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Abstract 43 

Background: Public health strategies to lower cardiovascular disease (CVD) risk involve 44 

reducing dietary saturated fatty acid (SFA) intake to ≤10% of total energy (%TE). 45 

However, the optimal type of replacement fat is unclear. 46 

Objective: We investigated the substitution of 9.5-9.6%TE dietary SFA with either 47 

monounsaturated (MUFA) or n-6 polyunsaturated fatty acids (PUFA) on vascular function 48 

and other CVD risk factors. 49 

Design: Using a randomized, controlled, single-blind, parallel group dietary intervention, 50 

195 men and women aged 21-60 y with moderate CVD risk (≥50% above the population 51 

mean) from the United Kingdom followed one of three 16-wk isoenergetic diets (%TE 52 

target compositions, total fat:SFA:MUFA:n-6 PUFA): SFA-rich (36:17:11:4, n = 65), 53 

MUFA-rich (36:9:19:4, n = 64) or n-6 PUFA-rich (36:9:13:10, n = 66). The primary 54 

outcome measure was flow-mediated dilatation (%FMD); secondary outcome measures 55 

included fasting serum lipids, microvascular reactivity, arterial stiffness, ambulatory blood 56 

pressure, and markers of insulin resistance, inflammation and endothelial activation.  57 

Results: Replacing SFA with MUFA or n-6 PUFA did not significantly impact on %FMD 58 

(primary endpoint) or other measures of vascular reactivity. Of the secondary outcome 59 

measures, substitution of SFA with MUFA attenuated the increase in night systolic blood 60 

pressure (-4.9 mm Hg, P = 0.019) and reduced E-selectin (-7.8%, P = 0.012). 61 

Replacement with MUFA or n-6 PUFA lowered fasting serum total cholesterol (TC; -8.4% 62 

and -9.2%, respectively), low-density lipoprotein cholesterol (-11.3% and -13.6%) and TC 63 

to high-density lipoprotein cholesterol ratio (-5.6% and -8.5%) (P ≤ 0.001). These 64 
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changes in low-density lipoprotein cholesterol equate to an estimated 17-20% reduction 65 

in CVD mortality. 66 

Conclusions: Substitution of 9.5-9.6%TE dietary SFA with either MUFA or n-6 PUFA did 67 

not impact significantly on %FMD or other measures of vascular function. However, the 68 

beneficial effects on serum lipid biomarkers, blood pressure and E-selectin offer a 69 

potential public health strategy for CVD risk reduction.   70 
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Introduction  71 

Some meta-analyses of observational studies and randomly controlled trials (RCT) have 72 

failed to demonstrate significant associations between the intake of SFA and PUFA, and 73 

risk of coronary heart disease (CHD) (1, 2). However, these analyses have received 74 

criticism for failing to account for the macronutrient which substitutes SFA in the diets, 75 

and the presence of trans fatty acids in the PUFA intervention arms. However, a more 76 

recent meta-analysis focusing on macronutrient replacement found that replacing SFA 77 

with n-6 PUFA, specifically linoleic acid, was associated with a significantly reduced risk 78 

of CHD (3). Since observational studies cannot determine cause-and-effect, RCT are 79 

necessary to assess the direct impact of SFA-rich diets on CVD risk. Due to the 80 

unequivocal link between high SFA intake and raised plasma LDL-cholesterol (LDL-C) 81 

(4), reduction of dietary SFA to ≤10% of total energy (%TE) remains a key public health 82 

strategy for the prevention of cardiovascular disease (CVD) (5). Although intakes of SFA 83 

have fallen, British adults exceed this recommendation at 12.0%TE (6). However, there 84 

are no clear dietary guidelines on the optimum macronutrient to replace SFA. Due to the 85 

potential detrimental effects of carbohydrates on the metabolic profiles in some 86 

population sub-groups (7), substitution of SFA by unsaturated fats has been proposed as 87 

an alternative strategy to meet the population target. It is thought that reducing SFA 88 

intake by modifying dietary fat composition may reduce cardiovascular events by 14% 89 

(8). 90 

Vascular dysfunction, an early marker for atherosclerosis, is characterized by 91 

impaired endothelium-dependent vasodilation (9). Prognostic measures of vascular 92 

function, such as flow-mediated dilatation (FMD), are strongly associated with increased 93 
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CVD risk (10, 11). To date, the impact of replacing dietary SFA with MUFA or n-6 PUFA 94 

on vascular function, including FMD, remains unclear (12, 13). The effects of SFA 95 

substitution on classical CVD risk factors, such as plasma lipids and blood pressure, has 96 

been studied previously but this has rarely involved a direct comparison with both MUFA 97 

and n-6 PUFA, the latter of which is often confounded by the addition of n-3 PUFA. 98 

Currently, insufficient evidence exists to make firm conclusions regarding the optimal 99 

class of dietary fat to replace SFA (12, 14, 15). To inform and strengthen the evidence 100 

base for public health recommendations, the Dietary Intervention and VAScular function 101 

(DIVAS) study evaluated the effects of substituting SFA with MUFA or n-6 PUFA for 16 102 

wk on FMD (primary endpoint) in individuals with moderate CVD risk. Secondary 103 

outcome measures of this suitably powered RCT included other vascular function 104 

measures and classical CVD risk factors.   105 
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Subjects and Methods 106 

Subjects 107 

The trial was approved by the West Berkshire Local Research Ethics Committee 108 

(09/H0505/56) and University of Reading Research Ethics Committee (09/40), registered 109 

at www.clinicaltrials.gov (NCT01478958), and conducted according to the Declaration of 110 

