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ABSTRACT 1 

 2 

● Background Plants form the base of the terrestrial food chain and provide medicines, fuel, 3 

fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the 4 

water and mineral elements necessary for their survival in nature or their yield and nutritional 5 

quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, 6 

and the roots of agricultural crops have a significant role to play in soil sustainability, carbon 7 

sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication 8 

of water bodies associated with the application of mineral fertilisers. 9 

● Scope This article provides the context for a Special Issue of Annals of Botany on 10 

‘Matching Roots to Their Environment’. It first examines how land plants and their roots 11 

evolved, describes how the ecology of roots and their rhizospheres contributes to the 12 

acquisition of soil resources, and discusses the influence of plant roots on biogeochemical 13 

cycles. It then describes the role of roots in overcoming the constraints to crop production 14 

imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of 15 

mineral elements and water, and discusses high-throughput methods to screen for these traits 16 

in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations 17 

improving the acquisition of resources in natural environments can be used to develop root 18 

systems for sustainable agriculture in the future. 19 

 20 

Key words: Anatomy, arabidopsis, cereal, evergreen revolution, fertiliser use efficiency, 21 

legume, morphology, nitrogen, phosphorus, physiology, potassium, water.  22 



3 
 

INTRODUCTION 1 

 2 

Land plants support most terrestrial life. They form the base of the food chain and also 3 

provide medicines, fuel, fibre and industrial materials for humans. Cultivated plants provide 4 

about 83% of the dietary energy for the world’s population directly and 16% indirectly 5 

through animal products (Figure 1). Less than 1.2% of the dietary energy for the world’s 6 

population comes from aquatic products, fish and seafood. Similarly, edible crops deliver 7 

between 83-94% of the minerals and 70-99% of the vitamins (with the exception of vitamins 8 

A and B12, which mostly come from animal products) to human diets (Figure 1). Meyer et al. 9 

(2012) estimated that just over 100 terrestrial plant species contribute more than 90% of the 10 

world’s food supply. Plants must acquire the water and mineral elements, essential for their 11 

survival in nature or their yield and nutritional quality in agriculture, through their roots 12 

(White and Brown, 2010). 13 

Major fluxes of all elements occur through land plants and, in particular, their root 14 

systems (Figure 2). Interactions between plant roots and their surroundings during 15 

evolutionary time have led to many fundamental changes in the Earth’s environment, 16 

including a decrease in atmospheric carbon dioxide (CO2), a lowering of the temperature of 17 

the Earth’s surface, and the formation of complex soil environments (Kenrick and Crane, 18 

1997; Raven and Edwards, 2001; Pires and Dolan, 2012). The interactions between plant 19 

roots and their surroundings continue to influence the planet’s carbon (C) cycle, which has 20 

been distorted recently through the burning of fossil fuels, and the cycles of other mineral 21 

elements including nitrogen (N), phosphorus (P) and sulphur (S), which have been influenced 22 

significantly by their use in intensive agriculture (Figure 2; Rockström et al., 2009; Canfield 23 

et al., 2010). The roots of agricultural crops, both annual and perennial, have a significant role 24 

to play in sequestering C belowground (Norby and Jackson, 2000; Kell, 2011), in decreasing 25 
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the emissions of greenhouse gasses (GHG; CO2, NO, N2O) from agriculture (Smith et al., 1 

1997, 2008; Hofstra and Bouwman, 2005; Galloway et al., 2008; Rockström et al., 2009; 2 

Canfield et al., 2010; Good and Beatty, 2011), and in preventing the eutrophication of water 3 

bodies associated with the application of mineral fertilisers (Conley et al., 2009; Rockström et 4 

al., 2009; Vitousek et al., 2009; Good and Beatty, 2011). Plant roots also have a role to play 5 

in sustaining the productivity of agricultural soils, by stabilising them physically, by 6 

improving their structure, and by driving microbial processes, through substrate inputs, that 7 

maintain soil fertility (Feeney et al., 2006; Hinsinger et al., 2009; Hallett and Bengough, 8 

2013). 9 

Thus, an understanding of the root/soil interface is essential to address the immediate 10 

issues facing humankind, from food security and human nutrition to the climate and wellbeing 11 

of the planet itself. This article, which provides the context for a Special Issue of Annals of 12 

Botany on ‘Matching Roots to Their Environment’, first examines how land plants and their 13 

roots evolved, describes how the ecology of roots and their rhizospheres contributes to the 14 

acquisition of soil resources, and discusses the continued influence of plant roots on 15 

biogeochemical cycles. It then describes the role of roots in overcoming the constraints to 16 

crop production imposed by hostile or infertile soils, illustrates root ideotypes (ideal attributes 17 

of a plant root system) for improving the acquisition of mineral elements and water, and 18 

discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and 19 

field. Finally, the article considers whether knowledge of root adaptations that improve the 20 

acquisition of resources in natural environments can be used to develop root systems for 21 

sustainable agricultural intensification. 22 

 23 

 24 

MATCHING ROOTS TO THEIR ENVIRONMENT: PHYSIOLOGICAL ECOLOGY 25 
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 1 

The evolution of land plants and their roots 2 

 3 

Life originated about 3.5 billion years ago in the oceans of the Earth (Hodson and 4 

Bryant, 2012). At that time, the planet’s atmosphere contained no oxygen gas. The evolution 5 

of photosynthetic organisms, and the oxygenation process that led to the evolution of aerobic 6 

organisms, occurred 2.20-2.45 billion years ago.  The first photosynthetic eukaryotes evolved 7 

about 1.6 billion years ago, but it was not until 450-490 million years ago that plants 8 

successfully colonised the land (Dolan, 2009). It is possible that mycorrhizal symbioses 9 

between plants and fungi enabled this (Brundrett, 2002; Taylor et al., 2004; Karandashov and 10 

Bucher, 2005). Mycorrhizal symbioses can protect plants from a variety of abiotic and biotic 11 

challenges and assist in their acquisition of essential mineral elements (Morgan et al., 2005; 12 

Smith and Read, 2008). The proliferation of land plants led to a decrease in atmospheric CO2, 13 

both through photosynthesis and by the weathering of calcium (Ca) and magnesium (Mg) 14 

silicate minerals, a lowering of the planet’s surface temperature, and global alterations in the 15 

fluxes of energy, carbon, water and mineral elements (Kenrick and Crane, 1997; Raven and 16 

Edwards, 2001; Pires and Dolan, 2012). This resulted in the formation of complex soils and 17 

the bioengineering of new terrestrial and freshwater ecosystems. The flowering plants 18 

(angiosperms) evolved during the Jurassic period (208-144 million years ago) and their rapid 19 

diversification to occupy diverse ecological niches on land occurred during the Cretaceous 20 

period, 100-65 million years ago (Kenrick and Crane, 1997; Raven and Edwards, 2001; Pires 21 

and Dolan, 2012). 22 

The colonisation of land by plants required a number of adaptations (Kenrick and 23 

Crane, 1997; Raven and Edwards, 2001; Pires and Dolan, 2012). These included adaptations 24 

for the uptake and movement of water and solutes within the plant, adaptations to prevent 25 
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desiccation and overheating, adaptations to regulate gas exchange, adaptations enabling an 1 

upright stature, and the development of specialised sexual organs. The evolution of roots 2 

served both to anchor plants to their substrate and to acquire water and mineral elements from 3 

the substrate. Roots probably evolved at least twice during the Devonian period (480-360 4 

million years ago), first in lycophytes and then in euphyllophytes, from the ancestral generic 5 

meristems of dichotomizing rhizome axes (Kenrick and Crane, 1997; Raven and Edwards, 6 

