the M-term model in the matrix form of

y = �MθM + e(M) (4)

where θM = [θ1 θ2 · · · θM]T. Let an orthogonal decomposition
of the regression matrix �M be �M = WMAM , where

AM =

⎡

⎢

⎢

⎢

⎢

⎣

1 a1,2 · · · a1,M

0 1
. . .

...
...

. . .
. . . aM−1,M

0 · · · 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(5)

and

WM = [w1 w2 · · · wM] (6)

with wT
i wj = 0, if i �= j. The regression model (4) can

alternatively be expressed as

y = WMgM + e(M) (7)

where gM = [g1 g2 · · · gM]T satisfies the triangular system
AMθM = gM , which can be used to determine θM , given AM

and gM .
Further consider the following regularized cost function:

Le
(

�M, gM

) = ∥

∥y − WMgM

∥

∥

2 + gT
M�MgM (8)

where �M = diag{λ1, λ2, . . . , λM}, which contains the local
regularization parameters λi > 0, for 1 ≤ i ≤ M. For a
given �M , the solution for gM can be obtained by setting the
derivative vector of Le to zero, i.e., (∂Le/∂gM) = 0, yielding

g(R)
i = wT

i y

wT
i wi + λi

(9)

for 1 ≤ i ≤ M. Our objective Le(�M, gM) is constructed on
the orthogonal space and the l2-norm parameter constraints are
associated with the orthogonal bases wi, 1 ≤ i ≤ M.

III. SIMULTANEOUS REGULARIZATION PARAMETER

OPTIMIZATION AND MODEL CONSTRUCTION

USING LOOMSE

For each stage of the OFR, we select the regressor with
the smallest LOOMSE amongst all the candidate regressors
using a common preset kernel width and a very small preset
regularization parameter, followed by determining the optimal
kernel width and then the optimal regularization parameter
associated with the selected regressor.

A. nth Stage OFR Model Representation and LOOMSE

At the nth OFR stage, the nth model term is selected from a
candidate pool that is formed according to (3) using the whole
set or a subset of training data as candidate centers and a com-
mon preset kernel width τn = τ0 and a preset regularization
parameter λn = λ0 initially. Consider the OFR modeling pro-
cess that has produced the n-term model. Let us denote the
constructed n columns of regressors as Wn = [w1 w2 · · · wn],
with wn = [wn(1) wn(2) · · · wn(N)]T. The model output vector
of this n-term model is denoted as

ŷ(n) =
n
∑

i=1

g(R)
i wi = Wng(R)

n (10)
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where g(R)
n = [g(R)

1 g(R)
2 · · · g(R)

n ]T, and the corresponding mod-
eling error vector is given by e(n) = y − ŷ(n). Clearly, the nth
OFR stage can be represented by

e(n−1) = gnwn + e(n). (11)

Equation (11) illustrates the fact that the nth OFR stage
is simply to fit a one-variable model using the current model
residual produced after the (n−1)th stage as the desired system
output.

The selection of one regressor from the (M − n + 1) candi-
date regressors involves generating the (M −n+1) candidates
for wn, i.e., by making each of the (M − n + 1) candidate
regressors orthogonal to the (n − 1) orthogonal basis vectors
wi for 1 ≤ i ≤ n − 1, already selected in the previous (n − 1)

OFR stages. Then the contributions of the candidate regres-
sors are evaluated based on the idea of the LOO CV outlined
below.

Consider the model fitting (11) on DN , where the desired
output vector is e(n−1) with its elements given by e(n−1)(k),
1 ≤ k ≤ N. For notational convenience, we also denote
a candidate model identified using all the N data points as
e(n−1)(k, λn, τn) = g(R)

n wn(k) at the nth model fitting stage.
Suppose that we now sequentially set aside each data point
in the estimation set DN in turn and estimate a model using
the remaining (N − 1) data points. The prediction error is
calculated on the data point that was removed from the iden-
tification. That is, for k = 1, 2, . . . , N, the model is estimated
by removing the kth data point from DN , and the output of
the model, identified based on DN \ (x(k), y(k)), is computed
for the kth data unused in the identification and is denoted
by e(n−1,−k)(k, λn, τn). Then, the LOO prediction error is
calculated as

e(n,−k)(k, λn, τn) = e(n−1)(k) − e(n−1,−k)(k, λn, τn). (12)

