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Summary 

Oak (Quercus robur) powdery mildew is a common and damaging fungal disease. In a 

local survey at Reading, UK, oak powdery mildew was common on trees of all height-

classes but was most common on trees of 3-9m. A variety of other fungal species were 

commonly found growing in association with oak powdery mildew colonies. The 

abundance of such fungi was estimated through stratified sample surveys for 2.5 years.  

The taxa most commonly associated with oak powdery mildew were Acremonium sp., 

Trichoderma sp., Ampelomyces/Phoma sp. and Leptosphaerulina australis.  Nearly 90% 

of mildew colonies were associated with L. australis, which is not generally considered 

as a mycoparasite or antagonist, in contrast with the other three fungi.  Abundance 

varied between June and October surveys.  Acremonium sp. abundance was greater in 

summer samplings whereas L. australis and Trichoderma sp. abundances were greater in 

autumn samplings.  Ampelomyces/Phoma sp. was never observed in the absence of 

powdery mildew.  Relationships between the mildew-associated fungi and oak powdery 

mildew appeared curved and differed significantly between sampling years.  L. australis 

was positively correlated with the other three associated fungi studied when powdery 

mildew was also present.  The variety and high population densities of the mildew-

associated fungi suggest that they may be important in determining the final density of 

oak mildew and the damage caused by it.  
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1. Introduction 

Oak powdery mildew affects oaks of all species, ages and geographical origins, but the 

impact of the disease differs depending on the species.  Three species are responsible for 

oak powdery mildew in Europe. The most common is Erysiphe alphitoides (Griffon & 

Maubl.) U. Braun & S. Takam..  Far less frequent are E. hypophylla (Nevod.) U. Braun 

& Cunningt. and Phyllactinia guttata (Wallr.) Lév. (sensu lato, including P. roboris 

(Gachet) S. Blumer) (Mougou et al., 2008; Mougou-Hamdane et al., 2010).  A fourth 

species, not previously reported in Europe, was recently found in France under the name 

E. quercicola (Mougou-Hamdane et al., 2010).  E. alphitoides is the most prevalent and 

damaging species. The host range of E. alphitoides lies mainly in the genus Quercus, 

with Q. robur being the most susceptible species (Ayres, 1976; Ufnalski and Przybyl, 

2004), and oak powdery mildew is ubiquitous and abundant on Q. robur in the British 

Isles.  Infection by powdery mildew seriously reduces the life-span of leaves (Hajji et al. 

2009).  Seedlings and young oak trees in forests (as well as in nurseries and plantations) 

are very susceptible to the disease (Ufnalski and Przybyl, 2004); growth of young stands 

is substantially retarded; and infection may cause severe seedling mortality (Soutrenon, 

1998; Desprez-Loustau et al, 2014).  Repeated attacks by E. alphitoides in combination 

with attacks by other pathogens and/or insects can reduce the vigour of mature trees 

(Hajji et al., 2009). In most European areas where oaks are grown, the combined effects 

of powdery mildew with other fungal and insect infestations are implicated in oak 

decline (Ufnalski and Przybyl, 2004; Marcais and Desprez-Loustau, 2014).  

In Europe, oak mildew epidemics usually start late in spring, as the spring shoots 

develop (Marcais et al., 2009). Young, expanding and developing leaves are very 

susceptible to the disease but their susceptibility decreases as leaves mature (Edwards 
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and Ayres, 1982; Marcais and Desprez-Loustau, 2014). Consequently, the pathogen has 

a nearly monocyclic infection cycle. The disease can occasionally be severe if epidemics 

occur early in spring (Marcais et al., 2009) when high levels of inoculum coincide with 

the presence of susceptible leaf tissues. Host-pathogen synchrony in spring appears to 

regulate disease severity (Desprez-Loustau et al., 2010). Disease prevalence is greater on 

the second and the third leaf flushes produced between the end of June and August 

(Marcais et al., 2009); these leaves tend to be very   severely infected, presumably 

because inoculum is abundant as they expand. Host-pathogen synchrony is probably 

responsible for the lower disease severity observed on large trees since the second and 

third flush leaves are a smaller proportion of the total leaf area produced during the 

season (Bréda et al., 1995; Marcais et al., 2009).  Chasmothecia, the sexual fruiting 

bodies which contain asci, are abundant on falling leaves in the autumn. However, the 

role of ascospores in the epidemiology of the disease has been controversial. For a long- 

time     iInitial infections were previously  believed to start from overwintering 

mycelium in buds (Kerling, 1966; Nef and Perrin, 1999). However, Marcais et al. (2009) 

found such initial infections to be very   infrequent in spring, and ascospores, which are 

widely dispersed by wind, to be the most common source of inoculum for the primary 

spring infections.  