2001; Brundrett, 2002; Friedman et al., 2004; Dolan, 2009; Pires and Dolan, 2012). Further 7 

elaborations, such as root hairs, had evolved at least 400 million years ago (Raven and 8 

Edwards, 2001). 9 

The article by Seago and Fernando (2013) in this Special Issue provides an insight to 10 

the evolution of the anatomy of angiosperm roots, illustrated by representative species from 11 

the basal angiosperms, magnoliids, monocots and eudicots. The authors begin by noting that 12 

the primary root system derived from the radicle is dominant in eudicots and gives rise to 13 

lateral roots with various degrees of branching, whereas in monocots the primary root system 14 

is often ephemeral and their root system is composed mainly of seminal (derived from the 15 

mesocotyl) and adventitious (derived from stems and leaves) roots and the lateral roots arising 16 

from these (Taiz and Ziegler, 2002; Osmont et al., 2007). They then note that the key 17 

anatomical features of roots of all angiosperms include the rootcap, root apical meristem 18 

(RAM), epidermis, endodermis, pericycle, xylem and phloem. The rootcap protects the RAM 19 

from damage and assists in penetrating the soil, the RAM ensures apical elongation, the root 20 

hairs of the epidermis acquire water and mineral elements to sustain plant growth, the 21 

endodermis ensures the selectivity of solute transport to the shoot and protects the vasculature 22 

from ingress of alien organisms, the pericycle is the site of lateral root initiation, and the 23 

xylem and phloem are the pathways for long-distance transport of solutes and signals between 24 

root and shoot (White, 2012ab). Seago and Fernando (2013) observe that Nympheales 25 
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resemble monocots in their root-system architecture and root anatomy, whereas the 1 

Amborellales, Austrobaileyales and magnoliids resemble eudicots. Specifically, they observe 2 

that (1) the same group of initials give rise to the protoderm and the ground meristem in 3 

Nympheales and monocots, whereas the protoderm and the lateral rootcap are derived from 4 

the same group of initials in other basal angiosperms, magnoliids and eudicots, (2) the root 5 

systems of most Nymphaeales and monocots are dominated by adventitious roots, but primary 6 

roots that give rise to a taproot system dominate the root systems of other basal angiosperms, 7 

magnoliids and eudicots, and (3) the Nymphaeales and monocots often have polyarch 8 

(heptarch or more) steles, whereas other basal angiosperms, magnoliids and eudicots usually 9 

have diarch to hexarch steles (Figure 3). Shishkova et al. (2013) test the hypothesis that early 10 

exhaustion of the RAM and determinate primary root growth, as observed for some Cactaceae 11 

for example, is an evolutionary adaptation to arid environments and provide some insight to 12 

the genetic basis of this trait. 13 

During the colonisation of the land, plants evolved strategies to acquire water and 14 

essential mineral elements from the soil. These included the development of appropriate root 15 

architectures and the manipulation of rhizosphere physical, chemical and biological properties 16 

to improve the acquisition of resources. During the Devonian period, the depth of roots of 17 

vascular plants increased and their access to mineral elements in the soil improved (Raven 18 

and Edwards, 2001). This increased terrestrial biomass production and the cycling of mineral 19 

elements. The acquisition of essential mineral elements with limited mobility in the soil, but 20 

required in high amounts by plants, benefitted from associations with arbuscular mycorrhizal 21 

fungi (Brundrett, 2002; Karandashov and Bucher, 2005) and the evolution of long, thin, 22 

branching roots with abundant root hairs (Raven and Edwards, 2001). The release of organic 23 

compounds capable of solubilising mineral elements contained in rocks and the secretion of 24 

enzymes capable of releasing mineral elements from organic compounds further benefitted 25 
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the mineral nutrition of angiosperms. The translocation of photoassimilates via the phloem (or 1 

analogous tissues) to the roots, and the redistribution of carbon and mineral elements from 2 

mature or senescent tissues to juvenile and perennial plant tissues through the vasculature, 3 

facilitated the growth of the root system and improved mineral economies of evolving plants 4 

(Raven and Edwards, 2001). Associations between N2-fixing bacteria (Rhizobiales, 5 

Burkholderiales, Frankia) and roots of the ancestral Rosid I clade evolved on multiple 6 

occasions from about 65-55 million years ago, improving their nitrogen nutrition and fitness 7 

(Gualtieri and Bisseling, 2000; Karandashov and Bucher, 2005, Sprent and James, 2007, 8 

Gyaneshwar et al., 2011). Possession of traits improving the acquisition of scarce mineral 9 

resources provided an advantage for successful plant species. 10 

 11 

The ecology of roots and their rhizospheres 12 

 13 

The evolution and survival of a species depends on the success of its interactions with 14 

its neighbours and its environment. Plants can interact with each other both negatively and 15 

positively, either directly or indirectly (Tilman, 1990; Brooker and Callaghan, 1998; Grime, 16 

2001; Brooker et al., 2008). Competition between plants for limiting resources is an example 17 

of a negative interaction. It is thought to drive the evolution of traits allowing species to 18 

occupy different niches, and therefore to access separate resources, either in space or time 19 

(Tilman, 1990; Grime, 2001). An example of a positive interaction is facilitation, whereby 20 

benefactor plants provide the environment or resources for beneficiary plants to establish 21 

themselves (Brooker et al., 2008). Thus, both negative and positive interactions can promote 22 

the coexistence of species and, through their complementarity, increase the productivity of an 23 

ecosystem (Temperton et al., 2007; Brooker et al., 2008; Marquard et al., 2009; Bessler et al., 24 

2012). 25 
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Many interactions between neighbouring plants occur belowground. Competitive 1 

interactions often dominate in environments with ample supplies of mineral elements 2 

(Schenk, 2006; Brooker et al., 2008; Trinder et al., 2012). The root systems of fast-growing, 3 

competitive species appear to be adapted for rapid exploration of the soil volume, especially 4 

the topsoil, by having low tissue densities and highly branched architectures, both of which 5 

contribute to high specific root lengths (Wright and Westoby, 1999; Wahl and Ryser, 2000; 6 

Craine et al., 2001; Comas and Eissenstat, 2004; Holdaway et al., 2011). This phenotype is 7 

also observed in many invasive species and is typical of most crops (Craine et al., 2001; 8 

White et al., 2005; Lynch, 2007). Greater seed reserves and efficient root foraging also 9 

improve the establishment and growth of seedlings in resource-poor soils (White and 10 

Veneklaas, 2012), but the roots of adapted species tend to be thinner and tissues denser than 11 

those of other species, especially in P-limited environments (Wright and Westoby, 1999; 12 

Holdaway et al., 2011). In resource-poor environments, more facilitative interactions appear 13 

to occur between plants (Brooker et al., 2008). One well-studied example is the improved N-14 

nutrition and growth of beneficiary plants in the presence of legumes. Beneficiary plants are 15 

able to acquire more N in the presence of legumes either because competition for soil N from 16 

legumes is not as intense as that from other species or because they obtain additional N 17 

indirectly from legumes either because they release more N into the soil or because resources 18 

are exchanged between plants through mycorrhizae (Temperton et al., 2007; Fornara and 19 