Direct evaluation of e(n,−k)(k, λn, τn) by splitting the data
set requires extensive computational efforts. However, as we
have shown in [23], they can be exactly calculated with-
out actually sequentially splitting the estimation data set. The
LOOMSE is then defined as the average of the squared LOO
errors, given by J(λn, τn) = 1/N

∑N
k=1(e

(n,−k)(k, λn, τn))
2.

The model generalization contribution from the nth stage
of OFR depends on the selection of a regressor from the
(M − n + 1) candidate regressors and further tuning of kernel
width as well as regularization parameter optimization based
on the updated regressor. We propose that the LOOMSE is
used initially for regressor selection and then used for ker-
nel width as well as regularization parameter estimation. To
be more specific, firstly we use a very small regularization
parameter λ0, e.g., λ0 = 10−8, for all the (M−n+1) candidate
regressors, and the associated LOOMSE values are calculated
and ranked. Then the regressor with the smallest LOOMSE is
selected as the nth regressor, denoted as φn(τ0). Secondly, for
this selected regressor, we first maximize its potential model
generalization performance by successively updating wn via
τn when λ0 is fixed, then followed by the associated regular-
ization parameter optimization by minimizing the LOOMSE

with respect to λn when τn is fixed, so that:

λopt
n = arg min

λn

{

min
τn

{

1

N

N
∑

k=1

(

e(n,−k)(k, λn, τn)
)2
}}

. (13)

An optimization procedure is introduced in Section III-B
for this two-variables optimization problem.

B. Successive Kernel Width and Regularization Parameter
Estimation via Minimizing LOOMSE

Because the joint optimization of the LOOMSE with respect
to both the kernel width and regularization parameter is very
complex, we opt for the following successive optimization pro-
cedure: 1) we first hold the regularization parameter as λ0 and
tune the kernel width τn by directly evaluating the LOOMSE
using a line search algorithm and 2) with the obtained opti-
mal τn, we then optimize λn based on the LOOMSE using a
gradient descent algorithm.

The model parameter estimator g(R)
n (λn, τn) can be

written as

g(R)
n (λn, τn) = wT

n e(n−1)
/

αn (14)

where

αn = wT
n wn + λn. (15)

The model residual is then given by

e(n)(k, λn, τn) = e(n−1)(k) − wn(k)wT
n e(n−1)

/

αn (16)

and the LOOMSE can be calculated as [23]

J(λn, τn) = 1
N

∑N
k=1

(

e(n)(k,λn,τn)
βn(k)

)2
(17)

where

βn(k) = 1 −
n
∑

i=1

(wi(k))2

αi
= βn−1(k) − (wn(k))2

αn
. (18)

Note that βn−1(k) has already been determined in the
previous regression step, and β0(k) = 1.

Further, note that, φn = φn(τn) is a functional of τn and

wn = φn(τn) −
n−1
∑

i=1

ai,nwi (19)

with ai,n = wT
i φn(τn)/wT

i wi, 1 ≤ i ≤ n − 1. Therefore, we
have

wn = Bnφn(τn) (20)

where Bn = Bn−1 − wn−1wT
n−1/wT

n−1wn−1, and B1 = I is the
N × N identity matrix. Clearly the gradient ∂J(λn, τn)/∂τn is
very complex. However, if we fix λn = λ0, then LOOMSE
becomes a one-variable function of τn which either increases
or decreases as τn increases until it reaches a local minimum.
Thus, we can simply use a 1-D line search to solve for τn, as
shown in Table I.

