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Abstract 

Scope 

A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In 

addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also 

associated with altered PUFA profiles.  

Methods and results 

We used mathematical modelling to predict levels of PUFA in whole blood, based on MHT and 

bolasso selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in 

FADS1 from 1,607 participants (Food4Me Study). The models were developed using data from the 

first reported time point (training set) and their predictive power was evaluated using data from the 

last reported time point (test set). Amongst other food items, fish, pizza, chicken and cereals were 

identified as being associated with the PUFA profiles. Using these food items and the rs174546 

genotypes as predictors, models explained 26% to 43% of the variability in PUFA concentrations in 

the training set and 22% to 33% in the test set. 

Conclusions 

Selecting food items using MHT is a valuable contribution to determine predictors, as our models’ 

predictive power is higher compared to analogue studies. As unique feature, we additionally 

confirmed our models’ power based on a test set.  
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1. Introduction 

An adequate dietary intake of long chain polyunsaturated fatty acids (LC-PUFAs) is recommended to 

protect from a variety of diseases mainly via the antagonism of the series 3 and series 2 products of 

the cyclooxygenase and lipoxygenase pathways [1][2]. The pattern of LC-PUFA levels in blood is 

mainly determined based on the composition of membrane phospholipids of blood cells. Their 

constituent FAs are derived from both dietary sources and endogenous synthesis catalyzed by 

desaturases and elongases. It is also discussed that physical activity, gender, age, body mass index 

(BMI) and smoking affect the fatty acid (FA) profiles in blood [1][3][4]. One of the key enzymes in the 

endogenous synthesis pathways is fatty acid desaturase 1 (FADS1). This enzyme introduces a double 

bond at the Δ5-position in a 20-carbon FA chain and thus, catalyzes the conversion of 

eicosatetraenoic acid (ETA) into eicosapentaenoic acid (EPA) and dihomo-γ-linolenic acid (DGLA) into 

arachidonic acid (AA), respectively. Single Nucleotide Polymorphisms (SNPs) in the FADS1 gene have 

been shown to affect the FAs concentrations in blood. There is a prominent SNP, rs174546, in FADS1 

for which T homozygotes have significantly higher concentrations of α-linolenic, linoleic and DGLA 

than the C homozygotes. Concentrations of AA were significantly lower and docosahexaenoic acid 

(DHA) levels remained unaffected in the T homozygotes [5][6]. Some controversial findings 

concerning EPA levels were described with either significantly lower levels in C homozygotes [5] or 

with an unaltered status [6].  

Previous studies aimed at linking selected lifestyle factors and FADS1 SNPs to PUFA concentrations in 

blood and even using these selected factors for the prediction of certain PUFA concentrations by 

defining linear models [6][7][8][9][10]. For the selection of important predictors out of a large set of 

possible entities, further methods for model development have been introduced recently. As data 

density increases, Type I error rate also increases and turns multiple hypothesis testing (MHT) for 

predictor selection [11] into a challenge [12]. While the control of Type I error rate is essential, loss 

of power needs to be taken into consideration as well [13]. Therefore, methods like Least Absolute 
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Shrinkage and Selection Operator (LASSO) regression were developed. Rohart et al. [14], for 

example, found that results from LASSO combined with bootstrapping for robustness, so called 

bolasso, improved the accuracy of predictions. They aimed at predicting a given phenotype from a 

metabolomics data set and compared LASSO to bolasso performance, concluding that bolasso 

provided smaller mean squared prediction errors (MSPE). Lampos et al. [15] successfully used 

bolasso variable selection to extract information from Twitter for fitting of a regression model to 

predict flu waves.  

Our aim is to develop models with the FADS1 gene variants and selected foods including 

supplements as well as physical activity, gender, age, BMI and smoking as predictors for whole blood 

concentrations of DGLA, AA, EPA, DHA and DPA whose predictions are as accurate as possible. To 

identify nutritional predictors we examine the applicability of MHT and bolasso. By re-evaluating 

those models using a different data set we make a first step towards investigating the performance 

of the developed models.  