Tilman, 2009; Bessler et al., 2012). Similarly it has been observed that neighbouring 20 

mycorrhizal plants can benefit the mineral nutrition of non-mycorrhizal plants (Schenk, 21 

2006). It has been speculated that increased secretion of protons, organic acids or enzymes 22 

into the soil by benefactor plants can facilitate the mineral nutrition of neighbouring plants 23 

directly, and that interactions between roots of benefactor plants and soil organisms, whether 24 

beneficial or pathogenic, can improve the growth of beneficiary plants (Schenk, 2006; Li et 25 
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al., 2007; de Kroon et al., 2012). However, detailed studies reporting the interactions between 1 

roots of neighbouring plants and the rhizosphere changes effected by roots are scarce. 2 

In this Special Issue, Faget et al. (2013) and Blossfeld et al. (2013) describe a variety 3 

of novel, non-invasive methods to study spatial and temporal aspects of root development and 4 

rhizosphere processes in vivo. Faget et al. (2013) review methods that will allow researchers 5 

to identify the roots of individual plants (or particular species) within the soil including 6 

genotype-marking using the expression of fluorescent proteins (Faget et al., 2009, 2012) or 7 

11
CO2-labelling combined with positron emission tomography (Jahnke et al., 2009). Formerly, 8 

dyes might have been injected into the phloem to identify the roots of individual plants or 9 

species-specific infrared or fluorescence characteristics might have been used (Rewald et al., 10 

2012). Faget et al. (2013) also discuss methods for tracking individual roots in sequential 11 

images from rhizotron tubes or high-throughput phenotyping systems (Dupuy et al., 2010b; 12 

Iyer-Pascuzzi et al., 2010; Galkovsky et al., 2012; Nagel et al., 2012) and from the sequential 13 

3D images obtained using magnetic resonance imaging (Rascher et al., 2011), X-ray 14 

computed tomography (Gregory et al., 2003; Perret et al., 2007; Flavel et al., 2012; Mairhofer 15 

et al., 2012) or optical computed tomography (Clark et al., 2011; Downie et al., 2012). These 16 

methods will complement and parameterise architectural and continuum root system models 17 

to facilitate studies of the interactions between roots, rhizospheres and soils (Dunbabin, 2007; 18 

Dupuy et al., 2010a; Postma and Lynch, 2012). Blossfeld et al. (2013) describe the use of 19 

commercially available planar optodes and fluorescence microscopy to quantify the spatial 20 

and temporal dynamics of changes in pH and CO2 concentrations in the rhizospheres of 21 

durum wheat (Triticum durum), chickpea (Cicer arietinum) and the native Australian legume 22 

Viminaria juncea whilst growing in rhizoboxes either separately or together. 23 

It is evident that plant roots influence the physical, chemical and biological properties 24 

of the rhizosphere profoundly (Hinsinger et al., 2009; Marschner, 2012; Neumann and 25 
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Römheld, 2012). In this Special Issue, Carminati and Vetterlein (2013) discuss whether the 1 

manipulation of the hydraulic properties of the rhizosphere by roots could be a strategy by 2 

which plants control the part of the root system that will have greatest access to water and 3 

solutes. They propose two classes of rhizosphere, the first (Class A) dominated by hydrated 4 

mucilage that connects root and soil hydraulically, which would facilitate the uptake of water 5 

from drying soils, and the second (Class B) dominated by air-filled pores and/or hydrophobic 6 

compounds that isolate roots from the soil hydraulically. They present evidence (1) for the 7 

occurrence of Class A and Class B rhizospheres, (2) that the hydraulic properties of the 8 

rhizosphere change with both root development and soil water status, and (3) that the 9 

chemical properties of mucilage secreted at the root tip could be a major determinant of 10 

rhizosphere hydraulic properties. They then explore hypotheses (1) that the secretion of 11 

hydrated mucilage facilitates water and solute uptake by younger root tissues at the root apex 12 

(Read et al., 2003; Dunbabin et al., 2006) and (2) that the degradation and drying of mucilage 13 

restricts the loss of water from older root tissues and facilitates long-distance transport of 14 

water. Such changes in hydraulic properties of the rhizosphere might complement the 15 

hydraulic architecture of the root system (Garrigues et al., 2006) and also influence 16 

preferential flow pathways for water and solute transport through the bulk soil (Ghestem et 17 

al., 2011; Bengough, 2012).  18 

 19 

The continued influence of roots on biogeochemical cycles 20 

 21 

Terrestrial vegetation has a large effect on the cycling of carbon, water and mineral 22 

elements (Figure 1). Today, forests are responsible for most of the CO2 fixed by terrestrial 23 

ecosystems (Luyssaert et al., 2007; Pan et al., 2011). This is enabled by canopy 24 

photosynthesis, but is counteracted by plant respiration. A large proportion of plant 25 
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respiration is attributed to roots. Information on the root systems of trees is scarce, principally 1 

because of their large size and their depth. Biomass partitioning between canopy and root is 2 

an important parameter for estimating the balance of photosynthesis and respiration and, 3 

therefore, the modelling of regional and global carbon cycles (Luyssaert et al., 2007; Kattge 4 

et al., 2011; Kempes et al., 2011; Makita et al., 2012). In this Special Issue, Eshel and 5 

Grünzweig (2013) describe a large-scale aeroponics system in which the roots of saplings of 6 

tropical trees can be studied. They report the allometric relationships between the relative 7 

biomass of stem, branch and leaves of two tropical forest species, the rapid-growing kapok 8 

(Ceiba pentandra) and the slow-growing African mahogany (Khaya anthotheca), grown 9 

aeroponically or in containers filled with soil. They observe identical allometric relationships 10 

between stem, branch and leaves for saplings grown in both systems and conclude that 11 

aeroponics can be used to determine the partitioning of biomass. For saplings growing in 12 

aeroponics the shoot/root biomass quotients approximated two for both species and 92-95% 13 

of the length of the root systems of both species had a diameter <2 mm. This information is 14 

important for assessing the role of fine roots as C stores, the rates of root turnover, and the 15 

chemistry of belowground organic inputs to soil. 16 

The role of terrestrial ecosystems in global N cycles is discussed by Subbarao et al. 17 

(2013). Various authors have estimated N inputs to terrestrial ecosystems (Figure 2; 18 

Galloway, 2008; Schlesinger, 2009). These occur primarily through lightning (~5 Tg N y
-1

), 19 

biological N2-fixation (100-300 Tg N y
-1

, of which 20-50 Tg N y
-1

 occurs in agricultural 20 

systems), burning of fossil fuels (~25 Tg N y
-1

) and the application of N-fertilisers (>125 Tg 21 

N, of which about 106 Tg N was applied in the form of chemical fertilisers in 2010; FAO, 22 

2011). Subbarao et al. (2013) observe that N availability is generally low in natural 23 

ecosystems and N cycling efficient, but excess N is often applied in agricultural systems, 24 

which results in inefficient use of N-fertilisers, problematic leaching of nitrate to 25 
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watercourses, and high emissions of greenhouse gasses. The land accumulates about 9 Tg N 1 

y
-1

, whilst about 77 Tg N y
-1

 is accumulated in rivers and groundwater, about 54 Tg N y
-1

 is 2 

accumulated in the oceans via the atmosphere, and about 109 Tg N y
-1

 is returned to the 3 

atmosphere through denitrification processes (Schlesinger, 2009). About 25 Tg N y
-1

 is 4 

emitted into the atmosphere as N2O from terrestrial ecosystems (Galloway et al., 2008; 5 