Remark 1: This 1-D line search algorithm is guaranteed to
find a near optimal kernel width τn ∈ [ς It1τ0, ς−It1τ0] with
no more than It1 iterations given the learning rate 0 < ς < 1.
Provided that the initial kernel width τ0 is not too far away
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TABLE I
KERNEL WIDTH PARAMETER UPDATE FOR FIXED λ0

from a local minimum, the preset number of iterations It1 can
be set to a small value, e.g., 10. In this way, the computational
cost of this 1-D line search in each OFR step can be controlled
to be negligibly small, compared to the complexity required by
selecting a model term in each OFR step. More specifically, it
is well known that the complexity of selecting a model term in
each OFR step is approximately on the order of N2, denoted as
O(N2) [23], [33]. It is straightforward to verify that complexity
of computing the LOOMSE according to (20) and (15)–(18)
is on the order of O(N), and the total complexity of this line
search is no more than It1 · O(N). Since It1 � N, this is still
on the order of O(N), which is much smaller than O(N2).

Once τn is found we seek λn using a gradient descent
algorithm. From (16), we have

∂e(n)(k, λn, τn)

∂λn
= wn(k)wT

n e(n−1)
/

α2
n = wn(k)g

(R)
n (λn, τn)

αn
(21)

and the gradient of the LOOMSE with respect to λn is given by

∂J(λn, τn)

∂λn
= 2

N

N
∑

k=1

e(n)(k, λn)

βn(k)

∂e(n,−k)(k, λn)

∂λn
(22)

where

∂e(n,−k)(k, λn)

∂λn
= ∂e(n)(k, λn)

/

∂λn

βn(k)
− e(n)(k, λn)

(βn(k))2

(wn(k))2

α2
n

= g(R)
n (λn)γn(k) − e(n)(k, λn)(γn(k))

2 (23)

and

γn(k) = wn(k)

αnβn(k)
. (24)

With λold
n = λ0 and λ0 a preset very small positive value,

the gradient descent algorithm for minimizing the LOOMSE
of (17) is applied as follows:

{

λnew
n = max

{

λ0, λ
old
n − η · sign

(

∂J
∂λn

∣

∣

λn=λold
n

)}

λold
n = λnew

n

(25)

for a predetermined number of iterations It2, e.g., It2 = 20,
where η > 0 is a very small positive learning rate. Note that
sign(∂J(λn, τn)/∂λn) is used in (25), indicating that this is a
normalized version of gradient descent algorithm and a small
learning rate η will scale well with the search space of λn,
irrespective of the actual size of (∂J(λn, τn)/∂λn).

Remark 2: This 1-D gradient descent algorithm is guar-
anteed to converge to a near optimal solution λn, provided
that the initial regularization parameter λ0 is not too far away
from a local minimum. The computational cost of this gradient
descent algorithm is low due to the neat expression of (25).
Furthermore, the recursion formula for βn(k) given in (18) sig-
nificantly reduces the cost of the derivative evaluation. Thus,
the computational complexity of the above optimal regular-
ization parameter estimator is on the order of O(N), scaled
by the number of iterations It2 which is usually much smaller
than N. Therefore, the computational complexity of this gra-
dient descent algorithm is on the order of O(N), which is
negligibly small compared to the complexity O(N2) required
by selecting a model term in each OFR step.

This near optimal one regularization parameter estimator
together with kernel parameter tuning for the selected regres-
sor offers the benefit of further reduction in the LOOMSE for
the selected regressor and hence improves the model general-
ization for the same model terms selected sequentially by the
OFR procedure.

IV. PROPOSED OFR WITH NESTED OPTIMAL

REGULARIZATION USING LOOMSE

The proposed OFR + LOOMSE algorithm is presented
below integrating: 1) the model regressor selection based
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on minimizing the LOOMSE using a preset regularization
parameter from the candidate set; 2) successively updat-
ing the kernel width and optimizing regularization param-
eter also based on minimizing the LOOMSE for the
selected model regressor; and 3) the modified Gram-Schmidt
orthogonalization procedure [14]. For notational convenience,
define

�(n−1) =
[

w1 · · · wn−1 φ(n−1)
n · · · φ(n−1)

M

]

∈ R
N×M (26)

with �(0) = �M . If some of the columns in �(n−1) are
interchanged, it is still referred to as �(n−1) for notational
simplicity. The initial conditions are set as follows: e(0) = y,
β0(k) = 1 for 1 ≤ k ≤ N, and the learning rate η is a given
small positive number, e.g., η = 0.01. Further denote the kth
element of φ

(n−1)
j as φ

(n−1)
j (k).