 

2. Materials and Methods 

Data collection 

Data used for model development and testing were collected within the Food4Me Proof-of-Principle 

study, a pan-European project on personalized nutrition. The study was a web-based randomized 

controlled trial conducted in 7 countries (Germany, Greece, Ireland, the Netherlands, Poland, Spain, 

United Kingdom) with 1,607 participants enrolled [16]. Food intake was recorded online via a 

validated Food Frequency Questionnaire (FFQ), reflecting the participants’ diet over one month 

[17][18]. 137 food items from the originally 162 items in the FFQ were pre-selected as potential 

predictors by removing country-specific food items like ‘stroopwafle’. Additionally, data on 

supplement intake was collected. Each participant was asked to fill in 3 FFQs over a period of 6 

months. Each FFQ was accompanied by a Baecke questionnaire to estimate the participants’ Physical 
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Activity Level (PAL) online during the last month [19]. Participants additionally provided capillary 

whole blood samples using Dried Blood Spots (DBS) cards, a minimal-invasive, rapid and reliable 

method of FA  quantification [20][21]. The samples were analyzed by Vitas Ltd, Oslo, Norway via GC-

MS. Individual FAs in blood samples are expressed as relative concentration i.e. percentage of total 

fatty acid methyl esters (% FAME). Buccal cell samples from participants were collected and the 

FADS1 rs174546 genotyped using the KASPTM assay, performed by LCG Genomics, Hertfordshire, 

United Kingdom. Details on analyses by Vitas Ltd. and LCG Genomics, as well as the study protocol 

and other measurements are described elsewhere [16]. Figure 1 gives an overview of the data 

selection for the different approaches used in the present study.   

FADS1 characteristics and relation to FAs concentrations  

A Hardy Weinberg Equilibrium for the distribution of the FADS1 SNP was tested for the training and 

test data set (Figure 1) by using the X2 test and the HWExact test using the R package 

‘HardyWeinberg’. Data in the training set were analyzed by ANOVA followed by non-orthogonal 

planned contrasts to determine relative FAs concentrations according to the FADS1 genotype. The 

contrasts compared the levels of DGLA, AA, EPA, DHA and DPA among the genotypes (C 

homozygotes versus T homozygotes and C homozygotes versus heterozygotes).  

Model selection 

The modeling was conducted in 3 steps and for all analyses described, food intake in g/day was 

standardized for comparability by subtraction of the mean and division by the respective standard 

deviation. The first step aims at finding those out of the 137 pre-selected food items that are 

significantly associated with DGLA, AA, EPA, DHA and DPA; bolasso regression and MHT were used 

for each selected FA on the predictor selection data set (Figure 1) in an exploratory fashion. All cases 

with a reported energy intake exceeding the EER by more than 30% were excluded, as unrealistic 

values of energy intake, in this case lowest energy intake/EER ratio with 0.2 and highest with 5, and 
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hence unrealistic values of the intake of certain food items might lead to biased food predictions and 

biased models. Food items that appeared in more than 95% of the bootstraps of bolasso were 

considered further. MHT was conducted on the same data set to get further insight into possibly 

important foods. For those two methods the R package ‘mht’ and the functions ‘bolasso’, with 1000 

bootstraps and a positive regularization sequence value of .02, and ‘mht’ were used. The function 

‘mht’ was implemented with maximally 30 variables to be ordered and the maximum number of 

hypotheses testing set to 5. 

In step two, models were fitted on a training data set (Figure 1) using the food items selected by 

MHT, next to PAL, gender, age, BMI, supplementation of unsaturated FA and FADS1. 

Supplementation data was included as dummy variable for taking any supplements with unsaturated 

FAs as ingredients. Afterwards, models with the food items selected by bolasso were fitted. The 

adjusted R2 of those two models were compared. When the adjusted R2 values were very close, 

ANOVA was used to determine whether the model containing more predictor foods was significantly 

better. The model with the higher adjusted R2 value or the lower number of predictors, when no 

significant difference between the two models was found by ANOVA, was selected. Log-, 

exponential-, square root- and square-transformation of dependent and independent variables was 

tested to improve normality of the residuals, if necessary. For each FA, the model with the highest 

adjusted R2 overall was selected.  