Schlesinger, 2009). There can be no doubt that anthropogenic activities are altering global 6 

nitrogen cycles. Hence, improving the efficiency by which N-fertilisers are used in 7 

agriculture, and the efficiency by which N is acquired by roots of crops, is an imperative for 8 

humankind. 9 

 10 

 11 

MATCHING ROOTS TO THEIR ENVIRONMENT:  AGRICULTURE 12 

 13 

Since agriculture began 13,000 years ago, humans have domesticated about 2,500 plant 14 

species (Barker, 2006; Pickersgill, 2007; Meyer et al., 2012). These species were selected for 15 

a greater yield of harvested product, effective competition with other plants, resistance to 16 

pests and diseases, and, initially, a low resource requirement for growth. Thus, it is likely that 17 

they were selected indirectly for root vigour and the ability to acquire water and mineral 18 

elements in hostile and infertile environments. However, modern crops have been selected for 19 

greater yields in high input / high output monoculture agricultural systems, especially 20 

following the advent of the chemical fertiliser industry 200 years ago. It is possible, therefore, 21 

that modern crops have lost beneficial root traits for low input agricultural systems because 22 

there has been no requirement for these adaptations (Wissuwa et al., 2009). Indeed, modern 23 

crops often have reduced fitness in the natural environment (Meyer et al., 2012). In addition, 24 

current breeding programmes generally use ploughed soils that might not present the 25 
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mechanical constraints found in the reduced tillage systems that are gaining prominence in 1 

modern agriculture (Newton et al., 2012). 2 

Soil properties restrict crop production worldwide (Broadley et al., 2007; Ismail et al., 3 

2007; Lynch, 2007; White and Brown, 2010; White et al., 2012). It is estimated that >40% of 4 

agricultural soils are acidic (Von Uexküll and Mutert, 1995; Sumner and Noble, 2003), 25-5 

30% are alkaline or calcareous (White and Broadley, 2009), and 5-15% are saline or sodic 6 

(Munns and Tester, 2008). These soils are compromised not only by high phytoavailability of 7 

toxic mineral elements, for example aluminium (Al) and manganese (Mn) in acidic soils and 8 

sodium (Na), chlorine (Cl) or boron (B) in saline and sodic soils, but also by low 9 

phytoavailability of essential mineral elements (Ismail et al., 2007; White and Brown, 2010; 10 

White et al., 2012; White and Greenwood, 2013). The phytoavailabilities of N, P and 11 

potassium (K) limit crop production in most agricultural soils (Lynch, 2007, 2011; Fageria et 12 

al., 2011; Mueller et al., 2012). 13 

The success of the Green Revolution, which increased crop production dramatically 14 

during the last half century, was founded on the development of semi-dwarf crops resistant to 15 

pests and pathogens, whose yields are maintained through applications of herbicides, 16 

fungicides and pesticides, chemical fertilisers, and irrigation (Evans, 1997; Godfray et al., 17 

2010; Fageria et al., 2011). The amounts of mineral fertilisers applied to crops during this 18 

period also increased dramatically (Erisman et al., 2008; Galloway et al., 2008; Cordell et al., 19 

2009; Vitousek et al., 2009; Good and Beatty, 2011) and it is estimated that almost half the 20 

world’s food production now depends upon manufactured N fertilisers (Erisman et al., 2008; 21 

Dawson and Hilton, 2011). The environmental consequences of using mineral fertilisers in 22 

agriculture include the emissions of GHG from their production, transport and application, 23 

and the eutrophication of natural environments (Galloway et al., 2008; Smith et al., 2008; 24 

Conley et al., 2009; Vitousek et al., 2009; Good and Beatty, 2011). Furthermore, 25 
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commercially viable geological reserves required for the production of mineral fertilisers are 1 

depleting rapidly (Kesler, 2007; Dawson and Hilton, 2011) and fluctuating prices of energy 2 

and raw materials cause uncertainty in the supplies of mineral fertilizers, with detrimental 3 

impacts on food security (Cordell et al., 2009). Nevertheless, crop production must increase if 4 

the projected future human population is to be supplied with sufficient food (Cordell et al., 5 

2009; Godfray et al., 2010; White et al., 2012). 6 

It has been argued that sustainable intensification of crop production will require an 7 

“Evergreen Revolution” that must continually focus on reducing inputs without 8 

compromising yield or quality (Lynch, 2007; Wissuwa et al., 2009; Godfray et al., 2010; 9 

Fageria et al., 2011; Good and Beatty, 2011; White et al., 2012). It is envisaged that a 10 

judicious combination of agronomy and breeding might be employed to decrease inputs of 11 

mineral fertilisers (Fageria, 2009; Wissuwa et al., 2009; White et al., 2012). Agronomic 12 

strategies to improve fertiliser use efficiency seek to address (1) soil pH through amendments, 13 

(2) soil physical characteristics through composts and amendments, tillage and restricted 14 

traffic, (3) water availability through irrigation and drainage management, and (4) soil biology 15 

through inoculants or manure and compost inputs, intercropping or rotations, in addition to 16 

reducing losses from leaching and runoff, and optimising the placement, timing, chemistry 17 

and quantity of any fertiliser applications (Fageria et al., 2011; Good and Beatty, 2011; 18 

McLaughlin et al., 2011; Richardson et al., 2011; Simpson et al., 2011; James and Baldini, 19 

2012; Mueller et al., 2012; White et al., 2012). Approaches to breed crops for greater yields 20 

in environments with limited phytoavailability of mineral nutrients focus on improving the 21 

efficiency by which mineral elements are acquired from the soil and the efficiency by which 22 

nutrients are utilised physiologically to produce yield (Hirel et al., 2007; Lynch, 2007, 2013; 23 

White et al., 2012; Veneklaas et al., 2012; White, 2013). It is generally observed that 24 

physiological N utilisation efficiency (NUtE; yield / N acquired) contributes more than N 25 
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acquisition efficiency (NUpE; N acquired / N available) to agronomic N use efficiency (NUE, 1 

yield / N available), although greater NUpE and, in particular, continued N uptake after 2 

anthesis, often improves NUE when crops are grown with a restricted N supply (Hirel et al., 3 

2007; Fageria, 2009; Sylvester-Bradley and Kindred, 2009; Barraclough et al., 2010; Beaty et 4 

al., 2010; Berry et al., 2010; Bingham et al., 2012) and genotypes of both legumes and non-5 

legumes that foster greater biological nitrogen fixation often have higher yields in N-limited 6 

environments (Rengel, 2002; Ainsworth et al., 2012; James and Baldani, 2012; Kumar et al., 7 

2012; Urquiaga et al., 2012). By contrast, differences between genotypes in agronomic P use 8 

efficiency (PUE) are generally correlated with P acquisition efficiency (PUpE), and with root 9 

architectural traits, rather than with physiological P utilization efficiency (PUtE; White et al., 10 