Helsinki. Non-smoking men and women aged 21-60 y with moderate CVD risk were 111 

recruited from Reading (United Kingdom; UK) from November 2009 to June 2012 in 112 

three cohorts. The study was completed in October 2012. All participants provided 113 

written informed consent. Details of the study criteria have been previously published in 114 

Weech et al (16). Briefly, CVD risk score was determined from fasted measures of serum 115 

total cholesterol (TC), HDL-cholesterol (HDL-C) and glucose, blood pressure, BMI or 116 

waist circumference, and family history of premature myocardial infarction or type 2 117 

diabetes (Supplemental Table 1 under “Supplemental data” in the online issue). Eligible 118 

participants had a risk score of ≥2 combined points, reflecting a moderate CVD risk 119 

(≥50% above the population mean). Further inclusion criteria included normal blood 120 

biochemistry and not taking dietary supplements or medication for hypertension, raised 121 

lipids or inflammatory disorders (16).  122 

Study design 123 

The DIVAS study was a 16-wk, single-blind, parallel group RCT. Participants were 124 

randomized by study researchers (KV) to one of three intervention diets by minimization 125 

(17), stratifying for gender, age, BMI and CVD risk score. The three isoenergetic 126 

intervention diets (%TE target compositions, SFA:MUFA:n-6 PUFA) were rich in SFA 127 

(17:11:4), MUFA (9:19:4) and n-6 PUFA (9:13:10). Relative to the SFA-rich control diet, 128 

the MUFA- and n-6 PUFA-rich diets replaced 8%TE SFA with unsaturated fatty acids. 129 
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Since UK dietary guidelines limit n-6 PUFA intake to ≤10%TE (5), SFA was substituted 130 

by 6%TE n-6 PUFA and 2%TE MUFA in the n-6 PUFA-rich diet. Intakes of other 131 

macronutrients were unchanged allowing total fat to remain at 36%TE for each diet.  132 

Dietary intervention 133 

Full details of the dietary intervention and measures of compliance have been published 134 

previously (16). In summary, a flexible food-exchange model was implemented to 135 

achieve the target fatty acid intakes in free-living individuals for 16-wk. Participants, who 136 

were unaware of the assigned intervention diet, replaced habitually-consumed sources of 137 

exchangeable fats with study foods (spread, oils, dairy products and commercially-138 

available snacks) of specific fatty acid composition. Specially-formulated spreads (80% 139 

total fat) and oils (Unilever R&D, Vlaardingen, the Netherlands) were used for the MUFA-140 

rich diet (refined olive oil and olive oil/rapeseed oil blended spread) and n-6 PUFA-rich 141 

diet (safflower oil and spread). Butter (Wyke Farm, Somerset, UK) was used for the SFA-142 

rich diet. Following the baseline clinical visit, trained nutritionists gave 1:1 verbal and 143 

written instructions for manipulating fatty acid intake and were available throughout the 144 

study for advice. Every 4-wk, study foods (except dairy products) were provided free of 145 

charge. To monitor compliance, 4-d weighed diet diaries (wk 0, 8 and 16), forms 146 

recording daily intakes of study foods, and the proportions of plasma phospholipid fatty 147 

acids as a short term biomarker of fatty acid intake were analyzed (wk 0 and 16). Body 148 

weight, which was to remain constant, was monitored every 4-wk, and changes were 149 

addressed.  150 

Clinical visits 151 

Clinical visits took place at the Hugh Sinclair Unit of Human Nutrition, University of 152 

Reading, during wk 0 (baseline; V1) and wk 16 (post-intervention; V2). Alcohol and 153 
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aerobic exercise were avoided 24 h before visits. Participants consumed a provided low-154 

fat meal the evening before visits and fasted for 12 h, only drinking low nitrate water. 155 

During visits, participants rested in the supine position for 30 min in a quiet, temperature-156 

controlled environment (22 ± 1 °C) before non-invasive measures of vascular function 157 

were conducted under the same conditions. Measurements were performed at the same 158 

time of day and by the same trained researcher for both visits. Pre-menopausal women 159 

attended during the same phase of their menstrual cycle. Fasted blood samples were 160 

also collected.   161 

Assessment of vascular function and 24 h ABP  162 

To assess endothelial function, FMD (primary outcome) and laser Doppler imaging (LDI) 163 

with iontophoresis were conducted by trained researchers as previously described (18). 164 

In brief, FMD assessed endothelial-dependent vasodilation of the macrovasculature 165 

using an ATL ultrasound HDI-5000 broadband ultrasound system (Philips Healthcare, 166 

Best, the Netherlands) following standard guidelines (19). ECG-gated images collected 167 

at 0.25 frames/s using image-grabbing software were analyzed by a single researcher, 168 

who was unaware of the intervention allocation, using wall-tracking software (both 169 

Medical Imaging Applications-LLC, Coralville, IA). FMD was calculated as the maximum 170 

change in post-occlusion brachial artery diameter expressed as a % of the baseline 171 

diameter (%FMD). LDI was performed with a LDI2-IR laser Doppler imager (Moor 172 

Instruments Ltd., Axminster, UK), using iontophoresis to deliver 1% acetylcholine (Ach) 173 

and 1% sodium nitroprusside on the left forearm. Microvascular responses to 174 

acetylcholine (endothelium-dependent vasodilation) and sodium nitroprusside 175 

(endothelium-independent vasodilation) were determined by the AUC for flux vs. time, 176 

measured in arbitrary units.   177 
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Arterial stiffness of the larger conduit and smaller peripheral vessels was 178 

measured in triplicate as detailed elsewhere (20) using carotid-femoral pulse wave 179 

velocity (m/s) and radial pulse wave analysis, respectively (SphygmoCor; AtCor Medical, 180 

West Ryde, Australia). Pulse wave analysis determined the augmentation index 181 

corrected for a heart rate of 75 bpm (%). Digital volume pulse (Pulse Trace PCA2; Micro 182 