Model interpretation and diagnostics 

Standardized and studentized residuals, leverage, Cook’s distance, DFFit and variance inflation factor 

were considered as model diagnostics for the selected models. Unusual cases, i.e. cases with 

standardized or studentized residuals greater than 3, leverage greater than 2(k + 1)/n (k is the 

number of predictors in model, n the number of cases used for fitting the model) or high DFFit 

compared to the majority of other values, were excluded if they did exhibited undue influence on 

the model, that is, if their Cook’s distance was higher than 1 [22]. 
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Model testing 

Finally in step three, the models obtained using data from t0 (training data set) including the 

estimated coefficients were tested on data from t6 (test data set, Figure 1). In contrast to the 

training, model testing was performed on a data set not excluding cases with a reported energy 

intake exceeding EER by more than 30%. This was done to include also extreme cases and evaluate 

model performance on those. Absolute predicted and observed FA concentrations were compared 

using summary statistics, Spearman correlations, due to deviations from normality, squared base 

error rates (SBER) in relation to MSPE, R2 and calibration plots. SBER measures the mean squared 

prediction error when the null model is used for prediction i.e. when the model is set to predict the 

mean of the observations in the training set. The MSPE is calculated using the values predicted by 

the model and the corresponding observations. The relative difference between prediction and 

observation was analyzed through summary statistics and the relative mean prediction error (MPE). 

For formulae of the SBER, MSPE and relative MPE, see supporting information.  

For all analyses the software R, version 3.1.0 [23], was used. P-values below 0.05 were considered 

significant. 

 

3. Results 

FADS1 characteristics and relation to FAs concentrations  

The FADS1 SNP allele frequency in the training as well as in the test was T = 0.33 and C = 0.67 which 

is in line with finding from the 1000 Genomes Project [24] . Their respective genotypes for training 

(nCC =  315, nTC =  316, nTT =  73) and test set (nCC =  435, nTC =  457, nTT =  101) were found to be 

in Hardy-Weinberg equilibrium, as the null-hypotheses could not be rejected (p values >0.05). 

Increasing concentrations for the n-6 FA AA and a strong decrease for DGLA levels were observed for 

the T homozygous over the heterozygous to the most common C homozygotes. A trend was also 
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observed for the effects on the n-3 FAs DPA and EPA though not significant for both, or for DHA 

levels (Figure S1, supporting information). 

Model selection 

The foods selected by bolasso regression for effects on blood FA levels were in cases of DGLA and 

DPA a subgroup of those identified by MHT. For blood DHA, EPA and AA levels more foods however 

were selected based on bolasso (Table 1). Adjusted R2 values were very close for AA and DHA as 

outcomes, but F-tests showed no significant improvements when taking the larger food set into the 

model (data not shown). Therefore, the model with the smaller set of food items was chosen. 

Bolasso did not prove superiority in any model, therefore MHT models were selected. Only for the 

outcome of the EPA model a transformation, in this case square root transformation of MHT, 

improved the adjusted R².  The finally selected models together with coefficients and levels of 

significance of the predictors are compiled in Table 2.  

Model interpretation and diagnostics 

 

For DGLA, two fish items from the FFQ (non-smoked oily fish and smoked fish) were found 

associated with significantly decreased relative blood concentration while non-wholegrain cereals as 

cornflakes, pizza and crisps were associated with significantly increasing levels. Age and 

supplementation had a negative and BMI a positive association with DGLA concentrations. DGLA 

concentrations were also significantly higher in women, but no effects of PAL and smoking were 

found. In C homozygotes of the FADS1, the relative DGLA blood concentration was significantly 

lower than in heterozygotes and T homozygotes. The model explained 32% of variance in DGLA and 

was highly significant (F(20, 683) = 16.4, p < 0.001). In comparison, a model containing solely FADS1 

as a predictor explained 15% of the variance (F(2, 701) = 63.8, p < 0.001).  