Aerial leaf surfaces of all plants are naturally inhabited by numerous micro-

organisms (Gowdu and Balasubramanian, 1988; Jumpponen and Jones, 2010; Cordier et 

al., 2012) which not infrequently provide partial control of some plant pathogens 

(Rishbeth et al., 1988).  Powdery mildews are ectotrophic pathogens and therefore in 

close contact with and potentially attacked by the phylloplane microflora (Bélanger et 

al., 1998; Bélanger and Labbé, 2002). Organisms from diverse biological groups 
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(bacteria, fungi, arthropods) have been reported to actively antagonise powdery mildews 

(Bélanger and Labbé, 2002) by parasitism, antibiotic production, or induction of host-

resistance (Blakeman and Fokkema, 1982; Bélanger et al., 1998; Kiss, 2003; Cortes-

Penagos et al., 2006). These modes of action are not mutually exclusive (Kiss, 2003). 

The most common fungal antagonists reported in natural association with mildew 

species are Ampelomyces spp., Tilletiopsis spp., Cephalosporium spp., Cladosporium 

spp. (Kiss, 2003), Acremonium alternatum (Malathrakis, 1985), Dissoconium aciculare, 

Aphanocladium album and Acremonium byssoides, Pseudomyza flocculosa (Kiss, 2003). 

Species of Trichoderma, Fusarium and Penicillium chrysogenum have not been found to 

be mycoparasites of any powdery mildew species in nature but have been successfully 

tested for anti-powdery mildew activity in field and glasshouse trials (Kiss, 2003).  

Ampelomyces quisqualis is the only mycoparasite which has been reported from oak 

specimens (Q. robur and Q. petrea) infected with E. alphitoides (Kiss, 1998). There are 

no effective methods to manage oak powdery mildew within forest environments and 

therefore, biological control is an attractive option.  In order to explore this option, it is 

essential to understand the biology and ecological setting of the phyllosphere organisms 

which naturally co-exist with powdery mildew and how they vary throughout the season 

(Heuser and Zimmer, 2002; Kaneko et al. 2003; Osono, 2009; Jumpponen and Jones, 

2010). 

Our underlying hypotheses were that the abundance of mildew on oak leaves 

would form a substantial resource for other fungi, and that these would limit the 

abundance of mildew.   Therefore the primary purpose of the present study was to identify 

the main fungi which are naturally associated with oak powdery mildew, to record their 

abundance and the appropriate scale of study. A secondary purpose was to examine how 
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the abundance of mildew-commensal fungi was related to the abundance of powdery 

mildew and environmental factors. 

 

2. Materials and methods 

2. 1 Sampling 

Samples were collected from two areas on the campus of the University of Reading (Fig. 

1) in areas where oak trees of various species (mainly Quercus robur but also Q. cerris, 

Q. canariensis, Q. × turneri, Q. × hispanica “Lucombeana”, Q. nigra, Q. dentata, , Q. 

castanifolia, Q. ilex,) and other tree species are frequent. Leaf samples were collected 

from 11 trees (Q. robur) in summer (04/07/2005, 15/06/2006 depending on the 

appearance of powdery mildew symptoms on leaves) and autumn (12/10/2004, 

03/10/2005, 28/09/2006). The trees were arbitrarily selected within each of the two areas 

so as to include trees falling into each of three height-classes (1-3m, 3-9m and 9-12m). 