Medical Ltd., Chatham, UK) determined the stiffness index (m/s) and reflection index (%) 183 

as measures of arterial stiffness and vascular tone, respectively (18).  184 

Using A/A grade automated oscillometric ambulatory blood pressure (ABP) 185 

monitors (A&D Instruments Ltd., Abingdon, UK), ABP and heart rate were measured 186 

every 30 min between 07:00-21:59 and every 60 min between 22:00-06:59, 187 

approximately 48 h before the clinical visits. Mean 24 h, day and night measurements 188 

were calculated using sleep times recorded on participant activity forms. Pulse pressure 189 

(PP) was calculated as the difference between systolic (SBP) and diastolic blood 190 

pressure (DBP). 191 

Biochemical analysis  192 

Fasted blood samples were centrifuged at 1800 × g for 15 min at 20°C (for serum) and 193 

4°C (for plasma), and stored at −80°C. Plasma total nitrites and nitrates were measured 194 

with ozone-based chemiluminescence (21). ELISA kits analyzed circulating plasma 195 

insulin (Dako Ltd., Ely, UK), von Willebrand factor (Abnova, Taipei City, Taiwan), 196 

vascular and intercellular adhesion molecules, E-selectin and P-selectin, with high 197 

sensitivity kits for TNF- and IL-6 (R&D Systems Europe Ltd., Abingdon, UK). C-reactive 198 

protein, serum lipids (TC, HDL-C and triacylglycerol (TAG)), glucose and non-esterified 199 

fatty acids were quantified using an autoanalyzer (reagents and analyzer: 200 

Instrumentation Laboratory Ltd., Warrington, UK; non-esterified fatty acid reagent: Alpha 201 
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Laboratories, Eastleigh, UK). LDL-C was estimated using the Friedewald formula (22). 202 

Insulin resistance was estimated by HOMA-IR, and insulin sensitivity by the original and 203 

revised quantitative insulin sensitivity check indices using standard equations (23). 204 

Microalbumin was determined in fresh 24 h urine samples, collected before each clinical 205 

visit, using a turbidimetric assay (Alpha Laboratories) on the autoanalyzer and corrected 206 

for the total volume of urine (mg/24 h) (24). Mean intra- and inter-assay CV were <5% for 207 

the automated assays and <10% for other assays. The CVD risk assessment tool used 208 

at screening determined CVD risk scores at both clinical visits (16).   209 

Statistical analysis 210 

To detect a 2% inter-group difference in %FMD (primary outcome) using a SD of 2.3, 211 

90% power and 5% significance level, n = 171 participants were required (n = 57 per 212 

group), increasing to n = 228 for a 25% dropout rate (n = 76 per group). Statistical 213 

analyses were performed using SPSS version 19.0 (SPSS Inc.). For continuous 214 

variables, suitable checks for normality were implemented as appropriate. Differences 215 

between diet groups at baseline were assessed using one-way ANOVA or the Kruskal-216 

Wallis test (if non-normally distributed). For discrete data, the Chi-squared test was used. 217 

To evaluate the effects of the dietary intervention on the primary (%FMD) and secondary 218 

(vascular reactivity and stiffness, serum lipid biomarkers, ABP, indices of insulin 219 

resistance, inflammation and endothelial activation) outcome measures, a general linear 220 

model using the difference from baseline (; V2-V1) as the dependent variable was 221 

implemented, with baseline values of the variable of interest, BMI, age, gender and 222 

intervention diet as prognostic variables. The overall effect of diet assessed the 223 

replacement of SFA with MUFA and n-6 PUFA, and was subject to post-hoc analysis 224 

using Tukey’s correction if significant. This adjusted for the three intervention groups, but 225 
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not for the general approach being applied to the various endpoint variables. When a 226 

significant overall ‘diet’ effect was observed, one-sample t-tests were performed to 227 

determine whether the response () within each dietary arm was different from zero. P ≤ 228 

0.05 was considered significant. Data presented in the text, tables and figure represents 229 

the raw mean ± SEM.    230 
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Results 231 

Study participation 232 

Of the 202 participants randomized to the intervention, 195 (97%) successfully 233 

completed the study (Figure 1). Baseline characteristics of the three diet groups, 234 

referred to as the SFA, MUFA and n-6 PUFA diet groups going forward, are shown in 235 

Table 1. These groups were well-matched for the CVD risk score criteria. No significant 236 

differences in the baseline measures between the three diet groups for %FMD or any of 237 

the secondary outcomes (including measures of compliance) were evident, except for IL-238 

6 (P = 0.001) and TNF- (P = 0.026) concentrations which were higher in the participants 239 

randomised to the SFA relative to the MUFA group.   240 

Compliance  241 

Data for all compliance measures are presented in detail elsewhere (16). In summary, 242 

dietary fatty acid targets were broadly met, with increases of 6.11 ± 0.43 %TE SFA, 6.77 243 

± 0.38 %TE MUFA and 5.48 ± 0.36 %TE n-6 PUFA in the respective diets relative to 244 

baseline intakes (Supplemental Table 2 under “Supplemental data” in the online issue). 245 

During the intervention, SFA intakes in the SFA (17.6 ± 0.4 %TE), MUFA (8.1 ± 0.2 246 

%TE) and n-6 PUFA (8.0 ± 0.2 %TE) groups corresponded to a larger replacement of 247 

SFA in the MUFA (9.5%TE) and n-6 PUFA (9.6%TE) interventions than anticipated 248 

(8.0%TE) when compared with the SFA diet. Significant overall diet effects for changes 249 

in dietary SFA, MUFA and n-6 PUFA between groups (P ≤ 0.001) were broadly 250 

supported by changes in the proportions of plasma phospholipid total SFA, MUFA and n-251 