Higher fish and tea consumption as well as age and supplementation were associated with lower, 

and poultry consumption with higher relative AA blood concentration without any gender, PAL, BMI 
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or smoking effects. FADS1 C homozygotes had a significantly higher blood concentration of AA than 

heterozygotes and T homozygotes. 26% of the variance in AA concentration was explained by this 

model (F(17, 686) = 13.9, p < 0.001). When FADS1 was used as a univariate predictor, 14% of the 

variance was explained (F(2, 701) = 58.4, p < 0.001).  

For EPA, amongst other, fish consumption, supplements and age were associated with the strongest 

positive effects. Intakes of wine, tea and avocado were also positively associated with blood EPA. 

Other important predicting items were pizza, olive oil and smoking strongly associated with lowered 

EPA blood concentrations. The difference between the C homozygotes and the T homozygotes was 

significant (p=0.04), but not for C homozygotes and heterozygotes. The model explained 43% of the 

variance in relative EPA concentration (F (27, 676) = 18.96, p < 0.001). When FADS1 was the only 

predictor in the model, less than 1% of the variance in relative EPA concentration was explained (F(2, 

701) = 0.9, p = 0.4).  

Among the significant predictors for DPA levels, olive oil was the strongest food predictor associated 

with decreased levels. Smoked fish and butter, but also berries, creaeals and ice-cream were 

identified as significantly increasing DPA blood concentrations. Chocolates, biscuits and sweet 

alcoholic drinks as well as BMI and smoking were found to decrease the respective concentrations. 

Additionally, gender was significantly associated with the relative DPA blood concentration. There 

was no  significant effect of the FADS1 gene. 29% of the DPA variance could be explained by this 

model (F (23, 680) = 10.5, p < 0.001) in contrast to less than 1% when FADS1 was the only predictor 

(F(2, 701) = 1.9, p = 0.15).  
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For DHA, 6 different types of fish as well as zero fat skimmed milk and avocado had an increasing 

effect while pizza intake was associated with decreased DHA levels. Supplementation and age had a 

positive, PAL, smoking and BMI a strong negative effect on DHA blood concentration. The FADS1 

allele was not significantly related to DHA. 35% of the variance in blood DHA concentration was 

explained by this model (F (22, 681) = 16.33, p < 0.001). The explained variance decreased to less 

than 1% when FADS1 was the only predictor in the model (F(2, 701) = 0.9, p = 0.4).  

The differences between R² (Table 2) and adjusted R² (  
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Table 1) in the models are within the range of 0.01 to 0.03. Model diagnostics showed strayed cases 

in the training set with large deviations between FA concentrations predicted by the model and 

observed concentrations. However, none of those cases showed undue influence on the model and 

no indications for multicollinearity were found (data not shown). 

Model testing 

For all individual FA models, summary statistics of predictions matched those of the observations 

relatively well in the range between the 1st and 3rd quartile. Based on these quartiles in the 

summary statistics, the AA model seemed to perform best, the EPA model worst. Spearman 

correlation coefficients of observed versus predicted concentrations ranged around 0.55 (Table 3) 

and MSPE was about one quarter lower than SBER for all FAs. For EPA, the relative MPE was 

noticeably higher than for all other FAs where it was found to be below 5%. Scatter plots revealed a 

consistent trend for over-prediction of low observed values and under-prediction for high values 

(Figure S2, supplementary information). All the full models explained about 25% of the variance in 

blood FA (Table 3). This percentage was reduced to around 14% when FADS1 was the only predictor 

in the model for AA and DGLA. For EPA, DPA and DHA, FADS1 genotype explained less than 1% of the 

variance. 
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4. Discussion 

Based on genotypes in FADS1, food intake data including supplement intake, PAL, gender, BMI, age, 

and smoking, we established mathematical models that predicted relative n-3 and n-6 blood 

concentrations of participants in the Food4Me study. Our statistics showed a strong effect of the 

