Electronic Transactions on Numerical Analysis. ETNA

Volume xx, pp. XX-xx, 2008. Kent State University
Copyright 0 2008, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

DISCONTINUOUS GALERKIN METHODS FOR THE P-BIHARMONIC
EQUATION FROM A DISCRETE VARIATIONAL PERSPECTIVE *

TRISTAN PRYER

Abstract. We study discontinuous Galerkin approximations ofjtHgiharmonic equation fop € (1, co) from
a variational perspective. We propose a discrete variatiformulation of the problem based on an appropriate
definition of a finite element Hessian and study convergentkeomethod (without rates) using a semicontinuity
argument. We also present numerical experiments aimed atgéisémobustness of the method.
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1. Introduction, problem setup, and notation. Thep-biharmonic equation is a fourth-
order elliptic boundary value problem related to—in fact alimear generalisation of—the
biharmonic problem. Such problems typically arise in étést in particular, the nonlinear
case can be used as a model for travelling waves in suspebsiges [L5, 19]. Itis a
fourth-order analog to its second-order sibling, thkeaplacian, and, as such, is useful as a
prototypical nonlinear fourth-order problem.

The efficient numerical simulation of general fourth-orgesblems has attracted recent
interest. A conforming approach to this class of problemsldoequire the use af’!-finite
elements, the Argyris element for examplg Section 6]. From a practical point of view,
this approach presents difficulties in that hé-finite elements are difficult to design and
complicated to implement, especially when working in thspatial dimensions.

Discontinuous Galerkin (dG) methods form a class of nonmoning finite element
methods. They are extremely popular due to their succesgflication to an ever expanding
range of problems. A very accessible unification of thesenous together with a detailed
historical overview is presented if][

If p = 2, we have the special case that tl2e-)piharmonic problem is linear. It has
been well studied in the context of dG methods, for example papers]4, 22] study the
use ofh-p dG finite elements (wherg here means the local polynomial degree) applied to
the 2-)biharmonic problem. To the authors knowledge, there igsetiily no finite element
method posed for the genegabiharmonic problem.

In this work we use discrete variational techniques to baildiscontinuous Galerkin
(dG) numerical scheme for thebiharmonic operator withh € (1,0). We are interested
in such a methodology due to its application to discrete sginigs, in particular, discrete
versions of Noether’s Theoreria4].

A key constituent to the numerical method for thdiharmonic problem (and second-
order variational problems in general) is an appropriafeniion of the Hessian of a piece-
wise smooth function. To formulate the general dG schemiiafeproblem from a variational
perspective, one must construct an appropriate notion oéssidn of a piecewise smooth
function. Thefinite element Hessiawas first coined byZ] for use in the characterisation
of discrete convex functions. Later i2(] it was employed in a method for nonvariational
problems where the strong form of the PDE was approximatdgatito use in the context of
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fully nonlinear problems in41]. A generalisation of the finite element Hessian to incoaper
the dG framework is given inl[J], which we also summarise here for completeness.

Convergence of the method we propose is proved using theefvark set out in 11],
where some extremely useful discrete functional analgsislts are given. Here, the authors
use the framework to prove convergence of a dG approximatidhe steady-state incom-
pressible Navier-Stokes equations. A related but indepeingork containing similar results
is given in ], where the authors study dG approximations to genericdirdér variational
minimisation problems.

The rest of the paper is set out as follows: in the remainimggddhis section, necessary
notation and the model problem we consider are introducedSelction2 we give some
properties of the continuoysbiharmonic problem. In Sectiodwe give the methodology
for the discretisation of the model problem. In Sectlome detail solvability and convergence
of the discrete problem. Finally, in Sectidrwe study the discrete problem computationally
and summarise numerical experiments.

Let © c R be a bounded domain with bounda®2. We begin by introducing the
Sobolev spaceg|[13]

L,(Q) = {¢: / lo]” < oo} forpe[l,00) and L. () = {¢: esssupg |¢| < <},
Q
WH(Q) ={¢ € Lp(Q) : D*¢ € Lp(Q), for |a] <1} and H'(Q) := W(Q),

which are equipped with the following norms and semi-norms:

o109 = | 1ol

ol17, = lolfpr iy = D 1D () »
lee| <k
p o p _ o, ||P
v Lp = ‘/U|WIZ7(Q) = Z |D U”LP(Q) )
|a|=K
2 2 2
1]l = ol ) = Iollwya) »
wherea = {ai,...,aq} is a multi-index, |a| = Zf’:l «;, and the derivativeD* are

understood in a weak sense. We pay particular attentioretodke$ = 1, 2 and define
W2(Q) = {peW(Q): ¢=(V¢)"n=0}.

In this paper we use the convention that the derivatieof a functionu : Q@ — Ris a
row vector, while the gradient of, Vu, is the derivatives transposed, i.¥w = (Du)T. We
make use of the slight abuse of notation following a commattice whereby the Hessian
of u is denoted a®$)?« (instead of the corred¥ Du) and is represented bydax d matrix.