With the initialization of λold
n = λ0 and τn = τ0, the nth

stage of the OFR procedure is given as follows.
Step 1: Model Term Selection

1) For n ≤ j ≤ M, calculate

α(j)
n =

(

φ
(n−1)
j

)T
φ

(n−1)
j + λold

n (27)

β(j)
n (k) = βn−1(k) −

(

φ
(n−1)
j (k)

)2 /
α(j)

n , 1 ≤ k ≤ N

(28)

g(R,j)
n =

(

φ
(n−1)
j

)T
e(n−1)

α
(j)
n

(29)

e(n,j) = e(n−1) − g(R,j)
n φ

(n−1)
j (30)

J(j)
n = 1

N

N
∑

k=1

(

e(n,j)(k)/β(j)
n (k)

)2
. (31)

2) Find

Jn = J(jn)
n = min

{

J(j)
n , n ≤ j ≤ M

}

. (32)

Then the jnth and the nth columns of �(n−1) are inter-
changed. The jnth column and the nth column of AM are
interchanged up to the (n − 1)th row. This effectively
selects the nth regressor in the subset model.

Step 2: Kernel Width Optimization

Apply the algorithm in Table I to find the optimal kernel
width parameter τn. Form φn(τn) using (3) and update the
nth column of AM up to the (n − 1)th row as

ai,n = wT
i φn(τn)

wT
i wi

, 1 ≤ i ≤ n − 1. (33)

The modified Gram-Schmidt orthogonalization proce-
dure [14] then calculates the nth row of AM and transfers
�(n−1) into �(n) as follows:

wn = φn(τn) −
n−1
∑

i=1
ai,nwi

an,j = wT
n φ

(n−1)
j

/

wT
n wn, n + 1 ≤ j ≤ M

φ
(n)
j = φ

(n−1)
j − an,jwn, n + 1 ≤ j ≤ M.

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(34)

Step 3: Regularization Parameter Optimization

1) For the derived wn, iterate the following steps It2 times:

αn = wT
n wn + λold

n (35)

βn(k) = βn−1(k) − (wn(k))
2 /αn, 1 ≤ k ≤ N (36)

γn(k) = wn(k)

αnβn(k)
, 1 ≤ k ≤ N (37)

g(R)
n = wT

n e(n−1)
/

αn (38)

e(n) = e(n−1) − g(R)
n wn (39)

λnew
n = max

{

λ0, λ
old
n − η · sign

(

∂J
(

λold
n

)

∂λn

)}

(40)

λold
n = λnew

n (41)

where (∂J(λn)/∂λn) = (2/N)
∑N

k=1(e
(n)(k)/βn(k))

(g(R)
n γn(k) − e(n)(k)(γn(k))2).

2) Update the LOOMSE

Jn = 1

N

N
∑

k=1

(

e(n)(k)/βn(k)
)2

. (42)

Termination

The OFR procedure is terminated at the (ns + 1)th stage
automatically when the condition Jns+1 ≥ Jns is detected,
yielding a subset model with the ns significant regressors.

Remark 3: The existence of this desired model size ns is
guaranteed. This is because initially the LOOMSE decreases
as the model size increases, reaching a minimum value at cer-
tain model size, and then LOOMSE starts increasing when the
model size increases further [22], [23], [30]. Thus, the OFR
model selection procedure based on the LOOMSE is guaran-
teed to automatically “converge” or to terminate at a minimum
LOOMSE solution with ns significant model terms.

