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Abstract 

Myrmecophyte plants house ants in domatia in exchange for protection from herbivores. Ant-

myrmecophyte mutualisms exhibit two general patterns due to competition between ants for 

plant occupancy: i) domatia nest-sites are a limiting resource and ii) each individual plant 

hosts one ant species at a time. However, individual camelthorn trees (Vachellia erioloba) 

typically host two to four ant species simultaneously, often coexisting in adjacent domatia on 

the same branch. Such fine-grain spatial coexistence brings into question the conventional 

wisdom on ant-myrmecophyte mutualisms. Camelthorn ants appear not to be nest-site 

limited, despite low abundance of suitable domatia, and have random distributions of nest-

sites within and across trees. These patterns suggest a lack of competition between ants for 

domatia and contrast strongly with other ant-myrmecophyte systems. Comparison of this 

unusual case with others suggests that spatial scale is crucial to coexistence or competitive 

exclusion involving multiple ant species. Furthermore, coexistence may be facilitated when 

co-occurring ant species diverge strongly on at least one niche axis. Our conclusions provide 

recommendations for future ant-myrmecophyte research, particularly in utilising multispecies 

systems to further our understanding of mutualism biology.  

 

 

 

 

 

 

 

 

 



Introduction 

Ant-plant interactions are used as model systems to test hypotheses about ecological 

networks (Lange and Del-Claro 2014), mutualism dynamics (Heil and McKey 2003) and the 

effects of global change on interacting species (Mayer et al. 2014). Interactions vary from 

facultative to obligate, and range from mutualism to parasitism. Plants benefit from ants via 

services including seed dispersal (Gallegos et al. 2014), pollination (de Vega et al. 2009), 

nutrient enrichment (Wagner and Fleur Nicklen 2010) and protection against herbivory 

(Trager et al. 2010). In exchange myrmecophilic plants provide food to ants, a process that is 

taxonomically widespread (Weber and Keeler 2013). Food may take the form of extrafloral 

nectar, honeydew via sap-feeding insects and food bodies rich in lipids and proteins (Heil and 

McKey 2003). In addition, myrmecophytic plants also provide housing for ants within 

domatia. These are modified plant structures such as thorns, stems and leaves that form 

hollow chambers specifically for ant nest-sites (Davidson and McKey 1993). Myrmecophytes 

are restricted to the tropics (Heil and McKey 2003) with well-studied taxa including 

Cecropia (Dejean et al. 2012), Macaranga (Nomura et al. 2011), Tococa (Michelangeli 2003) 

and, perhaps most famously, Vachellia (formerly Acacia, Janzen 1974; Palmer et al. 2008). 

 

Most studies support the common view that there is intense inter and intra-specific 

competition between ant colonies for sole occupancy of myrmecophytes (Davidson et al. 

1989; Kautz et al. 2012; Palmer 2004; Webber et al. 2007), and that plant-ants are extremely 

aggressive and territorial (for example, Palmer et al. 2000). Ant colonies may compete for 

food resources provided by the plant, but also for domatia in which to nest (Fonseca 1999). 

We define three occupancy categories for ants on a given myrmecophyte plant at a given 

time: a) single colony occupancy (SCO); b) single species (multiple colony) occupancy 

(SSO) and multiple species co-occupancy (MSC). An individual plant usually shows SSO 



(which may be SCO, but is often not tested), although the plant species may associate with 

more than one ant species (Davidson et al. 1989; Gaume and McKey 1999; Palmer et al. 

2003). An individual plant may show MSC as a sapling (Djiéto-Lordon et al. 2005; Longino 

1989) or sequentially throughout its lifetime, because ant colonisation is moderated by 

species dominance hierarchies (Palmer et al. 2000). Outside of myrmecophyte systems, nest-

site limitation influences ant species richness, and therefore possibly coexistence, for cavity-

nesting ants, although the effect is variable across arboreal (Philpott and Foster 2005) and 

leaf-litter assemblages (Byrne 1994). In myrmecophytes, ant colony size is limited by the size 

and availability of domatia for nesting-sites (Campbell et al. 2013a; Fonseca 1993; Fonseca 

1999), but the effect on species coexistence is unknown. 

 

Competition is a key element in structuring ant communities (see review by Cerdá et 

al. 2013). Interspecific competition leads to non-random structure in communities, because 

species with similar niches co-occur less often than expected by chance (Diamond 1975), as 

demonstrated across multiple taxa (Gotelli and McCabe 2002). In arboreal ant assemblages 

dominant species defend “absolute territories” - discrete spatial units extending beyond the 

location of individual food or nest resources. This leads to a patchy distribution of ant species 

across the forest canopy, known as an ant mosaic (Dejean et al. 2007; Jackson 1984; Room 

1971; Room 1975). However, outside forest ecosystems the arboreal patterns of ant species 

coexistence and competition are less well documented. In savannas, where trees are widely 

spaced, there is no continuous canopy layer in which ant mosaics can form (Dejean et al. 

2007). The dominant trees of African savannas are acacias, many of which are 

myrmecophytes that possess swollen-thorn domatia inhabited by ants (Dharani 2006). 

Coexistence of ant species on neighbouring myrmecophyte acacias is thought to result from 

dominance hierarchies and competitive trade-offs (Palmer et al. 2010; Palmer et al. 2000; 



Stanton et al. 2005). However, coexistence at a finer spatial scale, across or within branches 

of the same tree, has seldom been studied. This is largely because the few intensively studied 

systems (for example, Gaume and McKey 1999; Palmer et al. 2010) do not show long-term 

MSC. MSC on myrmecophytes or semi-myrmecophytes has been documented occasionally 

(Gaume et al. 2005b; Moog et al. 2002; Raine et al. 2004; Rico-Gray and Thien 1989a; Rico-

Gray and Thien 1989b), but these unusual examples contrast with the many myrmecophytes 

that exhibit competitive exclusion and SSO.  

 

In this study we investigated the camelthorn tree, Vachellia erioloba (fig. 1A), a 

southern African myrmecophyte with swollen-thorn domatia (fig. 1B and C) inhabited by 

four ant species; an unidentified Crematogaster species, Cataulacus intrudens, an 

unidentified Tapinoma species and Tetraponera ambigua. A previous study revealed 41% 

MSC of V. erioloba trees, with some evidence of species sorting through nest-site selection 

based on domatia characteristics (Campbell et al. 2013a).  Given this surprising finding, we 

undertook comprehensive sampling specifically to quantify MSC in V. erioloba and to test 

for evidence of nest-site limitation and competition. We also test if nest-site selection differs 

between ant species based on microhabitat characteristics related to the location of domatia 

on the tree. 

 

Our findings bring into question two widely held assumptions; i) myrmecophyte ants 

utilising domatia are nest-site limited; and ii) ant species compete for sole occupancy of 

individual plants. To establish if the unusual patterns in the camelthorn system are unique, we 

then review published patterns of plant and domatia occupancy to test for nest-site limitation 

and MSC in other myrmecophyte systems. 