2005; White and Hammond, 2008; Hammond et al., 2009; White et al., 2012). Similarly, 11 

although there is significant genetic variation in both K uptake efficiency (KUpE) and K 12 

utilisation efficiency (KUtE) within crop species, agronomic K use efficiency (KUE) is often 13 

correlated with KUpE rather than KUtE (Rengel and Damon, 2008; Fageria, 2009; White et 14 

al., 2010; White, 2013). Thus, root traits affecting the acquisition of mineral elements will 15 

often determine yields in reduced-input agricultural systems. In this Special Issue Brown et 16 

al. (2013) suggest root ideotypes for improving P acquisition by barley (Hordeum vulgare), 17 

Rose et al.  (2013) suggest root ideotypes for improving the acquisition of P and Zn by rice 18 

(Oryza sativa), Lynch (2013) describes a root ideotype for optimising water and N 19 

acquisition by maize (Zea mays), and Botwright Acuña and Wade (2013) describe how 20 

exploration of the interactions between Genotype and Environment (G×E) can be used to 21 

identify root traits to overcome mechanical impedance in different soils. 22 

The ideotype of ‘topsoil foraging’ has been proposed for improving P acquisition by 23 

roots (Figure 4A; Lynch and Brown, 2001; White et al., 2005; Lynch, 2007, 2011, 2013; 24 

Richardson et al., 2011). The basic premise for this ideotype is that P is immobile in the soil 25 
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and concentrated in the topsoil (Barber, 1995). Breeding for this root ideotype has proven 1 

successful for the development of crops for the low P soils of Africa, Asia and Latin America 2 

(Lynch, 2007, 2011, 2013). This ideotype should also suit the acquisition of other immobile 3 

mineral elements concentrated in the topsoil, such as manganese, copper and nickel (White 4 

and Greenwood, 2013). It is complemented by proliferation of lateral roots locally in regions 5 

of high P availability, the production of long root hairs, associations with mycorrhizal fungi, 6 

development of cortical aerenchyma, increasing P uptake capacity of root cells, and the 7 

secretion of organic acids and phosphatases into the rhizosphere (White et al., 2005; Lambers 8 

et al., 2006; Lynch, 2007, 2011, 2013; White and Hammond, 2008; Richardson et al., 2011). 9 

Cost-benefit analyses of root traits for improving the P nutrition of crops generally suggest 10 

that root hairs have the greatest potential for P acquisition relative to their cost of production, 11 

and that the greatest gains are likely to be made by increasing the length and longevity of root 12 

hairs rather than by increasing their density (Junk, 2001; Lynch and Ho, 2005; Brown et al., 13 

2013). Brown et al. (2013) suggest that breeding for a combination of appropriate 14 

architectural, anatomical and biochemical traits, such that more root hairs are located in the 15 

topsoil, on roots that are metabolically cheap to construct and maintain, that release sufficient 16 

organic acids and enzymes to exploit soil P reserves, will improve PUE in systems with low P 17 

input. Rose et al. (2013) describe root traits that increase the acquisition of P and Zn by rice. 18 

These include traits that (1) increase the phytoavailability of P and Zn in soils, such as the 19 

efflux of protons, organic acids, chelating agents (e.g. siderophores for Zn) and hydrolytic 20 

enzymes (e.g. phosphatases), or the release of carbon compounds that foster a beneficial 21 

microbial community that increase soil P and Zn turnover, (2) increase the volume of soil 22 

explored by roots, such as the traits discussed above, and (3) enhance the affinity or capacity 23 

for P and Zn uptake by root cells. They discuss the prospects of exploiting these traits in 24 

conventional plant breeding using a marker-assisted selection or through modern transgenic 25 
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approaches. In a complementary paper, Claus et al. (2013) use a mathematical model to 1 

investigate how membrane transport processes and root anatomy interact to control the uptake 2 

and movement of Zn to the xylem in roots of Arabidopsis thaliana. Their model suggests that 3 

(1) restricted loading of Zn
2+

 into the xylem by Heavy Metal ATPases (HMA4) results in 4 

symplastic Zn concentrations increasing from the epidermis to the pericycle, (2) Zn
2+

 influx to 5 

root cells through ZIP (ZRT-, IRT-like Protein) transporters is regulated on a timescale that 6 

provides sufficient Zn for plant nutrition without cytosolic Zn concentrations reaching 7 

toxicity, and (3) the rate of transpiration has a profound influence on the radial gradient in 8 

symplastic Zn concentration. 9 

Shi et al. (2013) report QTLs associated with heritable root architectural traits of 10 

oilseed rape (OSR; Brassica napus) in a double haploid mapping population developed from 11 

a cross between a European winter OSR (cv. Tapidor) and a Chinese semi-winter OSR (cv. 12 

Ningyou 7) using a high-throughput, agar-based, phenotyping system. They identified a 13 

cluster of highly significant QTLs for the number of lateral roots (LRN), the density of lateral 14 

roots (LRD), root dry weight (RDW) and shoot dry weight (SDW) at low Pi supply on 15 

chromosome A03, and QTLs for primary root length (PRL) on chromosomes A07 and C06. 16 

Interestingly, the QTLs associated with LRN, RDW and SDW on chromosome A03 between 17 

36.8 and 46 cM co-locate with a QTL with pleiotropic effects on RDW, SDW, root volume, 18 

root surface area and plant height reported in a cross between P-efficient (cv. Eyou Changjia) 19 

and P-inefficient (cv. B104-2) OSR cultivars (Yang et al., 2010, 2011; Ding et al., 2012) and 20 

overlap with a QTL affecting shoot biomass and PUE traits on chromosome C03 of Brassica 21 

oleracea (Hammond et al., 2009). Similarly, the QTLs associated with PRL on chromosomes 22 

A07 and C06 are syntenous with a QTL for PRL in Arabidopsis thaliana (Loudet et al., 23 

2005). These observations suggest that QTLs associated with root architectural traits are 24 
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conserved within the Brassicaceae, which should facilitate breeding improved root 1 

phenotypes in crop brassicas. 2 

It is becoming evident that root architecture is controlled by complex interactions 3 

between hormones and other signalling molecules, such as sugars and microRNAs (Hermans 4 

et al., 2006; Osmont et al., 2007; Chiou and Lin, 2011; Hammond and White, 2011; Péret et 5 

al., 2011; Smith and De Smet, 2012). In this Special Issue, Niu et al. (2013) review progress 6 

in identifying the signalling cascades co-ordinating alterations in root architecture in response 7 

to low P availability, emphasising the roles of the classical plant hormones, nitric oxide and 8 

reactive oxygen species, and Koltai (2013) reviews the involvement of strigalactone 9 

biosynthesis and signalling in the induction of lateral roots and the increase in root hair length 10 

and density in response to P starvation, noting that strigalactones appear to exert their effects 11 

by altering the balance between auxin and ethylene signalling pathways (Ruyter-Spira et al., 12 

2011; Mayzlish-Gati et al., 2012). A particular response to P starvation is the initiation of 13 

lateral roots, and a detailed study of the maize lrt1 mutant by Husáková et al. (2013) in this 14 

Special Issue suggests that the Lrt1 gene affects the spatial distribution and morphology of 15 

lateral roots, but not in their abundance. This gene is also required for correct cell division in 16 

the cortex and the development of the exodermis of primary roots. 17 

An ideotype termed ‘steep, cheap, and deep’ has been proposed for the acquisition of 18 

nitrogen from agricultural soils (Figure 4B; Dunbabin et al., 2003; Lynch, 2013). The basic 19 

premise for this ideotype is that nitrate, which is the dominant form of nitrogen in agricultural 20 

soils, is highly soluble and its location moves deeper in the soil during the growing season as 21 

the water table drops (Lynch, 2013). The ideotype seeks to improve nitrate acquisition by 22 

accelerating the development of roots at depth and, thereby, reduce nitrate leaching and 23 

improve NUE. Lynch (2013) describes root traits contributing to this ideotype in maize. 24 