On each tree, powdery mildew severity was assessed on a total of 50 leaves, as follows: 

From each tree, 25 branches (of 2-3cm in diameter and located 1-4 m above the ground) 

were collected arbitrarily from the periphery of the canopy and a single leaf was 

sampled at random from two shoots of each branch; one from the right of the branch and 

one from the left. Leaves were assessed on both the upper and the lower surface.  For 

practical reasons it was not possible to sample the upper canopy of the large trees.  To 

study associations between mildew and other organisms, two out of the 25 previously 

assessed branches (each bearing about 10 leaves) were selected and sticky tape 

impressions were prepared as described in the next section. From each of the 10 leaves 

on a branch, two sticky tape impressions were prepared within 24 h of collection, one 

from the upper and one from the lower leaf surface. The impressions were made under 
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the binocular microscope from sporulating zones of the leaves where these were present; 

since the leaves on each branch exhibited different levels of powdery mildew infection, 

some impressions were also made from leaves which had no visible powdery mildew 

colonies. 

2.2 Assessment 

Powdery mildew was assessed visually by estimating the percentage of the leaf area 

which was covered by E. alphitoides mycelium on a scale 0-100%: 0 for no visible 

mildew spots and 100% for full coverage of the leaves by mildew.  The assessment of 

fungi growing on E. alphitoides colonies was made by examining one transect (25mm x 

0.2mm) across the long axis of each slide under a light microscope with a 10x or 40x 

objective and scoring the abundance of characteristic features of each commensal fungus 

on a four-point scale, 0 (none), 1 (rare), 2 (many) and 3 (abundant) (Fig 2) in each-

transect. Fungi were visually assigned to morphological groupings. Isolation of 

representatives of the most common fungi seen was attempted on Potato Dextrose Agar 

(PDA) and/or Tap Water Agar (TWA), both including 0.1 g/L streptomycin and 0.1g/L 

penicillin. Spores, mycelium and other fungal structures (e.g. pseudothecia) were picked 

up with a fine needle and deposited either directly on the medium or into a small droplet 

of sterile water on the medium, which was then spread over the surface with a glass 

spreader.  Plates were incubated in darkness at 18°-20° C and checked at 2-3day 

intervals.  Fungal colonies seen were sub-cultured repeatedly on PDA until they 

appeared to be visually stable.  Multiple morphological types on a plate were separated 

by serial dilutions of spores.  For long term storage the commensal fungi were sub-

cultured onto malt extract agar (MEA) slopes and kept under oil at 3°C.   Distinct groups 

of fungi were identified as far as possible to genus level based on original appearance 
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and culture morphological characteristics, using literature keys and descriptions (Gams, 

1971; Ellis and Ellis, 1997; Barnett and Hunter, 1998; Gams and Meyer, 1998).  

Selected samples were further identified by using the ITS sequence of ribosomal DNA 

(Schorch et al., 2012).  Mycelium and stroma were scraped from cultures, ground in 

liquid nitrogen and DNA extracted using a DNEasy Plant kit (Qiagen, Crawley, West 

Sussex, UK).  ITS 5.8S sequences were amplified from two independent isolates of 

typical morphology using ITS4 and ITS5 universal primers according to the methods of 

Gardes and Bruns (1993), White et al. (1990) and Abler (2003).  The amplicons were 

sequenced commercially (Macrogen, Seoul, Korea). 

 

 

2.3 Statistical analysis 

The effects of environmental and host factors on mildew severity, the abundance of 

commensal fungi, and their associations with powdery mildew severity were evaluated 

by REML models using the facilities in Genstat v11 (VSN International Ltd, Hemel 

Hempsted-Hertfordshire, UK).  In the overall REML analysis, the season, height-class 

of trees, and leaf-surface were specified as fixed factors, with sampling year and 

location as random factors. Estimates of the percentage of powdery mildew severity 

were transformed to logits and conidia counts were transformed into loge for analysis. 

Zero values were regarded as 0.001 for conversion to the log scale. 

Relationships between the fungi associated with E. alphitoides were investigated 

by linear regression analysis. Powdery mildew severity was related to the score of each 

associated fungi by conventional stepwise regression analysis. The response (dependent) 

variable was the mean score of each commensal fungus on a tree in each survey, so n = 
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55, and powdery mildew severity was set as an explanatory variate.  Parallel curve 

analysis (Mead et al., 2002, chap. 10) was used to determine whether separate regression 

models were needed in each surveyed year.  Relationships between the commensal fungi 

surveyed were also investigated by parallel curve analysis.  