Let L = L(x,u, Vu, D*u) be theLagrangian We let

SIlipl: WAQ) - R
b Floip] = / Liz. ¢, V6, D*¢) da

be known as thaction functional For thep-biharmonic problem, the action functional is
given explicitly as

s ::/QL(%U,V%DZU)Z/Q%\Au\p—fw
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whereAuw := trace(D?u) is the Laplacian and € L,(€) is a known source function. We
then look to find a minimiser over the spad€’ (<2), that is, to findu € W2 () such that

A uipl = min 7 [v;p].

vEWZ(Q)

If we assume temporarily that we have access to a smooth sirm.e.,u € C*(),
then, given that the Lagrangian is of second order, we hatedtike Euler-Lagrange equations
are (in general) of fourth order.

Let X:Y = trace(XTY") be the Frobenius inner product between matrices. We then let

i xf
X=]": :
zhooad
and use
oL 8L/.8x} 8L/.8x'f
dL/dxy ... OL/ox!

The Euler-Lagrange equations for this problem now takedheving form:
oL oL

pli=D?: | ——— — =0.

i) (3(D2u)> + ou 0

These can then be calculated to be

(1.1) Llu;p) = A(|Au|p72 Au) —f=0.

Note that forp = 2, the problem coincides with the biharmonic probléxfu = f, which is
well studied in the context of dG methods; see, e3).14, 16, 25].

2. Properties of the continuous problem. To the authors knowledge, the numerical
method described here is the first finite element method preddor thep-biharmonic prob-
lem. As such, we will state some simple properties of the lgralwhich are well known for
the problem’s second-order counterp#he p-Laplacian[4, 7].

PrRoPOSITION2.1 (Equivalence of norms ové%/f,(ﬂ) [17, Corollary 9.10]). Let Q
be a bounded doomain with Lipschitz boundary. Then the ndfrifys, and ||D2'||L,,(Q) are
equivalent oveiV2(Q2). )

PROPOSITION2.2 (Coercivity of 7). Letu € W (Q) andf € Ly(%2), where | + L =1.
We have that the action functiong | - ; p] is coercive ove#V> (1), that is,

A wipl = Cluly, =7,

for someC' > 0 and~y > 0. Equivalently, let
o (u,v;p) = / |AulP? AuAw,
Q

then there exists a constafit > 0 such that

2.1) A (v,vip) 2 Clls,  YveW2(Q).
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Proof. By definition of theV?/f,(Q)-norm and Propositio.1, we have that

usp] > Clp) July,, — fu.

Upon applying Hlder and Poinc&-Friedrichs inequalities, we see that

A uipl = Cp) luly, = 11fll, 0 lull 0

2 Cp) lulz,, = Cllfllz o)

The statementX( 1) is clear due to Propositioh. 1, which concludes the proof. 0O

PrROPOSITION2.3 (Convexity of). The Lagrangian of the-biharmonic problem is
convex with respect to its fourth argument.

Proof. Using similar arguments to/[ Section 5.3] (also found irb]), the convexity of
the functional/ is a consequence of the convexity of the mapping

1
FigeRo e’ O

COROLLARY 2.4 (Weak lower semicontinuity).The action functional? is weakly
lower semicontinuous ové#’2(Q2). That is, given a sequence of functions; } jen which
has a weak limit. € 172(22), then

S [u; pl Slijlgicgf/[ug';p]-

Proof. The proof of this statement is a straightforward extengibfil3, Section 8.2,
Theorem 1] to second-order Lagrangians noting tffats coercive (from Propositio@.2)
and thatl is convex with respect to its fourth variable (from Propiosit2.3). We omit the
full details for brevity. a

COROLLARY 2.5 (Existence and uniquenesshhere exists a unique minimiser to the
p-biharmonic equation. Equivalently, there is a unique (lgesolution to the (weak) Euler-

Lagrange equations: find € I/%/f,(ﬂ) such that

/|Au|p*2AuA¢:/f¢ V6 e WE(Q).
Q Q

Proof. Again, the result can be deduced by extending the argunrefit8, Section 8.2]
or [7, Theorem 5.3.1], noting the results of Propositi@ndand2.3. The full argument is
omitted for brevity. a

3. Discretisation. Let .7 be a conforming, shape regular triangulatiofohamely,7
is a finite family of sets such that
1. K € 7 implies K is an open simplex (segment fdr= 1, triangle ford = 2,
tetrahedron forl = 3),
2. foranyK,J € 7 we have that N J is a full subsimplex (i.e., it is eitheh, a
vertex, an edge, a face, or the wholefofand.J) of both K" and.J and

3. Ukes K =1
The shape regularity o is defined as the number

— inf PK
) =t
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wherepg is the radius of the largest ball contained insideand /i is the diameter of<.
An indexed family of triangulation$.7 "}, is calledshape regulaif

p=1inf u(7") > 0.

We use the convention that: 2 — R denotes the piecewise constanéshsize function
of 7, i.e.,

h(x) = max hg,
TeEK

which we shall commonly refer to ds

Let & be the skeleton (set of common interfaces) of the trianguia? , and we say that
e € & if eis on the interior of2 ande € 09 if e lies on the boundarg$? and set:. to be the
diameter ofe.

We also make the assumption that the mesh is sufficientlyeshegular such that for
any K € .7, we have the existence of a constant such that

(3.1) > helel < CIK],

ecOK

where|e| and| K| denote théd —1)- andd-dimensional measure efand K, respectively.

