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A B S T R A C T

Operational forecasting centres are currently developing data assimilation systems for coupled

atmosphere-ocean models. Strongly coupled assimilation, in which a single assimilation system

is applied to a coupled model, presents significant technical and scientific challenges. Hence

weakly coupled assimilation systems are being developed as a first step, in which the coupled

model is used to compare the current state estimate with observations, but corrections to the at-

mosphere and ocean initial conditions are then calculated independently. In this paper we provide

a comprehensive description of the different coupled assimilation methodologies in the context

of four dimensional variational assimilation (4D-Var) and use an idealised framework to assess

the expected benefits of moving towards coupled data assimilation.

We implement an incremental 4D-Var system within an idealised single column atmosphere-

ocean model. The system has the capability to run both strongly and weakly coupled assimilations

as well as uncoupled atmosphere or ocean only assimilations, thus allowing a systematic com-

parison of the different strategies for treating the coupled data assimilation problem. We present

results from a series of identical twin experiments devised to investigate the behaviour and sensi-

tivities of the different approaches. Overall, our study demonstrates the potential benefits that may

c© 0000 Tellus



2 P.J. SMITH ET AL.

be expected from coupled data assimilation. When compared to uncoupled initialisation, coupled

assimilation is able to produce more balanced initial analysis fields, thus reducing initialisation

shock and its impact on the subsequent forecast. Single observation experiments demonstrate how

coupled assimilation systems are able to pass information between the atmosphere and ocean and

therefore use near-surface data to greater effect. We show that much of this benefit may also be

gained from a weakly coupled assimilation system, but that this can be sensitive to the parameters

used in the assimilation.

Keywords: incremental four dimensional variational data assimilation, single column model, KPP mixed

layer model, initialisation, strongly coupled, weakly coupled

1. Introduction1

The successful application of data assimilation techniques to operational numerical weather2

prediction and ocean forecasting systems, together with increasing availability of near surface3

observations from new satellite missions, has led to an increased interest in their potential for4

use in the initialisation of coupled atmosphere-ocean models. To produce reliable predictions5

across seasonal to decadal time scales we need to simulate the evolution of the atmosphere6

and ocean coupled together. Coupled models have been used operationally for seasonal and7

longer range forecasting for a number of years, and are now being considered for shorter8

term prediction. Typically, the initial conditions for these forecasts are provided by com-9

bining analyses from independent (uncoupled) ocean and atmosphere assimilation systems10

(Balmaseda and Anderson, 2009). This approach ignores interactions between the systems11

and this inconsistency can cause imbalance such that the initial conditions are far from the12

natural state of the coupled system. When the coupled forecast is initialised the model ad-13
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COUPLED 4D-VAR DATA ASSIMILATION 3

justs itself towards its preferred climatology; this adjustment can produce rapid shocks at the14

air-sea interface during the early stages of the forecast, a process referred to as initialisation15

shock (Balmaseda, 2012). It also means that near-surface data are not fully utilised.16

The development of coupled atmosphere-ocean data assimilation systems presents a num-17

ber of scientific and technical challenges (Murphy et al., 2010; Lawless, 2012) and requires18

a significant amount of resources to be made possible operationally. Yet such systems offer a19

long list of potential benefits including improved use of near-surface observations, reduction20

of initialisation shocks in coupled forecasts, and generation of a consistent system state for21

the initialisation of coupled forecasts across all timescales. In addition, coupled reanalyses22

offer the potential for greater understanding and representation of air-sea exchange processes23

in turn facilitating more accurate prediction of phenomena such as El Niño and the Madden-24

Julian Oscillation (MJO) in which air-sea interaction plays an important role.25

Studies have shown that, in certain regions, the initialisation of coupled models can enhance26

the skill of decadal predictions for the first 5 or so years of the forecast (Meehl et al. (2014)27

and references therein). Although it is widely accepted that coupled data assimilation has a28

central role in improving our ability to generate consistent and accurate initial conditions for29

coupled atmosphere-ocean forecasting it is still a relatively young area of research. Hence30

there has so far only been limited amount of work in this field. An assortment of strategies31

for using observed data to improve coupled model initialisation have been explored with32

varying degrees of success; these include sea surface temperature (SST) nudging or relaxation33

(e.g. Keenlyside et al. (2008)), anomaly initialisation/ bias-blind assimilation (e.g. Pierce34

et al. (2004)), anomaly coupling (Pohlmann et al. (2009)), and variants of the full uncoupled35

initialisation approach (Balmaseda and Anderson, 2009). Work has mainly been focussed on36
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improving ocean initial conditions with a lack of fully consistent treatment of air-sea feedback37

mechanisms.38

There are groups exploring more comprehensive approaches that aim to produce more dy-39

namically balanced initial ocean-atmosphere states. The Japan Agency for Marine-Earth Sci-40

ence and Technology (JAMSTEC) are working towards a coupled 4D-Var data assimilation41

system for their Coupled model for the Earth Simulator (CFES), a fully coupled global cli-42

mate model. Sugiura et al. (2008) describes the development of a first step 4D-Var system43

for estimating ocean initial conditions together with adjustment parameters of the bulk flux44

formulae. Their approach is focussed on representing slow time scales only, filtering out fast45

atmospheric modes by using 10 day mean states. Whilst this enables them to better represent46

several key seasonal to interannual climate events in the tropical Pacific and Indian Ocean47

region, including the El Niño, it would not be suitable for atmospheric reanalyses or for ini-48

tialising medium range forecasts.49

So far, most coupled data assimilation work in the published literature has employed ensem-50

ble rather than variational based assimilation methods. Tardif et al. (2014) use an idealised51

low dimension atmosphere-ocean climate model with an Ensemble Kalman Filter (EnKF) to52

explore strategies for ensemble coupled data assimilation. Their model represents an idealisa-53

tion of the midlatitude North Atlantic climate system and is designed to allow experiments on54

very long timescales in order to assess the EnKF approach in terms of effectiveness for initial-55

isation of the meridional overturning circulation (MOC). In twin experiments using 50 year56

windows from a 5000 year reference simulation, they found that forcing the idealised ocean57

model with atmospheric analyses was inefficient at recovering the MOC due to slow conver-58
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gence of the solutions. In constrast, coupled assimilation produced accurate MOC analyses,59

even when only atmospheric observations were assimilated.60

In a larger scale study, Zhang et al. (2007) describe a coupled assimilation system consist-61

ing of an EnKF applied to the National Oceanic and Atmospheric Administration (NOAA)62

Geophysical Fluid Dynamics Laboratory (GFDL) global fully coupled climate model for the63

initialisation of seasonal and decadal forecasts. The system is evaluated in a series of twin64

experiments assimilating atmosphere-only or ocean-only observations but not both together.65

Although the system shows good skill in reconstructing seasonal and decadal ocean vari-66

ability and trends it fails to fully realise the potential benefit of surface and near surface67

observational data.68

In this paper we explore some of the fundamental questions in the design of coupled varia-69

tional data assimilation systems within the context of an idealised one-dimensional (1D) col-70

umn coupled atmosphere-ocean model. The system is designed to enable the effective explo-71

ration of various approaches to performing coupled model data assimilation whilst avoiding72

many of the issues associated with more complex models and allows us to perform exper-73

iments that would not be feasible in operational scale systems. We employ an incremental74

four dimensional variational data assimilation (4D-Var) scheme (Courtier et al., 1994; Law-75

less et al., 2005; Lawless, 2013) to reflect the coupled assimilation systems currently being76

developed at the European Centre for Medium Range Weather Forecasts (ECMWF) and UK77

Met Office. The problem of variational data assimilation is to find the initial state such that78

the model forecast best fits the available observations over a given time window, subject to79

the state remaining close to a given a priori, or background, estimate and allowing for the80

errors in each. This best estimate is known as the analysis and should be consistent with both81
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the observations and the system dynamics. The standard 4D-Var problem is formulated as82

the minimisation of a non-linear weighted least squares cost function; in the incremental ap-83

proach the non-linear problem is instead approximated by a sequence of linear least squares84

problems. Rather than search for the initial state directly, we solve in terms of increments85

with respect to an initial background state; this is done iteratively in a series of linearised86

inner-loop cost function minimisations and non-linear outer-loop update steps.87

Strongly or fully coupled variational assimilation treats the atmosphere and ocean as a single88

coherent system, using the coupled model in both the inner- and outer-loops. This approach89

is able to pass information between the atmosphere and ocean, and therefore enables obser-90

vations of atmospheric variables to influence the ocean increments and vice versa. This is91

expected to lead to better use of near-surface observations, such as scatterometer winds and92

