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Abstract

LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their
use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take
advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly
scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to
mimic soil.
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Introduction

Microfluidics[1,2,3,4] and other engineered environments[5,6]

can produce highly controlled micrometer-scale environments for

the study of organismal model systems (e.g., mammalian cells).

However, scientists or engineers interested in manipulating the

environment of cm-scale organisms (e.g., plants) have remarkably

few convenient tools at their disposal[7,8]. This paucity is partly

due to the demanding design requirements associated with larger

scales (e.g., cost). This liability is particularly evident in the study of

plants and their root systems.

The development of plants in soil is an important subject of

investigation. The provision of food to the global human

population is under severe pressure (our supply of food is predicted

to be far below demand by 2050[9]) and depends on plant

roots[10] (97.6% of global calorie consumption is derived from

plants[11]). Roots influence a plant’s yield and whether a plant will

survive stresses. We know that root growth is strongly affected by

its environment, soil, but our mechanistic understanding of these

effects is imperfect[10,12] and strongly limited by technical

challenges.

Root development is a difficult process to study experimentally.

(i) Plants display highly variable root systems, even when

genetically identical[13]. (ii) Roots are remarkably sensitive to a

variety of stimuli (e.g., gravity, light, touch, moisture, nutrients,

oxygen, temperature, trauma, electric fields[14]). (iii) Any volume

of soil is unique and impossible to replicate exactly[15,16]. (iv) Its

heterogeneity makes it opaque to most forms of radiation[17]. (v)

Its structural and chemical characteristics (i.e., porosity, surface

chemistry, nutrient gradients, oxygen gradients, bulk composition,

soil biota) cannot be independently manipulated.

One approach to avoid this complexity is to characterize the

growth of plants in soil-less media, e.g., hydrogels, paper, glass

beads, sand. These systems are less inhomogeneous and irrepro-

ducible than soil and can be modified – usually to a limited extent

– to mimic soil properties such as chemical composition [18],

physical structure [19,20], water availability [21], refractive index

[22], or mechanical strength [23]. However, the lack of

modularity, versatility, structural precision, and the very limited

control over structural and chemical heterogeneities in these

systems severely limits the type, complexity, and reproducibility of

the experiments they can perform. Microfluidic approaches offer

fascinating capabilities for the study of plant roots, but are

subjected to limitations in their throughput and in the size of the

plants they can host [4,24,25].

We here demonstrate that LEGO bricks are highly convenient

and versatile building blocks for building cm-scale engineered

environments for plant roots. Their modularity enables the

fabrication of environments with highly controlled structural and

chemical heterogeneities that are suitable for convenient quanti-

tative studies of environmental effects on plant phenotypes[26].

System Design

A convenient experimental platform for the study of root

development in controlled environments must satisfy a demanding

set of design constraints. LEGO bricks, while conceived and sold

as toys, satisfy these constraints.
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Modularity
Modular systems can produce many structurally distinct

environments from a few different components. Features can be

added or removed without remanufacturing the entire experi-

mental setup. LEGO structures are modular. The smallest bricks

are 8x8x6 mm. The largest are 48x8x50 mm. The number of

different structures that can be made with these units is staggering:

six identical bricks can form almost a billion different struc-

tures[27].

Scalability
Confinement can affect the physiology of an organism[28]. The

ability to create experimental platforms of a range of sizes enables

researchers to study any plant and their ensembles. LEGO

structures can be easily scaled to accommodate different plant

species: the smallest enclosed environment that can be produced

with LEGO bricks measures 0.35 cm3 in volume, and it is

theoretically possible to create LEGO structures capable of

containing the largest plant species.

Structurally precise
Roots are sensitive to the physical structure of their environ-

ment. For example, the study of root thigmotropism (the response

of a root to touch) requires structures that are of an exact size and

shape. The molds used to produce LEGO bricks are accurate to

within 5 mm[29], which is comparable to the diameter of a root

hair and to the resolution of 3D printing (minimum layer thickness

is ,50 mm in some of the best current models).