Let P*(.7) denote the space of piecewise polynomials of degreger the triangula-
tion 7, i.e.,

P*(7) = {¢ such thay| x € P*(K)},
and introduce théinite element space
V:=DG(7,k) = Pk(.7)

to be the usual space of discontinuous piecewise polyndmmations.

DerINITION 3.1 (Finite element sequence) finite element sequendey,, V} is a
sequence of discrete objects indexed by the mesh paramated individually represented
on a particular finite element spadg which itself has a discretisation parameterthat is,
we have thaV = V(h).

DEFINITION 3.2 (Broken Sobolev spaces, trace spac@s introduce the broken Sobo-
lev space

WHT):={¢: ¢|x € W,(K), foreachK € 7 }.

We also make use of functions defined in these broken spatesteal to the skeleton of the
triangulation. This requires an appropriate trace space

T(&) = [] L20K) > J] W *(K)

KeZ Keo

forp>2,1>1.



ETNA
Kent State University
http://etna.math.kent.edu

6 T. PRYER

DeFINITION 3.3 (Jumps, averages, and tensor jumpak may define average, jump,
and tensor jump operators ovér(&’) for arbitrary scalar functionsy € 7(&) and vectors
veT(E&)"

{3 T(EUN) — Ly(8UON),

N L(v|g, +v|k,) overé,
v|aa onofl.

{3 [T(Euo)! —[Lo(&UQ)?,

{%(U|K1 +wvlg,) overé&,
v

v]on onon .

[1: T(&UIN) —[Ly(& UMY,
7)|K1’I’LK1 +U‘K2TLK2 overé,
V=
(vn) ‘3(2 onofl.

[1: [T(EUaN)]" — Ly(& U RN,

(v|k,) K, +(v|k,) nK, overés,
(vTn) o onan.

[lo: [T(EUQ)" —[La(& UOQ) P,

vk, @ Nk, + |k, ®NK, OVErs,
(v@n) oo onoQ.

We will often use the following proposition, which we statefull for clarity but whose
proof is merely using the identities in Definiti@n3.

PropPosITION3.4 (Elementwise integration)For a generic vector-valued function
and scalar-valued function, we have

DY /K div(p) pdz = ) ( /K PV, da + /0 K<z>ande>.

Keo Keo

In particular, ifp € T(& U GQ)d and¢ € T (& U 9Q), the following identity holds

(3.3) K%?? LA /g [p] {2} d8+/5u

N /guaﬂ po} ds

An equivalent tensor formulation ¢8.2)—3.3) is

Z /Kthgbdw: Z (/Kp®Vh¢dm+/aK¢p®ans>.

KeoZ Keo

[4]" {p} ds
o0
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In particular, the following identity holds
> [ epenxas= [ (ol to} as+ [

3.4)  Ke7 0K
= [ el s
EU0NQ

The discrete problem we then propose is to minimise an apiteqliscrete action func-
tional, that is to seek;, € V such that

[6]® {p} ds
oQ

U]

Inlup;p) = vihnefvfh[vh;p]'

REMARK 3.5. The choice of the discrete action functional is crucalnaive choice
would be to take the piecewise gradient and Hessian opsraialto substitute them directly
into the Lagrangian, i.e.,

Inlun;p) = / L(x, un, Viun, Diug) .
Q

This is, however, an inconsistent notion of derivative apans (as noted irg]). Since for the
biharmonic problem, the Lagrangian is only dependent oiésian of the sought function,
we only need to construct an appropriate consistent nofiardiscrete Hessian.

THEOREM 3.6 (dG Hessianl[0]). Letv € VT/IQ,(Q‘), v: HY(T) = T(U0N) be

a linear form, andp : H2(.7) x H(7)* — T(&U0Q)" a bilinear form representing
consistent numerical fluxes, i.e.,

V(v) = v|suan p(v, Vu) = Volsuaa,

in the spirit of [1]. Then we define the dG HessiaRl[v] € V¢*¢, to be theL,-Riesz
representoof the distributional Hessian af. This has the general form

/QH[U]‘I)Z—/QVhU@Vh‘I)—/guaﬂ[[ﬁ—v]]@{th)B
- [ G-y el [ @le @+ [ 19} .

Vo eV.

Proof. Note that in view of Green’s Theorem, for smooth functians C2(Q) N C*(Q),
we have

Dwp=— | VwuaVe+ [ Vweng Ve CHQ) N CO@).
Q

Q o0

As such for a broken function € I/%/g(ﬂ), we introduce an auxiliary variabje= Vv
and consider the following primal form of the representaiid the Hessian of this function:
foreachK € 7,

(3.5) /H[v]@z—/p@VhfIH—/ pond VeV,
K K OK

(3.6) /p®q:—/qu+/ qanv VqeVe
K K oK
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whereV,, = (D;,)" is the elementwise spatial gradient. Noting the idenfity)(and taking

the sum of 8.5 over K € .7, we observe that
<—/p®Vh<I>+/ ﬁ@n@)
K 0K

/QH[U]CI)Z > /KH[WI’: >
== [pevios [ [@letp}+ [ @} 15,

KeZ KeT
Using the same argument fd.6) yields

/Qp®q= > /Kp®q: > <—/Kthq+/aKq®n@)

KeT KeZ
— [oDwa+ [ e dab + [ 0} Ll

Note that, again making use @&.4), we have for eacly € H'(.7)? andw € H'(.7)
that