3. Results 

3.1 Identification 

Specimens of the powdery mildew population from three out of the eleven sampled trees 

were sequenced (S. Takamatsu, Mie University, Tsu, 514-8507, Japan, unpublished 

data). The sequences indicated that only E. alphitoides s. str. (Takamatsu et al., 2007)   

Not included in Refs. was present. 

Most powdery mildew colonies examined were associated with other fungi, even when 

first visible, during the summer assessment.  Five morphological types were common 

(Fig. 2): Trichoderma sp.; Ampelomyces/Phoma sp.; Acremonium sp.; a Tilletiopsis-like 

group, and Leptosphaerulina sp.. Patches of powdery mildew colonies containing 

Leptosphaerulina sp. were often visibly browned. A minority of undetermined spores of 

various types were recorded but were insufficiently common or distinctive for 

meaningful analysis. 

Isolations from the Trichoderma-like spores produced two distinct types of culture, 

differing in colour and growth-rate (Genbank KM406100, KM406101).  Their highest 

match was at 98% similarity with Genbank sequences (AY605750, AY605742, 

AY605733, AY222349, AB297802) identified as Hypocrea lixii (= Trichoderma 

harzianum) and Trichoderma sp.. The Acremonium-like sequences (Genbank 
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KM406102, KM406103, KM406104) had a the highest match with Genbank sequences 

identified as Acremonium sp. (Genbank AM262391, AM262392) at up to 98% 

similarity. Identification to species level was not possible. Leptosphaerulina sp. isolates 

were identified by Dr B. Spooner of CAB IMI as L. australis. Sequences (Genbank 

KF275143, KF275144) matched at 99% similarity with? Genbank sequences identified 

as L. trifolii (GenBank AY131203), which is considered a synonym of L. australis 

(Irwin and Davis, 1985 Not in Refs.; Abler 2003).   

Repeated attempts to isolate Ampelomyces quisqualis on artificial media were 

fruitless. Consequently, its presence in our study was based on the characteristic 

development of the pycnidial forms.  However, distinction of A. quisqualis from Phoma 

species is difficult under light microscopy and therefore, this morphological group was 

recorded as Ampelomyces/Phoma. 

3.2 Powdery mildew incidence and severity 

Powdery mildew incidence varied substantially between the sampled years but 

considerable variation was also attributed on tree specific factors (Table 1). Powdery 

mildew severity varied substantially between the sampled years but substantial 

differences were also spotted in the disease levels within the canopy of single trees.  The 

extra variance among trees within a location was negligible (Table 1). The two locations 

studied differed no more than expected from differences among trees within the same 

location (Table 1).  However, both powdery mildew incidence and severity were highest 

in autumn (Fig. 3, 4; P<0.001, Fisher exact test) and were also affected significantly by 

the tree height-class; 3-9m trees were more diseased than the other two height classes 

(Fig. 3, 4; P<0.001, Fisher exact test). 
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3.3 Abundance of commensal fungi 

Powdery mildew colonies were already associated with a range of other fungi (Fig. 5).  

L. australis, Trichoderma sp., Ampelomyces/Phoma sp. and Acremonium sp. were 

commonly associated with powdery mildew on all sampling occasions (Fig. 5, 6). 

Variance between trees was very low whereas there was substantial variation in the 

abundance scores of all commensal fungi between the different occasions of specimen 

collection and within the canopies of the trees (Table 2).    

Acremonium sp. was common in all samples but abundance varied between years 

(Fig. 6). The incidence and abundance score of Acremonium sp. differed between 

seasons (P<0.001, Fisher exact test): abundance scores were always higher in the early 

summer samplings (Fig. 6). Acremonium sp. abundance scores greater than 2 were rare 

but associated with lower powdery mildew densities on the same trees (Fig. 7).    

Ampelomyces/Phoma sp. abundance scores differed between years (Figs. 6). 