6 PUFA, which were significant for the total proportions of SFA and MUFA between diet 252 

groups (P ≤ 0.001) (Supplemental Table 3 under “Supplemental data” in the online 253 

issue). There were no significant changes in BMI between groups.  254 
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Vascular function  255 

For the primary endpoint, %FMD, there was no difference between the groups following 256 

the intervention. Furthermore, additional measures of vascular function (LDI and 257 

reflection index) and arterial stiffness (pulse wave velocity, augmentation index and 258 

stiffness index) were not significantly different between intervention groups (Table 2).  259 

24 h ABP 260 

There were significant overall diet effects for mean changes in night SBP (P = 0.019) and 261 

night PP (P = 0.048) between diet groups. The increase in night SBP observed following 262 

the SFA diet (3.8 ± 1.4 mm Hg) was attenuated by the MUFA diet (-1.1 ± 1.2 mm Hg), 263 

reflecting a mean difference of -4.9 mm Hg when MUFA replaced SFA. Although overall 264 

diet effects were not evident for other ABP parameters, there was a tendency for 265 

increased 24 h DBP (1.5 ± 0.7 mm Hg; P = 0.074) following the SFA diet (Table 2).   266 

Plasma markers of endothelial activation and inflammation 267 

There was an overall diet effect for the change in plasma E-selectin between intervention 268 

groups (P = 0.012), reducing by 7.8% when MUFA replaced SFA (Table 3). No 269 

significant diet effects were evident for other markers of endothelial activation or 270 

inflammation. 271 

Fasting serum lipids, indices of insulin resistance and CVD risk score 272 

The changes in fasting TC, LDL-C, non-HDL-C, and ratios of TC:HDL-C and LDL-273 

C:HDL-C showed significant differences between diet groups (P ≤ 0.001) (Figure 2; 274 

Supplemental Table 4 under “Supplemental data” in the online issue). In response to 275 

the SFA diet, there were significant increases in TC (7.7 ± 1.5%), LDL-C (9.8 ± 1.9%) 276 

and TC:HDL-C ratio (4.0 ± 1.4%). Replacing SFA with MUFA or n-6 PUFA attenuated 277 

these increases in TC (-8.4% and -9.2%, respectively), LDL-C (-11.3% and -13.6%) and 278 
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TC:HDL-C ratio (-5.6% and -8.5%), whereas there were no significant differences 279 

between the MUFA and n-6 PUFA groups.  280 

At baseline, the mean CVD risk score for all groups was 3.3 ± 0.1 points. There 281 

was an overall diet effect for the change in CVD risk scores between groups (P = 0.003) 282 

(Supplemental Table 4 under “Supplemental data” in the online issue). Within-group 283 

analysis revealed the response to the SFA diet increased the CVD risk score (0.46 ± 284 

0.14 points; P ≤ 0.001). Replacement of SFA with MUFA attenuated this rise (-0.46 285 

points; P = 0.027), whereas replacement with n-6 PUFA reduced the CVD risk score (-286 

0.60 points; P = 0.003).   287 
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Discussion 288 

The DIVAS study is the first suitably-powered dietary intervention in a free-living 289 

population to investigate the replacement of SFA with both MUFA or n-6 PUFA on 290 

several markers of macro- and microvascular reactivity, novel markers that are strongly 291 

related to CVD development (10, 11), and classical CVD risk factors.  292 

Few studies have investigated the long-term replacement of SFA with unsaturated 293 

fats on %FMD (12, 13). In agreement with Sanders et al, who replaced 5.2%TE SFA with 294 

MUFA for 24 wk in insulin-resistant adults (25), substituting dietary SFA with either 295 

MUFA (9.5%TE) or n-6 PUFA (9.6%TE) for 16 wk did not significantly impact on %FMD. 296 

These findings are in contrast with those of Keogh et al who observed high intakes of 297 

SFA reduce %FMD by approximately 50% compared with high intakes of MUFA or total 298 

PUFA in healthy participants (26). However, the unsaturated fatty acid-rich diets may 299 

have been confounded by high intakes of almonds (45g/d) or walnuts (35g/d), which as 300 

sources of L-arginine and -linolenic acid may have improved vascular function (27, 28). 301 

Furthermore, replacement of SFA had no effect on arterial stiffness, similar to others 302 

reporting no change in pulse wave velocity when SFA was replaced with MUFA (25) and 303 

total PUFA (26). Sanders et al (25) suggest arterial stiffening is a slow, progressive 304 

process, so a longer exposure to changes in dietary fat composition may be required to 305 

demonstrate a significant finding. 306 

 Hypertension, an independent CVD risk factor, is closely related to arterial 307 

stiffness (29). The small number of RCT investigating SFA substitution with unsaturated 308 

fats on blood pressure are inconclusive (12), with many limited by the use of total rather 309 

than n-6 PUFA and clinic blood pressure measurements rather than ABP (a superior 310 

prognostic tool) (30). The DIVAS study demonstrated that replacing SFA with MUFA 311 

improved night SBP, which is reported to be a better predictor of cardiovascular events 312 
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than clinic SBP or day ambulatory SBP, as previously reported (31, 32). Our findings 313 

may reflect the beneficial effects of increased dietary MUFA as well as reduced SFA, 314 

suggesting the type of replacement fat is important, since there was no significant impact 315 

of the n-6 PUFA diet on night SBP relative to the SFA diet group. Other groups have 316 

reported improvements in blood pressure when SFA was replaced with MUFA (33-35) 317 

and n-6 PUFA (34), but the absence of a between-treatment washout in the latter study 318 

cannot rule out a carryover effect. Relative to baseline, the small reductions in macro- 319 

and microvascular reactivity in response to the SFA diet may have contributed to the rise 320 

in night SBP, night DBP and 24 h DBP, as previously reported (36). Although other 321 

dietary components such as sodium and potassium influence blood pressure (37), 322 

intakes of these micronutrients were not different between diet groups. The changes in 323 

night SBP observed when MUFA replaced SFA (-4.8 mm Hg) are of public health 324 

importance since a 3 mm Hg reduction in SBP has been associated with a 5% reduction 325 

in CHD mortality (38). Interestingly, only night ABP measurements were influenced by 326 

the intervention. The large range of recorded daily activity levels (data not shown) may 327 

have influenced the variability of 24 h and daytime ABP, masking any effects of the diets.    328 