@ [awVie=- [ Diqu+ /g g+ /g lal, {0} -

Takingw = v in (3.7) and substituting into3.6), we see that

(3.8) /Qp®q=AQ®th+/éBU89ﬂﬁ—vﬂ®{q}+/g{ﬁ—v}} lq] 5 -

Now choosingg = V;,® and substitutingd.8) into (3.5 concludes the proof. 0O
ExampLE 3.7 ([10]). An example of a possible choice of fluxes is

&
o= {g”} g‘r’]‘gg . p={Viv} on& U

The result is an interior penalty (IP) type meth® §pplied to represent the finite element
Hessian

/QH[’U] O =— /Q Viv® Vp® + /g’uasz [v]® {Vro} + /f;an [®] @ {Virv}
= /QD,%ucI) - /(MQ [Vio], {2} +/£U8Q [v] @ {V,2} .

This will be the form of the dG Hessian which we assume for &t of this exposition.
DerINITION 3.8 (lifting operators).From the IP-Hessian defined in Exam@er, we
define the following lifting operatdy, I, : V — V¢*4 such that

(3.9) [ue= [ mlevie
[l — - L PRAZORCS

As such, we may write the IP-HessianHs: V — V4*4 such that
(3.10) / Hi[v,)® = / (Do + lifvn] + la[va]) @ V@€V,
Q Q

whereD? denotes the piecewise Hessian operator.



ETNA
Kent State University
http://etna.math.kent.edu

DISCONTINUOUS GALERKIN METHODS FOR THEp-BIHARMONIC EQUATION 9

REMARK 3.9. WhenH |] is restricted to act on functions Win H{ (2), we have that
\/H[’U}J@:/ (D2vh+l2[vh])<13 V@eVﬂH&(Q)
Q Q

This definition coincides with the auxiliary variable intheced in [L8] for Kirchhoff plate
problems. In addition, it is the auxiliary variable used 20,[21] for second-order nonvaria-
tional PDEs and fully nonlinear PDEs.

4. Convergence.In this section we use the discrete operators from Se&tiorbuild a
consistent discrete variational problem and in additiawwverconvergence. To that end, we
begin by defining the natural dG-norm for the problem.

DEFINITION 4.1 (dG-norm) We define the dG-norm for this problem as

||Uh||sG,p = HD}%UhHip(m + hi_p ||[[thh]]||1[),p(guag) + hi_% ||[[Uhm|1[ip(guag) )

where(|-|| , (su00) is the(d — 1)-dimensionalL,-norm overs’ U 9.

To prove convergence for thebiharmonic equation, we modify the arguments given
in [11] to our problem. To keep the exposition clear, we use the samtetion as in 11]
wherever possible.

We state some basic propositions, i.e., a trace inequalityaa inverse inequality in
L,(92), the proofs of which are readily available in, e.g]. [Henceforth, in this section and
throughout the rest of the paper, we ($¢o denote an arbitrary positive constant which may
depend upom, p, and€ but is independent df.

PROPOSITION4.2 (Trace inequality).Letv, € V be a finite element function, then
for p € (1, 00) there exists a constaidt > 0 such that

lonll 1, (su00) < Ch™/P lvallz, () -

PrROPOSITION4.3 (Inverse inequality) Letv, € V be a finite element function, then
for p € (1, 00) there exists a constadt > 0 such that

||vhvhHIL)p(Q) <Ch7? ”vhHIL)p(Q) and

lonll? @y < O [Vaunlls -

LEMMA 4.4 (relating||-|| ;. .- and||-|| ;. ;-norms). For s,t € Nwith 1 < s <t < oo,
we have that there exists a constaht> 0 such that

HUthG,s <C thlldG,t :

Proof. The proof follows similar lines tol[1, Lemma 6.1]. By definition of thg-|[ ,, .-
norm, we have that

ol = [ (DRl +nt= [ @i+ b [
Q EUON [2}9)

5U

Now let us denote = 5 andg = -5, thatis, we have} + % = 1. Hence, we may deduce
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that

th”ZG,S:/ |Divh‘s+/ hé/qh(el—t)/r|[[vhvh]]|s+/ hi/qh(el_Zt)/rH[vh]Hs
Q EUON EUON

1/q . 1/r 1/q 1/r
() (o ) ()
Q Q EUIN EUON
1/q 1/r
o) ()
EUON EUON

< Cllvallae, »
where we have used thedldler inequality together with
l—s=1-L=141t and 1-2s=1-2=1412

and the shape regularity of given in 3.1). This concludes the proof. 0O
DEFINITION 4.5 (Bounded variation)Let #'[-] denote the variation functional defined
as

Vu) = sup{/@udivq&: ¢ € [CF()]Y, Il ) < 1}.

The space obounded variationglenotedBV, is the space of functions with bounded varia-
tion functional,

BV :={¢p € Li(Q): ¥[¢] < o0}
Note that the variation functional defines a norm o¥r’; we set
ull gy = 7[ul.