Ampelomyces/Phoma scores were larger in autumn samplings but not significantly so 

compared to the summer samplings. The taxon was never observed in the absence of 

powdery mildew (Table 3) and was never observed at high population densities 

(score>2) even when powdery mildew severity was high (Fig. 7). Abundance score did 

not differ significantly between the two leaf-surfaces (P>0.05, Fisher exact test).   

L. australis was abundant each year and was associated with 91% of powdery 

mildew colonies examined.  Although, rarely, L. australis ascospores were observed on 

leaf areas free of powdery mildew colonies, the fungus was more frequent on leaves 

with powdery mildew (P<0.001, Fisher exact test; Table 3).  L. australis incidence on 

mildewed leaves was greater on 3-9 m trees (interaction P=0.006, Fisher exact test).  L. 
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australis scores were higher in autumn (P<0.001, Fisher exact test; Fig. 6) and increased 

over the observation period (Fig. 6).  The mean powdery mildew severity was slightly 

greater with greater L. australis scores in the 11 tree samples (Fig. 7), but the variation 

in powdery mildew severity was reduced in samples with greater L. australis scores 

(Fig. 7).  

About 80% of powdery mildew colonies examined were associated with 

Trichoderma sp.  Its incidence and population score were larger in autumn (P<0.001, 

Fisher exact test; Fig. 6).  The upper leaf surface was more intensively colonised by 

Trichoderma sp. than the lower (P<0.001, Fisher exact test; Table 3).   Powdery mildew 

severity was greatest and most variable at intermediate Trichoderma scores (Fig. 7). 

3.4 Correlations among powdery mildew and commensal fungi 

Our hypothesis was that commensals would be more common when powdery mildew 

severity was greater and so provided a larger resource. Both slope and intercept of the 

relationship between powdery mildew severity and commensal fungus score varied 

between years for all commensals (P≤0.001; Fig. 8).  Season, height-class and leaf 

surface did not significantly improve the model fit.  Higher powdery mildew severities 

were associated with intermediate Acremonium sp. and Trichoderma sp. scores (Fig. 7, 

8).  The slope of regressions of Trichoderma sp. score on powdery mildew severity were 

strong and positive in 2005, 2006 and negative but not strong in 2004 (Fig. 8).  

However, the overall interaction was strong (Wald-test interaction P<0.001).  The 

relationships of Trichoderma sp. and Acremonium sp. scores to powdery mildew 

severity appeared curved (Fig. 7, 8), with very high scores associated with moderate 

powdery mildew severity (>60%).  The slope and intercept of Acremonium sp. score 

were negative in 2004 but positive in 2005 and 2006 (Wald-test interaction P≤0.05; Fig. 
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8). Ampelomyces/Phoma sp. scores were low in the years studied (Fig. 6, 8) and 

although the association to powdery mildew severity was positive in all years (Fig. 8), 

the overall interaction was not significant (P>0.1).  The intercept and slope for L. 

australis score were positive in the years studied (Fig. 8) and higher L. australis scores 

were associated with lower powdery mildew severity (>40%) (Fig. 7).  Such association 

was strong in 2006 (Fig. 8) and the overall interaction was also strong (Wald-test 

interaction P<0.001).    

There were weak but significant associations between L. australis and the other 

three fungi associated with powdery mildew (Fig. 9).  Separate regression lines for cases 

where powdery mildew was present and where it was absent greatly improved the fit 

(P<0.001).  Acremonium sp., Ampelomyces/Phoma sp. and Trichoderma sp. were 

positively associated with L. australis when powdery mildew was also present (Fig. 9). 

No statistically significant linear dependence of the mean scores of Acremonium sp., 

Ampelomyces/Phoma sp. or Trichoderma sp. on L. australis scores was detected when 

powdery mildew colonies were not present (Fig. 9). The three-way interaction between 

Ampelomyces/Phoma sp., L. australis score and powdery mildew presence was 

significant (Wald-test P<0.05). The same interaction was also significant for 

Trichoderma sp. (Wald-test P<0.001).   

 

4. Discussion 

Powdery mildew severity varied much more across years than among trees, and there 

was only slightly more variation among trees than expected from the variation between 

leaves from the same tree.  Powdery mildew severity is critically influenced by the time 
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between flushing of shoots and maturation of the leaves (Edwards and Ayres, 1982; 

Marcais et al. 2009) because oak leaves greatly increase their resistance to powdery 

mildew infections after a few weeks (Edwards and Ayres 1981; Marcais et al. 2009).  