The computational complexity of out proposed OFR +
LOOMSE algorithm can easily be shown to be

Ctotal
OFR + LOOMSE ≈ (ns + 1) · O

(

N2 + (It1 + It2)N
)

≈ (ns + 1) · O
(

N2
)

. (43)

Note that with a fixed common kernel width and
given all the fixed regularization parameters, our previous
LROLS algorithm has the computational complexity given
by [23], [32], and [33]

Csingle-OFR
LROLS ≈ (ns + 1) · O

(

N2
)

(44)

assuming that the OFR procedure also produces a ns-term
model. This confirms that the new OFR + LOOMSE algorithm
only requires negligible extra computational cost in compari-
son to the OFR algorithm with a fixed kernel width and fixed
regularization parameters. Further assuming that the iterative
loop for updating the regularization parameters requires Irps
iterations and the grid search for tuning the single common
kernel width employs Iskw points, then the total complexity of
the LROLS algorithm is approximately

Ctotal
LROLS ≈ Iskw · Irps · (ns + 1) · O

(

N2
)

. (45)
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Therefore, an approximate complexity reduction factor of
Iskw · Irps is achieved by the proposed new OFR-LOOMSE
algorithm, over our previous LROLS algorithm.

In the following experimental study section, we will demon-
strate that the new OFR-LOOMSE algorithm is capable of
obtaining very similar sparse models with very similar excel-
lent generalization performance, as the state-of-the-art LROLS
algorithm does.

V. SIMULATION STUDY

Example 1: Consider using an RBF network to approxi-
mate the unknown scalar function

f (x) = sin(x)

x
. (46)

A data set of two hundred points was generated from
y(x) = f (x) + v, where the input x was uniformly distributed
in the range [−10, 10] and the noise v was Gaussian with
zero mean and standard deviation 0.2. The noisy data y(x)
and the underlying function f (x) are illustrated in Fig. 1(a).
The Gaussian function φi(x) = exp(−(x − ci)

2/2τ 2
i ) was used

as the basis function to construct an RBF model. All the two
hundred data points {x} were used as the candidate RBF center
set for {ci}. For the proposed OFR + LOOMSE algorithm, at
each OFR step, the initial kernel width was set to τ0 = √

10,
and the initial regularization parameter was set to λ0 = 10−8.
For the line search algorithm of Table I, the iteration number
It1 = 10 and the learning rate ς = 0.95. For the 1-D gradi-
ent descent algorithm, we set the learning rate to η = 0.02
and the iteration number to It2 = 30. At each OFR step,
the near optimal kernel width and regularization parameter
found for the selected regressor are shown in Fig. 1(b), while
Fig. 1(c), indicates that the proposed OFR + LOOMSE algo-
rithm automatically selects a sparse model of size ns = 8
when Jn reaches the minimum at n = ns. The model predic-
tions {̂y(x)} of the resultant eight-term model are also depicted
in Fig. 1(a).

For comparison, the ε-SVM algorithm [5], the LASSO using
the MATLAB function lasso.m with tenfold CV being used to
select the associated regularization parameter, and our previ-
ous LROLS algorithm [23] were experimented to construct
models based on the same kernel function set but with a
common kernel width τ for every kernel. The MATLAB func-
tion quadprog.m was used with the algorithm option set as
“interior-point-convex” for the ε-SVM algorithm. The tun-
ing parameters in the ε-SVM algorithm, such as soft margin
parameter C [5], were set empirically so that the best possible
result is obtained after several trials. The best kernel width
value τ for each of these three algorithms was also empiri-
cally set after several trials. The mean square errors (MSEs)
of the four resulting models over the noisy data set, defined by
E[(̂y(x)−y(x))2], and the MSEs of the these four models over
the true function, defined as E[(̂y(x) − f (x))2], are recorded
in Table II, where the expectation E[ · ] indicates the averag-
ing over the data set {x}. The results of Table II show that
the proposed OFR + LOOMSE algorithm achieves similar
excellent performance as our previous state-of-the-art LROLS

Fig. 1. Scalar function modeling example. (a) Noisy data, model prediction,
and true function. (b) Values of the kernel width parameters and regularization
parameters. (c) Evolution of the LOOMSE.

algorithm, in terms of both model sparsity and model gener-
alization. As mentioned in the previous section, the proposed
method significantly reduces the total computational cost in
constructing a sparse model.