PROPOSITION4.6 (Control of th@%1 (©)-norm [12]). Letu € BV. Then there exists
a constantC such that '

”’U’HLL(Q) < Cllullgy -
d—1

PROPOSITION4.7 (Broken Poincdrinequality p]). For v, € V, we have that

lonlloyior < C( [ ol [ 1oall).
Q EU0Q

LEMMA 4.8 (Control on the BV norm)We have that for eacty, € V andp € [1, o0),
there exists a constadt > 0 such that

lonll gy < Cllonllag,p -

Proof. Owing to [L1, Lemma 6.2], we have that

@) ooy < [ 9wl + [ Jf.
Q EU0N
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Applying the broken Poincérinequality given in Propositiod.7 to the first term in 4.1)
gives

||vh||3vs0(/ il + [ 19l + [ uvhm)
Q EUON EUON

<o( [zl + [ wdivnt [ )

< C”vthG,l'

Applying Lemma4.4 concludes the proof. 0O
LEmMMA 4.9 (Discrete Sobolev embeddingspr vy, € V, there exists a constant > 0
such that

lonllz, @) < Cllvallag,, -

Proof. The proof mimics that of the Gagliardo-Nirenberg-Sobadleyquality in [L3,
Theorem 1, p. 263]. We begin by noting that Propositdigiitogether with Lemmd.8infers
the result fop =1, i.e.,

lorllz, @) < Cllvnllag -

Now, we divide the remaining cases into the two cases(1, d) andp € [d, ).
Step 1. We begin withp € (1, d). First note that the result of Propositidrt together
with Lemma4.8infer that

HU}IHLL(Q) < OHUthGJ Vo, € V.

d—1

Now takingv, = |wy|”, wherey > 1 is to be chosen later, we find that

4.2) (/Q '“’h'ﬂ)ddl SC(/Q|D%<|wh”>|+Luaﬂ|ﬂvh(wh|”>ﬂ|
A )

We proceed to bound each of these terms individually. kjmnstite that by the chain rule, we
have that

Va(lwn|?) =5 [wa" ™ Vi(lwa]) = 7w, " wp Viws.

Hence, we see that
Di(lwnl") = Da(Valwnl") = Di (3 leonl "™ i, Vo,
= ’Y(Dh (‘wh|772) whvhwh -+ \whW*Q thhvhwh + |wh\772 whD,zlwh)

= y(y = 1) Jwn|" "% Viwn © Viwy + 7 |wa|" > wp Diwp,.

Using a triangle inequality, it follows that

J 103 Gwn < [ flun ™ Diun +90r= 1) [ Jlun = T Ty
Q Q Q
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By the Holder inequality, we have that

1 1
< () ([ oper)’
Q Q Q
whereq = %. In addition, we have

1 1

q\ ¢ P

()

Q

a(Juwn™1) = (= 1) fwn " wn Vi,

1 =1\ |? i P »
(L)) ([ )
¢ q(y=1) z / 2, P ’

= y—1 </Q ] Q [Dicn]

by the inverse inequalities from Propositiér8. Hence, we have that

(4.3) /Q|D}21(|U)h|w)| < C,y</Q |wh|q(’vl)>‘1 (/Q ‘D}%wh|p>})

Now we must bound the skeletal terms appearingtif)( The jump terms here also act
like derivatives in that they satisfy a 'chain rule’ ineqjtyal Using the definition of the jump
and average operators, it holds that

/ I funl "] < / 2y fuon "} [Vawn]
EUON EUOQ

he Qw7

/ ‘|wh|772 Viwy & Vhwh) < (/ ‘|wh‘772 Viwp,
Q Q

Noting that

we observe that

IN

/ ’\whpiz Viwn ® vhwh‘
Q

(4.4)
<2y ‘

Lq(£009) 17 [Vwn] HLp(guasz)

by the Holder inequality.
Focusing our attention on the average term, in view of theetimequality in Proposi-
tion 4.2, it holds that

[ e

q 114
<O Y H
L, (£U00) i Ly (K)

< Ohae—1 (/ |wh|q(7—1)> )
< Chg .
Upon taking the;-th root, we find

1
a—1L _ q
< Ch, ¢ </ |wh|f1(’y 1)) )

L, (EU8Q) Q

Choosinga = % such that the exponent éfvanishes and substituting inté.4) gives

(@0 /6°‘an IV fwn"]] < C(/Q |wh|q(71)) “ ’

(4.5) ‘

B oY

he * [Viwh]

L,(&U00)
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The final term is dealt with in nearly the same way. Again, ggire 'chain rule’ type
inequality, we see that

[ mt eV [t g sl
EUON EUON

SZV)

he {|wh|v_1}H [ [wh]]HLp(é"UBQ) ’

Ly (£00Q)

which in view of @.5) gives again

wn | hglmwmnsc(/ |wh|q<v‘”)“Hhe“uwhﬂ
EUON Q

)

L,(£U0Q)

whereq = 1.

Collectlllng the three boundd4.Q), (4.6), and @.7) and substituting into4.2) yields

d—1 1
ya \ N\ @
(/ |wh|d'1> < (/ Jwp | 1)> (HD%LwhHLp(Q)
(4.8) \/2 @

_1 _1_q
he * [Vraws] he * [wn]

i

i

L, (£U0%Q) L,(£U8Q) ) .

The main idea of the proof is to now choogesuch thatdl"*fd1 =q(y—1),le,y= %_
Using this and dividing by the first term on the right hand 3fé4.98) yields

1

pd \ 4 T a
(L1on#) " < (102wl 0

_1 _1_7q
he ? [[Vhwh]] he ? [[wh]]

i

i

L, (£U0%Q) L,(£U8Q) ) .