 



Methods 

Study site and sampling 

Field work was conducted in savanna at Kuzikus Wildlife Reserve (23°13'S, 18°24'E, 

elevation 1340m) in Namibia (for full site description see Campbell et al. 2013b). Surveys 

were completed in April, September and October 2011 for ant occupants within swollen-

thorns on camelthorn trees, Vachellia erioloba (E. Mey) P.J.H. Hurter. Ants defend V. 

erioloba trees from insect herbivores (Campbell et al. 2013b) and low intensity sampling in 

an earlier study suggested MSC of individual trees (Campbell et al. 2013a). For each of 20 

haphazardly selected trees we surveyed 8-13 branches, except for one tree with only four 

branches accessible. Using secateurs, branches were removed and all thorns opened to 

examine the contents. We also recorded microhabitat data on: branch height from ground (to 

nearest 0.1m); branch cardinal direction (bearing in °); thorn status (swollen or non-swollen); 

thorn age (new, young, old or dead); and thorn position on branch (surveying from the tip 

inwards towards the trunk, 1 being the most distal thorn sampled). For each thorn we 

recorded ant species identity and an estimate of the number of ants at different life stages 

(workers, brood, alates and queens).  

  

Analysis  

To test for associations between ant species at the branch level we performed Spearman’s 

rank correlations on the presence of species on the same branch.  To assess the role of 

competition in structuring within-tree patterns of ant species co-occurrence we assembled a 

presence-absence matrix for each of the 20 trees and then performed Monte Carlo 

randomisation tests on each matrix. We used three co-occurrence indices (CHECKER, 

COMBO and C-score) under two null models (fixed-fixed and fixed equiprobable, for details 

see Appendix A). We calculated the Standardised Effect Size (SES) to allow comparison 



between matrices (Gotelli and McCabe 2002). To test the null hypothesis that the mean SES 

measured did not differ from zero we used a one-sample Wilcoxon test to compare across 

matrices. We performed six tests (three indices x two null models) and therefore applied a 

Bonferroni correction.  

 

To assess whether the distribution of nest-sites across a tree was influenced by 

microhabitat we tested for correlations of ant species with thorn and branch variables. In tests 

of branch variables we analysed only species presence / absence on a branch. We tested ant 

species identity against branch height and cardinal direction using ANOVA and made 

multiple post hoc comparisons using Tukey Honest Significant Differences Tests (Crawley 

2005). Thorn variables and ant species identity were only tested for occupied thorns (i.e. 

domatia that were currently in use as nest-sites). Although ants may be defend empty 

neighbouring thorns prior to colony expansion it was impossible to assign species identity to 

an unoccupied thorn so this is not accounted for in our analysis. Due to differential branch 

growth across trees, thorn position along a branch does not directly predict thorn age, so, for 

all occupied thorns, we tested separately if species identity was correlated with thorn position 

or thorn age using Fisher’s exact tests (Crawley 2005). Thorn position was converted to a 

categorical variable, assigned as: distal (thorns 1-8); medial (thorns 9-15); or proximal 

(thorns 16+).  

 

We assessed species co-occurrence with respect to microhabitat characteristics of 

branch height and cardinal direction (following the procedure of Belinchón et al. 2012). We 

constructed 16 presence-absence matrices representing branch cardinal direction (North: 316-

45°, East: 46-135°, South: 136-225° and West: 226-315°) combined with one of four branch 

height categories (Low: 0-1.50m; Medium Low: 1.51-2.0m; Medium High: 2.01-2.5m and 



High: 2.51m+). These analyses followed the same procedure described for within-tree 

matrices (methods A1). To test the effects of branch height and direction on species 

interactions, we performed ANOVA on all co-occurrence indices generated from these 

matrices.  

 

Co-occurrence randomisation analyses (further details in Appendix A) were 

conducted in EcoSim (Gotelli and Entsminger 2009). All other statistical analyses were 

performed in R (R Core Development Team 2012). 

 

Literature review 

To establish if the unusual patterns in the camelthorn system are unique, we reviewed 

published patterns of plant and domatia occupancy to test for nest-site limitation and MSC in 

other systems. We examined 34 primary studies relating to 49 plant species (table A6) for 

examples of MSC. We included studies featured in three meta-analyses of ant-plant 

mutualisms (Chamberlain and Holland 2009; Rosumek et al. 2009; Trager et al. 2010) as a 

representative subset of studies likely to have suitable data. We also added data from several 

studies published after these meta-analyses and for cases where inadequate data were 

provided in the original cited references. 

 

Results 

Multiple species co-occupancy (MSC) on camelthorn trees 

We collected data on 3448 thorns from 197 branches across 20 V. erioloba trees (Campbell et 

al. 2015), confirming that V. erioloba domatia were occupied by four ant species; an 

unidentified Crematogaster species, Cataulacus intrudens, an unidentified Tapinoma species 

and Tetraponera ambigua (hereafter referred to by genus). The smallest, Tapinoma, was the 



most abundant, accounting for 77% of all individual ants surveyed (fig. 2), followed by 

Crematogaster (13%), Cataulacus (8%), and then Tetraponera (2%). Tapinoma was also the 

most prevalent, found on 19 of 20 trees. Despite the numerical dominance of Tapinoma, it 

occupied a similar proportion (41%) of nest-sites to Crematogaster (42%, see fig. 2), while 

the other two species occupied far fewer (Cataulacus 14%; Tetraponera 3%). 

 

Most trees (16/20) were co-occupied by two or three ant species and 3/20 by all four.  

The only tree with a single ant species was occupied by Crematogaster. Although MSC was 

common within trees, at the branch level the figure fell to 27%, while 50% of branches were 

occupied by a single species (figure A1). On branches, Cataulacus and Tapinoma were 

positively associated (Spearman correlation test: rS = 0.17, S = 1051634, P < 0.05), but there 

were no other significant associations between species pairs (table A5).  

 

Nest-site limitation and interspecific competition 

Only 31% (n = 1052) of thorns were suitable as nest-sites, because ants were not found inside 

soft, new growth thorns or non-swollen thorns. Hereafter the term domatia refers only to 

swollen and hardened thorns suitable as nest-sites. Only 37% of domatia were occupied by 

nesting ants. Nest-site density varied significantly between species, with Crematogaster 

occupying the most domatia per branch and Cataulacus the least (fig. 3).  

 

Within-trees we found little evidence of positive or negative associations between ant 

species. Only one tree showed a non-random distribution of species with an observed C-score 

of 17.33 that was significantly larger (P = 0.001) than the mean simulated C-score of 7.95. 

The SES was 3.104, indicating segregation of ant species on that tree (table A1). Our meta-



analysis across matrices for all trees showed that the mean SES did not differ significantly 

from zero for any of the indices under either null model (table A3).  

 

Microhabitat preferences 

We found no evidence that different ant species used domatia in different locations on 

trees, with regard to branch height (ANOVA, F3,211 = 1.16, P = 0.33), branch cardinal 

direction (ANOVA, F3,211 = 2.048, P = 0.11) or thorn position along a branch (Fisher’s exact 

test, P = 0.14). Nor did we detect evidence of non-random patterns for nest-sites grouped by 

microhabitat characteristics (table A2). This was confirmed by meta-analyses of co-

occurrence indices that showed species distributions are not influenced by branch height or 

direction (table A4). However, Cataulacus and Tapinoma were associated with old thorns 

and Crematogaster and Tetraponera with young thorns (Fisher’s exact test, P < 0.01). 