SST, that depend on both the atmosphere and ocean state, and to produce a more physically-93

balanced analysis. Although there are currently no plans to move towards strongly coupled94

systems at operational centres, this approach represents the quintessential coupled assimila-95

tion system and implementing it in our idealised system allows us to better assess the potential96

of intermediate, or weakly coupled, approaches.97

As a first step towards the implementation of operational coupled data assimilation, centres98

such as the ECMWF and UK Met Office are developing prototype weakly coupled assimila-99

tion systems (Brassington et al., 2015; Laloyaux et al., 2014; 2015; Lea et al., 2015). Weakly100

coupled incremental 4D-Var makes use of the incremental inner and outer-loop structure; the101

coupled model is used to provide the initial atmosphere and ocean background states and non-102

linear trajectory for separate (uncoupled) inner-loop atmosphere and ocean minimisations; the103

uncoupled analysis increments are then fed back into the coupled model for the next outer-104
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loop forecast. Unlike strongly coupled assimilation, the weakly coupled approach does not105

allow for cross-covariance information between the atmosphere and ocean. This means that106

the atmosphere (ocean) observations cannot affect the ocean (atmosphere) analyses unless107

multiple outer-loops are performed.108

The purpose of this paper is to (i) provide a comprehensive description of the different cou-109

pled 4D-Var data assimilation methodologies, and (ii) use our idealised framework to assess110

the benefits expected in moving towards coupled data assimilation systems. Although the111

greatest benefits are anticipated to be attained with strongly coupled assimilation, we investi-112

gate whether the weakly coupled approaches being pursued by operational centres are likely113

to provide a determinable improvement on the current uncoupled systems. We consider if the114

potential added benefits of strongly coupled assimilation ultimately outweigh the challenges115

their development presents.116

We begin, in section 2., with the formulation of the general incremental 4D-Var algorithm117

and a description of the different approaches to coupled atmosphere-ocean 4D-Var data as-118

similation. We introduce our coupled 1D model system in section 3.. In section 4. we give119

details of a set of identical twin experiments designed to investigate and compare the be-120

haviour and sensitivities of the different approaches. Results are presented in section 5.. A121

summary and conclusions are given in section 6..122

2. Incremental 4D-Var data assimilation123

Variational methods form the basis of most operational numerical weather prediction (NWP)124

data assimilation systems (Gauthier et al., 1999; 2007; Rabier et al., 2000; Rawlins et al.,125

2007; Huang et al., 2009). Our system has therefore been designed using the incremental126

4D-Var approach. In this formulation the solution to the full non-linear 4D-Var minimisation127
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problem is replaced by a sequence of minimisations of linear quadratic cost functions such128

that the control variable in the minimisation problem is the increment to the current estimate129

rather than the model state itself. The method was originally developed to overcome the130

cost and practical difficulties involved in solving the complete non-linear problem directly131

in large scale systems (Courtier et al., 1994). We choose to employ the incremental 4D-132

Var formulation for this study as it allows us not only to emulate the methodologies being133

developed for operational systems, but also to explore the type of benefits that could be gained134

by moving towards strongly coupled assimilation systems, thereby providing a benchmark135

for the assessment of weakly coupled assimilation systems. We describe each of the different136

coupled 4D-Var assimilation strategies in detail in section 2.1.. To aid these descriptions, we137

begin with an outline of the steps of the general incremental 4D-Var algorithm.138

Let xi ∈ Rm denote the model state vector, representing the system state at a given time ti.139

Then given the discrete non-linear dynamical system model140

xi =M(ti, t0,x0) , i = 0, . . . , n , (1)141

a background, or first guess, xb0 ∈ Rm, at t0, and imperfect observations yi ∈ Rri at times142

ti, i = 0, . . . , n, the full non-linear 4D-Var problem is to find the initial model state, x0, that143

minimises the cost function144

J (x0) =
1

2

(
xb0 − x0

)T
B−10

(
xb0 − x0

)
145

+
1

2

n∑
i=0

(yi − hi(xi))T R−1i (yi − hi(xi)) . (2)146

Here hi : Rm −→ Rri is a (generally) non-linear observation operator and B0 ∈ Rm×m and147

Ri ∈ Rri×ri are the background and observation error covariance matrices respectively.148

For the incremental 4D-Var approach, rather than minimise (2) directly we define the incre-149
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ment, at a given time ti and outer-loop iteration k, as150

δx
(k)
i = x

(k+1)
i − x

(k)
i , (3)151

and solve iteratively as described below (Lawless et al., 2005).152

For k = 0, 1, ..., K outer-loops, or until desired convergence is reached:153

(i) For the first iteration set x(0)
0 = xb0.154

(ii) Run the non-linear model (1) to obtain x
(k)
i at each time ti.155

(iii) Compute the innovations156

d
(k)
i = yi − hi(x(k)

i ) . (4)157

(iv) Minimise the least squares cost function158

J (k)
(
δx

(k)
0

)
=

1

2

(
(xb0 − x

(k)
0 )− δx(k)

0

)T
B−10

(
(xb0 − x

(k)
0 )− δx(k)

0

)
159

+
1

2

n∑
i=0

(
d
(k)
i −Hi δx

(k)
i

)T
R−1i

(
d
(k)
i −Hi δx

(k)
i

)
,160

:= J
(k)
b + J (k)

o , (5)161

subject to162

δx
(k)
i = M(ti, t0, x

(k))δx
(k)
0 . (6)163

(v) Update x
(k+1)
0 = x

(k)
0 + δx

(k)
0 , and return to step (ii).164

In (5) the operator Hi ∈ Rri×m is the tangent linear of the non-linear observation operator,165

hi, and M is the tangent linear (TL) of the non-linear model (NLM) operatorM. For each166

outer-loop, k, the linearised operators H and M are evaluated at the current estimate of the167

non-linear trajectory, x(k), referred to as the linearisation state.168

Step (iv) is referred to as the ‘inner-loop’. The minimisation of the cost function (5) is169

performed iteratively using a gradient descent algorithm. For each iteration of the inner-loop170

minimisation the tangent linear model (6) is integrated to give the evolution of the increment171
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for the cost function computation (5) and the adjoint of the TL model, MT , is integrated172

to obtain the cost function gradient. In this study we employ an off the shelf optimisation173

algorithm based on the conjugate gradient method (Shanno, 1978; Shanno and Phua, 1980).174

2.1. Coupled data assimilation175

Our system has been designed to enable several different 4D-Var configurations: an un-176

coupled atmosphere-only or ocean-only assimilation, a weakly coupled assimilation and a177

strongly coupled assimilation, thus allowing a systematic comparison of the different strate-178

gies for treating the coupled 4D-Var data assimilation problem. In this section we give details179

of each algorithm and highlight the main differences between them.180

2.1.1. Strongly coupled incremental 4D-Var181

For the strongly (or fully) coupled assimilation system, the state vector, x, and the incremen-182

tal 4D-Var control vector, δx, consist of both the atmosphere and ocean prognostic variables.183

The coupled model is used in both the outer and inner-loops; the non-linear coupled model184

is used in the outer-loops to generate the linearisation trajectory (1) and compute the innova-185

tion vectors (4), and the inner-loop cost function minimisation is performed using the tangent186

linear and adjoint of the coupled non-linear model in step (iv). Information is exchanged187

between the atmosphere and ocean components at regular, specified time intervals; the SST188

from the ocean model is used in the computation of the atmospheric lower boundary con-189

ditions, and the surface heat, moisture and momentum fluxes from the atmosphere model190

provide the ocean surface boundary conditions.191

The incremental 4D-Var algorithm implicitly evolves the background error covariances192

across the assimilation window according to the TL model dynamics (e.g. Thépaut et al.193
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(1993; 1996)). This acts to modify the prior background error variance estimates and induce194

non-zero correlations between model variables. The use of the fully coupled TL and adjoint195

models in the inner-loops of the strongly coupled assimilation system means that we expect196

cross-covariance information to be generated between the atmosphere and ocean fields. This197

allows observations of one fluid to produce analysis increments in the other and is there-198

fore expected to generate more consistent analyses. The design of this system also has the199

advantage of allowing for cross-covariances between the atmosphere and ocean errors to be200

explicitly prescribed a priori. We note, however, that this is a non trivial matter; research on201

how to characterise and represent atmosphere-ocean cross covariances within coupled data202

assimilation sytems is currently underway and will be addressed in a future paper.203

2.1.2. Uncoupled incremental 4D-Var204

The uncoupled atmosphere and ocean assimilation systems are completely independent. Here,205

the state and incremental 4D-Var control vectors are comprised of the atmosphere or ocean206

prognostic variables only and a separate inner-loop cost function is used for each model. For207

the atmosphere (ocean) the outer-loop linearisation trajectory (1) is taken from a run of the208

atmosphere-only (ocean-only) non-linear model, the innovation vectors (step (iii)) are com-209

puted using the available atmosphere (ocean) observations and the inner-loop minimisation210