Capable of increasing levels of complexity
A good model system allows for the controlled introduction of

experimental variables. LEGO bricks can be used –as shown

below – for the generation of physical barriers, air pockets,

chemical gradients, and interconnecting chambers to control the

growth environment of a plant.

Simplicity
Simple setups reduce the risk of operator-induced systematic

errors. Differently from microfluidic approaches, the assembly of

structures from LEGO bricks does not require technical training

so undergraduate students can perform LEGO brick-based plant

experiments from their first day in the laboratory. Simple

experiments that demonstrate fundamental principles of plant

growth (e.g., tropisms) or encourage experimental creativity can be

conducted by school children of all ages during science education

classes[30].

Reproducibility
Plant root experimental platforms (e.g. sand columns, rhizo-

trons, split-root pots) are typically made from scratch. Their

reproducibility between labs or across continents cannot be

guaranteed. The unique selling point of LEGO bricks is that

bricks bought in separate batches are essentially identical and

backward- and forward-compatible with each other. Experiments

created from LEGO bricks can be accurately replicated anywhere

in the world.

Affordability
The more expensive each experiment is, the fewer experiments

can be conducted with finite resources. This fact is especially

meaningful in developing nations[31] and in research fields, like

plant science, where throughput is an essential parameter.

Individual LEGO bricks cost between $0.10 and $1.00 and are

sold worldwide. A LEGO structure capable of growing a plant

costs $3.1 and is reusable: some LEGO bricks in our lab have been

in near-constant use for two years.

High throughput
The ability to run a large number of experiments at the same

time is essential for the establishment, for example, of genotype-

environment-phenotype relationships[32]. A LEGO structure like

the one shown in Figure 1 can be assembled in less than a minute.

Transparency
Twenty eight different LEGO bricks are made from transparent

polycarbonate which can be assembled into transparent structures

for the real-time monitoring of plant roots over time.

Autoclavable
Tissue cultures require sterile conditions. Transparent LEGO

bricks (with the exception of large base plates) are autoclavable due

to their polycarbonate composition: they still fit together in the

same way as they do prior to autoclaving and are still transparent

after more than 50 autoclave cycles. Opaque LEGO bricks are

made from acrylonitrile-butadiene-styrene block copolymer (ABS),

and can be sterilized with ethanol or bleach.

Three-dimensionality
While 2D platforms offer significant advantages in terms of

visualization and practicality[33], 3D mediums are more repre-

sentative of the natural environment of roots[34]. LEGO bricks

allow for the creation of nearly arbitrary 3D structures.

Chemical inertness
Legislative standards ensure the safety to children of LEGO

bricks sold in the USA and EU. These standards include

maximum soluble levels of toxic or hazardous substances.

Compatibility with existing growth environments
Tools that integrate with existing experimental platforms are

often the most useful. The modularity of LEGO structures enables

them to integrate with laboratory protocols e.g., LEGO structures

can hold gel, beads, sand, soil, 3D-printed elements, or be

structurally precise elements in other setups[35].

Results and Discussion

Figure 1 shows a flow diagram of the design, assembly,

disassembly, and re-assembly of an experiment based on LEGO

bricks. The website of the LEGO Group (www.lego.com) provides

a free software (LEGO Digital Designer, LDD) for the CAD-like

design of structures using any available LEGO brick. The software

outputs a step-by-step assembly guide and a list of the required

parts. Individual bricks can be purchased through the ‘‘Pick a

Brick’’ section of www.lego.com or other outlets (e.g. local LEGO

stores, EBay). Sterilization of LEGO bricks can be performed

before or after assembly. The preservation of sterility requires the

structure to be maintained in a sterile container during the course

of an experiment.

The simplest example of a plant germination and growth

environment based on LEGO bricks is shown in Figure 1. The

LEGO bricks are assembled into a container that contains a root

growth medium on which a seed is germinated and grown:

Figure 1, for example, shows a Brassica rapa, Wisconsin Fast Plant,

Astroplant, dwf1, growing on a transparent hydrogel, Gellan gum.