High circulating E-selectin concentrations are associated with endothelial 329 

activation and atherosclerosis (39). In the current study, E-selectin was significantly 330 

reduced when MUFA replaced SFA, similar to other findings (40). Since studies in 331 

children have reported positive correlations between circulating E-selectin and blood 332 

pressure (41), the reduction in E-selectin may have contributed to the observed decrease 333 

in night SBP in the MUFA group. However, since the changes in E-selectin were not 334 

paralleled by significant changes in other biomarkers of endothelial activation or 335 

inflammation, further investigation is required to confirm this finding. Of note, intakes of 336 

10%TE n-6 PUFA (the maximum recommended intake) (5) did not appear to increase 337 
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inflammation. High intakes of linoleic acid may increase the synthesis of pro-338 

inflammatory eicosanoids (42), although a systematic review reported no effect of linoleic 339 

acid on various markers of inflammation (43).           340 

Consistent with previous evidence (14, 15), dietary SFA had unfavourable effects 341 

on the fasting serum cholesterol profile. Although there is evidence that the replacement 342 

of SFA with MUFA beneficially affects the cholesterol profile, the evidence is more limited 343 

than replacement with n-6 PUFA (4, 14, 15). Improvements in TC, LDL-C and TC:HDL-C 344 

ratio were observed when SFA was replaced with either MUFA and n-6 PUFA. Paralleled 345 

by changes in the fasting cholesterol profile, the increase in CVD risk score in the SFA 346 

group was attenuated or reduced upon replacement with MUFA and n-6 PUFA, 347 

respectively. This is in contrast to data from observational studies that suggest low 348 

dietary intakes of SFA and high intakes of n-6 PUFA do not appear to reduce coronary 349 

risk (1), although this analysis has been criticized for failing to account for the effects of 350 

the macronutrient which substitutes SFA in the diet, and the presence of trans fatty acids 351 

in the PUFA intervention arm of studies. Since CVD mortality is linked to increased LDL-352 

C (44), the changes in serum LDL-C observed from replacing SFA with MUFA (-11.3%) 353 

and n-6 PUFA (-13.6%) are of public health relevance. Evidence supports a 1% 354 

reduction in hard CHD events (myocardial infarction and CHD death) (45) and an 355 

estimated 1.5% reduction in CVD risk (46) with every 1% decrease in serum LDL-C. This 356 

equates to an estimated 11-14% and 17-20% reduction in CHD events and CVD, 357 

respectively, strongly supporting the replacement of SFA with either MUFA or n-6 PUFA 358 

to improve the fasting cholesterol profile in adults at moderate CVD risk. Our findings for 359 

n-6 PUFA are also in line with a meta-analysis that concluded for every 5%TE increase 360 

in linoleic acid intake, the risk of CHD events reduced by 9% (3), both of which support 361 

current dietary recommendations.    362 
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Strengths of the DIVAS study were its large sample size (n = 195) and long 363 

duration (16-wk) relative to other studies investigating dietary fatty acid intake on 364 

vascular function (13), and effective dietary fat manipulation with minimal impact on other 365 

dietary components and total energy intake. In addition, the n-6 PUFA intervention diet 366 

was not confounded by an increase in n-3 PUFA. Although the SFA substitution was 367 

achieved primarily by exchanging added fats and oils, hazelnut consumption (2.7%TE) 368 

was necessary in both unsaturated diets to achieve the target intakes (16), which could 369 

be considered a limitation. However, the beneficial effects of hazelnuts on vascular 370 

function and the fasting lipid profile are reported for intakes far higher than those in the 371 

DIVAS study (18-20%TE) (47). Also, intakes of trans fat and cholesterol were greater in 372 

the SFA group, as previously discussed (16), but these remained below the maximum 373 

UK and USA recommended intakes of 2%TE (48) and 300 mg/d (45), respectively. 374 

Although their impact on outcome measures cannot be ruled out, detrimental effects on 375 

CVD risk are reported at intakes greater than those consumed (49). A systematic review 376 

and meta-analysis concluded there is no relationship between intake levels of ruminant 377 

trans fats up to 4.19%TE and CVD risk factors, including plasma lipids (50).  378 

This is the first suitably-powered, RCT investigating the long-term impact of 379 

replacing dietary SFA with MUFA or n-6 PUFA on multiple novel and classical CVD risk 380 

biomarkers in adults at moderate CVD risk. Although there were no significant 381 

differences between diets on our primary endpoint %FMD or other measures of vascular 382 

function, substituting SFA with MUFA or n-6 PUFA attenuated the unfavourable effects of 383 

SFA on the serum cholesterol profile and improved CVD risk scores. Furthermore, 384 

substitution with MUFA reduced night SBP and E-selectin. Therefore, replacing SFA with 385 

unsaturated fats offers a potential public health strategy for reducing multiple significant 386 

CVD risk biomarkers in those at moderate risk (≥50% above the population mean). 387 
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Table 1 Baseline characteristics of participants at moderate risk of cardiovascular disease (n = 195)1 