 

Discussion 

Ant community ecology has focused heavily on the role of competition in structuring ant 

assemblages (Cerdá et al. 2013; Parr and Gibb 2010; Parr et al. 2005) but this has been less 

frequently applied to ants on myrmecophilic or myrmecophytic plants (however, see review 

by Palmer et al. 2003). Given the abundance of studies on ant-plant mutualisms the data is 

most likely already available for studies of competition within these systems and would 

significantly advance our understanding of the dynamics of ant-ant interactions as well as 

mutualism biology. Whilst it is thought that ants compete for host plants (Stanton et al. 2005) 

or that domatia nest-sites are limiting (Longino 1989), there has been little experimental 

proof to find evidence of competition in these systems, or to identify the mechanisms for this 

(Palmer et al. 2003).  

 



There is no evidence that ants on V. erioloba are nest-site limited, because only 38% 

of domatia are occupied. This rate of domatia occupancy does not seem atypical of ant-plant 

systems in general (see table A6). In the studies we reviewed domatia occupancy ranged from 

42-64 % (Maschwitz et al. 1994; Moog et al. 2002), although for one species variation was 

high (0-100%) between individual plants (Dyer and Letourneau 1999). Zanthoxylum 

myriacanthum was the only MSC myrmecophyte with rate of domatia occupancy reported 

(table 1; table A6), which at 42% is very similar to domatia occupancy on camelthorn trees. 

However, it is striking that domatia occupancy was not reported in 93% of primary studies 

even though this information was very likely collected. Overall, the few existing studies do 

not support the notion that individual domatia are a limiting resource, but this does not rule 

out availability of whole plants as limiting for ant colonies.  

 

At the whole plant level, overall occupancy of myrmecophytes was between 41-100% 

in the reviewed studies (table A6) and 100% on V. erioloba. Focusing on MSC 

myrmecophytes, the rate of plant occupancy was slightly higher, ranging from 62-100%. The 

high rate of plant occupancy relative to domatia occupancy implies that availability of 

individual plants may often be the key to ant colony success. This also explains why 

competition between foundresses and young colonies for possession of a host plant is so 

intense (Stanton et al. 2005). Whereas once a colony has secured a plant then individual 

domatia availability may exceed colony requirements.  

 

The apparently random distribution of species within trees provides further evidence 

that V. erioloba ants are not competing for domatia. This pattern is surprising and contrasts 

with spatial patterns on a Neotropical acacia exhibiting MSC (Raine et al. 2004). We propose 

that on V. erioloba fine scale within-tree coexistence and lack of strong spatial structure 



reflect an absence of competition for individual domatia. Moreover, each ant species tends to 

choose different subsets of nests (e.g. species sorting according to thorn age and size, see 

Campbell et al. 2013a), as well as exhibiting different patterns of nest-site distribution and 

density. Species coexistence on V. erioloba may also be facilitated by the differing life 

history strategies of each ant species (Campbell et al. 2013a), as has been demonstrated in 

acacia-Pseudomyrmex interactions (Kautz et al. 2012). Establishing colony boundaries 

between conspecific ants co-occupying a tree is the next step in understanding spatial patterns 

of domatia-inhabiting ants on V. erioloba. However, in a pilot study to test colony boundaries 

we did not observe any intra- or interspecific aggression between V. erioloba ants. Future 

work could compensate for the lack of behavioural assay data by utilising genetic 

microsatellite and cuticular hydrocarbons data instead (Kautz et al. 2012). 

 

At the species level, most plants (30/49 species, table A6) associate with multiple ant 

species and this is very likely an underestimate. Most myrmecophytes associate with a guild 

of ants, via either a) an individual plant associating with multiple ant species over its lifetime, 

or b) different individual plants in a population associating with different ant species. Ant 

partners may also vary across geographic scales (Longino 1989) and some myrmecophytes 

lose their mutualist ants altogether (Moraes and Vasconcelos 2009). This highlights the 

important issues of scale and specificity in studying species interactions (Thompson 2005). A 

1:1 level of partner species matching may often be recorded on individual plants, but 

additional ant partners may be added by looking across plants in a population, or across 

populations through the plants geographic range.  

 

It was typically difficult to establish species occupancy states (unknown for 10/49 

species, table A6) and particularly MSC from the literature as authors were not always 



explicit about this. Ultimately, we found only four examples (table 1) of MSC (Gaume et al. 

2005a; Moog et al. 2002; Rico-Gray and Thien 1989a) and only one of these described the 

pattern of ant species coexistence within individual host plants (Raine et al. 2004). These four 

cases appear extremely divergent, and occur on different continents, in contrasting habitats 

and incorporate a diversity of plant types and domatia structures (table 1). In our study, 95% 

of individual camelthorn showed MSC. Ant species were the same as a previous study 

(Campbell et al. 2013a), suggesting temporal stability of species assemblages, at least over 

short periods of time. This level of simultaneous coexistence is highly unusual and, to our 

knowledge, has not previously been recorded for an African ant-acacia. It contrasts directly 

with other African acacias, notably, the intensely studied V. drepanolobium system where 

trees are occupied not only by a single species (SSO) but usually also by a single colony of 

ants (SCO) (Palmer et al. 2000; Stanton et al. 2005). This raises the questions, do mutualism 

dynamics differ when a plant has one or more ant partners?  And what drives transitions 

between SCO, SSO and MSC states? 

 

 In systems where guilds of ants inhabit different individual host plants within a 

population it is frequently discovered that not all ants are mutualists (Edwards et al. 2010; 

Gaume and McKey 1999; Itioka et al. 2000) and that mutualists differ in their effectiveness 

(Frederickson 2005; Young et al. 1997). Although increased competition can actually 

encourage co-operation of multiple mutualist partners (Adam 2010). Nonetheless, it is critical 

to understand the nature of the relationship between ants and their host plant since parasites 

may be more likely to co-occupy host plants (Kautz et al. 2012). A great deal of literature is 

directed towards analysing the costs and benefits of interactions and how systems may allow 

for the existence of “cheaters” (for example, see Clement et al. 2008; Edwards et al. 2006; 

Kautz et al. 2012). The key difference in myrmecophytes exhibiting MSC is the scale at 



which coexistence occurs i.e. tree or branch level rather than population level. However, both 

empirical and theoretical frameworks designed to tackle population level questions of ant 

species coexistence (as reviewed by Palmer et al. 2003) are equally applicable to this finer 

spatial scale. The main difficulty in performing experimental work in MSC cases is logistical. 

Manipulations on mature plants would be complex and the best approach would be to 

perform exclusions and additions of different combinations of ant species using seedlings 

until plants reach maturity. This would be problematic on a large, slow-growing tree such as 

V. erioloba, but better suited to a pioneer species such as the MSC myrmecophyte, Z. 

myriacanthum (Moog et al. 2002). This would also allow for experimentation over a longer 

time scale, and facilitate cost-benefit analysis over the lifetime of a plant or ant colony that 

may potentially reveal differing insights to a short-term study (e.g. short term, Palmer et al. 