Competition between powdery mildew species and competition, parasitism or resistance 

induction by other phylloplane fungi may also affect powdery mildew severity (Mougou 

et al., 2010).   Along with as E. alphitoides, various other powdery mildew species have 

a host range including Quercus spp. (Takamatsu et al., 2007) Not in Refs..  The co-

existence of visually similar but distinct species of powdery mildew on oak could 

confuse study of the population dynamics, but our limited sample suggests at least a 

strong preponderance of E. alphitoides in this study area.  

Oak powdery mildew colonies co-existed with several other fungi.  Four 

different morphological types of fungus co-occuring with powdery mildew colonies 

were commonly observed.  Most colonies co-existed with several of them.  The least 

common was an Ampelomyces/Phoma-like species. These have been associated with 

direct mycoparasitism of powdery mildews (Kiss, 1998). Two of the remaining three 

morphological types identified (Trichoderma sp. and Acremonium sp.) have often been 

found to actively antagonise other fungi, including powdery mildews, by antibiosis or 

direct parasitism (Malathrakis, 1985; Elad, 2000;Not in Refs. Kiss, 2003); however, 

based on this study no definite inferences can be made regarding Trichoderma sp. and 

Acremonium sp. modes of action. The final fungus, identified as L. australis, has not 

been mentioned before in association with powdery mildew. In parallel work with this 

survey, L. australis was shown to reduce infection of oak leaves by powdery mildew in 

controlled inoculations (Topalidou, 2008) Not in Refs. although the mechanism is 

unknown. Leptosphaerulina sp. are reported as weak pathogens or as saprobes. In some 
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studies L. chartarum has been shown to survive as a symptomless endophyte in its host 

(Suryanarayaman and Murali, 2006; Salvanathan et al, 2011). The same species (Wu et 

al, 2013) has been shown to produce xylanotic enzymes which enhanced plant defence 

against stress and disease. In view of this, it would be interesting to explore the possible 

endophytic existence of L. australis in oak leaves in view of its common association 

with oak powdery mildew. The incidence and severity of commensal fungi may depend 

on or influence population densities of powdery mildew.  Powdery mildew infection 

alters the physiological condition of leaves which will in turn influence microbial 

community structure and growth on the phylloplane.  Hyper-parasitic fungi are likely to 

show density-dependent relations to powdery mildew severity; neutrally associated 

fungi may depend on powdery mildew without influencing its density.  In this study, the 

fungi associated with powdery mildew, apart from Ampelomyces/Phoma sp., came from 

taxa not reported to be specialised mycoparasites and having wide host and geographic 

ranges.   

According to Sadaka and Ponge (2003) the appearance of Acremonium sp. 

coincided with the senescence of the leaves of holm oak. In this survey, we found 

Acremonium sp. more abundant in summer.  Trichoderma species are known as 

secondary colonisers of various forest litters (Domsch et al, 1980). Six different 

Trichoderma species were reported on leaves of Q. rotundifolia at different stages of 

leaf senescence (Sadaka and Ponge, 2003).  In this study Trichoderma sp. was recorded 

on living leaves infected with powdery mildew, but the mean score was higher in 

autumn (Figs 5, 6), shortly before leaf-fall. 

L. australis was very commonly found in association with oak powdery mildew.   

It was more abundant at high powdery mildew severity (Fig. 7, 8), although the 
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association was weak.  In laboratory tests, inoculation of young oak leaves with L. 

australis reduced powdery mildew colonies and appeared to colonise other powdery 

mildew species (P. aphanis, P. xanthii) (Topalidou 2008, pp  199-205) Not in Refs..  L. 

australis has been recorded repeatedly in co-existence with many other fungal genera on 

Q. macrocarpa leaves (Jumpponen and Jones, 2010) but it has not been reported as a 

mycoparasite or antagonist of any pathogen. However, several species of 

Leptosphaerulina have been reported in association with diseases of turf-grasses such as 

anthracnose, Pythium blight and Pyricularia grisea (Dernoeden, 2002) Not in Refs.. L. 

australis in particular has been regularly found in conjunction with other pathogens such 

as Fusarium spp. and Sclerotinia homoeocarpa (Abler, 2003).   