Characteristic 
SFA  

diet  
 

MUFA  

diet  

 n-6 PUFA 

diet  
P 

N 65  64  66 
 

Male gender (n)  29  27  29 0.960 

Age (y) 45 ± 1  43 ± 1  45 ± 1 0.478 

BMI (kg/m2) 26.7 ± 0.5  26.3 ± 0.5  27.0 ± 0.5 0.534 

Waist circumference (cm) 92.1 ± 1.6  88.2 ± 1.4  92.1 ± 1.7 0.128 

24 h SBP (mm Hg) 121 ± 2  121 ± 1  124 ± 2 0.150 

24 h DBP (mm Hg) 75 ± 1  74 ± 1  76 ± 1 0.373 

TC (mmol/L) 5.38 ± 0.12  5.43 ± 0.13  5.57 ± 0.16 0.605 

HDL-C (mmol/L) 1.45 ± 0.04  1.48 ± 0.05  1.51 ± 0.05 0.650 

TC:HDL-C ratio 3.92 ± 0.15  3.85 ± 0.13  3.85 ± 0.14 0.923 

LDL-C (mmol/L) 3.67 ± 0.12  3.71 ± 0.12  3.81 ± 0.14 0.731 

Triacylglycerol (mmol/L) 1.31 ± 0.10  1.18 ± 0.07  1.26 ± 0.09 0.724 

Fasting glucose (mmol/L) 5.09 ± 0.06  5.00 ± 0.06  5.05 ± 0.06 0.558 
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Family history of premature myocardial 

infarction or type 2 diabetes2 [n (%)] 

23 (35)  20 (31)  24 (36) 0.810 

CVD risk score3  3.3 ± 0.2  3.0 ± 0.2  3.4 ± 0.2 0.336 

 

Adapted with permission from Supplemental Table 1 in the Online Supporting Material from Weech et 

al J Nutr (2014; 144:846-55), American Society for Nutrition (16). 

1 Values are mean ± SEM unless stated otherwise. Between-group comparisons derived by ANOVA for 

continuous variables (and Kruskal-Wallis test for age) and Chi-squared test for discrete variables.  

2 Age of diagnosis was ≤55 y for father/brother and ≤65 y for mother/sister.  

3 A score of ≥2 points indicates a moderate CVD risk (≥50% above the population mean) (16). 

CVD: cardiovascular disease; DBP: diastolic blood pressure; HDL-C: HDL-cholesterol; LDL-C: LDL-

cholesterol; SBP: systolic blood pressure; TC: total cholesterol.  
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Table 2 Vascular outcomes and ambulatory blood pressure in participants at moderate risk of cardiovascular disease at 

baseline (wk 0) and post-intervention (wk 16)1 

 
SFA diet  MUFA diet  n-6 PUFA diet 

P
2 

 
Baseline Post   Baseline Post   Baseline Post  

 

Endothelial function: 
  

  
  

   
   

  %FMD 5.41 ± 0.35 5.03 ± 0.34 -0.39 ± 0.24  5.81 ± 0.38 5.74 ± 0.42 -0.07 ± 0.32  5.86 ± 0.39 5.78 ± 0.35 -0.08 ± 0.31 0.238 

  Pre-occlusion artery      

  diameter (mm)
 

3.96 ± 0.10 3.98 ± 0.10 0.02 ± 0.04  3.75 ± 0.09 3.81 ± 0.09 0.06 ± 0.03  3.83 ± 0.09 3.84 ± 0.09 0.01 ± 0.03 0.550 

  LDI-Ach AUC (AU) 1509 ± 122 1285 ± 77 -223 ± 126  1604 ± 109 1554 ± 105 -50 ± 109  1461 ± 105 1440 ± 98 -21 ± 96 0.172 

  LDI-SNP AUC (AU) 1397 ± 87 1261 ± 74 -137 ± 119  1529 ± 105 1332 ± 92 -197 ± 118  1319 ± 77 1374 ± 80 56 ± 100 0.372 

  Reflection Index (%) 65.4 ± 1.5 64.0 ± 1.7 -1.4 ± 1.5  60.7 ± 1.9 64.1 ± 1.9 3.4 ± 1.6  63.3 ± 1.8 64.2 ± 1.8 1.0 ± 1.8 0.306 

Arterial stiffness: 
  

  
  

   
   

  Pulse wave velocity (m/s) 6.98 ± 0.15 7.04 ± 0.15 0.06 ± 0.11  6.63 ± 0.15 6.66 ± 0.16 0.03 ± 0.12  6.94 ± 0.15 6.91 ± 0.16 -0.03 ± 0.14 0.581 

  Augmentation index (%) 16.1 ± 1.5 17.5 ± 2.2 1.4 ± 1.4  13.0 ± 1.7 14.2 ± 1.7 1.2 ± 0.7  15.1 ± 1.5 15.6 ± 1.5 0.5 ± 0.6 0.775 

  Stiffness index (m/s) 6.84 ± 0.23 6.87 ± 0.23 0.03 ± 0.23  6.47 ± 0.21 6.89 ± 0.24 0.42 ± 0.21  7.13 ± 0.28 7.07 ± 0.26 -0.06 ± 0.26 0.450 

Ambulatory blood pressure: 
 

  
  

   
   

  24 h SBP (mm Hg) 120.7 ± 1.6 122.3 ± 1.7 1.6 ± 1.1  120.6 ± 1.3 119.6 ± 1.3 -1.0 ± 1.0  124.2 ± 1.6 123.8 ± 1.6 -0.4 ± 1.2 0.225 