FADS1 variants for predicting n-6 FA concentrations. In T compared to C heterozygotes higher 

relative concentrations of AA and lower DGLA levels and only a trend towards higher concentrations 

of DPA and EPA, but no differences in DHA levels were found. Previous studies reported similar 

findings showing that these genetic influences on blood FA concentrations are very robust and 

independent of the sample matrix [6][5]. The fact that the genotype of FADS1 becomes visible 

mainly in the n-6 FA levels may depend on an almost 15-fold higher intake of n-6 than of n-3 FA in a 

typical Western type diet [25]. For DHA levels, there was no significant association with FADS1 

genotype and for this FA, the blood concentration was determined mainly by dietary intake as also 

described previously [6][10][25].  

Specific food items were identified as relevant predictors of blood FAs concentrations using MHT 

and bolasso. Bootstrapping was used, as it provides provably evidence of the consistent selection of 

the same predictors [26], suggesting that the food items selected by bolasso are indeed associated 

with blood FA levels. Generally, fewer foods were identified as predictors for n-6 FA than for n-3 FA 

concentrations. Oily fish is a major source of n-3 FAs [27] and thus, as expected, higher intakes of 

several types of fish showed strong positive associations with higher n-3 FA levels while decreasing 

those of n-6 FAs. Olive oil intake showed an opposing effect, possibly by the high n-6 to n-3 ratio in 

this food [28]. Intakes of several other food items revealed significant associations with blood FA 

concentrations although no plausible cause could be found. For example, wine, avocado and berries 

were associated with an increase in relative blood concentrations of n-3 FAs, whereas pizza was 

found to decrease levels. Also, higher intakes of poultry, pizza and cereals were associated with 

increased n-6 FAs, while tea was associated with decreased relative concentrations of n-6 FAs. 



www.mnf-journal.com Page 14 Molecular Nutrition & Food Research 

 

This article is protected by copyright. All rights reserved. 

 

However, consumption of certain types of tea [29][30], wine [32][33] or specific berries [34] in 

connection to lipid metabolism have been described before. As tea, wine and berries contain 

virtually no FAs, associations with FAs in blood might be caused by specific ingredients influencing 

the FA metabolism in a yet unknown way or such foods might be surrogates for certain dietary 

patterns.  

Our models also include gender, BMI, age, smoking, supplement intake and PAL as additional 

predictors or confounders. Comparing the significance of the association of these factors with the 

selected PUFA age and for n-3 smoking seems to be important predictors, whereas gender and PAL 

revealed lower effects.  

In contrast to other studies (e.g. [6][7][8][9][10]), our models are not just tested on the data set used 

for fitting (training set) but on another, partly independent, data set (test set). This enables 

considerably better evaluation of the predictive power and suitability of the model [35]. Overall, our 

models displayed a correlation coefficient of 0.48 to 0.6 between observed values and those 

predicted by the models in the test set (Table 3). Tanaka et al. [9] identified in a genome wide 

association study that the SNP rs174537 in the FADS1 gene could explain up to 18.6% of the variance 

in plasma AA levels in minor as compared to the major allele carriers. When using the rs174546 SNP 

in the FADS1 gene, our model explained 14% in the training set. Our full model though (including 

selected food items, anthropometric and lifestyle factors) was able to explain 22% of the variability 

in AA levels in the test set and even 26% in the training set. In contrast, Zietemann et al. [6] were 

able to explain less than 5% of the variance by the rs174546 SNP even after adjusting for multiple 

lifestyle and health parameters. This means that adding selected food items as predictors into the 

model adds a valuable and until now unaccounted portions of explained variance for AA prediction. 