While gel media for root growth are very commonly used in
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PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e100867

www.lego.com
www.lego.com


experiments[26], they are not the best mimic of soil: root

architectures grown in an homogeneous media will not match

those of plants grown in real soil[36]. However, gel media allows us

to demonstrate three essential capabilities of LEGO-based biolog-

ical environments: their ability to hold liquids, their compatibility

with real-time observation and root structure analysis, and their use

in generating reconfigurable environments that include controlled

heterogeneities. Furthermore, LEGO environments are not limited

to gel media: the environment shown in Figure 1 can hold other

media of choice, e.g., sand, perlite, soil.

Since structures built from LEGO bricks are not waterproof,

their use to hold gels requires some stratagems (see Supporting

Information for details and Movie S1 for a demonstration). The

LEGO structure must be chilled in a freezer before the cool gel

solution is poured in it just prior to setting. Using this approach,

leakage of the gel solution was minimal. These basic environments

can be easily scaled to match the dimensions of the organism

under consideration and the time the organism is allowed to grow.

Figures 2a, 2b, and 2c show the use of LEGO bricks to create

containers with very different dimensions (56565 cm,

1061065 cm, and 20620610 cm) for the growth of Fast Plants,

Triticum polonicum (Wheat), and Zea mays (Corn).

The transparency and flat walls of LEGO bricks allows for good

quality real time imaging of the development of the root system.

Figure 2d shows time-lapse imaging of Lepidium sativum (Garden

cress) roots over the course of ,48 hrs from germination in a

LEGO-based environment. The plant was chosen for its relatively

fine roots (,350 mm thickness) that would have been hard to

image in a poorly transparent system.

The reversible nature of the mechanical bond between the

bricks provides two important capabilities: the creation of

reconfigurable biological environments, and of highly controlled

heterogeneities (i.e., solid obstacles, air pockets, and chemical and

soil biota gradients) in an otherwise homogeneous growth

medium. Figure 2e demonstrates a reconfigurable plant growth

environment. Two Fast Plants were grown in gel in separate

containers assembled on the same base plate. The LEGO brick

walls separating the two containers were removed and reconfig-

ured to make one larger container. The volume separating the two

plants was then filled with more gel, fluidically connecting the two

plants. Figure 3 demonstrates the generation of controlled

Figure 1. Scheme of the process of carrying out a plant growth experiment using LEGO bricks as building blocks. The same process
can be used to prototype and fabricate other biological experiments.
doi:10.1371/journal.pone.0100867.g001
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heterogeneities in a homogeneous gel medium for plant growth by

a simple templating strategy borrowed from the materials science

‘‘toolbox’’. A gelling mixture was poured into a LEGO-based

mold. LEGO-based features in the mold can be used as solid

heterogeneities to study the physical interaction of plant roots with

solid objects (thigmotropism). After gelation, LEGO-based molds

could be removed, leaving behind precisely positioned air pockets

that would serve as sources of oxygen gradients into the gel. These

pockets could be then refilled with a hydrogel containing a desired

chemical to generate precisely positioned one-dimensional

(Figure 3, bottom left panel) or two-dimensional (Figure 3, bottom

right panel) nutrient gradients. The above process can be

combined to create environments with solid heterogeneities, air

pockets (i.e., oxygen gradients), and chemical (e.g., nutrients,

toxins, signaling molecules) gradients simultaneously (see Appen-

dices S1).

Conclusions

In summary we demonstrated that LEGO-based environments

can (i) scale to the size of the organism under consideration, (ii)

allow for real time monitoring of root systems in 3D, (iii) be

structurally reconfigured to change the environment of an

organism during its development, and (iv) generate precisely

controlled heterogeneities (i.e., solid barriers, air pockets, chemical

and soil biota gradients) in an otherwise homogeneous growing

medium.