(step (iv)) uses the corresponding uncoupled atmosphere (ocean) tangent linear and adjoint211

model. There is no exchange of information between the two systems at any stage; the SST212

used at the atmosphere bottom boundary and the momentum, heat and freshwater fluxes at213

the ocean surface boundary are prescribed. Although this approach has its advantages, such214

as ease of implementation and modularity, it does not allow for cross-covariances between215

the atmosphere and ocean fields and atmospheric (ocean) observations cannot influence the216
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ocean (atmosphere) analysis. The lack of feedback means that the atmosphere and ocean217

analysis states are unlikely to be in balance and this can have a negative impact if they are218

used to initialise a coupled model forecast (Balmaseda and Anderson, 2009).219

2.1.3. Weakly coupled incremental 4D-Var220

The weakly coupled 4D-Var algorithm is a combination of the strongly and uncoupled al-221

gorithms; the system uses a coupled full state vector but uncoupled atmosphere and ocean222

incremental 4D-Var control vectors. This approach has the advantage that it limits the amount223

of new technical development required when independent atmosphere and ocean assimilation224

systems are already in place. The outer-loop linearisation trajectory (1) is generated using the225

coupled non-linear model but separate inner-loop cost functions (step (iv)) are defined for the226

atmosphere and ocean, using the respective uncoupled atmosphere- or ocean-only tangent lin-227

ear and adjoint models and assimilating the atmosphere or ocean observations only. Although228

the computation of the innovations (step (iii)) uses only the atmosphere or ocean observa-229

tions, the observation-model fit is measured against the coupled model state. The ocean SST230

from the coupled outer-loop linearisation trajectory is used in the computation of the bottom231

boundary conditions for the uncoupled atmospheric TL model and the surface heat, moisture232

and momentum fluxes from the coupled outer-loop linearisation trajectory are used in the233

computation of the surface boundary conditions for the uncoupled ocean TL model. Once the234

uncoupled atmosphere and ocean inner-loop minimisations have been performed, the uncou-235

pled atmosphere and ocean analysis increments are combined and added to the current guess236

to provide the initial coupled state for the next outer-loop iteration.237

Analogous to the uncoupled case, the separation of the atmosphere and ocean TL model238

components in the inner-loops of the weakly coupled system means that cross-covariances239
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between the atmosphere and ocean are ignored; they can only be generated between atmo-240

sphere fields or between ocean fields. However, as we demonstrate in sections 5.4. and 5.5.,241

observations of one fluid are able to influence the analysis of the other if multiple outer-loops242

are performed due to the linearisation state being updated.243

244

Here, we have presented the coupled 4D-Var assimilation strategies in their cleanest forms.245

It should be noted that in practice there will be variations in their application. For example, the246

uncoupled analysis systems at the ECMWF and Met Office run the atmosphere component247

with a prescribed SST but then use the updated fluxes from this analysis to constrain the248

ocean assimilation system. It is also not necessary for the uncoupled and weakly coupled249

systems to use the same assimilation window length for the atmosphere and ocean, or even250

the same assimilation scheme. Both the existing uncoupled analysis systems and the weakly251

coupled systems currently under development at the ECMWF and Met Office use 4D-Var for252

the atmosphere and 3D-Var FGAT (first guess at appropriate time) for the ocean (Laloyaux253

et al., 2014; 2015; Lea et al., 2015).254

3. The coupled model255

The objective of this study is to gain a greater theoretical understanding of the coupled256

atmosphere-ocean data assimilation problem by exploring and comparing the behaviours of257

the coupling strategies presented in section 2.1.. Idealised models offer an effective frame-258

work for investigating and advancing new methods, avoiding unnecessary complexities that259

can obscure results. Using a simplified system allows us to perform a range and quantity of260

experiments that would require a significant amount of technical development and resources261

to execute in a full scale system.262
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In many cases, finding balanced solutions to the coupled atmosphere-ocean assimilation263

problem is primarily a vertical problem of the two boundary layers. A 1D column atmosphere-264

ocean model framework therefore offers a tractable and relevant approach. Whilst it is prefer-265

able to keep the model as simple as possible from a developmental point of view, it is impor-266

tant to ensure that processes crucial to realistic air-sea interaction, such as the diurnal SST267

cycle and evolution of surface forcing, are adequately represented. Our new system has been268

built by coupling the ECMWF single-column atmospheric model (SCM) to a single-column269

K-Profile Parameterisation (KPP) ocean mixed layer model. The use of these models ensures270

that the simplified system retains the key elements of coupling processes in a fully coupled271

ocean-atmosphere model without being overly complex.272

3.1. Non-linear models273

The atmosphere model solves the primitive equations for temperature, T , specific humid-274

ity, q, and zonal, u, and meridional, v, wind components, formulated in non-spherical co-275

ordinates (Simmons and Burridge, 1981; Ritchie et al., 1995). Compared to the original276

SCM, our model does not include the parameterisation of physical processes such as radi-277

ation, subgrid-scale orographic drag, convection, clouds and surface/soil processes; we also278

use a simplified vertical diffusion scheme. For the ocean, the evolution of the temperature, θ,279

salinity, s, and zonal and meridional currents uo, vo are described following the formulation280

of (Large et al., 1994). Further details, including the model equations, are given in appendix281

A.282

The coupling of the two models takes place at the atmosphere-ocean boundary. In the at-283

mosphere, the lower boundary conditions for temperature and specific humidity depend on284

the SST (temperature at top level of ocean model which corresponds to a depth of 1m) and285
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saturation specific humidity, qsat(SST ), and a no-slip condition is used for the u and v wind286

components. The ocean surface boundary conditions for temperature and salinity are given287

by the surface kinematic fluxes of heat and salt which in turn depend on the net long wave288

radiation and latent and sensible heat fluxes. The surface boundary conditions for the u and289

v components of the current are given by the zonal and meridional components of the kine-290

matic momentum flux. At each model time step, the atmosphere model computes and passes291

the latent and sensible heat fluxes and the horizontal components of the surface momentum292

flux to the ocean model. The updated ocean model SST is passed back to the atmosphere293

where it is used in the computation of the atmosphere lower boundary conditions for the next294

step.295

A fuller description of the individual atmosphere and ocean non-linear model components296

and their coupling is given in appendix A. This system combined with our 4D-Var schemes297

provides a unique and tractable framework for addressing the coupled atmosphere-ocean as-298

similation problem.299

300

As part of the assimilation system development, the simplified non-linear model was vali-301

dated against the original (full physics) version of the ECMWF SCM code. As expected, we302

see small differences in the evolution of both the prognostic variables and surface fluxes but303

in general we find that using the simplified physics provides a good approximation to the full304

physics in the coupled model. Where there are differences the simplified model still produces305

an evolution that is physically reasonable, with a diurnal cycle in the ocean SST and mixed306

layer depth and appropriate atmosphere-ocean fluxes; see, for example, the truth trajectory307
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(black line) in figure 4. We are therefore confident that the model is sufficient for assessing308

the different assimilation strategies.309

3.2. Tangent linear and adjoint models310

In order to be able to compute the cost function and its gradient for each inner-loop we need311

to develop the tangent linear (TL) and adjoint models. A particular issue worth noting is the312

linearisation of the atmosphere and ocean vertical turbulent flux parameterisations. The for-313

mulation of the diffusion coefficients Kφ in both the atmosphere and ocean vertical diffusion314

schemes (equations (A6), (A13) of appendix A) is strongly non-linear and its linearisation315

has been shown to be unstable (Laroche et al., 2002). The simplest way to avoid difficulties316

associated with this linearisation is to neglect the perturbation of the Kφ coefficients. Studies317

such as Janisková et al. (1999); Mahfouf (1999) and Laroche et al. (2002) have shown that318

a TL diffusion scheme can still produce reasonable and useful behaviour under this assump-319

tion and this approach has been widely adopted in both atmosphere and ocean assimilation320

systems (e.g. Mahfouf (1999); Weaver et al. (2003)). We are therefore satisfied that this sim-321

plification is appropriate for our system. During the assimilation the Kφ are computed for322

each non-linear outer-loop and then held constant for the inner-loop minimisation.323

Although this means we are using an approximate TL model rather than the exact TL, since324

the adjoint model is derived from the approximate TL model, the inner-loop cost function325

gradient calculation contains the correct information for convergence of the minimisation326

problem. The correctness of the tangent linear and adjoint model codes, and the gradient327

calculation were all verified using standard tests (e.g. Navon et al. (1992); Lawless (2013)).328
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4. Experimental design329

We compare the performance of the strongly coupled, weakly coupled and uncoupled 4D-330

Var systems via a series of identical twin experiments in which the coupled non-linear model331

is used to forecast a reference or ‘truth’ trajectory from which synthetic observations are332

generated. The assimilation systems are then assessed on how well they approximate the333

initial reference state and subsequent forecast.334

4.1. Initial conditions and forcing335

The atmospheric initial conditions, surface pressures, and SST data used to force the un-336

coupled atmosphere system are taken from the ERA Interim Re-analysis1(Dee et al., 2011).337

Fields are available at 6 hourly intervals and can be extracted on model levels so that they338

do not need pre-processing. These data are also used to estimate the geostrophic wind com-339

ponents, ug, vg in equations (A1) and (A2), and large scale horizontal forcing terms (see340

appendix A) using simple centred finite difference approximations across adjacent latitude341

and longitude points. .342

Initial ocean fields are produced by interpolating Mercator Ocean reanalysis data2(Lellouche343

et al., 2013), onto the KPP model grid. The surface short and long wave radiation forc-344

ing fields are computed by running the full physics version of the coupled single column345

model and taking 6 hourly snapshots of the diagnostic clear-sky radiation flux fields that are346

computed as part of the radiation scheme (ECMWF IFS documentation, 2001–2013b). The347

geostrophic components of the ocean currents (section A2.1.) are estimated by computing a348

10 day rolling average of the Mercator ocean currents. The surface heat, moisture and mo-349

1 ERA Interim Re-analysis data can be downloaded via the ECMWF data server at www.ecmwf.int
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mentum fluxes required for uncoupled ocean model integrations are taken from the ERA350