With the partial exception of L. australis, populations of powdery mildew-

associated fungi fluctuated greatly over the study period (Fig. 6). Low levels of 

Ampelomyces/Phoma sp. in 2006 (Fig. 6) were presumably related to climatic factors, 

since Ampelomyces/Phoma sp. is favoured by high RH (Jarvis and Slingsby, 1977; 

Schweigkofler, 2006) and the summer of 2006 was extremely hot and dry. 

This survey showed seasonal and within-tree effects on powdery mildew severity 

to be more important than variation between Q. robur specimens.  It indicates that 

powdery mildew colonies on oak leaves are, from their first appearance, very frequently 

associated with other fungi, some of which either attack the powdery mildew directly 

(eg. Ampelomyces/Phoma sp.), or may render leaves less susceptible to attack.  

Therefore, they are important elements in the phylloplane community. Acremonium sp. 

and Trichoderma sp. were rarer when powdery mildew was more severe in the early 

season, but commoner when powdery mildew was more severe in the late season, 

although the shifts were not always significant. A hypothesis to explain this would be 
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that the initial association was driven by factors independent of or restricting powdery 

mildew severity, such as surface wetness, but that later they were either consuming 

powdery mildew. Ampelomyces/Phoma and L. australis populations were always 

positively correlated with powdery mildew severity, although again not always 

significantly. It is possible that powdery mildew represented a nutrient resource for both 

organisms, though L. australis is known purely as a saprophyte or weak plant pathogen.   
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FIGURE CAPTIONS 

Fig. 1: Map of the sampled trees within the two examined locations (Harris Garden 

and Earley Gate) within the campus of the University of Reading (aerophotgraph 

was downloaded from Google Earth, 2008).  Each of the trees was classified into 

one of three height-classes as follows: 3, 6 and 9 into 1-3m; 4, 5, 8 and 11 into 3-9m; 

1, 2, 7 and 10 into 9-12m.    

 

Fig. 2: Panel of photos from the assessment of each morphological group of the 

commensal fungi. (a) Ampelomyces/Phoma sp.: (i) conidia exuded from pycnidia, (ii), 

(iii) pycnidia which grow superficially in/on or around powdery mildew hyphae. Scale 

bars equal to 10 µm. (b) Trichoderma sp.: (i) Trichoderma sp. spores and (ii), (iii) 

arrows pointing at Trichoderma sp. spores which were observed around powdery 

mildew conidia. Scale bars equal to 10 µm, 20 µm and 20 µm respectively for (i), (ii) 

and (iii). (c) Acremonium sp.: (i) Acremonium sp. spores and (ii) arrows pointing at 

Acremoium sp. phialides and spores, emerging throughout a cluster of powdery mildew 

conidia. Scale bars equal to 10 µm. (d) L. australis: (i) ascospores emerging from the 

asci, (ii) ascospore attached on a powdery mildew conium and (iii) an L. australis 

ascospore close to powdery mildew mycelium. Scale bars equal to 10 µm. 

Fig. 3 : Incidence of powdery mildew (%) on oak leaves, averaged within each 

height-class of tree sampled on each sampling occasion.  

Fig. 4: Powdery mildew visual severity (%) on oak leaves from trees in three height-

classes on five sampling occasions.  Data are averaged over both surfaces of all leaves 
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from a tree.  Error bars indicate the standard error of the mean (SEM) based on between 

leaves variance. 

Fig. 5: Total incidence of colonies of other fungi in oak powdery mildew colonies over 

the period of study.  Gray areas denote the leafless period; initial sample was taken as 

soon as powdery mildew colonies were visible. 

Fig. 6:  Distribution across trees of average abundance scores of fungi seen in sticky tape 

impressions of oak powdery mildew colonies.  The score for a tree is the average of 2 

sticky tape impressions taken from 20 leaves (2 branches, each bearing 10 leaves) each 

scored on a 0-3 scale. Boxplots show the range, medians and quartiles of the average 

spore abundance score in a tree. 