Example 2: The engine data set [24] consists of the 410
data points of the fuel rack position (input u(k)) and the
engine speed (output y(k)), collected from a Leyland TL11
turbocharged, direct injection diesel engine when operated
at a low engine speed. Fig. 2(a) depicts the input u(k)
and output y(k) of this engine data set. The first 210 data
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TABLE II
COMPARISON OF THE MODELING PERFORMANCE FOR

THE UNKNOWN SCALAR FUNCTION

samples were used in training and the last 200 data sam-
ples for model testing. The system input vector was given
by x(k) = [y(k − 1) u(k − 1) u(k − 2)]T. We used the
Gaussian RBF kernel (3), and the candidate set for {ci} was
formed using all the training data samples. For the proposed
OFR + LOOMSE algorithm, at each OFR step, the initial
kernel width was chosen to be τ0 = 1 and the initial regu-
larization parameter was set to λ0 = 10−8. Furthermore, the
line search algorithmic parameters was set to It1 = 10 and
ς = 0.95, while the 1-D gradient descent algorithmic param-
eters was given by η = 0.02 and It2 = 30. At each OFR
step, the near optimal kernel width and regularization param-
eter found for the selected regressor are shown in Fig. 2(b),
while Fig. 2(c) indicates that the proposed OFR + LOOMSE
algorithm automatically selects a sparse model of size ns = 21
when Jn reaches the minimum at n = ns.

The ε-SVM algorithm [5], the LASSO and our previous
LROLS algorithm [23] were used for comparison, based on the
same Gaussian kernel set with a common kernel width τ for
every kernel. Again, for the ε-SVM, the MATLAB function
quadprog.m was used with the option set as “interior-point-
convex,” while the soft margin parameter and other tuning
parameters were empirically chosen after several trials. For the
LASSO, the MATLAB function lasso.m was used. For both
the ε-SVM and LASSO, we list the results obtained for a
range of kernel width τ values in Table III, in comparison to
the results obtained by the proposed OFR + LOOMSE algo-
rithm as well as the LROLS algorithm. The results of Table III
show that the ε-SVM can achieve similar test MSE as the
proposed algorithm but requires a very large model, and the
LASSO algorithm is unable to yield a comparable performance
to our algorithm. Moreover, the OFR + LOOMSE algo-
rithm achieves similar excellent performance as the LROLS
algorithm, in terms of both model sparsity and model gen-
eralization, while imposing a lower computational cost than
the latter, as mentioned in the previous section. It is also
worth pointing out that the computational cost of the proposed
OFR + LOOMSE algorithm is significantly lower than the ε-
SVM algorithm and the LASSO algorithm, even when these
two algorithms was given a fixed kernel width τ . For exam-
ple, using MATLAB on a computer with Intel Core i7-3770K
CPU, the recorded running time for the proposed algorithm is
0.972248 s, but the LASSO with τ = 0.1 took 26.24080 s.

Example 3: The liquid level data set was collected from
a nonlinear liquid level plant, which consisted of a dc water
pump feeding a conical flask which in turn fed a square tank.
The system input u(k) was the voltage to the pump motor and
the system output y(k) was the water level in the conical flask.

Fig. 2. Engine data set modeling example. (a) System input u(k) and output
y(k). (b) Values of the kernel width parameters and regularization parameters.
(c) Evolution of the LOOMSE.

A description of this nonlinear process can be found in [35]
and Fig. 3(a) shows the 1000 data samples of the data set
used in this experiment. From the data set, 1000 data points
{x(k), y(k)} were constructed with

x(k) = [y(k − 1) y(k − 2) y(k − 3) u(k − 1)

u(k − 2) u(k − 3) u(k − 4)]T. (47)

The first 500 pairs of the data were used for training and
the remaining 500 pairs for testing the constructed model.
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TABLE III
COMPARISON OF MODELING PERFORMANCE FOR THE

ENGINE DATA SET

The Gaussian RBF kernel (3) was employed, and the candi-
date set for {ci} was formed using all the training data points.
The initial kernel width was chosen as τ0 = 2.5 and the initial
regularization parameter was set to λ0 = 10−8. For the line
search algorithm of Table III, the iteration number It1 = 10
and the learning rate ς = 0.95, while for the 1-D gradient
descent algorithm, we set the learning rate to η = 0.02 and
the iteration number to It2 = 30. At each OFR step, the near
optimal kernel width and regularization parameter found for
the selected regressor are depicted in Fig. 3(b), while Fig. 3(c)
indicates that the OFR + LOOMSE algorithm automatically
selects a sparse model of size ns = 26 when Jn reaches the
minimum at n = ns.