  Day SBP (mm Hg) 124.7 ± 1.7 126.1 ± 1.8 1.5 ± 1.1  124.9 ± 1.3 124.0 ± 1.4 -1.0 ± 1.1  128.5 ± 1.7 128.0 ± 1.6 -0.6 ± 1.3 0.381 
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  Night SBP (mm Hg) 105.6 ± 1.8 109.4 ± 1.8** 3.8 ± 1.4
a
  105.8 ± 1.4 104.7 ± 1.1 -1.1 ± 1.2

b
  109.5 ± 1.5 110.0 ± 1.7 0.5 ± 1.3

ab
 0.019 

  24 h DBP (mm Hg) 74.6 ± 1.1 76.2 ± 1.1 1.5 ± 0.7  73.6 ± 0.8 73.3 ± 0.8 -0.3 ± 0.7  75.6 ± 1.1 74.8 ± 1.1 -0.8 ± 0.8 0.074 

  Day DBP (mm Hg) 77.6 ± 1.1 79.0 ± 1.2 1.4 ± 0.8  77.2 ± 0.9 76.5 ± 0.9 -0.6 ± 0.9  78.9 ± 1.2 77.6 ± 1.2 -1.3 ± 0.9 0.140 

  Night DBP (mm Hg) 63.4 ± 1.2 65.9 ± 1.2 2.6 ± 1.0  61.9 ± 0.8 62.7 ± 0.8 0.8 ± 0.7  64.8 ± 1.0 65.1 ± 1.1 0.3 ± 0.9 0.114 

  24 h PP (mm Hg) 46.0 ± 0.8 46.1 ± 0.8 0.1 ± 0.9  46.9 ± 0.8 46.2 ± 0.9 -0.7 ± 0.7  48.5 ± 1.0 49.0 ± 1.0 0.5 ± 0.7 0.187 

  Day PP (mm Hg) 47.1 ± 0.9 47.1 ± 0.9 0.0 ± 1.0  47.8 ± 0.9 47.5 ± 1.0 -0.3 ± 0.7  49.6 ± 1.1 50.4 ± 1.1 0.8 ± 0.9 0.230 

  Night PP (mm Hg) 42.2 ± 0.8 43.4 ± 0.9 1.2 ± 1.0
 

 43.9 ± 1.0 42.1 ± 0.7* -1.9 ± 1.0  44.8 ± 1.1 44.9 ± 0.9 0.1 ± 0.9
 

0.048 

  24 h heart rate (bpm) 70.1 ± 1.1 71.6 ± 1.2 1.5 ± 0.8  71.4 ± 1.0 72.1 ± 1.0 0.7 ± 0.9  70.4 ± 1.2 70.2 ± 1.2 -0.2 ± 0.8 0.306 

  Day heart rate (bpm) 72.2 ± 1.1 74.2 ± 1.2 2.0 ± 0.9  74.3 ± 1.1 75.0 ± 1.1 0.7 ± 1.0  72.6 ± 1.3 73.0 ± 1.3 0.4 ± 1.0 0.462 

  Night heart rate (bpm) 62.5 ± 1.2 63.3 ± 1.2 0.8 ± 1.2  62.1 ± 1.0 62.2 ± 1.1 0.1 ± 0.9  63.4 ± 1.2 61.0 ± 1.3 -2.4 ± 1.0 0.051 

 

1 Values are mean ± SEM, n = 48-62 per diet group. For %FMD (primary outcome), n = 59, 57 and 55 for the SFA, 

MUFA and n-6 PUFA diets, respectively. No significant between-group differences were identified at baseline (one-way 

ANOVA or Kruskal-Wallis test for non-normally distributed data). %FMD and pre-occlusion artery diameter, LDI-Ach 

AUC, LDI-SNP AUC and stiffness index (secondary outcomes) were log transformed for statistical analysis.  

2 Analysis of primary and secondary endpoints: overall between group diet effects for each  derived from general linear 

models with baseline values for the variable of interest, BMI, age, gender and intervention diet as prognostic factors. 

Post-hoc analyses used Tukey’s correction to adjust for multiple testing. Different superscript letters within a row (a,b) 
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identify intervention groups significantly different from one another (P ≤ 0.05). Where the overall diet effect was 

significant, one-sample t-tests determined whether  for each dietary arm was different to zero, which were identified as: 

*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.   

Ach: acetylcholine; AU: arbitrary units; DBP: diastolic blood pressure; FMD: flow-mediated dilatation; LDI: laser Doppler 

imaging; Post: after the intervention; PP: pulse pressure; SBP: systolic blood pressure; SNP: sodium nitroprusside; : 

change from baseline. 
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Table 3 Markers of endothelial activation, inflammation and insulin resistance in participants at moderate risk of cardiovascular 

disease at baseline (wk 0) and post-intervention (wk 16)1
 

 
SFA diet  MUFA diet  n-6 PUFA diet 

P
2 

 
Baseline Post   Baseline Post   Baseline Post  

 

Circulating biomarkers of endothelial activation and inflammation:   
  

  
  

 
 

C-reactive protein (mg/L) 2.68 ± 0.50 2.56 ± 0.46 -0.12 ± 0.50  1.91 ± 0.36 1.87 ± 0.36 -0.04 ± 0.21  2.37 ± 0.42 2.49 ± 0.41 0.12 ± 0.36 0.792 

NOx (μmol/L) 29.3 ± 2.6 29.4 ± 2.8 0.1 ± 2.2  25.4 ± 1.8 24.1 ± 1.7 -1.3 ± 1.5  27.4 ± 2.0 25.5 ± 1.8 -1.9 ± 1.3 0.799 

VCAM-1 (ng/mL) 666 ± 18 644 ± 17 -22 ± 11  675 ± 25 683 ± 18 8 ± 16  664 ± 21 677 ± 24 13 ± 11 0.077 