2000; vs long term, Stanton and Palmer 2011).  

  

Multispecies mutualisms may arise as evolutionary “by-products” (Fayle et al. 2011) 

when ants defend trees as part of their normal foraging activity. Multiple simultaneous ant 

partners may provide more (greater defence) or wider (defence against diverse foes) benefits 

to an individual host plant. In this context tree size or density may influence the costs and 

benefits of MSC for myrmecophytes. Large, isolated desert or savanna trees, might benefit 

from a suite of ant occupants in order to be effectively defended. Smaller plants or those 

found in dense forests with many potential opportunistic ant mutualists may fare well with 

one resident ant colony. MSC might alternatively arise from a lack of host sanctions resulting 

in the presence of multiple, opportunistic species. For example, an inability to limit access to 

domatia leads to the presence of parasites on the rattan ant-palm Korthalsia furtadoana 

(Edwards et al. 2010).  

  



 Environmental stress can determine levels of species diversity in ant assemblages. 

Habitat productivity may also play a role in diversity within mutualisms via species 

coexistence mechanisms, for example, competitively dominant ants occupy faster-growing 

host plants and more productive habitats (Palmer 2003). Subsequently, should we expect 

MSC systems to be found in more or less stressful environments? Multiple limiting resources 

can increase niche dimensionality, leading to higher levels of diversity. Conversely a decline 

in the number and heterogeneity of limiting resources causes fewer trade-off opportunities, 

decreased niche dimensionality and fewer co-existing species (Harpole and Tilman 2007). If 

niche dimensionality does influence myrmecophyte-inhabiting ants, we predict that that more 

stressful environments with multiple limiting resources will contain a greater number of MSC 

plants and a higher diversity of ant partners. Although data is limited the anecdotal evidence 

somewhat supports this prediction; V. erioloba is a savanna/desert species in a high 

temperature and aridity region and mangrove orchids with MSC are found in very high 

salinity environments (Rico-Gray and Thien 1989b). To test stress-diversity relationships in 

ant-myrmecophyte systems, MSC mutualisms could be compared across environmental 

(stress/productivity) gradients, or subjected to local resource availability manipulations. A 

factorial experiment of this kind could not only tease out the relative importance of different 

resources on species, but changes observed in number of ant occupants following restriction 

or addition of resources would indicate a role for niche dimensionality in ant-myrmecophyte 

interactions. 

 

Two widely-held assumptions about ant-myrmecophyte mutualisms are challenged by 

our findings on V. erioloba: 1) ant-plants are inhabited by a single species at a time and, 

therefore, ant coexistence only occurs across a population of plants or a single plant’s 

lifetime; 2) plant-ants are nest-site limited on their host myrmecophyte (Fonseca 1993; Yu et 



al. 2004). We found other examples of MSC in the literature (Moog et al. 2002; Raine et al. 

2004; Rico-Gray and Thien 1989b), but domatia occupancy rates are sorely missing from 

most published studies. Despite this, the few studies reporting patterns suggest no saturation 

of domatia (Dyer and Letourneau 1999; Maschwitz et al. 1994; Moog et al. 2002). 

Competition-colonization trade-offs (Stanton et al. 2002) and dispersal-fecundity trade-offs 

(Yu et al. 2004) have both been highlighted as likely mechanisms for species co-existence on 

myrmecophytes, but most research has focused on a few popular study species. The 

approaches taken with these species could easily be expanded to MSC myrmecophytes to aid 

our understanding of competition and coexistence in ant/plant systems. The study of 

multispecies systems has been highlighted as vital to progress our understanding of 

mutualisms (Fayle et al. 2011; Palmer et al. 2003). We hope that the opportunity presented to 

study ant communities on V. erioloba, as well as the other MSC systems highlighted here, 

provides a starting point for a better understanding of multispecies mutualism dynamics. 
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Online appendix A - Expanded methods and results 

 

Methods 

Many studies of coexistence use ants as a model system and utilise null model analyses to 

examine species co-occurrence patterns (Albrecht and Gotelli 2001; Gotelli and Ellison 2002; 

Sanders et al. 2007). A study of myrmecophytes and their associated ant species used a 

Monte Carlo randomisation and cluster analysis to reveal a highly structured community 

(Fonseca and Ganade 1996). Here we employ randomisation procedures to a smaller spatial 

scale to assess within-tree patterns of species co-occurrence and evidence of competition 

between plant-ants sharing access to nest resources on a myrmecophyte. A study of lichen 

distributions used co-occurrence indices as community metrics in a modelling approach 

(Belinchón et al. 2012). We employ the same principles in our methodology to assess 

microhabitat variables (branch height and direction) in relation to ant species nest-site 

distributions on V. erioloba camelthorn trees. 

 

Methods for testing within-tree species co-occurrence patterns 

We constructed 20 presence-absence matrices to assess ant species co-occurrence within 

individual trees. Each matrix represented a single, isolated V. erioloba tree, with ant species 

as rows (n = 4 species) and branches on the trees as columns (n = 4 to 12 branches). A 

species was scored as present if it had one or more nests on the branch.  

 

We used three different indices to quantify patterns of nest site co-occurrence of ant 

species occupying V. erioloba trees; CHECKER, COMBO and C-score. CHECKER is the 

number of species pairs that never co-occur and therefore form a checkerboard distribution 

within the matrix. If this rule exists in an assemblage, then more species pairs should form 



checkerboard distributions than expected by chance (Gotelli and McCabe 2002). COMBO is 

the number of species combinations within an assemblage and may reveal the presence of 

forbidden species combinations. The C-score is the most widely used index of species co-

occurrence (Sanders et al. 2007) as it has greater statistical power than the other indices 

(Gotelli 2000; Gotelli and McCabe 2002). This index is also a measure of 

“checkerboardness”, but is less restrictive than CHECKER, as it calculates the degree of 

coexistence between species pairs rather than only counting completely segregated pairs 

(Gotelli 2000; Gotelli and McCabe 2002; Stone and Roberts 1990). The indices CHECKER 

and COMBO are more sensitive than the C-score, which is not only less restrictive but also 

less prone to false positives (Gotelli 2000). Generally, if a community is structured by 

competition the observed assemblage should have more species forming a checkerboard 

distribution, less species combinations and a higher C-score than in a random community 

(Diamond 1975; Gotelli 2000), although other mechanisms can affect community structure 

and therefore the interpretation of indices (for a comprehensive review of null model testing 

in ecology see, Gotelli and Ulrich 2012; Ulrich and Gotelli 2013). 

 

We used two null models to randomise the observed matrices and create simulated 

matrices. The fixed-fixed model preserves the row and column totals of the observed matrix. 

This means that the random community has the same number of species in each sample unit 

(column total), in this case branches, and each species occurs at the same frequency (row 

total). This model maintains the differences between the sites and species in the matrix, and 

for this reason has been suggested as appropriate for analysis of island species lists (Sanders 

et al. 2007). Isolated trees can be considered as islands of biodiversity and assemble in a 

similar way (Gove et al. 2009), so we consider this an appropriate model for analysing 

community patterns on individual trees V. erioloba trees in a savannah.  