These include: (1) a thick, unbranched primary root, (2) the combination of a few deep, thick 25 
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and relatively unbranched seminal or crown roots with many thin, shallow seminal or crown 1 

roots with prolific lateral branching and an abundance of root hairs, (3) a whorl of relatively 2 

unbranched brace roots of high occupancy, that are shallower than the crown roots, (4) lateral 3 

branching that is unresponsive to local N availability, (5) an abundance of cortical 4 

aerenchyma, and (6) a high affinity and high capacity for nitrate uptake by root epidermal 5 

cells. Lynch (2013) suggests that many features of this ideotype are relevant to other cereals 6 

and also to dicotyledonous crops. Furthermore, breeding crops with deep, extensive root 7 

systems, is not only a strategy to capture water and nitrate, but should also be effective in 8 

capturing other mineral elements subject to leaching, such as sulphate (Eriksen, 2009; Chien 9 

et al., 2011), minimising soil erosion (Loades et al., 2010), and sequestering C in the soil 10 

(Kell, 2011). 11 

Subbarao et al. (2013) discuss the possibilities of manipulating the release of 12 

inhibitors of nitrification from roots to limit the amount of N cycling through the soil 13 

nitrification pathway and, thereby improve NUE and minimise N pollution from agricultural 14 

systems. Substances effecting ‘biological nitrification inhibition’ (BNI) include the 15 

unsaturated fatty acids linoleic acid and linolenic acid and their esters, the phenyl propanoids 16 

methyl-p-coumarate and methyl ferulate, the di-terpenoid brachialactone, various 17 

isothiocyanates, methyl 3-(4-hydroxyphenyl) propionate and sorgoleone (Subbarao et al., 18 

2013). The release of these substances appears to occur in regions of the root exposed directly 19 

to NH4
+
 under mildly-acidic conditions. The authors report extensive genetic variation in BNI 20 

both between and within plant species. In general, forage grasses adapted to low N-input 21 

systems have higher BNI than those adapted to high N-input systems, cereals often have low 22 

BNI, and many legumes have negative BNI (Subbarao et al., 2007, 2013). However, there is 23 

considerable variation in BNI between genotypes of, for example, the forage grass Brachiaria 24 

humidicola, small-grained cereals, and soybean (Subbarao et al., 2007, 2013), which allows 25 
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the possibility of breeding crops with increased BNI. Subbarao et al. (2013) provide evidence 1 

that crops with high BNI capacity can improve NUE whilst reducing the rate of ammonium 2 

oxidation, nitrate leaching and N2O emissions from agricultural soils.  3 

Water scarcity limits food production in many regions of the world (Boutraa, 2010; de 4 

Fraiture and Wichelns, 2010). The ‘steep, cheap, and deep’ root architectural ideotype allows 5 

greater acquisition of water during progressive drought as the water table drops (Lynch, 6 

2013). Genotypes with deeper roots generally have greater yields than shallow-rooted 7 

genotypes under drought conditions (Ho et al., 2005; Hund et al., 2009; Lopes and Reynolds, 8 

2010; Henry et al., 2011) and deeper rooting is more prevalent among species found in dry 9 

environments (Schenk and Jackson, 2005). Reducing the metabolic cost of roots, either by 10 

producing thinner roots or roots with more aerenchyma, allows longer root systems to be 11 

produced and maintained (Zhu et al., 2010; Lynch, 2013). In this Special Issue, Jaramillo et 12 

al. (2013) observe that root respiration among six maize genotypes growing in soil columns 13 

was positively correlated with living cortical area (LCA), and that increasing the area of root 14 

cortical aerenchyma decreased root respiration. They report that a 3.5 fold reduction in LCA 15 

is associated with a 2.5 fold improvement in growth under drought, which supports the 16 

hypothesis that drought tolerance can be improved by decreasing the metabolic costs of root 17 

exploration of the soil. 18 

The root system of cereals comprises at least two distinct root types: primary roots, 19 

which originate from the embryo, and nodal roots, which emerge subsequently from stem 20 

nodes. The relative contribution of each type of root to resource acquisition and crop yield 21 

depends greatly upon environmental conditions. In this Special Issue, Rostamza et al. (2013) 22 

report that the responses of primary and nodal roots to soil water availability differ both 23 

between root types and between plant species. They grew the drought-tolerant cereals 24 

sorghum (Sorghum bicolor) and pearl millet (Pennisetum glaucum) for three weeks in pots in 25 



22 
 

which primary and nodal roots were contained in separate compartments. They observed that 1 

decreasing water availability to either the entire root system or just nodal roots decreased the 2 

length of the whole root system in both sorghum and pearl millet and that the nodal roots of 3 

both millet and sorghum grew more vertically in dry soil. Reducing water availability to 4 

either the entire root system or just nodal roots decreased the length of the primary root 5 

system but not that of the nodal root system in sorghum. By contrast, although decreasing 6 

water availability to the entire root system similarly decreased the length of the primary root 7 

system but not that of the nodal root system in pearl millet, reducing water availability to just 8 

nodal roots decreased the length of the nodal root system but not the primary root system in 9 

pearl millet.  10 

Many techniques are available to assess root architectures of young seedlings grown in 11 

the laboratory or glasshouse (Gregory et al., 2009; Zhu et al., 2011), but these have rarely 12 

been compared with measurements obtained under field conditions. In this Special Issue, 13 

Watt et al. (2013) have assessed whether simple measurements of the length of the longest 14 

seminal roots of bread wheat (Triticum aestivum) seedlings grown for 15-20 days in rolls of 15 

moist germination paper are correlated with measurements of length and depth of root 16 

systems of plants grown in the field. They observe that the sum of the lengths of the two 17 

longest seminal roots was positively correlated with the total root length of seedlings grown in 18 

germination paper. They also observed positive correlations between the sum of the lengths of 19 

the two longest seminal roots of wheat seedlings grown in germination paper and the length 20 

and depth of root systems of plants with 2-5 leaves growing in the field. However, they did 21 

not observe any significant correlation between rooting depth at the reproductive stage and 22 

either the sum of the lengths of the two longest seminal roots of seedlings grown in 23 

germination paper or the rooting depth of young plants grown in the field. They attribute this 24 
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lack of correlation to environmental factors that might change during the season or through 1 

the soil profile that affect wheat genotypes differently. 2 

Many agricultural soils have compacted subsoils that can occur naturally but are often 3 

the result of the passage of heavy machinery. The dense soil, together with the absence of 4 

continuous macropores, limits the depth of root systems, their access to water and mineral 5 

elements and, ultimately, crop yields (Hamza and Anderson, 2005; Whalley et al., 2006; 6 

Valentine et al., 2012). To penetrate soil the root requires pressure both to expand a cavity 7 

and to overcome the root-soil friction associated with elongating into the cavity (McKenzie et 8 

al., 2013). The friction component can be a substantial part of the total penetration resistance. 9 