Now noting that

d—1

1 _plp and bt o pl-
d q dp ’ e’

€
yields
lwnlly, . @y < lwnllag

wherep* = ppfdd is the Sobolev conjugatef p. This yields the desired result singé > p
for p € (1,d), and hence, we may use the embedding(2) CC L,(9).
Step 2. For the cagee [d, 00) we setr = 2. We note that < d and that the Sobolev

conjugate of, r* = d‘ﬁ"r > r. Following the arguments given in Step 1, we arrive at

HwhHLM(Q) < HwthG,r'
Note that

d>p
* Td d+p

d—r _ﬂ:
d+p
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Hence, we see that

lwnll, @) = lwally . @) < Cllwnllie, < Cllwnllae,,

where the final bound follows from Lemnda4 concluding the proof. a

AsSsuUMPTION4.10 (Approximability of the finite element spacdjenceforth, we will
assume the finite element spaédo be chosen such that the (€2) orthogonal projection
operatorPy satisfies

1. - P =
fes [v V’U”LP(Q) 0,
}llli% ||VU — Vh(PV U)”LP(Q) =0, and

li -P =0.
lim [0 — Py vllyq,

A choice oft > 2 satisfies these assumptions.
THEOREM4.11 (Stability).Let H|-] be defined as in Example7. Then the dG Hessian
is stable in the sense that

| D2on = Hlonl[ qyera < C(Ialon] + Laonl 12 cyana )

(4.9
< c< / B |[Vaun]” + hi-% ﬂth’) '
EUON

Consequently, we have
HH[UIL]”IEP(Q)dxd <C ””hHZCJLp .

Proof. We begin by bounding each of the lifting operators indiailiiyy Let ¢ = p”j
Then by the definition of th&,,(22)-norm, we have that

ly[vp]z
Iafonlly, @ = sup [ o
2€Lq(Q) JO ||Z||Lq(sz)

LetPy : Lo (2) — V denote the orthogonal projection operator. Then using d¢fi@ition of
l1][]in (3.9), we see that

[l1[vn]llL, ()
- /ll[Uh}PV,Z
= sup —_—
2€L4(Q) JQ ||Z||LQ(Q)

. [va] © {0 (Pv 2)}
B y /<§’U(')Q

(4.10) 2€L4 () ||Z||Lq(Q)
he_o‘ Up, . hg‘vh Py z p
PR Ll 0 [ PR | U A 20) | s
2€Lq(Q) HZHLQ(SZ)
—a p p [eY q Va
i (I ol suoey)  (HREVa(Pr MY, (o0 )
<d° sup )
2€Lq(Q) ||Z||Lq(Q)

using the Hlder inequality followed by a discreteditlier inequality and where € R is
some parameter to be chosen.
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Using the definition of the average operator, we find that

HReVR(Py MG so00) < 5 D 1EVAPy 2T, ox)
Keo

Now by the trace inequality in Propositi@gn2, we have that

[{re VR (Py Z)}}”%q(guaﬂ) <C Z h1e |V, (Py Z)Hqu(K) :
KeT

Making use of the inverse inequality given in Propositibg, we have

(4.11) IheVRPy MG so00) C D W Pyz|] -
Keo

We choosex = 2— - such that the exponent ffin the final term of ¢.11) is zero. Substitut-
ing this bound |nto4 11) and making use of the stability of the, (2) orthogonal projection
in L,(£2) [8], we conclude that

1 p

2
(4.12) lon]ll7, @) < C|[RE  [vn] < Chy™? I[onll7, (sua0y -

L, (£U0Q)

The bound onl,[] is achieved using similar arguments. Following the steperyi
in (4.10, it can be verified that

ll2[vn]ll 2, @)
1/p 1/q
_ P q
@19 <d® sup (Hh ﬁ[[vh’vh]]”Lp(éauam) (H{{hﬁpvz}HLq(‘g)u‘mJ
T zeL,(Q) ”Z”LQ(Q)

for somes € R. To bound the average term, we follow the same steps (witthauinverse
inequality), i.e.,

||{hBPVZ}HL (FUBQ) 2 Z ||hﬂPVZHL 1(0K) =c Z K= IPv 2117 o(K) "
Keo7 Keo

We choosed =1 — % such that the exponent éfvanishes and substitute inté.{3 to find

1 P

1
(4.14) Efon]llZ, @) < C' |7 [on] < Che P vallly, su0) -

L,(£U0%)

The result 4.9 now follows by noting the definition o given in 3.10, a Minkowski
inequality, and the two resultg (L2 and @.14).

To see {.1]) it suffices to again use a Minkowski inequality togethetw#.10 and the
two results €.12) and @.14). a

COROLLARY 4.12 (Strong convergence of the dG-Hessiaigiven a smooth func-
tion v € C§°(2) with Py : Ly(2) — V being theL, orthogonal projection operator, we
have that

HD%—HPVU HL L (Q)ixd _C||v—PVv||de

Hence, using the approximation properties given in Assionpt.10 we have the conver-
gence result thaH [Py v] — D?v strongly in L, (£2)4*.
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4.1. The numerical minimisation problem and discrete EulerLagrange equations.
The properties of the IP-Hessian allow us to define the foligwnumerical scheme: find
uyp, € V such that

(4.15) Inlun;p] = Uihnefvfh [vn; p).