The second, fixed-equiprobable model allows random variation in the total number of 

species found on each branch but maintains the same frequency of species within the overall 

matrix. This model treats all the branches on an individual tree as being equally suitable as 

nest sites for each of the species that are recorded on that tree. It is considered suitable for 

testing co-occurrence patterns at a local spatial scale (Sanders et al. 2007). The fixed-

equiprobable model has been recommended for comparison of standardised sampling 

procedures, such as baiting or pitfall trapping, in a homogenous habitat (Gotelli 2000). We 

utilise the fixed-equiprobable model in our analyses because the spatial scale is local (at the 

tree level). Additionally, it allows any number of species to co-occur on a single branch, 

which reflected our field observations of nest-site distributions. 

 

To enable us to make comparisons across matrices, we calculated the standardised 

effect size (SES) for each matrix as follows; (Iobs – Isim)/Ssim where Iobs is the observed value 

for the index, Isim is the mean value of the index based on 5,000 null randomisation matrices 

and Ssim is the standard deviation of the index based on 5,000 null randomisation matrices 

(Gotelli and McCabe 2002). A one-sample Wilcoxon test was used to test the null hypothesis 

that the mean SES measured for the 20 presence-absence matrices did not differ from zero. 

We performed six tests (three indices using two null models) and applied a Bonferroni 

correction for multiple tests (P < 0.05/6). Co-occurrence analyses and Wilcoxon tests were 

conducted using EcoSim (Gotelli and Entsminger 2009) and R (R Core Development Team 

2012), respectively. 

 

Methods for testing ant species microhabitat preference 

We constructed 16 presence-absence matrices to test if different ant species nest-sites are 

associated with different microhabitat characteristics. Each presence-absence matrix 



represented one of the four cardinal directions (North, East, South and West) combined with 

one of four height categories (Low: 0-1.50m; Medium Low: 1.51-2.0m; Medium High: 2.01-

2.5m and High: 2.51m+). In a matrix, each row represented an ant species and each column 

represented a different branch that had been sampled. The branches (columns) within a 

matrix can be drawn from data for different individual trees and were included in a particular 

matrix based only on their shared microhabitat characteristics. The analyses performed on 

microhabitat matrices followed the same procedures as for the within-tree matrices. Three co-

occurrence indices (CHECKER, C-score and COMBO) were generated under two null 

models (fixed-fixed and fixed equiprobable) and the standardised effect size (SES) was 

calculated for each microhabitat matrix.  A one-sample Wilcoxon test was used to test the 

null hypothesis that the mean SES measured for the 16 microhabitat presence-absence 

matrices did not differ from zero. We performed six such tests (three indices using two null 

models) and applied a Bonferroni correction for multiple tests (P < 0.05/6).  

 

The co-occurrence indices can be considered as community attributes and used in a 

modelling approach (Belinchón et al. 2012). To evaluate the effects of branch height and 

aspect on species interactions, we performed ANOVA on all co-occurrence indices. 

Beginning with the maximal model, we implemented stepwise model simplification to find 

the minimal adequate model for each index. Co-occurrence analyses were conducted in 

EcoSim (Gotelli and Entsminger 2009) and Wilcoxon tests and ANOVA were conducted in 

R (R Core Development Team 2012). 

 

 

 

 

 

 

 

 



Table A1 Randomisation results for 20 matrices of within-tree species co-occurrence patterns 
 C-score CHECKER COMBO 

Tree Iobs Isim P SES Iobs Isim P SES Iobs Isim P SES 

fe model             

73 0 4.3 1.0 -0.8 0 0 1.0 0.0 3 3.4 1.0 -0.8 

76 ~    ~    ~    

89 8 7.2 0.6 0.2 0 0.2 1.0 -0.4 4 3.8 0.8 0.5 

90 6.7 6.8 0.6 -0.1 0 0.4 1.0 -0.7 7 6.1 0.3 1.2 

96 0 2.9 1.0 -0.8 0 0.4 1.0 -0.8 3 3.0 1.0 0.0 

215 4 8.2 0.9 -1.4 0 0.0 1.0 0.0 6 6.3 0.9 -0.5 

216 12 7.5 0.1 1.7 1 0.4 0.3 1.1 5 6.1 1.0 -1.6 

217 17.3 7.9 0.0 3.1 1 0.3 0.3 1.3 5 6.0 1.0 -1.5 

218 7 7.3 0.6 -0.1 1 0.8 0.6 0.2 8 8.2 0.8 -0.2 

219 5.8 5.7 0.5 0.1 2 1.8 0.6 0.2 8 7.2 0.3 1.1 

220 2 2.7 0.8 -0.5 0 0.9 1.0 -1.3 5 4.7 0.8 0.6 

227 5 3.6 0.2 0.8 1 0.3 0.3 1.3 5 5.3 0.9 -0.5 

230 8 4.0 0.3 1.3 0 0.0 1.0 -0.1 4 3.8 0.8 0.5 

231 ~    ~    ~    

247 2 3.2 0.9 -0.6 0 0.4 1.0 -0.7 4 3.5 0.5 0.9 

248 1 1.6 0.9 -1.4 3 4.4 1.0 -1.3 5 4.9 0.8 0.1 

251 1 0.8 0.8 0.6 1 0.7 0.7 0.6 3 2.7 0.7 0.6 

252 1 2.3 0.9 -0.9 0 0.8 1.0 -1.1 5 4.4 0.4 1.2 

253 0.3 3.5 1.0 -1.9 0 0.2 1.0 -0.5 5 5.3 0.9 -0.4 

254 6 4.3 0.5 0.6 0 0.0 1.0 0.0 4 3.9 0.9 0.4 

ff model             

73 ~    ~    ~    

76 ~    ~    ~    

89 8 8.0 1.0 0.0 0 0.0 1.0 0.0 4 4.0 1.0 0.0 

90 6.7 7.1 1.0 -1.0 0 0.4 1.0 -0.9 7 6.1 0.3 1.2 

96 ~    ~    ~    

215 4 4.2 1.0 -1.2 0 0.0 1.0 0.0 6 6.0 1.0 0.0 

216 12 10.5 0.1 2.5 1 0.8 0.7 0.3 5 6.1 1.0 -1.6 

217 17.3 16.4 0.2 1.2 1 1.3 1.0 -0.7 5 4.7 0.7 0.7 

218 7 6.9 0.4 0.2 1 0.9 0.7 0.1 8 8.4 0.9 -0.4 

219 5.8 6.1 0.9 -0.8 2 1.8 0.7 0.3 8 7.4 0.4 1.0 

220 2 2.0 1.0 0.0 0 0.0 1.0 0.0 5 5.0 1.0 0.0 

227 5 4.7 0.2 0.8 1 0.7 0.7 0.6 5 5.5 0.9 -0.7 

230 8 8.0 1.0 0.0 0 0.0 1.0 0.0 4 4.0 1.0 0.0 

231 ~    ~    ~    

247 2 2.0 1.0 0.0 0 0.0 1.0 0.0 4 4.0 1.0 0.0 

248 1 1.1 1.0 -0.8 3 3.0 1.0 0.0 5 4.6 0.6 0.8 

251 1 1.0 1.0 0.0 1 1.0 1.0 0.0 3 3.0 1.0 0.0 

252 1 1.0 1.0 0.0 0 0.0 1.0 0.0 5 5.0 1.0 0.0 

253 0.3 0.3 1.0 0.0 0 0.0 1.0 0.0 5 5.0 1.0 0.0 

254 6 6.0 1.0 0.0 0 0.0 1.0 0.0 4 4.0 1.0 0.0 

Note: Local scale co-occurrence patterns on 20 individual V. erioloba trees at Kuzikus 