ICAM-1 (ng/mL) 220 ± 6 222 ± 6 2.2 ± 3.2  215 ± 5 219 ± 5 4.3 ± 3.2  220 ± 7 223 ± 7 3.1 ± 4.2 0.887 

IL-6 (pg/mL) 1.85 ± 0.16 1.93 ± 0.22 0.08 ± 0.16  1.19 ± 0.09 1.27 ± 0.12 0.08 ± 0.10  1.69 ± 0.15 1.88 ± 0.19 0.18 ± 0.16 0.533 

TNF- (pg/mL) 1.33 ± 0.11 1.31 ± 0.10 -0.02 ± 0.04  1.03 ± 0.07 1.01 ± 0.05 -0.03 ± 0.03  1.06 ± 0.04 1.07 ± 0.05 0.01 ± 0.02 0.514 

E-selectin (ng/mL) 34.7 ± 1.8 35.9 ± 2.1 1.3 ± 1.0
a
  34.7 ± 1.9 32.2 ± 1.6** -2.4 ± 0.9

b
  35.9 ± 1.8 35.1 ± 1.9 -0.9 ± 0.7

ab
 0.012 

P-selectin (ng/mL) 43.2 ± 1.6 44.0 ± 2.0 0.8 ± 1.1  42.3 ± 1.9 41.0 ± 1.7 -1.3 ± 0.9  39.9 ± 1.6 38.0 ± 1.8 -1.9 ± 0.9 0.091 

vWF (μU/mL) 953 ± 54 916 ± 56 -36 ± 59  849 ± 44 893 ± 46 43 ± 54  804 ± 42 896 ± 56 92 ± 55 0.796 

Microalbumin (mg/24 h) 4.50 ± 1.14 4.27 ± 0.79 -0.23 ± 0.84  2.74 ± 0.35 3.49 ± 0.62 0.75 ± 0.69  5.07 ± 1.04 6.14 ± 1.42 1.06 ± 0.86 0.976 

Indices of insulin resistance: 
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Glucose (mmol/L) 5.09 ± 0.06 5.15 ± 0.06 0.06 ± 0.04  5.00 ± 0.06 5.06 ± 0.06 0.06 ± 0.03  5.05 ± 0.06 5.08 ± 0.05 0.04 ± 0.05 0.784 

Insulin (pmol/L) 30.9 ± 2.2 32.9 ± 2.4 2.0 ± 1.9  29.1 ± 1.9 29.8 ± 2.2 0.7 ± 1.4  30.2 ± 2.5 32.7 ± 2.6 2.4 ± 1.4 0.434 

NEFA (μmol/L) 508 ± 17 485 ± 21 -23 ± 23  463 ± 23 457 ± 21 -6 ± 22  474 ± 25 480 ± 23 6 ± 17 0.862 

HOMA-IR 1.19 ± 0.09 1.29 ± 0.11 0.10 ± 0.08  1.05 ± 0.07 1.10 ± 0.09 0.05 ± 0.06  1.13 ± 0.11 1.24 ± 0.11 0.10 ± 0.06 0.587 

QUICKI 0.39 ± 0.01 0.39 ± 0.01 0.00 ± 0.00  0.39 ± 0.00 0.39 ± 0.01 0.00 ± 0.00  0.39 ± 0.00 0.39 ± 0.01 -0.01 ± 0.00 0.376 

rQUICKI 0.45 ± 0.01 0.45 ± 0.01 0.00 ± 0.01  0.46 ± 0.01 0.46 ± 0.01 0.00 ± 0.01  0.46 ± 0.01 0.45 ± 0.01 -0.01 ± 0.01 0.345 

 

1 Values are mean ± SEM, n = 56-66 per diet group. No significant between-group differences were identified at baseline (one-

way ANOVA or Kruskal-Wallis test for non-normally distributed data), except for IL-6 (P = 0.001) and TNF- (P = 0.026) 

between the SFA and MUFA groups. C-reactive protein, NOx, IL-6, microalbumin, insulin and rQUICKI (secondary endpoints) 

were log transformed for statistical analysis.  

2 Analysis of secondary endpoints: overall between group diet effects for each  derived from general linear models with 

baseline values for the variable of interest, BMI, age, gender and intervention diet as prognostic factors. Post-hoc analyses 

used Tukey’s correction to adjust for multiple testing. Different superscript letters within a row (a,b) identify intervention groups 

significantly different from one another (P ≤ 0.05). Where the overall diet effect was significant, one-sample t-tests determined 

whether  for each dietary arm was different to zero, which were identified as: *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001.   
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ICAM-1: intercellular cell adhesion molecule-1; NEFA: non-esterified fatty acids; NOx: total nitrites and nitrates; Post: after the 

intervention; QUICKI: quantitative insulin sensitivity index; rQUICKI: revised quantitative insulin sensitivity index; VCAM-1: 

vascular cell adhesion molecule-1; vWf = von Willebrand factor; : change from baseline.  

 



37 
 

 

Figure 1 Flow of recruitment 

 

Figure 2 Changes from baseline fasting lipid profile when dietary SFA was substituted 

isoenergetically with MUFA (9.5%TE) or n-6 PUFA (9.6%TE) for 16 wk.  

Data shown as mean ± SEM, n = 58-62 per diet group. Overall diet effects, derived by 

general linear model using the change from baseline as the dependent variable with 

baseline values of the variable of interest, BMI, age, gender and intervention diet as 

prognostic variables, were significant for TC, LDL-C and TC:HDL-C ratio (P ≤ 0.001). 

Post-hoc analysis, using Tukey’s correction to adjust for multiple testing, identified 

significant between-group differences (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). HDL-C: 

HDL-cholesterol; LDL-C: LDL-cholesterol; TAG: triacylglycerol; TC: total cholesterol; 

%TE: percentage of total energy. 

 