Let Z[vy| := trace H[vy], then the discrete action functiong, is given by

1
Snlonin) = [ @[vh1|”+fvh+"( / h;-puvhvhmuhé-%mvhmp),
Qb P \Jeuon

whereos > 0 is apenalisation parameter
Let

i (up, B p) = /Q \Pun)”~* D un) 2[)
(4.16) - “(/,@ Rl (D] [90]

2 (o] ] 9] )

The associated (weak) discrete Euler-Lagrange equationthé problem are to
find (up, H[uy)) € V x V4% such that

(4.17) Ay (un, B; p) = / 1o VO eV,
Q

whereH is defined in Exampl&.7.

THEOREM 4.13 (Coercivity). Let f € L,(Q) and {us, V} be the finite element se-
guence of solutions to the discrete minimisation prob{érhi5. Then there exists constants
C = C(p) > 0and~ > 0 such that

(4.18) Hnlun;pl > Cllun|bq, — -
Equivalently, lete, (-, -; p) be defined as if4.16). Then
(4.19) G (un, un;p) > C HuhHZG,p'

Proof. We have by the definition df-[| ,, , that
lunllya,, = HD%LWLHZEP(Q) +hiP ||[[thhﬂ“1£p(5uaﬂ) + hi TP ||Huhﬂ||ip(guag) .
We conclude by a Minkowski inequality that
lunllfc, < | Diun — Hlunll|7 o) + IH [l
+ hi_p ||[[thh]]||1£p((gouag) + hi_Qp | [[Uh]]||1£p(guag) :
Hence, using the stability of the discrete Hessian giverhieorerm4.11, we have that

lanllgp < IEE[un)l, o +(1+ C(p)) (h;—P I

T AT AN

< C(p)“h (un,un:p),
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where we have made use of a piecewise equivalent of Propogiti, hence showing4(.19).
The result ¢.19 follows by a similar argument. 0O

LEMMA 4.14 (Relative compactnesd)et {vy,, V} be a finite element sequence that is
bounded in the-|| ,; ,-norm. Then the sequence is relatively compadt;jft?).

Proof. The proof is an application of Kolmogorov's Compactnesgdrem noting the
result of Lemmat.9which yields boundedness of the finite element sequentg(if).

LEMMA 4.15 (Limit). Given a finite element sequenge,, V} that is bounded in
the||-|| ;. ,-norm. Then there exists a function= W2(€2) such that asi — 0, we have, up
to a subsequence;, — v weakly inL, (). Moreover,H [v,] — D?v weakly inL, ()<

Proof. Lemmad4.14infers that we may find a € L, (©2) which is the limit of our finite
element sequence. To prove that W%(Q), we must show that our sequence of discrete
Hessians converges 10%v.

Recall that Theorem.11gives that

HH[Uh]HL,,(Q)dxd < Cllonllag,p -
As such, we may infer that the (matrix-valued) finite elemsgguence H [v;,], V4*4} is
bounded inL,(2)%*?. Hence, we have thal[v,] — X € L,(Q)%*? weakly for some

matrix-valued functionX .
Now we must verify thatX = D?v. For eachp € C5°(Q2) we have that

/QH[Uh]Pqu = /QD,ZL’Uth(ﬁ— /£ [[Vh’l)hﬂ@{PV (25} +/ 00 [[Uhﬂ@ {{Vh(PV (b)} .

EU

Note that
/QD}QLU;LPV ¢ =— /Q Vivy ® Vi (Py ¢) + /g [[thh]]® {Pv o}

R D

= [ oDy )+ [ [Vaunly 4Py 0} = [Va(Pr o)l fund
+ / [Pv o] @ {Vror} — [va] ® {Vi(Pv o)}

EUOQ

= / v H [Py ¢) +/ [Vivn] g {Pv o} —/ [on] ® {Vr(Pv @)} .

o & £U00

As such, we have that

/QX¢:%iir%)/QH[vh]PVgﬁ:Aiir})/ﬂvhH[Pvgb] :/QUD%

by the strong convergence of the dG Hessian in Corollatg. Hence, we have th&X = D?v
in the distributional sense. 0O

LEMMA 4.16 (A priori bound).Let f € L,(2) with ¢ = -5, and let{u;, V} be the
finite element sequence satisfy{dgl5. Then we have the folrowing a priori bound:

a/p
lunlacp < (C M lyen) -
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Proof. Using the coercivity condition given in Theorefnl3and the definition of the
weak Euler-Lagrange equations, we have that

lunllbe, < Ceh(un, un;p) < C/Q fun.

Now using the Hlder inequality and the discrete Sobolev embedding gimelneimma4.9
yields

HuthG,p <C ||f||L () HuhHLp(Q <C ||f||L () HuthG,p
Upon simplifying, we obtain the desired result. O
THEOREM4.17 (Convergence)let f € L,(Q2) withg = p%l, and supposéuy,, V} is
the finite element sequence generated by solving the nankysten(4.17). Then we have
that

Up — U in L,(£) and
Hlu] — D?u in L,(Q)*?
whereu € I/(f/f,(ﬂ) is the unique solution to the-biharmonic problen{1.1).
Proof. Given f € L,(€2) we have that, in view of Lemma&.16 the finite element
sequenceuy, V} is bounded in thel-|| , ,-norm.  As such we may apply Lemm@al5
which shows that there exists a (weak) fimit to the finite edatrsequencéuy,, V}, which

we callu*. We must now show that* = u, the solution of the-biharmonic problem.
By Corollary2.4, 7] is weakly lower semicontinuous, hence we have that

A1) < it |19l + [ F]
< hmlnf [ |2 un]ll} (@) / fup,

+ 2 (I rndIE, ) + 2 Wunll o) } :

= liinjglf/h[uh].