Wildlife Reserve, Namibia as measured by three co-occurrence indices for coexisting ant 

species. The presence-absence matrices analysed represent one of 20 different individual 

trees, with columns as sites (branches) and rows as species. Two null models were used for 

the analyses, fixed-equiprobable (fe model) maintains row sums but allows column totals to 

vary and fixed-fixed (ff model) maintains all row and column totals. C-score is the C-score 

calculated from the observed assemblages, CHECKER is the number of species forming a 

checkerboard distribution in the observed assemblages and COMBO is the number of species 

combinations in the observed assemblages. Iobs is the observed value for the index and Isim is 

the mean value of the index based on 5,000 null randomisation matrices. The SES is 

calculated from (Iobs-Isim)/Ssim where Ssim is the standard deviation of the index based on 

5,000 null randomisation matrices. An SES value greater than 2 indicates segregation of 



species and an SES of less than -2 indicates significant species aggregation. Significant P and 

SES values are highlighted yellow in bold type. 

 

 

Table A2 Randomisation results for 16 matrices representing different microhabitat 

characteristics  
  C-score CHECKER COMBO 

Direction Height Iobs Isim P SES Iobs Isim P SES Iobs Isim P SES 

fe model              

North Low 6.2 5.0 0.2 0.9 4 3.7 0.6 0.3 6 6.1 0.8 -0.2 

 MedLow 4.3 6.2 0.9 -0.9 1 1.2 0.8 -0.3 6 5.3 0.4 1.1 

 MedHigh 1.7 2.8 0.7 -0.6 0 0.8 1.0 -1.3 5 4.4 0.4 1.2 

 High 4.5 2.9 0.05 1.7 5 3.6 0.2 1.3 5 5.6 1.0 -1.0 

East Low 7 7.1 0.5 0.0 2 1.6 0.6 0.4 7 7.8 0.9 -1.0 

 MedLow 17.7 14.9 0.2 0.8 2 0.8 0.2 1.6 10 9.1 0.3 1.2 

 MedHigh 2 3.3 0.9 -0.8 0 1.0 1.0 -1.4 5 4.9 0.9 0.4 

 High 13.3 7.3 0.1 1.9 2 0.9 0.2 1.5 5 5.0 1.0 0.1 

South Low 1.7 4.5 0.9 -1.3 0 1.3 1.0 -1.8 5 4.7 0.7 0.6 

 MedLow 18.7 16.6 0.4 0.4 0 0.0 1.0 -0.1 8 7.1 0.3 1.3 

 MedHigh 8 3.4 0.01 2.6 2 1.1 0.3 1.2 4 4.7 1.0 -1.6 

 High 8 12.8 0.9 -1.3 0 0.3 1.0 -0.6 7 6.6 0.6 0.6 

West Low 0 1.2 1.0 -1.2 0 0.6 1.0 -1.2 3 3.0 1.0 0.0 

 MedLow 5 3.9 0.4 0.6 1 0.5 0.5 0.9 6 5.3 0.4 1.1 

 MedHigh 2 2.0 0.8 0.0 2 1.9 0.8 0.1 4 3.9 1.0 0.3 

 High 2.7 3.2 0.6 -0.3 0 0.4 1.0 -0.8 5 4.9 0.8 0.1 

ff model              

North Low 6.2 5.7 0.2 1.2 4 4.2 1.0 -0.5 6 6.2 0.9 -0.4 

 MedLow 4.3 4.7 1.0 -1.0 1 0.8 0.8 0.3 6 5.5 0.6 0.8 

 MedHigh 1.7 1.7 1.0 0.0 0 0.0 1.0 0.0 5 5.0 1.0 0.0 

 High 4.5 4.4 0.6 0.2 5 5.0 1.0 0.0 5 5.4 1.0 -0.8 

East Low 7 6.5 0.1 1.5 2 1.7 0.5 0.4 7 8.2 1.0 -1.6 

 MedLow 17.7 18.7 1.0 -1.5 2 1.1 0.3 1.2 10 9.4 0.5 0.8 

 MedHigh 2 2.0 1.0 0.0 0 0.0 1.0 0.0 5 5.0 1.0 0.0 

 High 13.3 13.8 1.0 -0.9 2 1.5 0.5 1.1 5 5.0 1.0 0.0 

South Low 1.7 1.7 1.0 0.0 0 0.0 1.0 0.0 5 5.0 1.0 0.0 

 MedLow 18.7 18.9 0.8 -0.4 0 0.0 1.0 0.0 8 7.1 0.2 1.5 

 MedHigh 8 6.7 0.1 2.4 2 2.0 1.0 0.0 4 4.6 1.0 -1.3 

 High 8 8.4 1.0 -0.7 0 0.0 1.0 0.0 7 7.0 0.8 -0.1 

West Low ~    ~    ~    

 MedLow 5 5.5 1.0 -0.9 1 0.9 0.8 0.3 6 5.5 0.6 0.8 

 MedHigh 2 2.2 1.0 -0.4 2 2.0 1.0 0.0 4 3.9 0.9 0.4 

 High 2.7 2.7 0.5 0.0 0 0.0 1.0 0.0 5 5.5 1.0 -1.1 

Note: Local scale co-occurrence patterns based on shared microhabitat characteristics of four 

coexisting ant species on V. erioloba at Kuzikus Wildlife Reserve, Namibia. The presence-

absence matrices analysed represented different microhabitat characteristics, with columns as 

sites (branches) and rows as species. Two null models were used for the analyses, fixed-

equiprobable (fe) maintains row sums but allows column totals to vary and fixed-fixed (ff) 

maintains all row and column totals. C-score is the C-score calculated from the observed 

assemblages, CHECKER is the number of species forming a checkerboard distribution in the 

observed assemblages and COMBO is the number of species combinations in the observed 

assemblages. In the table the first two columns indicate the cardinal direction the branch was 

facing and the height of branch sampled for all sites in the matrix.  Iobs is the observed value 

for the index and Isim is the mean value of the index based on 5,000 null randomisation 

matrices. The SES is calculated from (Iobs-Isim)/Ssim where Ssim is the standard deviation of the 

index based on 5,000 null randomisation matrices. An SES value greater than 2 indicates 



segregation of species and an SES of less than -2 indicates significant species aggregation. 

Significant P and SES values are highlighted yellow in bold type. 