Interim Re-analysis.351

For the experiments presented here, the true initial state, x0, is a 24 hour coupled model352

forecast from 00:00 UTC on 2nd June 2013 to 00:00 UTC on 3rd June 2013 for the point353

(188.75◦E, 25◦N) which is located in the north west Pacific ocean. This forecast was ini-354

tialised using ERA interim and Mercator Ocean reanalysis data; we denote this initial fore-355

cast state as x−24. We run a forecast rather than initialise from these data directly in order to356

generate an initial state that is consistent with the coupled model dynamics.357

4.2. Background358

The initial background state, xb0, is generated by running a second 24 hour coupled model359

forecast from 00:00 UTC on 2nd June 2013 with perturbed initial data; this data, denoted360

x̂−24, is generated by adding random Gaussian noise to x−24,361

x̂−24 = x−24 + σ ◦ δx . (7)362

Here, the δx are normally distributed, random perturbations and σ ∈ Rm is a vector of363

standard deviations; these are computed as the sample standard deviation of the unperturbed364

coupled model forecast states at each model time step from x−24 to x0. The initial background365

guess for the assimilation is then given by the perturbed coupled model forecast state after 24366

hours, i.e. xb0 = x̂0. The true and initial background states are shown in figure 1.367

For the purposes of this study, we assume that the background error covariance matrix B0368

is diagonal, that is, the initial background errors are univariate and spatially uncorrelated; the369

diagonal elements, σ2
b , representing the error variances, are assumed to vary for each model370

2 Mercator Ocean re-analysis data are available via the MyOcean project Web Portal at www.myocean.eu.org .
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field and vertical level and are taken to be the squared values of the standard deviations σ371

from (7). The initial background error standard deviation profiles are shown in figure 2. The372

relative magnitude of the standard deviations of the atmosphere fields are greater than the373

ocean due to the faster timescales. For the ocean temperature and salinity, the variability,374

and thus the prescribed background error standard deviation, is largest in the turbulent mixed375

layer region (∼top 50 m) where timescales are shortest. Moving deeper into the ocean the376

timescales become longer and the standard deviations become very small.377

The assumption of a diagonal matrix B is a great simplification but is used here as an aid378

to understanding the implicit evolution of the error covariances by the 4D-Var algorithm.379

Although we assume that the prior atmosphere and ocean fields are uncorrelated, the incre-380

mental 4D-Var algorithm implicitly propagates the background error covariances across the381

assimilation window according to the TL model dynamics (see Bannister (2008a) and refer-382

ences therein). This acts to modify the prior background error variance estimates and induce383

non-zero correlations between model variables.384

A simple preconditioning of the inner-loop cost function using the square root of the back-385

ground error covariance matrix was found to be beneficial in terms of improving the con-386

ditioning of the system and allowing convergence of the inner-loop minimisation within a387

reasonable number of iterations (Courtier, 1997). Preconditioning is common in most op-388

erational variational assimilation systems and is often implemented using a control variable389

transform (Bannister, 2008b).390

4.3. Observations391

We assume that the model state variables are observed directly to avoid the additional com-392

plexity of a non-linear observation operator. Observations are generated by adding uncorre-393
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lated random Gaussian errors, with given standard deviations (see table 1) to the reference394

trajectory at constant time and space intervals. Observations of atmospheric temperature, and395

u and v wind components are assimilated at 17 of the 60 atmosphere model levels; these396

are chosen to approximately correspond to the standard pressure levels used, for example, to397

report radiosonde data (see table 2). Observations of ocean temperature, salinity, and zonal398

and meridional currents are assimilated at 23 of the 35 ocean model levels giving vertical399

frequency comparable to a XBT profile (see table 3). Note that since the atmospheric model400

does not include the parameterisation of processes such as moist convection, clouds and pre-401

cipitation we do not assimilate observations of specific humidity, q. Ocean observational data402

are typically available less frequently than atmospheric observational data, particularly for403

certain operational observing systems. The atmosphere and ocean observation frequencies404

used in our assimilation experiments were chosen to reflect this disparity. Unless otherwise405

stated, results refer to experiments run with atmosphere observations at 3, 6, 9 and 12 hours,406

and ocean observations at 6 and 12 hours.407

Although it is generally accepted that observation error covariances exist it is typical to408

ignore them and in practice it is assumed that the errors in the observational data are spatially409

and temporally uncorrelated so that the observation error covariance matrices Ri is diagonal410

(Daley, 1991). We follow the same approach here but also keep the observation network fixed411

for the duration of each experiment so that the number of observations ri = r and Ri = R412

for all i. The observation error variances, σ2
o , are assumed to be constant across all vertical413

levels for each observation type.414
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5. Assimilation results415

Since our aim is to examine the impact of coupled assimilation on the atmosphere and ocean416

boundary layers we limit our discussion to this region and focus on the results in the bot-417

tom ∼200 hPa of the atmosphere model (∼15 levels), and top 50 m (26 levels) of the ocean418

model. We use a 12 hour assimilation window with 3 outer-loops and a model time-step of419

15 minutes. A 12 hour window length is common for atmospheric data assimilation systems,420

such as the ECMWF IFS. Initial experiments using a greater number of outer-loops showed421

that the cost function usually converged after around 3 loops. The inner-loop minimisation422

is terminated when the relative change in gradient is less than 0.001 (Lawless and Nichols,423

2006); for our system this is typically after around 10-20 iterations.424

Figure 3 shows the absolute (truth - analysis) error profiles at initial time t0 for each of the425

prognostic model variables for the three assimilation systems. The differences between the426

analyses are most pronounced in the upper ocean temperature and u, v current fields. The427

atmospheric temperature and specific humidity analysis errors are very similar to the initial428

background errors for all three systems. For specific humidity this is expected since we do429

not observe this field. For atmospheric temperature this may be in part due to the fact that the430

initial background errors are small in this region. There are also relatively fewer observations431

in the lower atmosphere compared to the upper ocean. There are clearer improvements in432

the near surface u and v wind fields. Here, the analysis errors for the uncoupled and weakly433

coupled systems are very alike whereas the strongly coupled system appears to use the near434

surface ocean current observations to further correct the u and v wind analyses. This is, in435

part, due to the way the coupled and uncoupled non-linear models and assimilation systems436

are formulated.437
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A notable aspect in the ocean analysis errors is at approximately 20m, which coincides438

with the mixed layer depth. The mixed layer depth is characterised by a sharp gradient in439

the temperature and salinity profiles. In the background estimate the position of this feature440

is incorrect. When the assimilation of observations attempts to correct this positional error,441

instead of shifting the profiles, it erroneously changes the structure of the temperature and442

salinity profiles so that the error in the analysis is actually increased compared to the back-443

ground. This is an issue for all three coupling strategies and is a well documented problem444

in the atmosphere when assimilating observations of the analogous boundary layer capping445

inversion (Fowler et al., 2012).446

It is not possible to draw conclusions on the performance of each approach from the anal-447

ysis errors alone. In particular, these results do not give any indication of whether the initial448

atmosphere and ocean analysis states are in balance. Since one of the key drivers behind the449

development of coupled data assimilation systems is generation of a consistent system state450

for the initialisation of coupled model forecasts, we use the analysis fields at the beginning451

of the assimilation window to initialise a series of coupled model forecasts; the results are452

discussed in sections 5.1. to 5.3..453

5.1. Initialisation shock454

A major problem with using analysis states from uncoupled assimilation systems to initialise455

a coupled model forecast is that the atmosphere and ocean fields may not be balanced and456

this can lead to initialisation shock. If the initial conditions are not on the coupled model457

attractor (in these twin experiments also the true attractor) the forecast will experience an458

adjustment process. In some cases the adjustment towards the model attractor solution occurs459

asymptotically but in others it manifests itself as a rapid change in the model fields in the460



COUPLED 4D-VAR DATA ASSIMILATION 23

early stages of the forecast (Balmaseda, 2012). The skill of a coupled model forecast depends461

strongly on the way it is initialised, thus the reduction or elimination of initialisation shock is462

particularly important in seasonal forecasting (Balmaseda and Anderson, 2009).463

Figure 4 compares the SST and surface fluxes for the first 48 hours of each coupled model464

forecast against the truth trajectory and also a forecast initialised from the initial background465

state (i.e. no assimilation). In all cases, the forecast eventually tracks the true trajectory fairly466

well but there is variation in behaviour during the first part of the forecast window. There is467

evidence of initialisation shock in the SST field. The initial SST from the uncoupled ocean468

analysis is furthest from the true initial SST (∼ 0.5K warmer) and when the coupled model469

is initialised from the combined uncoupled atmosphere and ocean analysis states the forecast470

SST increases sharply, even further away from the true SST, over the first 5 model time-steps471

before gradually converging back towards the true trajectory. We also see jumps in the SST472

forecasts initialised from the strongly and weakly coupled analyses but these are much smaller473

suggesting that the coupled analyses are more balanced. Note that the differences between the474