At best 18% and 22% of the variability in DGLA levels could be explained in the analysis by Zietemann 

et al. [6], depending on the number of factors adjusted for in the model. Our models explained up to 

16% of the variance when only FADS1 variants were used as a predictor in the training set. The full 
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model on the contrary explained 32% in the training set and 28% in the test set which is an indicator 

of diet being an important factor for DGLA level prediction. For the n-3 FAs, Schaeffer et al. [10] 

were able to explain 7%, 5% and 3% of the variance in EPA, DPA and DHA respectively, when using 

11 SNPs of the 11-locus haplotype (containing rs174546) and even less when using only 5 SNPs. 

When only the rs174546 SNP was used as a predictor in our models, we were able to explain less 

than 1% of the variance in these FAs in the training set. When including or selected food items, 

anthropometric and lifestyle factors on the other hand, we could explain 43%, 29% and 35% in the 

training set and 33%, 22% and 25% in the test set. All in all, our selected food items are valuable 

predictors for FA level determination. Also, there is a remarkable portion of explained variance in a 

test set, although we performed data cleaning by excluding all cases with a reported energy intake 

exceeding the EER by more than 30% within the trainings set, but not within the test set. 

Additionally, the generalizability of our models is assumed, as there is no substantial difference 

between R² and adjusted R². As advantage over other studies, we also make a step further in 

evaluating the performance of our models by not just applying them to the training set but also to a 

test set. Our models prove to be valuable in predicting FA levels as we see good results concerning 

the predictive power. 

It needs to be emphasized though that we examined just one variant of FADS1 and additional 

variants in the gene cluster are known [10]. Also, other genes involved in fat digestion, absorption 

and metabolism are likely to influence blood FA concentrations as well. In addition to genotype and 

PUFA intake, further dietary factors such as the intake of saturated fat or cholesterol but also 

disease states such as diabetes or hypertension and medication are known to be associated with 

altered blood FA profiles [36].  

Other limitations in our analysis are that the food intake data were collected via FFQ which are 

prone to misreporting which is why we included data cleaning for the training set. In addition, for 

the FFQ used in the Food4Me project several food items, some with quite different PUFA contents, 
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were pooled into food groups such as ‘other vegetable oils’ which included all oils except olive oil. 

Another example is tea consumption which revealed an association with FA patterns in former 

studies, but only for specific types like green or mate tea [29][30]. Combining all types of tea into 

one group might impede to find the dominant food item and impart an under-estimated impact. 

Taking all these uncertainties into account, we nevertheless demonstrate that those rather crude 

methods to assess food intake can deliver appropriate measures with significant associations.  

The over-prediction of low FA blood concentrations and under-prediction for high levels that we 

observed may call for a data transformation. However, as there appears to be a systematic bias and 

a linear relationship, such a transformation could be misleading. Violation of normality of the 

residuals for some FAs appears to represent a challenge for linear models but, as concluded by 

Lumley et al. [37], when the sample size is sufficiently large, the assumption of normality is not 

required. This leaves us with the need to extent analysis to identify other determinants such as 

overall dietary patterns and other lifestyle parameters not yet included to further enhance 

predictive power.  

In conclusion, our analysis based on MHT and bolasso regression identified food items that were 

associated significantly with blood n-3 and n-6 FA concentrations as were the genetic variants of the 

FADS1 gene and age. Comparing the MHT to the respective bolasso model, MHT models were 

superior, showing higher adjusted R² and no advantage over bigger bolasso models, respectively. For 

the limited number of genetic, phenotypic and dietary parameters taken into model this result may 

be considered as valuable and high compared to other findings, especially as it is based on the 

evaluation on a test set in contrast to other studies. The models developed may be tested in further 

independent data sets and can be extended to increase the predictive power by including for 

example more genetic variants and other lifestyle factors.  
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Figure 1: Data selection criteria and data sets defined for different analyses. Data were selected from the Food4Me study 
with 1,607 participants. Each participant delivered food, blood, Estimated Energy Requirement (EER) and energy intake on 
3 measurement days. 
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Table 1: Adjusted R
2
 values for model variants: MHT, bolasso, transformation. Number of selected food items and 

adjusted R
2
 values for models including the foods selected based on bolasso or by MHT for individual FAs. The * indicates 

the model chosen for further analysis. 