 

 

Table A3 Summary of the null model tests for deviations of ant species co-occurrence 

matrices from randomness using three co-occurrence indices under two null models 

Index 

Null 

Model 

Average 

SES n V P 

Tree matrices      

C-Score fe 0.33 17 73.5 0.91 

C-Score ff 0.05 16 17 0.94 

CHECKER fe -0.12 18 55 0.52 

CHECKER ff -0.02 16 10 1.00 

COMBO fe 0.10 18 92 0.48 

COMBO ff 0.07 16 18 0.55 

Microhabitat 

matrices      

C-Score fe 0.15 16 71 0.90 

C-Score ff -0.04 15 34 0.72 

CHECKER fe -0.01 16 70 0.94 

CHECKER ff 0.19 15 17 0.21 

COMBO fe 0.27 16 85 0.16 

COMBO ff -0.06 15 30 0.82 

Note: The indices were; CHECKER - the number of species pairs forming a checkerboard 

distribution, COMBO - the number of species combinations, and C-score - a measure of 

species co-occurrence. The null models were; Fixed-fixed (ff) = null model in which the 

matrix row and column sums are preserved; Fixed-equiprobable (fe) = null model in which 

the rows are fixed and the column total of the matrix are allowed to vary freely. To enable us 

to make comparisons across matrices, we calculated the standardised effect size (SES) for 

each matrix as (Iobs-Isim)/Ssim where Ssim is the standard deviation of the index based on 5,000 

null randomisation matrices (Gotelli and McCabe 2002). A one-sample Wilcoxon test was 

used to test the null hypothesis that the mean SES measured for the 20 within-tree presence-

absence matrices and 16 microhabitat presence-absence matrices did not differ from zero. We 

performed six tests for each set of matrices (three indices x two null models) and applied a 

Bonferroni correction for multiple tests (P < 0.05/6).  

 

 

Table A4 Results from ANOVA examining the influence of microhabitat variables on co-

occurrence indices 

  CHECKER  C-score  COMBO  

  ff fe ff fe ff fe 

SES       

Height of branch 3.05 (0.19) 0.27 (0.85) 3.59 (0.05) 0.24 (0.87) 3.76 (0.07) 1.15 (0.37) 

Aspect of branch 1.71 (0.32) 0.56 (0.65) 0.18 (0.91) 0.15 (0.93) 0.03 (0.99) 0.12 (0.95) 

Note: F ratio values of the variables are indicated with P values in brackets. CHECKER = 

number of species pairs forming a checkerboard distribution; COMBO = number of species 

combinations. Fixed-fixed (ff) = null model in which the matrix row and column sums are 

preserved; Fixed-equiprobable (fe) = null model in which the rows are fixed and the column 

total of the matrix are allowed to vary freely. SES is the standardised effect size. 



Table A5 Spearman’s rank correlation of association of nest sites on branches of V. erioloba 

for occupant ant species 

 Cataulacus Crematogaster Tapinoma Tetraponera 

Cataulacus - -0.01 0.17 -0.09 

Crematogaster 0.934 - -0.10 -0.08 

Tapinoma 0.014 0.161 - -0.05 

Tetraponera 0.211 0.275 0.476 - 

Note: Above the diagonal indicates the estimated measure of association, Spearman's rho 

statistic, below the diagonal indicates P values with significant values in bold. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A6 Summary of ant-myrmecophyte systems with particular reference to species occupancy state, and rate of plant and domatia occupancy 
Plant species Ant species Number 

of ant 

species 

Occupancy rate 

of plants (%) 

Occupancy 

rate of 

domatia 

(%) 

Author 

SINGLE-SPECIES 

OCCUPANCY (SSO) 

STATE 

    

 

Barteria fistulosa Pachysima spp. 2 60 (n=68) ˜ (Janzen 1972) 

Cecropia concolor Azteca alfari 1 52.8 ˜ (Vasconcelos and Casimiro 1997) 

Cecropia distachya Az. alfari 1 85.5 ˜ (Vasconcelos and Casimiro 1997) 

Cecropia purpurascens Az. alfari 1 80 ˜ (Vasconcelos and Casimiro 1997) 

Cecropia ulei Az. alfari 1 46.8 ˜ (Vasconcelos and Casimiro 1997) 

Cordia nodosa Az. depilis + 4 spp. 5 80 ˜ (Frederickson 2005) 

Duroia hirsute Az. depilis; Myrmelachista schumanni 2 80 ˜ (Frederickson 2005) 

Hirtella myrmecophila Allomerus octoarticulatus 1 97 (n=600) ˜ (Izzo and Vasconcelos 2002) 

Korthalsia furtadoana Camponotus spp. + others 2+ 75 ˜ (Edwards et al. 2010) 

Leonardoxa africana Petalomyrmex phylax; Cataulacus mckeyi 2 92 ˜ (Gaume and McKey 1999; Gaume et al. 1997) 

Macaranga bancana Crematogaster borneensis 1 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Macaranga beccariana Cr. decamera 1 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Macaranga havilandii Cr. decamera 1 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Macaranga hosei Crematogaster sp. 1 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Macaranga hosei Cr. borneensis 1 41 (n=139) ˜ (Fiala et al. 1989) 

Macaranga hullettii Cr. borneensis 1 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Macaranga hullettii Cr. borneensis 1 66 (n=109) ˜ (Fiala et al. 1989) 

Macaranga hypoleuca Cr. borneensis 1 64 (n=159) ˜ (Fiala et al. 1989) 

Macaranga kingii Cr. borneensis 1 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Macaranga lamellata Cr. decamera; Camponotus macarangae 2 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Macaranga trachyphylla Cr. borneensis 1 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Macaranga triloba Cr. borneensis 1 68 (n=348) ˜ (Fiala et al. 1989) 

Macaranga winkleri Crematogaster spp. 2 100 ˜ (Itino and Itioka 2001; Itino et al. 2001) 

Maieta guianensis Mixed assemblage 2-3 70 (n=23) ˜ (Joly et al. 2014; Valentini et al. 2009) 

Piper cenocladum Pheidole bicornis 1 100 56 (Dyer and Letourneau 1999) 

Ryparosa fasciculata Cladomyrma spp. + others 5+ 91.5-100 ˜ (Webber et al. 2007) 

Tachigali myrmecophila Ps. concolor + others 8 ˜ ˜ (Fonseca 1994) 

Tococa bullifera Cr. laevis; Azteca sp. + others 2-6 67 ˜ (Joly et al. 2014) 

Tococa guianensis Az. bequaerti; Cr. laevis + 10 spp. 12 Approx. 96 ˜ (Valentini et al. 2009) 

Tococa guianensis Pheidole sp.; Crematogaster sp.+ others 4 98 ˜ (Alvarez et al. 2001) 

Tococa spadaciflora Pheidole sp.; Crematogaster sp.+ 2 spp. 4 98 ˜ (Alvarez et al. 2001) 



Vachellia allenii Ps. ferruginea 1 ˜ ˜ (Janzen 1974) 

Vachellia chiapensis Ps. ferruginea; unidentified sp. 2 ˜ ˜ (Janzen 1974) 

Vachellia collinsii Pseudomyrmex spp. 5   (Janzen 1974) 