SST forecasts can most easily be seen in figure 6 which focuses in on the first 12 hours of475

the forecast window. In this example, the error in the weakly coupled SST analysis at the476

initial time is actually smaller than the strongly coupled SST analysis and the SST forecast477

from the weakly coupled analysis initially tracks the truth more closely. However, later in478

the forecast window, at the peak of the diurnal cycle (∼ 25 hours), the SST forecasts from479

both the weakly and uncoupled analyses unexpectedly diverge from the truth, whereas the480

strongly coupled analysis continues to track it closely. This could be interpreted as a further481

indication of greater balance in the strongly coupled analysis; although the initial error in482

the SST forecast from the strongly coupled analysis is greater than the weakly coupled, for483
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this example, it appears to be in better balance with rest of the model. The error in the initial484

temperature at the bottom atmosphere level is very similar for all three forecasts but if we485

examine the atmosphere-ocean temperature difference (figure 5) we see that although at times486

the weakly and uncoupled systems are closer to the truth than the strongly coupled system,487

the temperature difference for the strongly coupled system is more stable across the whole488

forecast period. It also tracks the truth very accurately during the first 12 hours of the forecast489

which is the period corresponding to the assimilation window. The pattern seen in the sensible490

heat flux forecasts in figure 4 would also support this.491

The strongly coupled analysis also produces better forecasts of the surface wind speed and492

u, v wind stress components (figure 4). The forecasts initialised from the weakly coupled493

and uncoupled analyses capture the general phasing of these fields but their magnitudes are494

overestimated to a greater extent than in the strongly coupled case over the first 24-48 hours495

of the forecast.496

The latent heat flux forecasts are the slowest to stabilise; this is likely to be due to the fact497

that we are not assimilating observations of specific humidity. However, as the forecasts adjust498

towards the model attractor, there is a clear pattern of increasing accuracy as we progress from499

uncoupled to weakly to strongly coupled initialisation.500

Overall our experiments have shown that, when compared to uncoupled initialisation, ini-501

tialisation using the analysis from a coupled assimilation can help to reduce initialisation502

shock and its impact on the subsequent forecast. For our model, the benefit appears to be503

greatest with the strongly coupled system; the weakly coupled assimilation system is also ca-504

pable of reducing shock, but its behaviour is less consistent. It is worth noting that we would505

expect the type and size of shocks produced by each assimilation system to vary depending506
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on factors such as season, location, assimilation start time and initial background state, and507

whether a full diurnal cycle is being observed.508

5.2. Uncoupled assimilations with ‘true’ SST and surface fluxes509

To understand how much the accuracy of the prescribed SST and surface fluxes may affect510

the results of the uncoupled assimilation we repeat the experiments performed in section511

5.1. using 6 hourly snapshots of the fluxes from the ‘truth’ trajectory in place of the forcing512

ERA-interim fields. In some sense this is the best we may expect the uncoupled assimila-513

tion system to be. Figure 6 shows the forecast fluxes for this case alongside those from the514

original experiment for the first 12 hours of the forecast. Although we see an improvement,515

with reduced shocks in the SST and latent and sensible heat fluxes, the strongly coupled as-516

similation still generally performs better than the uncoupled assimilation. Even with the true517

forcing data, the uncoupled systems suffer from the lack of atmosphere-ocean feedback. The518

weakly coupled SST analysis still produces a better SST forecast than the uncoupled ocean519

SST analysis, but the corresponding surface flux forecasts are either very similar or slightly520

worse for the weakly coupled case. This was also verified in experiments with different test521

cases (not shown). Overall, the performance of our weakly coupled assimilation system is522

usually comparable to the uncoupled system with the ‘true’ forcing. This indicates that even523

moving to a weakly coupled assimilation system may be of benefit. Furthermore, if multiple524

outer-loops are used, the update of the SST and surface fluxes can provide useful information525

not available to the uncoupled systems, as we demonstrate in section 5.4.526
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5.3. Temporal frequency of observations527

To test the sensitivity of the different approaches to the frequency of observations we repeat528

the assimilation experiments with the frequency of the atmosphere observations reduced by529

half to 6 hourly, so that we are observing the atmosphere and ocean with the same frequency.530

The strongly coupled system still performs better than the weakly coupled and uncoupled531

systems. The most significant effect is that differences between forecasts initialised from the532

weakly coupled and uncoupled analyses are less pronounced over the first 12 hours. This is533

best illustrated through the SST and surface flux forecasts (figures 7 and 8). If we compare534

these with figures 4 and 6 we see that both the strongly and weakly coupled t0 SST estimates535

are further from the true value than in the previous case. The forecast initialised from the536

strongly coupled analysis adjusts itself smoothly, but the forecast initialised from the weakly537

coupled analysis exhibits a much larger shock with amplitude similar to the uncoupled case.538

There is also more drift in the SST forecasts in the second half of the forecast window for539

this case.540

The change in the SST trajectories means that there is now also less of a clear gap between541

the latent and sensible heat fluxes for the forecasts initialised from the uncoupled and weakly542

coupled analyses. There is no real change to the pattern of behaviour in the wind stresses,543

but the over estimation of magnitude is slightly larger due to the increased errors in the near544

surface wind forecasts.545

These experiments have shown that the weakly coupled assimilation system appears to be546

much more sensitive to the observation frequency than the strongly coupled system. This is547

because the weakly coupled assimilation system is, unlike the strongly coupled system, pre-548

dominantly exposed to the coupling of the atmosphere and ocean through the innovations549
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which are by definition in observation space. Therefore, if the number of observations is de-550

creased, either spatially or temporally, this will clearly impact the greatest on the weakly551

coupled assimilation system. Although weak coupling can reduce shock, as seen in section552

5.1., at its worst it can produce results that are very similar to the uncoupled assimilation sys-553

tem. Similar behaviour was found in experiments varying the background error variances (not554

shown). Since changing the background error standard deviations has the effect of changing555

the relative weight given to the observations, the performance of the weakly coupled system556

was found to be more sensitive than the strongly coupled system to a change in the prescribed557

background error standard deviations.558

5.4. Single observation experiments559

A big hope for coupled data assimilation systems is that they will enable greater use of near-560

surface observations, such as satellite SST measurements and scatterometer data, by allowing561

cross-covariance information between the atmosphere and ocean. We investigate this prop-562

erty by assimilating single observations of near-surface variables. Since the initial background563

error covariance matrix is diagonal, increments from a single observation at the end of the as-564

similation window provide insight into the implicit covariances generated by the 4D-Var sys-565

tem. The purpose of the experiments presented here is to illustrate the ability of the strongly566

and weakly coupled systems to induce cross-correlations between the atmosphere and ocean567

rather than investigate their size and structure.568

To understand the impact of SST observations, we assimilate the temperature from the top569

ocean level (1 m depth) at the end of the 12 hour assimilation window. Figure 9 shows the570

(analysis-background) increments produced by the strongly and weakly coupled systems at571

initial time, t0. We see initial increments in atmospheric temperature, specific humidity, ocean572
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temperature and salinity with the strongly coupled system, but only ocean temperature and573

salinity for the weakly coupled system.574

We can relate the behaviour observed in this experiment back to the model equations and575

assimilation system design. The strongly coupled system uses the coupled tangent linear and576

adjoint models in its inner-loops. Since the boundary conditions for the atmospheric temper-577

ature and specific humidity depend on the SST and the boundary conditions for the ocean578

temperature and salinity depend on the atmospheric temperature and humidity via the latent579

and sensible heat fluxes, an increment or perturbation to the SST should produce increments580

in the atmosphere temperature and specific humidity fields. We do not see increments in the581

initial u and v wind fields because assumptions made in the development of the tangent lin-582

ear and adjoint models mean that the SST does not directly depend on them. The weakly583

coupled system cannot produce initial increments in the atmosphere fields because it runs584

separate inner-loops for the atmosphere and ocean which use the uncoupled atmosphere only585

and uncoupled ocean only tangent linear and adjoint models. The SST used in the bound-586

ary conditions for the inner-loop uncoupled atmosphere model and the surface fluxes used587

in the boundary conditions of the inner-loop uncoupled ocean model are prescribed from the588

outer-loop linearisation trajectory.589

The initial analysis increments modify the coupled model trajectory and produce incre-590

ments to the background fields for all variables across the rest of the assimilation window;591

figure 10 shows the analysis increments in the centre of the assimilation window (t = 6 hr)592

as an example. The changes in the initial atmospheric temperature, specific humidity, ocean593

temperature and salinity fields subsequently produce increments to all the model variables.594

However, these increments are relatively small compared to the full fields and so when we595
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examine the analysis trajectories across the whole assimilation window we see that the ocean596

u, v current and atmosphere u, v wind trajectories are qualitatively very similar for both597

the strongly and weakly coupled systems (not shown). There are more visible differences598

between the strongly and weakly coupled atmospheric temperature and specific humidity599

analysis trajectories due to the difference in increments at t0 (not shown).600

601

Scatterometer data provide information on ocean surface wind speed and direction via mea-602

surements of backscatter from surface waves. Since our system is only currently designed to603

handle direct observations we use (i) horizontal wind components, u and v, at the bottom604

level of the atmosphere model (∼ 10m height); (ii) zonal and meridional ocean currents at605

the top level of the ocean model as a proxy.606

With single u and v wind observations only the u and v wind fields are updated at t0 for607

both the strongly and weakly coupled systems (not shown). These initial wind increments608

do, however, produce increments to all of the atmosphere and ocean background fields over609

the remainder of the assimilation window. In this case, the strongly and weakly coupled610

analyses are identical; this is due to the model formulation and the fact that we are ignoring611

perturbations to the diffusion coefficients in the tangent linear and adjoint models as described612

in section 3.2.. The u and v winds only depend on each other and so are essentially decoupled613

from the rest of the model in both the coupled model and atmosphere only model.614