Root traits improving penetration of strong soils include greater root diameter, increased 10 

release of border cells and secretion of mucilage at the root tip, stiffening of cell walls, and 11 

the proliferation of longer root hairs closer to the root tip for anchorage (Clark et al., 2008; 12 

Bengough et al., 2011; McKenzie et al., 2013). Several researchers have reported genotypic 13 

variation in the ability of cereal roots to penetrate wax barriers in the laboratory, which is 14 

often, but not always, correlated with rooting depth and crop performance under field 15 

conditions (Clark et al., 2002; Samson et al., 2002; Cairns et al., 2004; Botwright Acuña et 16 

al., 2007; Kubo et al., 2008). In the field, significant G×E interactions occur for this trait, 17 

which has major implications for breeding strategies (Botwright Acuña et al., 2007; 18 

Botwright Acuña and Wade, 2012). For broad selection, the root system of ideal genotypes 19 

will have a high mean depth irrespective of environment, whereas genotypes that will perform 20 

best in particular environments will have high mean rooting depth but this trait will vary 21 

between environments (Botwright Acuña and Wade, 2012). In this Special Issue, Botwright 22 

Acuña and Wade (2013) explore the reasons for G×E interactions for rooting depth observed 23 

in the field trials of 24 wheat genotypes performed in six environments in Australia. They 24 

observe that G×E interactions accounted for 40 % of the variation in this trait, which was 25 
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more than three times greater than that attributed to genotype alone. Clustering of the 1 

experimental data using Principal Component Analysis and using genotype plus G×E 2 

interaction (GGE) biplots allowed them to explore (1) the characteristics driving separation 3 

into different environments and (2) the attributes of the root system partitioning genotypes 4 

into these environments. They conclude that this approach is applicable to many crop 5 

phenotypes and not only allows the interpretation of complex interactions between plants and 6 

their environment but can also inform the selection of appropriate traits for target 7 

environments in a crop breeding programme. 8 

In addition to assaying root system architecture in controlled environments, there is a 9 

need for simple, cost-effective methods to estimate the size of root systems in the field. 10 

Measurement of the electrical capacitance between an electrode in the rooting substrate and 11 

an electrode inserted at the base of a stem has been proposed as a suitable technique for 12 

screening large plant populations (Chloupek, 1977; Chloupek et al., 2006, 2010; Středa et al., 13 

2012). Many studies have reported good linear correlations between the measured capacitance 14 

and root mass (Dietrich et al., 2012; Ellis et al., 2013), and these relationships have generally 15 

been interpreted using an electrical model in which roots are considered to behave as 16 

cylindrical capacitors wired in parallel (Dalton, 1995). Recently, however, this model has 17 

been re-evaluated (Dietrich et al., 2012; Ellis et al., 2013). In this Special Issue, Dietrich et 18 

al. (2013) have tested and validated, for plants growing in soil, an alternative electrical model 19 

in which plant tissues and the rooting substrate behave as capacitors wired in series. These 20 

results imply that, whilst the measured capacitance might often be correlated with root mass, 21 

capacitance is not a direct measure of root mass, and previous capacitance measurements 22 

should be reinterpreted. 23 

 24 

 25 
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CONCLUSIONS AND PERSPECTIVE 1 

 2 

Cultivated plants provide most of the dietary energy, vitamins and minerals for the world’s 3 

human population. In the recent past, crop production has kept pace with the increasing 4 

human population. This was achieved primarily through irrigation and the application of 5 

pesticides, herbicides and chemical fertilisers to high-yielding crop genotypes adapted to 6 

specific climates and agronomic practices in monoculture systems (Evans, 1997; Godfray et 7 

al., 2010; Fageria et al., 2011). There is still the possibility of increasing crop yields, 8 

especially in rainfed and extensive agricultural systems (Mueller et al., 2012; White et al., 9 

2012). Globally, yield gaps of 45-70% of the theoretically possible yield are observed for 10 

most crops (Lobell et al., 2009; Neumann et al., 2010; Mueller et al., 2012). However, there 11 

is now an imperative for sustainable intensification of crop production, which entails the 12 

reduction of inputs whilst increasing yield and quality (Lynch, 2007; Wissuwa et al., 2009; 13 

Godfray et al., 2010; Fageria et al., 2011; Good and Beatty, 2011; White et al., 2012). This 14 

will require greater efficiency in the utilisation of natural resources, such as water, mineral 15 

elements and soils, for agricultural production. The efficient acquisition of water and mineral 16 

elements by plant roots is, therefore, a prerequisite for sustainable intensification of crop 17 

production. Improving resource capture by roots can help reduce irrigation and fertiliser 18 

inputs, emissions of greenhouse gasses and the eutrophication of water bodies. This 19 

concluding section provides a brief summary of the strategies described in this Special Issue 20 

for developing crops with appropriate root systems for reduced-input monoculture systems, 21 

and examines whether knowledge of plant ecology could be used to increase resource use 22 

efficiency and yields using traditional or novel polyculture systems. 23 

 24 

Developing crops for reduced-input monoculture systems 25 
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 1 

The success of reduced-input monoculture systems will require greater efficiencies in 2 

the acquisition and utilization of water and mineral elements by crops. The development of 3 

crop genotypes with greater resource use efficiencies requires the identification of beneficial 4 

traits, the availability of genetic variation in these traits, and the ability to select either for the 5 

trait itself or for the alleles conferring this trait. Several articles in this Special Issue describe 6 

root ideotypes associated with efficient capture of water and mineral elements (Botwright 7 

Acuña and Wade, 2013; Brown et al., 2013; Jaramillo et al., 2013; Lynch, 2013; Rose et al., 8 

2013). These include the ‘topsoil foraging’ root architectural ideotype for the efficient 9 

acquisition of phosphorus from agricultural soils (Figure 4A) and the ‘steep, cheap, and deep’ 10 

root architectural ideotype that allows greater acquisition of water during progressive drought 11 

and the efficient acquisition of nitrogen from agricultural soils (Figure 4B). There is 12 

substantial variation among genotypes of many crops in the individual root traits that 13 

comprise these ideotypes and chromosomal loci (QTL) affecting these traits have been 14 

identified (White et al., 2005, 2012; Beebe et al., 2006; Lynch, 2007, 2013; Cichy et al., 15 

2009; Hammond et al., 2009; Li et al., 2009; Liang et al., 2010; Chin et al., 2011; Hund et al., 16 

2011; Cai et al., 2012; Gamuyao et al., 2012; Ren et al., 2012; Shi et al., 2013). Indeed, 17 

selection and breeding for the ‘topsoil foraging’ root architectural ideotype has already 18 

proven successful for the development of crops for the low P soils of Africa, Asia and Latin 19 

America (Lynch, 2007, 2011, 2013). The development of high-throughput techniques for 20 

assessing aspects of root architecture linked to greater yields in reduced-input agricultural 21 

systems will allow larger plant populations to be screened for the identification of appropriate 22 

genotypes and the mapping of further QTL affecting root architectural traits, accelerating crop 23 

improvement (Gregory et al., 2009; Trachsel et al., 2011; Zhu et al., 2011; Clark et al., 2013; 24 

Lynch, 2013). 25 
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Crops could also be developed to improve the sustainability of soil resources. The 1 

roots of such crops might deposit more, or more recalcitrant, carbon into the soil (Kell, 2011), 2 

promote the presence of beneficial biological communities and processes (Subbarao et al., 3 