Now owing to Assumptior.10, we have that for any € C3° (),

. . 1 p
S 1] = limint [ 2Py oI, @+ [ 7Py
+ (W2 NIy 11 + 12 1Py 411 ) |
= liminf P .
imig /h[ vl
By the definition of the discrete scheme, we arrive at

AW < Inlun] < ZnlPyo] = 7o)

Now, sincev was a generic element, we may use the densityPf2) in W%(Q) and the
fact thatu is the unique minimiser to conclude that = w. a
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REMARK 4.18. In the paperdf, 25], rates of convergence are given for tibiharmo-
nic problem. These are

= un| = O(h?) for k = 2,
"Il omEY fork > 2,

lu = unllag, = ORF).

Note that for piecewise quadratic finite elements, this eogwnce rate is suboptimal
in Ly(2).

5. Numerical experiments. In this section we summarise some numerical experiments
conducted for the method presented in SecBionhe numerical experiments were conducted
using the DOLFIN interface for FECS [23]. The graphics were generated using &
pPLOT and RRAVIEW . For computational efficiency, we choose to represept,| by an
auxiliary variable in the mixed formulation, which only tg@ces one additional variable as
opposed to the full discrete HessiaRuy,|, which would requirel? ones (or‘@ if one uses
the symmetry ofH). We note that this is only possible due to the structure efgtoblem,

i.e., thatL = L(x,u, Vu, Au) and would not be possible in a general setting.

5.1. Benchmarking. The aims of this section are to investigate the robustnesiseof
numerical method for a model test solution of fieiharmonic problem. We show that the
method achieves the provable ratesgor 2 (Figure5.1) and numerically gauge the conver-
gence rates fop > 2 (Figures5.2and5.3). To that end, we takeZ to be an unstructured
Delaunay triangulation of the squdie= [0, 1)2. We fixd = 2, letx = (z,y)T, and choos¢
such that

(5.1) w(x) = sin (27z)* sin (27y)> .

Note that this is comparable to the numerical experiment4n$ection 6.1].
REMARK 5.1. Computationally, the convergence rates we observe are

O(h?) whenk = 2,

[ — un| =
Fr(@® O(h**1)  otherwise,

and

[Au — Dlun]l,, o) = O(R*1).

REMARK 5.2. Note that the dG Hessidd may be represented in a finite element space
with a different degree fou;, € V. Let W := P*~1(.7). Then the proof of Theorerd.6
infers that we may choose to represéhtu;,] € W<, For clarity of exposition, we chose
to useH [u] € V<4, however, we see no difficulty extending the arguments piesehere
to the lower-degree dG Hessian. Numerically, we observedinge convergence rates as in
Remark5.1for the lower-degree dG Hessian.

6. Conclusion and outlook. In this work we presented a dG finite element method for
the p-biharmonic problem. To do this, we introduced an auxilizyiable, thefinite element
Hessianand constructed a discrete variational problem.

We proved that the numerical solution of this discrete vemeal problem converges to
the extrema of the continuous problem and that the finite eterilessian converges to the
Hessian of the continuous extrema.
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(a) Finite element approximation t& (). (b) k = 2, piecewise quadratic FEs.
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(c) k = 3, piecewise cubic FEs. (d) k = 4, piecewise quartic FEs.

FiIG. 5.1. Numerical experiment benchmarking the numerical methoth&2-biharmonic problem. We fix
such that the solution is given by(5.1). We plot the log of the error together with its estimated oafeconvergence.
We study the,, (£2)-norms of the error of the finite element solution as well as the represented auxiliary variable
Puy,] for the dG metho@4.17) with k = 2, 3, 4. We also give a solution plot. We observe that the methocaehi
the rates given in Remark 18

T T 100 T T T T
||U'Un|||_p —_— ||U'U|||||.p —_—
||Delta u-D[u,,]IILv J— 10k ||Delta u-D[u,,]II,_n —
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0.0001 | 4
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1e07 4
EQC =4.00
0'0001100 1000 10000 100000 1e+06 1e+07 1e-08100 1000 10000 100000 1e+06 1e+07
(a) k = 2, piecewise quadratic FEs. (b) k = 3, piecewise cubic FEs.

FIG. 5.2. The same test as in Figufel for the 2.1-biharmonic problem, i.ep = 2.1 for £ = 2 and3.
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(a) k = 2, piecewise quadratic FEs.

(b) k = 3, piecewise cubic FEs.

FIG. 5.3. The same test as in Figute2 for the 10-biharmonic problem, i.ep = 10.

We foresee that this framework will prove useful when stadybther (possibly more
complicated) second-order variational problems suchssetie curvature problems like the
affine maximal surface equation, which is the topic of ongaisearch.
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