Fatty acid/fatty acid group Number of selected 
food items 

adjusted R2 

DGLA 
 MHT * 12 0.31 
 bolasso  5 0.30 
AA 
 MHT * 9 0.24 
 bolasso  12 0.24 
EPA 
 MHT 12 0.38 
 bolasso 19 0.37 
 MHT sqrt(EPA) * 12 0.41 
DPA 
 MHT * 19 0.26 
 bolasso 7 0.23 
DHA 
 MHT * 14 0.32 
 bolasso 15 0.32 
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Table 2: Regression coefficients, standard error and p-values of predictors included in models Food items (standardized) 
selected from FFQ data used for modelling selected either in 95% of lasso bootstraps or by MHT for each fatty acid. Food 
items ordered according to the magnitude of their regression coefficient with positive regression coefficients before 
negative ones when they have the same absolute value. FAs stated in % FAME; ns: not significant; p-value ≤ 0.05 and > 
0.01: *; p-value ≤ 0.01 and >0.001: **; p-value ≤ 0.001: *** 

Predictors Coefficient (se) p-value Predictors Coefficient (se) p-value 

DGLA (R2 = 0.32)   DPA (R2 = 0.29)   

FADS1 T:C 0.2 (0.02) *** FADS1 T:C -0.04 (0.03) ns 
FADS1 T:T 0.5 (0.04) *** FADS1 T:T -0.07 (0.04) ns 
Woman 0.05 (0.02) * Woman -0.1 (0.03) *** 
PAL -0.09 (0.1) ns PAL 0.15 (0.1) ns 
Age -0.004 (0.001) *** Age -0.0001 (0.001) ns 
BMI 0.01 (0.002) *** BMI -0.006 (0.003) * 
Smoking 0.01 (0.04) ns Smoking -0.1 (0.04) ** 
Supplements -0.1 (0.03) ** Supplements 0.1 (0.04) * 
Smoked Fish -0.04 (0.01) ** Olive Oil -0.07 (0.01) *** 
Non Smoked Oily Fish -0.05 (0.01) *** Smoked Fish 0.04 (0.01) ** 
Pizza 0.03 (0.01) ** Butter 0.04 (0.01) *** 
Crisps 0.02 (0.01) * Cereals 0.04 (0.01) ** 
Cornflakes 0.05 (0.01) *** Nuts and Seeds 0.02 (0.02) ns 
Offal -0.02 (0.01) ns Porridge 0.03 (0.01) ** 
Nuts and Seeds  -0.01 (0.01) ns Berries 0.05 (0.02) ** 
Soups -0.02 (0.01) ns Ice Cream 0.04 (0.01) ** 
Tofu 0.01 (0.01) ns Flapjacks -0.01 (0.01) ns 
Cereals 0.02 (0.01) ns Chocolates -0.03 (0.01) * 
Garlic 0.001 (0.01) ns Sweet Biscuits -0.03 (0.01) * 
Sausages -0.01 (0.01) ns High Fat Cheeses 0.02 (0.01) ns 

AA (R2 = 0.26)   Sweet Alcoholic Drinks -0.03 (0.01) * 

FADS1 T:C -0.8 (0.1) ***  Brown Bread -0.01 (0.01) ns 
FADS1 T:T -1.7 (0.2) ***  Brown Rice 0.009 (0.01) ns 
Woman 0.04 (0.1) ns Potatoes 0.02 (0.01) ns 
PAL -0.07 (0.5) ns Coffee 0.008 (0.01) ns 
Age -0.02 (0.004) ***  Pears -0.02 (0.01) ns 
BMI 0.002 (0.01) ns Pork -0.02 (0.01) ns 

Smoking -0.1 (0.2) ns EPA (R² = 0.43)   