For comparison, the ε-SVM algorithm [5], the LASSO algo-
rithm and the LROLS algorithm [23] were also applied based
on the same Gaussian kernel set but with a common ker-
nel width τ for every kernel. The ε-SVM was implemented
using the MATLAB function quadprog.m with the algorithm
option set as interior-point-convex, and the soft margin and
other tuning parameters were empirically chosen after several
trials. For the LASSO, the MATLAB function lasso.m was
used with tenfold CV for selecting the associated regulariza-
tion parameter. For both the ε-SVM and LASSO algorithms,
we list the results obtained for a range of kernel width τ values
in Table IV, in comparison to the results obtained by our pro-
posed OFR + LOOMSE algorithm and our previous LROLS
algorithm. The modeling results of Table IV again demonstrate
that the proposed OFR + LOOMSE algorithm has compara-
ble performance to the LROLS algorithm [23], in terms of
both model generalization and model sparsity. The ε-SVM
algorithm is able to achieve a similar test MSE as the pro-
posed OFR + LOOMSE algorithm but requires a very large
model. The LASSO algorithm is able to obtain a sparser model
but yields a poorer test MSE. Note that the proposed OFR +
LOOMSE algorithm is computationally much more efficient
than the ε-SVM and LASSO algorithms. Using MATLAB on a
computer with Intel Core i7-3770K CPU, the recorded running
time for the proposed algorithm, which includes optimizing the
kernel width τn at each OFR step, is 3.361728 s, compared
to 26.685302 s required by the LASSO with the kernel width
fixed to τ = 3.

Example 4: The gas furnace data set (the time series J
in [36]) contained 296 pairs of input-output points as depicted

Fig. 3. Liquid level data set modeling example. (a) System input u(k) and
output y(k). (b) Values of the kernel width parameters and regularization
parameters. (c) Evolution of the LOOMSE.

in Fig. 4(a), where the input u(k) was the coded input gas
feed rate and the output y(k) represented the CO2 concentra-
tion from the gas furnace. The Gaussian RBF kernel (3) was
employed with the system input vector given by

x(k) = [y(k − 1) y(k − 2) y(k − 3)

u(k − 1) u(k − 2) u(k − 3)]T. (48)

From Fig. 4(a), it can be seen that the second half of the
data set is significantly different from the first half. Therefore,
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TABLE IV
COMPARISON OF MODELING PERFORMANCE FOR THE

LIQUID LEVEL DATA SET

we used the even-number pairs of {x(k)y(k)} for training and
the odd-number pairs for testing. The candidate RBF cen-
ter set {ci} was formed using all the training data samples.
The initial kernel width was given by τ0 = √

1000 and the
initial regularization parameter was set to λ0 = 10−8. For
the line search algorithm of Table I, the iteration number
It1 = 10 and the learning rate ς = 0.95, while the 1-D gra-
dient descent algorithm used the learning rate of η = 0.02
and the iteration number of It2 = 30. At each OFR step, the
optimal kernel width and regularization parameter found for
the selected regressor is shown in Fig. 4(b), while Fig. 4(c),
indicates that the proposed OFR + LOOMSE algorithm auto-
matically selects a sparse model of size ns = 12 when Jn

reaches the minimum at n = ns.
The ε-SVM algorithm [5], the LASSO algorithm and the

LROLS algorithm [23] were used based on the same Gaussian
kernel set but with a common kernel width τ for every ker-
nel, for a comparison. The results of the ε-SVM algorithm
and LASSO algorithm based on the common kernel variance
of τ 2 = 500, 1000, and 2000, respectively, are compared with
the results obtained by the OFR + LOOMS and LROLS algo-
rithms in Table V. The modeling results of Table V demon-
strate that for this example the proposed OFR + LOOMS
algorithm attains the best test MSE performance.