Fig. 7: Distribution of powdery mildew severity over trees, categorized by mean abundance 

scores of commensal fungi in the same tree on the same sampling occasion.   Powdery mildew 

severity is the mean of the assessed leaves.  Individual abundance scores are means from 2 

sticky tape impressions (one on the upper leaf surface and one on the lower) taken from 20 

leaves per tree (2 branches, bearing 10 leaves) on a single sampling occasion.  Boxplots show 

the range, medians and quartiles of the powdery mildew severity.   In all cases, means and 

medians are similar. 

Fig. 8: Relationship between mean abundance score of fungi seen in sticky tape 

impressions of the assessed leaves, averaged over all impressions from each branch of 

each sampled tree, and mean powdery mildew severity on the same trees.  Data from 

summer and autumn surveys are plotted together.  Regression equations are shown for 

each year separately (a) Acremonium sp. (Percentage of variance accounted for by 

regression, R
*2 

= 12.5, standard error of observations, s.e.=0.65). (b) 
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Ampelomyces/Phoma sp. (R
*2 

=48.4, s.e.=0.34). (c) L. australis (R
*2 

= 28.4, s.e.=0.6). (d) 

Trichoderma sp. (R
*2 

=39.7. s.e.=0.62).  

Fig. 9: Relationships between L. australis abundance (La) score and the scores of other fungi 

seen in sticky tape impressions of oak leaves.  Each point represents the mean score from a 

branch, averaging over replicate slides and bot leaf surfaces.  Separate lines are fitted for the 

cases where powdery mildew was present and absent. (a) Acremonium sp. (A): powdery mildew 

absent, Acremonium score = 0.24+0.03 La (P=0.09); leaves with powdery mildew present 

A=0.73+0.17 La (P=0.002). (b) Ampelomyces/Phoma sp. (Ph): never found in the absence of 

powdery mildew; powdery mildew present, Ph=0.19+0.12 La (P=0.001). (c) Trichoderma sp.: 

powdery mildew absent, T = 0.21+0.41La (P=0.4); powdery mildew present T=0.34+0.46 La 

(P<0.001). pm, powdery mildew. 
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Table 1: Estimated variance of the random components which contributed to the 

observed differences in powdery mildew incidence and severity within the study area at 

Reading during 2005-7.  Fixed effects were season, location and leaf surface. 

Random term 

Variance component 

Incidence Severity 

Between year 0.07±0.07 13.2 ±13.3 

Between trees within location 0.03± 0.002 0.48 ±0.35 

Leaves within the canopy of each tree 0.14±0.004 16.9 ±0.46 
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Table 2: Estimated variance of the random components which contributed to the 

observed differences in incidence and score of fungi associated with oak powdery 

mildew within the study area at Reading during 2005-2007.  Fixed effects were season, 

location and leaf surface. 

Random term 

Variance component 

Ampelomyces/

Phoma sp. 

Acremonium 

sp. 

L. australis Trichoderma 

sp. 

Year 0.18 ±0.20 0.27 ±0.28 0.09 ±0.09 0.49 ±0.50 

Tree 0.003 ± 0.002 0.01 ±0.01 0.001±0.002 0.007 ±0.001 

Leaves within the 

canopy of each tree 

0.11 ±0.01 0.2  ±0.02 0.23 ±0.02 0.26 ±0.020 
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Table 3: Incidence of the most common commensal fungi in sticky tape impressions of 

leaf surfaces of Quercus robur in leaf surfaces with and without powdery mildew.  

 

  Incidence of the fungal group  

(% of samples) 

Leaf 

surface 

Fungal group Leaves without 

powdery mildew 

Leaves with 

powdery mildew 

Upper Sample size 0 104 

 Acremonium sp. - 90.4  

 L. australis - 100  

 Trichoderma sp. - 84.6  

 Ampelomyces/Phoma sp. - 52.9  

Lower Sample size 18 86 

 Acremonium sp. 78 93 

 L. australis 88 100 

 Trichoderma sp. 83 80 

 Ampelomyces/Phoma sp. 0 69 

 

 

 

 

 

 

 