With u and v ocean surface current observations, the strongly coupled system produces ini-615

tial increments in all fields, although these are very small for atmospheric temperature and616

specific humidity. The weakly coupled system only produces initial increments in the ocean617

fields and these are larger than in the strongly coupled case (figure 11). Again, the update of618
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the initial state gives rise to increments in all fields across the assimilation window for both619

systems. Although the t0 ocean analysis increments are larger in the weakly coupled system620

the increments across the assimilation window are generally smaller, particularly for the at-621

mospheric fields, where there is no change to the initial states (results not shown). There is622

no difference in the strongly and weakly coupled SST and surface fluxes when we assimilate623

single wind observations and only very small differences in the single SST observation exper-624

iment. However, for this case the strongly coupled system produces a much better analysis of625

the true surface wind stress and wind speed than the weakly coupled system (figure 12). As626

described in section 2.1.1., the strongly coupled system is able to generate cross-covariances627

between the atmosphere and ocean fields and thus improve the wind analysis using the ocean628

current observations. Improved near-surface wind conditions can have a positive impact on629

air-sea exchange and thus both the atmosphere and ocean analyses. This result clearly demon-630

strates the potential for greater use of near surface data with strongly coupled assimilation.631

These experiments have provided a valuable illustration of the ability of a strongly cou-632

pled assimilation system to induce cross-covariance information between the atmosphere and633

ocean variables, such that a single observation of a variable in one fluid at the end of the634

assimilation window can produce increments to variables in the other fluid at initial time t0.635

Although the structure of the weakly coupled assimilation system does not allow atmosphere-636

ocean cross-covariances, there is benefit to be gained from this approach if more than one637

outer-loop is used, and particularly if both the atmosphere and ocean are well observed (see638

section 5.3.). An analysis increment from an observation in one system will change the lin-639

earisation state for both the uncoupled TL models used in the next inner-loop minimisation640

and thus has the potential to influence the subsequent analysis across the whole atmosphere-641
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ocean system. In the next section we present a simple illustration of how assimilating a single642

observation of both fluids enables the weakly coupled system to modify the initial analysis643

increments across the air-sea interface.644

5.5. Double observation experiment645

Due to the inability of the weakly coupled system to produce an initial increment in the un-646

observed fluid it is not possible to see explicitly how information is spread across the air-sea647

interface in the analysis increments when only one fluid is observed. Unlike in the uncou-648

pled system, in the weakly coupled system observations are able to influence the analysis649

across the atmosphere-ocean interface. This can be illustrated by assimilating two observa-650

tions of temperature at the end of the 12 hour assimilation window; one at the lowest level651

of the atmosphere, and one at the top level of the ocean. The atmospheric temperature anal-652

ysis increments after three outer-loops are illustrated in figure 13 (solid lines). These can be653

compared to the analysis increments when only the atmosphere temperature observation is654

assimilated (dashed lines) and when only the ocean temperature observation is assimilated655

(dot-dash lines, same as figure 9).656

It can be seen in the strongly coupled case that only assimilating the atmosphere tempera-657

ture observation produces a negative increment, peaking at approximately 980hPa, and assim-658

ilating only the ocean temperature observation produces a positive increment, peaking again659

at approximately 980hPa. When both these observations are assimilated the strongly coupled660

system is able to make use of the overlapping information they provide and the result is a661

positive increment which is slightly reduced in magnitude compared to when only the ocean662

observation is assimilated. For the weakly coupled case, when only the atmosphere temper-663

ature observation is assimilated the atmospheric temperature analysis increment is nearly664
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identical to that produced by the strongly coupled system. When only the ocean temperature665

observation is assimilated there is no initial analysis increment in the atmosphere tempera-666

ture field (as discussed in section 5.4.). However, when both temperature observations are as-667

similated the atmospheric temperature analysis increment becomes larger in magnitude than668

when only the atmosphere temperature observation was assimilated. Therefore, the weakly669

coupled system is able to use the ocean observation to alter the initial analysis increment in670

the atmosphere when atmosphere observations are also assimilated. This is not possible in671

the uncoupled system.672

6. Summary673

We have developed an idealised coupled atmosphere-ocean model system and used it to study674

different formulations of the coupled atmosphere-ocean data assimilation problem. By em-675

ploying the incremental 4D-Var algorithm we have built the capability to run both strongly676

and weakly coupled assimilations as well as uncoupled atmosphere or ocean only assim-677

ilations. This has provided a flexible framework for comparing the behaviours of varying678

degrees of coupling.679

A key motivation for the development of coupled data assimilation systems is the potential680

for the reduction or elimination of initialisation shock in coupled model forecasts via the gen-681

eration of more balanced initial conditions, and the positive impact this is expected to have682

in terms of forecast skill. Initialisation shocks were seen in SST in our simple system and683

experiments showed that, when compared to uncoupled initialisation, coupled assimilation is684

able to reduce initialisation shock and its impact on the subsequent forecast, although it may685

not eliminate it completely. Whilst this improvement was clearly evident when using analy-686

ses from the strongly coupled system, it was not always so obvious with the weakly coupled687
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system in our experiments. The ability of the weakly coupled assimilation system to reduce688

initialisation shock was found to be sensitive to the input parameters, such as observation689

frequency. In the best cases the behaviour of the SST and surface fluxes in the initial stages690

of the forecast (used to identify shock) followed those from the strongly coupled assimila-691

tion. In other cases the weakly coupled assimilation did not show the same improvement as692

strongly coupled assimilation. However, the weakly coupled system was usually comparable693

to uncoupled assimilations in which the atmosphere and ocean models were forced using the694

‘true’ SST and surface fluxes. This illustrates that even moving to a weakly coupled assim-695

ilation system should be of benefit, as the update of the SST and surface fluxes through the696

outer-loop step can provide useful information not available to the uncoupled assimilation697

systems.698

Single observation experiments were used to demonstrate how coupled assimilation sys-699

tems offer the potential for improved use of near-surface observations via the generation of700

cross covariance information. Although the possible cross-covariances that can be generated701

are partly limited by the simplified dynamics of our model, the effect of coupled assimilation702

can clearly be seen. The strongly coupled assimilation system is able to implicitly induce703

cross-covariance information between the atmosphere and ocean at the initial time, such that704

a single ocean observation can generate analysis increments in the initial atmospheric fields705

and vice-versa. While the design of the weakly coupled incremental 4D-Var assimilation al-706

gorithm does not allow this, the use of the coupled model in the outer-loop update step means707

that if more than one outer-loop is run, an observation in one system can affect the other sys-708

tem by changing the linearisation state. With observations in both fluids, the weakly coupled709

system is also able to alter the analysis increments across the atmosphere-ocean interface710
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at the initial time and this was illustrated via a double observation experiment. Thus infor-711

mation from near-surface observations can be used to greater effect compared to uncoupled712

assimilation systems.713

Overall, the results from experiments with this idealised system support the belief that ben-714

efits can be expected from coupled data assimilation systems. In the experiments presented715

here and others performed using variations of the set-up described, the strongly coupled as-716

similation system generally outperforms both the weakly coupled and uncoupled systems,717

in terms of producing more balanced initial analysis fields, and extracting more information718

from observations through the implicit generation of cross-covariances. The results from the719

weakly coupled assimilation experiments show that benefit can be gained from such a system,720

but that it is unlikely to be as large as that from strongly coupled assimilation. Nevertheless,721

even with a weak coupling we may expect some reduction in initialisation shock and the gen-722

eration of some cross-covariance information. Thus the current efforts of operational centres723

to develop weakly-coupled assimilation systems are a step in the right direction.724

Further work is required to better understand the sensitivity of the weakly coupled system to725

the input parameters of the assimilation. In particular, this study used a diagonal background726

error covariance matrix in order to understand more cleanly the covariances generated by the727

coupled assimilation. If the weakly-coupled assimilation included non-diagonal background728

error covariance matrices in the atmosphere and ocean inner-loop cost functions, then better729

balance would be expected in the increments of the individual systems. This may in itself730

help to reduce initialisation shock and make better use of observations.731

Work is now underway to investigate the nature and structure of the atmosphere-ocean732

cross-covariances and how they should be represented in both strongly and weakly coupled733
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systems. An increased understanding of the covariance information arising from atmosphere-734

ocean coupling will provide valuable guidance for the design of more balanced covariances735

for future full scale coupled data assimilation systems.736
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APPENDIX A: Atmosphere and ocean model components747

This appendix provides further details of the atmosphere and ocean components of the748

coupled 1D model system.749

A1. Atmosphere model750

The atmospheric component of the model is a stripped-down version of the ECMWF single-751

column model which originates from an early cycle of the IFS (Integrated Forecasting Sys-752

tem) code. The model solves the primitive equations for temperature, T , specific humidity, q,753

and zonal, u, and meridional, v, wind components, formulated in non-spherical co-ordinates,754
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(Simmons and Burridge, 1981; Ritchie et al., 1995) and using a hybrid vertical co-ordinate,755