Supplements -0.4 (0.2) ** FADS1 T:C -0.02 (0.01) ns 
Wine -0.02 (0.05) ns FADS1 T:T -0.05 (0.02) * 
Chicken 0.2 (0.06) ** Woman 0.003 (0.02) ns 
Non Smoked Oily Fish  -0.1 (0.06) * PAL 0.03 (0.07) ns 
Non Smoked Oily Fish Canned -0.1 (0.06) * Age 0.003 (0.0006) *** 
Smoked Fish -0.1 (0.05) * BMI -0.003 (0.002) ns 
Eggs 0.2 (0.07) ns Smoking -0.09 (0.02) *** 
Tea -0.2 (0.05) ***  Supplements 0.1 (0.02) *** 
Grapefruit -0.1 (0.05) ns Smoked Fish 0.07 (0.008) *** 
Coleslaw 0.1 (0.06) ns Tea 0.02 (0.007) * 

DHA (R2 = 0.35)   Non Smoked Oily Fish 0.05 (0.01) *** 

FADS1T:C -0.1 (0.06) ns Pizza -0.03 (0.007) *** 
FADS1T:T -0.1 (0.09) ns Wine 0.02 (0.007) * 
women 0.03 (0.06) ns Olive Oil -0.03 (0.007) *** 
PAL -0.9 (0.3) ** Avocado 0.02 (0.009) ** 
Age 0.01 (0.002) ***  Lamb 0.008 (0.007) ns 
BMI -0.03 (0.01) ***  Offal -0.0008 (0.009) ns 
Smoking -0.3 (0.09) ** Other Vegetable Oils 0.004 (0.007) ns 
Supplements 0.2 (0.08) ** White Bread -0.01 (0.006) ns 
Non Smoked Oily Fish 0.2 (0.04) ***  Non Smoked Oily Fish Canned 0.03 (0.009) *** 
Smoked Fish 0.2 (0.03) ***  Broccoli 0.007 (0.008) ns 
White Fish 0.1 (0.03) ***  Butter 0.02 (0.006) * 
Pizza -0.08 (0.03) ** Flapjacks -0.0003 (0.006) ns 
Fried Fish 0.1 (0.03) ***  Low Calorie Soft Drinks -0.009 (0.007) ns 
Sushi 0.1 (0.03) ** White Fish 0.01 (0.008) ns 
Zero Fat Skimmed Milk 0.1 (0.02) ***  Kiwi 0.006 (0.006) ns 
Avocado 0.1 (0.03) ** Sweet Biscuits -0.02 (0.008) ** 
Non Smoked Oily Fish Canned 0.1 (0.03) **    
Melon 0.02 (0.04) ns    
Burgers -0.03 (0.03) ns    
Medium Fat Cheeses -0.04 (0.03) ns    
Chips -0.05 (0.03) ns    
Sugar added to Coffee/Tea 0.01 (0.02) ns    
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Table 3: Spearman correlation coefficient of observed versus predicted FA concentrations, SBER, MSPE, relative MPE, R
2
 

and R
2
 when FADS1 is used as univariate predictor of observed values and values predicted by the models in test set. rs 

Spearman correlation coefficient, SBER squared base error rate, MSPE mean squared prediction error, relative MPE relative 
mean prediction error, R

2
 FADS1 R

2
 when FADS1 was the only predictor in the model. 

FA rs (95 % CI) SBER (95 % CI) MSPE (95 % CI) relative 

MPE [%] 

R2 R2 FADS1 

DGLA 0.51  (0.46, 0.55) 0.12 (0.11, 0.13) 0.09 (0.08, 0.10) -1 0.28 0.16 

AA 0.48  (0.43, 0.53) 2.10 (1.93, 2.33)  1.68 (1.52, 1.85) -2 0.22 0.12 

EPA 0.60  (0.56, 0.64) 0.23 (0.18, 0.27)  0.17 (0.12, 0.23)  12 0.33 <0.001  

DPA 0.50  (0.46, 0.55) 0.13 (0.11, 0.14) 0.10 (0.09, 0.11) -0.1 0.22 <0.001  

DHA 0.54  (0.49, 0.58) 0.84 (0.77, 0.93)  0.64 (0.56, 0.71)  5 0.25 <0.001  

 
 

 

 

 

 