2007), or exert a direct impact on the physical structure and stability of soils (Loades et al., 4 

2010). Two of the greatest ecological disasters of the past century, the Great Dust Bowl in the 5 

USA and the erosion of the Loess Plateau in China, were caused by agricultural practices that 6 

resulted in a deficiency in root traits providing soil stability (Kaiser, 2004). 7 

In addition to reducing the use of mineral fertilisers, proponents of sustainable 8 

agricultural practices often advocate a reduction in the use of herbicides. It is estimated that 9 

20-40% of crop production is lost to competition with weeds when herbicides are not applied 10 

(Oerke, 2006). The roots of weeds compete with those of crops for belowground resources. 11 

Dunbabin (2007) explored how root architecture affected crop productivity in the presence of 12 

weeds using the ROOTMAP model. She observed that crop yield was improved by rapid root 13 

growth and greater foraging intensity. These traits denied weeds access to soil resources and, 14 

thereby, maintained crop yields (Dunbabin, 2007). The development of crop genotypes for 15 

rapid establishment and exploitation of the soil volume might allow a reduction in the use of 16 

herbicide. 17 

 18 

Translating ecological observations to improve the productivity of polyculture systems 19 

 20 

Traditional low-input agricultural systems are often based on rotations or polycultures 21 

of different plant species (Gliessman, 1992; Stoate et al., 2001; Ndakidemi, 2006; Eichorn et 22 

al., 2006; Knörzer et al., 2009; Lithourgidis et al., 2011; Zegada-Lizarazu and Monti, 2011; 23 

Altieri et al., 2012; Feike et al., 2012). Traditional polycultures include pastoral systems, 24 

cereal / legume and cereal / vegetable polycultures, such as the ‘Three Sisters’ polyculture of 25 
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maize, beans (Phaseolus vulgaris) and squash (Cucurbita sp.), intercropping with cassava 1 

(Manihot esculenta), silvoagricultural systems, home-gardens, and the rice / fish systems 2 

prevalent in the paddies of Asia and elsewhere (Gliessman, 1992; Altieri, 2004; Ndakidemi, 3 

2006; Amanullah et al., 2007; Knörzer et al., 2009; Koohafkan and Altieri, 2010; Seran and 4 

Brintha, 2010; Lansing and Kremer, 2011; Altieri et al., 2012; Feike et al., 2012; Nerlich et 5 

al., 2013). It has been hypothesised that both niche complementarity and facilitation enable 6 

polyculture systems to yield more than their corresponding monocultures (Gliessman, 1992; 7 

Altieri, 2004; Li et al., 2007; Seran and Brintha, 2010; Lithourgidis et al., 2011; Altieri et al., 8 

2012; Postma and Lynch, 2012). In particular, it is believed that crops grown with legumes 9 

benefit greatly from the extra nitrogen that N2-fixation brings into the system (Ndakidemi, 10 

2006; Temperton et al., 2007; Bessler et al., 2012), and that roots of benefactor species might 11 

secrete organic acids and enzymes that increase the phytoavailability of, for example, P in the 12 

soil (Ndakidemi, 2006; Li et al., 2007). Postma and Lynch (2012) have investigated niche 13 

complementarity of rooting in the maize, bean, squash (Cucurbita pepo) polyculture using the 14 

functional-structural plant model SimRoot. These crops differ in both root architectures and 15 

foraging strategies. It was observed that, although polycultures acquired more N than the 16 

corresponding monocultures in soils with low fertility, this was a consequence of 17 

complementary root architectures and was independent of N2-fixation by the legume. They 18 

also observed that complementary root architectures had negligible effect on the acquisition 19 

of phosphorus and potassium, and suggested that few roots of neighbouring plants are close 20 

enough to benefit from the root exudates of their neighbours or for roots of neighbouring 21 

plants to compete for immobile mineral elements (Postma and Lynch, 2012). Considering 22 

these intriguing results, it would seem that the implementation of novel polycultures might 23 

benefit from an improved understanding of how roots of different plant species complement 24 

each other to achieve greater overall productivity. Some of these interactions might be 25 
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investigated using the methods reviewed in this Special Issue (Blossfeld et al., 2013; Faget et 1 

al., 2013). If the nature and consequences of belowground interactions between plants can be 2 

predicted accurately, it might then be possible to design and manipulate the species 3 

composition of polycultures and the varietal composition of monocultures to achieve 4 

consistently greater productivity in a sustainable manner. 5 

 6 
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FIGURE LEGENDS 1 

 2 

FIG. 1. Contribution of terrestrial plant products (green), terrestrial animal products (purple), 3 

and aquatic products (blue) to (A) the quantity (kg) of, and dietary energy, protein, (B) 4 

mineral elements and (C) vitamins in, the global food supply. Data were estimated from the 5 

global supplies of foodstuffs (FAO, 2009) and the composition of individual food items 6 

(USDA-ARS, 2012).  7 

 8 

FIG. 2. Global fluxes of (a) carbon, (b) nitrogen, (c) phosphorus and (d) sulphur through 9 

different compartments of the environment. Arrows represent fluxes into and out of each 10 

compartment. When fluxes into and out of a compartment are unequal the stock of an element 11 

in that compartment increases or decreases. Compartments represent: (1) plants in natural and 12 

agricultural ecosystems (green), (2) soils (brown), (3) wild and domesticated animals 13 

(orange), (4) industrial and domestic activities (red), (5) marine ecosystems (dark blue), and 14 

(6) the atmosphere (light blue). Fluxes are the average of a range of processes. Key processes 15 

include photosynthesis, respiration, plant uptake, nitrogen fixation, fertiliser application, 16 

cultivation, decay of plant material, erosion losses, denitrification, methangensis, biogenic 17 

sulphur production, volcanic eruptions, sewage production, animal feed production, animal 18 

manure production, mining, fossil fuel use, fertiliser production, food production, non-food 19 

industrial production, waste, dry deposition, lightening, wet deposition, sea-atmosphere 20 

exchange and ocean uptake. Data are presented as a percentage of the total global annual 21 

fluxes, which approximate 479 Tg yr
-1

 for carbon, 3848 Tg yr
-1

 for nitrogen, 3809 Tg yr
-1

 for 22 

phosphorus and 890 Tg yr
-1

 for sulphur. 23 

 24 
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FIG. 3. (A) Cross section of a root of Nymphaea sp. with a polyarch stele surrounded by a 1 

broad cortex with aerenchyma and astrosclereids. (B) Cross section of a young rice (Oryza 2 

sativa) root with a polyarch stele and aerenchyma cavities in the mid cortex. (C) Cross section 3 

of a young root of Magnolia x soulangeana at an early stage of secondary thickening. 4 

Cambium activity results in the formation of a few secondary xylem elements in a circle 5 

(yellow and red) in addition to the originally triarch vascular cylinder (red xylem elements), 6 

whilst the pericycle produces a limited number of suberized cells at an early stage of periderm 7 

formation (yellow-green circle). (D) Cross section close to the root tip of a young Noccaea 8 

caerulescens root with a diarch stele. All photographs courtesy of Professor Alexander Lux, 9 

Comenius University, Bratislava. Section D courtesy of Dr Ivan Zelko. 10 

 11 

FIG. 4. Root ideotypes for efficient acquisition of (A) nitrogen, (B) phosphorus and (C) 12 

potassium. 13 