η (see section A1.2.),756

∂u

∂t
+ η̇

∂u

∂η
= f(v − vg) + Fu + Pu , (A1)757

∂v

∂t
+ η̇

∂v

∂η
= −f(u− ug) + Fv + Pv , (A2)758

∂T

∂t
+ η̇

∂T

∂η
=

R

cp
T
ω

p
+ FT + PT , (A3)759

∂q

∂t
+ η̇

∂q

∂η
= Fq + Pq . (A4)760

Here t is time, f is the Coriolis parameter, ug and vg are prescribed geostrophic wind com-761

ponents, p is pressure, R is the gas constant for air, cp is the specific heat at constant pressure762

for air, η̇ is the vertical velocity in η co-ordinates and ω is the prescribed vertical velocity in763

pressure co-ordinates. The Fφ (φ = u, v, T, q) are forcing terms representing the horizontal764

advection of the mean variables and the Pφ terms represent tendencies due to the parameteri-765

sation of sub-grid scale physical processes.766

The vertical advection terms in (A1)–(A4) are computed using a two time level Eulerian767

(upwind) scheme with a semi-implicit treatment of the right hand sides (ECMWF IFS docu-768

mentation, 2001–2013a).769

In the original ECMWF SCM code (the ‘full physics’ version), the Pφ terms in (A1)-(A4)770

incorporate the effects of processes such as radiation, turbulent mixing, moist convection and771

clouds. For the simplified system, the code was stripped back to include just advection and772

turbulent mixing; the Pφ terms then represent physical tendencies due to vertical exchange773

by turbulent processes only. This was done in order to simplify the derivation of the ad-774

joint model whilst ensuring that the evolution of the atmosphere was sufficiently realistic for775

purposes of this study. The turbulent mixing is parameterised using a k-diffusion approach776
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(Louis, 1979)777

∂φ

∂t
=

1

ρa

∂Jφ
∂z

, (A5)778

where φ is the prognostic variable (T, q, u, or v), ρa is the density of air, z is height, and the779

vertical turbulent flux Jφ (positive downward) is given by780

Jφ = ρaKφ
∂φ

∂z
, (A6)781

where Kφ is the turbulent exchange coefficient.782

The exchange coefficients between the surface and lowest model level (∼10 m above sur-783

face) are expressed as functions of the bulk Richardson number, determined according to784

the formulation of Louis et al. (1982). Above the surface layer, the turbulent transports are785

based on local stability and the coefficients are defined using a combined Louis-Tiedtke-786

Geleyn (LTG) - Monin-Obukov (MO) formulation (Beljaars, 1995; Beljaars and Viterbo,787

1998; Viterbo et al., 1999). The physical tendencies are computed using an implicit time-788

stepping procedure. Full details of the turbulent diffusion scheme together with further refer-789

ences can be found in the ECMWF IFS documentation (2001–2013b).790

A1.1. Boundary conditions791

The upper and lower boundary conditions are given by792

Kφ
∂φ

∂z
= 0 , at p = ptop (A7)793

Kφ
∂φ

∂z
→ Cφ|U(z)| (φ(z)− φsurf) as z → 0. (A8)794

where ptop is the pressure at the top of the atmosphere (set at 0.1 hPa), Cφ is the transfer coef-795

ficient at the lowest model level, and φsurf represents the value of the prognostic variable φ at796

the surface. The SST and saturation specific humidity are used as φsurf values for temperature797

and specific humidity, and a no-slip condition is used for the u and v wind components. The798
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surface turbulent fluxes are passed to the ocean model where they are used in the computation799

of the ocean surface boundary conditions (section A2.2.).800

A1.2. Vertical discretisation801

The atmosphere is divided into 60 unequally spaced layers, extending from the surface up802

to ptop, with the finest vertical resolution (measured in geometric height) in the planetary803

boundary layer. The model uses the hybrid vertical co-ordinate of Simmons and Burridge804

(1981). The co-ordinate η = η(p, ps) is a monotonic function of the pressure, and is also805

dependent on the surface pressure, ps. There is no staggering of prognostic model variables;806

T, q, u and v are all represented at ‘full-level’ pressures pk and the model layers are defined807

by the pressures at the interfaces between them (termed ‘half levels’).808

A2. Ocean mixed layer model809

The ocean mixed layer model is based on the KPP vertical mixing scheme of Large et al.810

(1994). The code was originally developed by the NCAS Centre for Global Atmospheric811

Modelling at the University of Reading (Woolnough et al., 2007) and incorporated into the812

ECMWF SCM code by Takaya et al. (2010) as part of a study into the impact of better813

representation of coupled atmosphere-upper ocean processes in the ECMWF medium-range814

forecasts. In this section we summarise the components of the scheme most relevant to this815

study; a comprehensive description of the model is given in Large et al. (1994).816

The KPP model describes the evolution of the mean values of temperature, θ, salinity, s,817

and zonal and meridional currents uo, vo. The time evolution of each field is expressed as818

the vertical divergence of the kinematic turbulent fluxes, w′φ′ (φ = θ, s, uo, vo), giving the819
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following set of equations820

∂θ

∂t
= −∂w

′θ′

∂z
− ∂Qn

∂z
, (A9)821

∂s

∂t
= −∂w

′s′

∂z
, (A10)822

∂uo
∂t

= −∂w
′u′o
∂z

+ fvo , (A11)823

∂vo
∂t

= −∂w
′v′o

∂z
− fuo . (A12)824

Here, an overbar denotes a time average, primed variables represents turbulent fluctuations825

from this average, w is the turbulent vertical velocity and Qn is the non-turbulent heat flux826

(solar irradiance) which is modelled using an empirical function of short wave radiation,827

QSW , and ocean depth, d (distance from ocean surface boundary).828

The ocean surface boundary layer is defined as the region where d is less than or equal to829

the ocean boundary layer depth h, the value of which is based on the depth at which the bulk830

Richardson number equals the prescribed critical Richardson number. Within this region the831

kinematic fluxes w′φ′ are parameterised using K-profiles832

w′φ′ = −Kφ
∂φ

∂z
, (A13)833

where φ represents a mean quantity. The Kφ are expressed as product of a depth dependent834

turbulent velocity scale and a smooth non-dimensional shape function such that they are835

directly proportional to h at all depths.836

In the ocean interior (d > h) the turbulent vertical fluxes are parameterised as837

w′φ′ = −νφ(d)
∂φ

∂z
, (A14)838

where the interior diffusivity νφ is the sum of resolved shear instability and unresolved shear839

instability due to internal wave breaking; we neglect the effect of double diffusion for reasons840

described in Takaya et al. (2010).841
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A2.1. Geostrophic currents842

For a 1D water column, the ocean currents are essentially governed by Ekman flow (Stew-843

art, 2008). Without pressure gradient terms, the water moves under the sole influence of the844

Coriolis force and the ocean momentum equations reduce to the equation for the harmonic845

oscillator (Stewart, 2008); the solution takes the form of an inertial oscillation or inertial cur-846

rent. In reality, we expect the ocean currents to be approximately geostrophically balanced.847

To alleviate the unrealistic behaviour that this produces we use the method of Takaya et al.848

(2010) and decompose the currents into slow and fast varying flows. The fast varying flow is849

assumed to be mainly the Ekman (or ageostrophic) flow simulated by the KPP model. The850

slow varying geostrophic component is prescribed and not modelled.851

A2.2. Boundary conditions852

The ocean surface boundary conditions are given by the surface kinematic fluxes of heat, salt853

and momentum854

w′θ′0 = −Qt/(ρ0cp0) , (A15)855

w′s′0 = −Fts0/ρ0(0) , (A16)856

w′u′0 = −τx/ρ0 , (A17)857

w′v′0 = −τx/ρ0 , (A18)858

where Qt is the net turbulent heat flux, Ft is the net turbulent freshwater flux, τx and τy are859

the zonal and meridional components of the surface wind stress, s0, ρ0, cp0 are the salinity,860

density and specific heat at constant pressure at the ocean surface, and ρ0(0) is the density of861
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surface water with zero salinity (i.e. pure water). The fluxes Qt and Ft are computed as862

Qt = QLW +QE +QH , (A19)863

Ft = QE/Lν , (A20)864

where QLW is net long wave radiation, QE , QH are the latent and sensible heat fluxes and865

Lν is the latent heat of evaporation. The latent and sensible heat and momentum fluxes are866

the surface turbulent fluxes from (A8); these are computed within the atmosphere model867

component using the formulae given in section A3..868

A2.3. Vertical discretisation869

The ocean model uses a stretched vertical grid (Takaya et al., 2010) with 35 levels from870

the surface to a depth of 250 m. The resolution is increased in the upper layers in order to871

simulate the diurnal SST variability; the top model layer is chosen to be 1m thick and there872

are 19 levels in the top 25 m. The largest depth is fixed so that the ocean model levels do not873

vary with time. As with the atmosphere component, there is no staggering of the prognostic874

model variables, θ, s, uo and vo are all represented at full model level depths.875