This manuscript also proposes a broader concept: the use of

reusable and mechanically interlocking building blocks for the

construction of biological environments for cm-scale organisms

and systems of organisms. Modular and reusable building blocks

can alleviate the challenges associated with the large scales of plant

science experiments, while providing new capabilities (e.g.,

controlled heterogeneities, reconfigurable environments) for the

study of environmental effects on biosystem development.

Furthermore, this concept provides materials chemists and

engineers with two stimulating opportunities: (i) to creatively

engage with the synthesis or development of increasingly capable

cm-scale biological environments for important organisms such as

plants, and (ii) to use these environments to test hypothesis

concerning plants that are compatible with their skillset. Compel-

ling opportunities lie in extending our approach to chemically

synthesized bricks, LEGO-compatible 3D-printed bricks and

objects, and commercial bricks from other manufacturers. Our

Figure 2. Versatility, transparency, and modularity of the LEGO-based environments for plant growth. a-c) pictures of basic LEGO-
based environments growing Fast Plants, Wheat and Corn. The size of the environments can be controlled to match the size of the organism under
consideration. d) Timelapse imaging of Lepidium sativum root development through the walls of a LEGO-based environment. The images indicate the
time since germination. e) Examples of a LEGO-based system that allows for the dynamic change of the environment of a plant. Two plants (Fast
Plants) are grown in isolated environments. The environment is then modified, during growth, to allow the two plants to share the same environment
and interact.
doi:10.1371/journal.pone.0100867.g002
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laboratory will be introducing a set of integrated tools for the

fabrication of frugal but sophisticated[37] cm-scale environments

for the study of plants and other organisms[35].

Supporting Information

Appendices S1 Materials, methods, and procedures for the

generation of (i) basic LEGO-based environments, (ii) LEGO-

based environments with linear chemical gradients, (iii) LEGO-

based environments with cylindrical chemical gradients, (iv) larger

scale LEGO-based environments. Demonstration of a LEGO-

based environment combining controlled obstacles, air pockets,

and multiple chemical gradients. Calculation of the smallest

possible LEGO-based environment. Limitations, open questions,

and failed experiments.

(PDF)

Figure S1 Summary snapshots of the assembly of a basic

LEGO-based plant growth environment.

(TIF)

Figure S2 Summary snapshots of steps for root analysis using

WinRhizo of two brassica rapa roots grown in LEGO-based plant

growth environment.

(TIF)

Figure S3 Snapshots of the procedure to produce linear features

(solid obstacles, air pockets and chemical gradients) in a

homogeneous gel by using LEGO bricks.

(TIF)

Figure S4 Snapshots of the procedure to produce 2-dimensional

features (solid obstacles, air pockets and cylindrical chemical

gradients) in a homogeneous gels by using LEGO bricks.

(TIF)

Figure S5 Photograph of a 3D plant growth environment based

on LEGO bricks featuring three different types of heterogeneities:

a solid barrier (top left), an air pocket (bottom right) and two

different cylindrical chemical gradients (top right and bottom left).

(TIF)

Figure 3. Fabrication of controlled heterogeneities in plant growth environments. Sequence of diagrams and corresponding images
illustrating the generation of a 1D and 2D heterogeneities (solid features, air pockets, and chemical gradients) across a developing root system of a
Fast Plant. In the bottom panels, the red linear gradient is of MS nutrients (dye is added for visibility), while the radial gradients are from potassium
phosphate (green), potassium nitrate (yellow), calcium chloride (red), and magnesium sulfate (blue).
doi:10.1371/journal.pone.0100867.g003
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Figure S6 Depiction of the smallest LEGO-based environment.

(TIF)

Movie S1 Assembly of a basic LEGO-based environment.

(M4V)

Movie S2 Plant harvesting procedure from a basic LEGO-based

environment.

(M4V)

Table S1 Preparation of salt solutions for cylindrical dye experiment.

(PDF)
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