Example 5: The Boston housing data set, available at the
UCI repository [37], comprised 506 data points with 14 vari-
ables. We performed the task of predicting the median house
value from the remaining 13 attributes. We randomly selected
456 data points from the data set for training and used the
remaining 50 data points to form the test set. Average results
were given over 100 realizations. For each realization, 13 input
attributes were normalized so that each attribute has zero mean
and standard deviation of one. The Gaussian RBF model was
constructed from the 456 candidate regressors of each realiza-
tion. For the proposed OFR + LOOMSE algorithm, at each
OFR step, the initial kernel width was set to τ0 = 3 and the
initial regularization parameter was set to λ0 = 10−8, while
the learning rates η = 0.002 and ς = 0.95 as well as the
iteration numbers It1 = 10 and It2 = 50 were used.

In Table VI, the modeling performance of the proposed
OFR + LOOMSE algorithm is compared with the results
of the ε-SVM [5] and the LROLS [23], which are quoted
from [32]. We also experimented with the LASSO algorithm

Fig. 4. Gas furnace data set example. (a) System input u(k) and output
y(k). (b) Values of the kernel width parameters and regularization parameters.
(c) Evolution of the LOOMSE.

supplied by MATLAB lasso.m with option set as tenfold
CV to select the associated regularization parameter. For the
LASSO, a common kernel width τ was set for constructing
the kernel model from the 456 candidate regressors of each
realization, and a range of τ values were experimented. As
shown in Table VI, the proposed OFR + LOOMSE algo-
rithm is very competitive in terms of model size and model
generalization capability, compared with the LROLS algo-
rithm and the LASSO algorithm. As analyzed in Section IV,
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TABLE V
COMPARISON OF MODELING PERFORMANCE FOR

THE GAS FURNACE DATA SET

TABLE VI
COMPARISON OF MODELING PERFORMANCE FOR THE BOSTON HOUSE

DATA SET. THE RESULTS WERE AVERAGED OVER 100 REALIZATIONS

AND GIVEN AS MEAN ± STANDARD DEVIATION, AND THE RESULTS

FOR THE ε-SVM AND THE LROLS ARE QUOTED FROM [32]

the computational cost of the OFR + LOOMSE algorithm is
lower than that of the LROLS algorithm. Also, the running
time of the OFR + LOOMSE algorithm over 100 realiza-
tions was recorded as 126.02 s, much faster than the LASSO
algorithm with τ = 3 which took 1259.9 s.

VI. CONCLUSION

We have shown how to optimize the pairs of kernel width
and regularization parameters one pair at a time within the
OFR procedure with the aim of maximizing the model gener-
alization capability by proposing a new OFR + LOOMSE
algorithm based on the Gaussian RBF model with tunable
kernel widths for nonlinear system identification application.
During each stage of the OFR, the LOOMSE is used as the
selection criterion to select one regressor from the candidate
set, while the kernel width of the selected regressor is tuned
followed by optimizing the associated regularization parame-
ter for the tuned regressor, both also based on the LOOMSE.
Since the kernel width parameters as well as regularization
parameters are optimized within the OFR algorithm, there is
no need to iteratively run the OFR for choosing these parame-
ters, as many other existing schemes do, including our previous
state-of-the-art LROLS algorithm. Computational analysis has
shown that the total computational cost of the proposed OFR +
LOOMSE algorithm is lower than that of the LROLS algo-
rithm which is well-known to be a highly efficient method for
constructing sparse models that generalize well. Five exam-
ples, including three real-world nonlinear system identification
applications, have been included to demonstrate the effec-
tiveness this new data modeling approach, in comparison to
several existing approaches, in terms of model generalization

performance and model sparsity. Although the proposed algo-
rithm is presented based on the Gaussian RBF model, it can
be applied to other types of linear-in-the-parameter models.
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