A3. Atmosphere-Ocean coupling876

The atmosphere-ocean fluxes are estimated from bulk formulae877

τx = ρaCD|Un|un , (A21)878

τy = ρaCD|Un| vn , (A22)879

QH = ρaCH |Un| (Tn − SST ) , (A23)880

QE = ρa Lv CE|Un| (qn − qsat(SST )) , (A24)881
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where the subscript n represents the lowest atmosphere model level,882

|Un| =
√
u2n + v2n , (A25)883

is the (∼10m) windspeed and qsat(SST ) is the surface saturation specific humidity. The drag884

coefficient, CD, and the transfer coefficients for heat, CH , and moisture, CE , are computed885

using the method of Louis et al. (1982).886
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M. Janisková, J-N. Thépaut, and J-F. Geleyn. Simplified and regular physical parameteriza-942

tions for incremental four-dimensional variational assimilation. Monthly Weather Review,943

127:26–45, 1999.944

N.S. Keenlyside, M. Latif, J. Jungclaus, L. Kornblueh, and E. Roeckner. Advancing decadal-945

scale climate prediction in the North Atlantic sector. Nature, 453:84–88, 2008.946

P. Laloyaux, M. Balmaseda, K. Mogensen, P. Janssen, and D. Dee. The ECMWF coupled947

assimilation system. In P. Soille and Marchetti P.G., editors, Proceedings of the 2014 confer-948

ence on Big Data from Space (BiDS’14), pages 16–19, ESA-ESRIN, Frascati, Italy, 12-14949

November 2014, 2014. URL http://dx.doi.org/10.2788/1823.950

P. Laloyaux, M. Balmaseda, D. Dee, K. Mogensen, and P. Janssen. The ECMWF prototype951

for a coupled assimilation system. Submitted to Quarterly Journal of the Royal Meteoro-952

logical Society, 2015.953

W.G. Large, J.C. McWilliams, and S.C. Doney. Oceanic vertical mixing: a review and a954

model with non-local boundary layer parameterization. Reviews of Geophysics, 32:363–955

403, 1994.956

S. Laroche, M. Tanguay, and Y. Delage. Linearization of a simplified planetary boundary957

layer parameterization. Monthly Weather Review, 130:2074–2087, 2002.958

A.S. Lawless. International workshop on coupled data assimilation, University of Reading,959

UK. Final report, September 2012. Available at http://www.esa-da.org/content/d1-report-960



COUPLED 4D-VAR DATA ASSIMILATION 45

international-workshop-coupled-data-assimilation.961

A.S. Lawless. Variational data assimilation for very large environmental problems. In M.J.P.962

Cullen, M. A. Freitag, S. Kindermann, and R. Scheichl, editors, Large Scale Inverse Prob-963

lems: Computational Methods and Applications in the Earth Sciences, Radon Series on964

Computational and Applied Mathematics 13., pages 55–90. De Gruyter, 2013.965

A.S. Lawless and N.K. Nichols. Inner loop stopping criteria for incremental four-dimensional966

variational data assimilation. Monthly Weather Review, 134:3425–3435, 2006.967

A.S. Lawless, S. Gratton, and N.K. Nichols. An investigation of incremental 4D-Var using968

non-tangent linear models. Quarterly Journal of the Royal Meteorological Society, 131:969

459–476, 2005.970

D.J. Lea, I. Mirouze, M.J. Martin, R.R. King, A. Hines, and D. Walters. Using a new cou-971

pled data assimilation system to assess the HadGEM3 coupled model. In preparation for972

submission to Monthly Weather Review, 2015.973

J.-M. Lellouche, O. Le Galloudec, M. Drévillon, C. Régnier, E. Greiner, G. Garric, N. Ferry,974
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Table 1. observation error standard deviations by field

atmosphere u wind v wind ocean salinity u current v current
temperature (K) (ms−1) (ms−1) temperature (K) (psu) (ms−1) (ms−1)

1.0 1.5 1.5 0.01 0.003 0.01 0.01

Table 2. atmosphere observation locations

model standard pressure model full level
level level (hPa) pressure value (hPa)3

14 10 9.893
17 20 18.815
19 30 28.882
22 50 54.624
23 70 66.623
25 100 95.980
28 150 154.038
30 200 202.230
32 250 257.685
33 300 288.093
36 400 389.233
39 500 501.637
44 700 694.696
49 850 861.497
52 925 935.065
56 1000 995.055
60 n/a 1017.293

3 values based on a surface pressure value of 1018.5 hPa; model full level pressure values vary with surface pressure. These levels have

been chosen to approximately correspond to the standard pressure levels (hPa).
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Table 3. ocean observation locations

model level depth (m)

1 1.000
3 3.069
5 5.277
8 8.848
10 11.406
13 15.538
16 20.173
18 23.762
20 28.100
22 33.760
23 37.366
24 41.703
25 46.985
26 53.475
27 61.498
28 71.452
29 83.818
30 99.175
31 118.214
32 141.758
33 170.778
34 206.414
35 250.000



COUPLED 4D-VAR DATA ASSIMILATION 51

200 250 300

200

400

600

800

1000

atmosphere
temperature (K)

pr
es

su
re

 (
hP

a)

0 0.01 0.02

specific
humidity (kg/kg)

0 10 20

u wind (ms −1)

0 10 20

v wind (ms −1)

289 294 299

50

100

150

200

250

ocean
temperature (K)

de
pt

h 
(m

)

34.5 35 35.5

salinity (psu)

−0.2 −0.1 0

u current (ms −1)

−0.1 0 0.1

v current (ms −1)

Fig. 1. True (solid black line) and background (dashed grey line) initial states.
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Fig. 3. Absolute errors at initial time: background error (solid black line), strongly coupled analysis
error (dashed red line), weakly coupled analysis error (solid blue line), and uncoupled analysis error
(dot-dash green line). Experiments using a 12 hour assimilation window with 3 hourly atmosphere &
6 hourly ocean observations. Observation locations are given in tables 2 and 3.
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Fig. 4. Coupled model SST & surface fluxes for coupled model forecast initialised from t0 anal-
yses, first 48 hours of forecast: truth (solid black line), forecast initialised from initial background
state (solid grey line), forecast initialised from strongly coupled analysis (dashed red line), forecast
initialised from weakly coupled analysis (solid blue line), and forecast initialised from uncoupled
analyses (dot-dash green line). Experiments using a 12 hour assimilation window with 3 hourly at-
mosphere & 6 hourly ocean observations.
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tialised from t0 analyses: truth (solid black line), forecast initialised from strongly coupled analysis
(dashed red line), forecast initialised from weakly coupled analysis (solid blue line), and forecast
initialised from uncoupled analyses (dot-dash green line). Experiments using 12 hour assimilation
window with 3 hourly atmosphere & 6 hourly ocean observations
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Fig. 6. Coupled model SST & surface fluxes for coupled model forecast initialised from t0 anal-
yses, first 12 hours of forecast: truth (solid black line), forecast initialised from strongly coupled
analysis (dashed red line), forecast initialised from weakly coupled analysis (solid blue line), forecast
initialised from uncoupled analyses (dot-dash green line), and forecast initialised from uncoupled
analyses using ‘true’ forcing (black dots). Experiments using 12 hour assimilation window with 3
hourly atmosphere & 6 hourly ocean observations.
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Fig. 7. Coupled model SST & surface fluxes for coupled model forecast initialised from t0 anal-
yses, first 48 hours of forecast: truth (solid black line), forecast initialised from initial background
state (solid grey line), forecast initialised from strongly coupled analysis (dashed red line), forecast
initialised from weakly coupled analysis (solid blue line), and forecast initialised from uncoupled
analyses (dot-dash green line). Experiments using 12 hour assimilation window with 6 hourly atmo-
sphere & 6 hourly ocean observations.
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Fig. 8. Coupled model SST & surface fluxes for coupled model forecast initialised from t0 anal-
yses, first 12 hours of forecast: truth (solid black line), forecast initialised from initial background
state (solid grey line), forecast initialised from strongly coupled analysis (dashed red line), forecast
initialised from weakly coupled analysis (solid blue line), and forecast initialised from uncoupled
analyses (dot-dash green line). Experiments using 12 hour assimilation window with 6 hourly atmo-
sphere & 6 hourly ocean observations.
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Fig. 9. Analysis increments at t = 0 : strongly coupled (dashed red line) and weakly coupled (solid
blue line) assimilations with single SST observation at end of 12 hour assimilation window.
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Fig. 10. Analysis increments at t = 6 hr : strongly coupled (dashed red line) and weakly coupled
(solid blue line) assimilations with single SST observation at end of 12 hour assimilation window.
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Fig. 11. Analysis increments at t = 0 : strongly coupled (dashed red line) and weakly coupled (solid
blue line) assimilations with single ocean surface current observation at end of 12 hour assimilation
window.
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Fig. 12. SST & surface fluxes : truth (solid black line), initial background trajectory (dashed grey
line), strongly coupled analysis (dashed red line) and weakly coupled analysis (solid blue line) from
experiment with single ocean surface current observation at end of 12 hour assimilation window.
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Fig. 13. Atmospheric temperature analysis increments at t = 0 : strongly coupled (left) and weakly
coupled (right) assimilations with two observations of temperature, corresponding to the lowest model
level in the atmosphere and the top model level in the ocean, at the end of a 12 hour assimilation win-
dow. The solid lines indicate the analysis increment when both temperature observations are assim-
ilated; the dashed lines correspond to assimilation of the atmosphere temperature observation only;
and dot-dash lines correspond to assimilation of the ocean temperature observation only.


