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Transreal arithmetic is total, in the sense that the fundamental operations
of addition, subtraction, multiplication and division can be applied to any
transreal numbers with the result being a transreal number [1]. In particular
division by zero is allowed. It is proved, in [3], that transreal arithmetic is
consistent and contains real arithmetic. The entire set of transreal numbers is
a total semantics that models all of the semantic values, that is truth values,
commonly used in logics, such as the classical, dialetheaic, fuzzy and gap
values [2]. By virtue of the totality of transreal arithmetic, these logics can
be implemented using total, arithmetical functions, specifically operators,
whose domain and counterdomain is the entire set of transreal numbers.

Taking Wittgenstein’s comments on logical space as a starting point, we
develop a mathematically well defined notion of logical space. We begin by
defining a Cartesian co-ordinate frame with a countable infinitude of transreal
axes. We notionally tie each axis to a distinct, atomic proposition. With this
arrangement every point is a distinct possible world whose co-ordinates are
the semantic values of its propositions. Furthermore the points composing
the whole of this space bijectively map the set of all possible worlds. In
other words, each one of all possible worlds is a unique point in this world
space. This allows us to rigorously apply topology to problems involving all
possible worlds, including all logics because these appear in some possible
worlds. Thus we provide both a universal metalogic and a foundation for
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particular universal logics.

We then introduce a more abstract space by taking each point in world
space, that is we take each possible world, and use it as an axis in a very
high dimensional space of functions. We call a particular subset of this
space proposition space. In proposition space a given point, that is a given
proposition, has, as co-ordinates, its semantic value in each possible world.
When we apply mathematical or logical operations in this proposition space
we are operating on all possible worlds at the same time.

We use linear transformations to define accessibility relations in world
space and to define logical transformations in proposition space. In propo-
sition space we define necessity and possibility as appear in modal logics
and we establish a criterion to distinguish whether a proposition is or is not
classical. In world space we establish our main result.

We extend standard results of topology to transreal spaces and prove that,
in world space, there is a dense set of, at least countably many, hypercyclic,
possible worlds that approximate every possible world, arbitrarily closely,
by repeated application of a single, linear operator - the backward shift. In
other words we prove the existence of a countable infinitude of worlds which
approximate every possible world by repeated application of a single operator.
That is we prove the existence of universal, possible worlds.

Proving existence is useful but it leaves many questions open. We mention
just two. Are there any classical, hypercyclic worlds? Is there a construction
for any hypercyclic world?
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