Vachellia melanoceras Ps. satanica 1 ˜ ˜ (Janzen 1974) 

Vachellia drepanolobium Mixed assemblage 1-7 87-100 (n=285) ˜ (Stapley 1998; Young et al. 1997) 

Vachellia hindsii Ps. ferruginea; Ps. veneficus 2 ˜ ˜ (Janzen 1974; Raine et al. 2002) 

Vachellia seyal var. fistula Crematogaster spp.; Lepisota canescens 3 ˜ ˜ (Young et al. 1997) 

UNKNOWN OCCUPANCY 

STATE 
    

 

Caularthron bilamellatum Mixed assemblage 11 85 (n=573) ˜ (Fisher 1992; Fisher and Zimmerman 1988) 

Ficus obscura var. borneensis Mixed assemblage 8 ˜ 64 (n=56) (Maschwitz et al. 1994) 

Piper sagittifolium Pheidole bicornis 1 ˜ ˜ (Letourneau 1998) 

Tillandsia bulbosa Mixed assemblage 26 58 (n=100) ˜ (Dejean et al. 1995) 

Tococa coronate Az. spp.; Ps. spp. Many ˜ ˜ (Michelangeli 2003) 

Tococa macrosperma Crematogaster spp.; Allomerus spp. Many ˜ ˜ (Michelangeli 2003) 

Vachellia cornigera Camponotus planatus 1 ˜ ˜ (Janzen 1974) 

Vachellia ruddiae Mixed assemblage 7 ˜ 20§ (Janzen 1974) 

Vachellia sphaerocephala Crematogaster spp. + others 3 ˜ ˜ (Janzen 1974) 

Vachellia zanzibarica Crematogaster spp. Many ˜ ˜ (Cochard et al. 2008) 

MULTIPLE SPECIES CO-

OCCUPANCY (MSC) 

STATE 

    

 

Humboldtia brunonis*1 Mixed assemblage 7 100 ˜ (Gaume et al. 2005a; Gaume et al. 2005b) 

Myrmecophila christinae*2 Mixed assemblage 20 85 (n=55)  (Dejean et al. 1995) 

Myrmecophila christinae*2 Mixed assemblage 13 ˜ ˜ 
(Rico-Gray and Thien 1989a; Rico-Gray and 

Thien 1989b) 

Myrmecophila christinae*2 Mixed assemblage 18 77.2 (n=333)  (Dejean et al. 2003) 

Vachellia mayana*3 Ps. ferrugineus; Camponotus planatus 2 100 ˜ (Raine et al. 2004) 

Zanthoxylum myriacanthum*4 Mixed assemblage 28  62-100 42 (Moog et al. 2002) 

Note: Studies were selected if they featured in either of three meta-analyses (Chamberlain and Holland 2009; Rosumek et al. 2009; Trager et al. 

2010) that incorporated 76, 59 and 81 primary studies of ant-plant mutualisms. A large majority of these primary studies were on myrmecophilic 

plants (plants provide food resources but no housing) and we therefore excluded them from this summary, reducing the number of primary 

studies listed here to 34. The studies represent 49 myrmecophyte species, although some species are included in the table multiple times to allow 

presentation of separate datasets. Occupancy of plants and domatia are given as percentages; the number in parentheses is the total sample size 

of either plants or domatia; ~ indicates that the data were not reported in the study. On Vachellia ruddiae§ 20% of insect occupied thorns were 

inhabited by one of seven ant species, however no figure for overall domatia occupancy rate by ants was available. 



Although seven ant species are found in domatia on the semi-myrmecophyte Humboldtia brunonis*1 there is one particular species that 

exclusively occupies host plants, whereas the remaining six species can co-occur simultaneously on the same tree (Gaume et al. 2005a; Gaume 

et al. 2005b). In the orchid, Myrmecophila christinae*2 (formerly Schomburgkia tibicinis), hollow pseudobulbs house ants and several species 

occur on an individual plant, although never within the same pseudobulb. Despite coexisting on M. christinae ants remain strongly territorial and 

only a single species controls foraging access to extrafloral nectar on a plant spike (Rico-Gray and Thien 1989a; Rico-Gray and Thien 1989b). 

The Mexican swollen-thorn acacia, Vachellia mayana*3 is co-occupied by two ant species, Pseudomyrmex ferrugineus and Camponotus planatus 

on 30.7% of mature plants. The mutualist ant P. ferrugineus occupied swollen-thorns near branch tips whereas the parasitic ant C. planatus 

generally occupied old or damaged domatia (Raine et al. 2004). The SE Asian myrmecophyte Zanthoxylum myriacanthum*4 possesses hollow-

stem domatia that have slit like openings for ant access, which close over if not used as nest sites (Moog et al. 2002). Data on the number of 

myrmecophytes with multiple species co-occupancy (MSC) by different ants were only available for V. mayana (31% of plants show MSC) and 

Z. myriacanthum (83% of plants show MSC).  
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Table 1 Summary of myrmecophytic plants that exhibit multiple species co-occupancy (MSC) by their resident ant species. 

 Plant and domatia 

type 

Habitat Country Common domatia-inhabiting ant species Number 

of ant 

species 

Plant/ 

domatia 

occupancy 

(%) 

MSC 

occupancy 

(%) 

Humboldtia brunonis  

(Fabaceae, Caesalpinioideae) 

Tree with hollow 

internodes 

Wet 

evergreen 

forest 

India Unknown 7 100/- - 

Myrmecophila christinae 

(Orchidaceae, Epidendroideae) 

Epiphyte with 

hollow 

pseudobulbs 

Coastal 

sand dune 

mattoral 

Mexico Crematogaster brevispinosa, 

Camponotus planatus, Ca. abdominalis, 

Ca. rectangularis and Ectatomma 

tuberculatum 

13 -/- - 

  Flooded 

mangrove 

forest 

 Dolichoderus bispinosus and 

Pachycondyla villosa 

18 77.2/- - 

    Ca. planatus, Cyphomyrmex minutus and 

Monomorium ebeninum 

20 85/- - 

Vachellia erioloba  

(Fabaceae, Mimosoideae) 

Tree with 

swollen-thorns 

Savanna Namibia Crematogaster sp., Cataulacus intrudens, 

Tapinoma sp. and Tetraponera ambigua 

4 100/37.45 95 

Vachellia mayana  

(Fabaceae, Mimosoideae) 

Shrub/small tree 

with swollen-

thorns 

Lowland 

wet forest 

Mexico Pseudomyrmex ferrugineus; Ca. planatus 2 100/- 30.7 

Zanthoxylum myriacanthum 

(Rutaceae, Toddalioideae) 

Tree with hollow-

stems 

Lowland 

forest 

Malaysia Many species including, Cataulacus, 

Crematogaster, Tapinoma, 

Technomyrmex, Camponotus and 

Tetraponera 

28  62*/42  

 

83 

Note: For the full list of species included in our review of myrmecophyte occupancy states see Table A6. Occupancy rates for plants and domatia 

are given as percentages and - indicates that the data were not reported in the study. MSC occupancy is the percentage of plants that are occupied 

by colonies of multiple different ant species nesting within domatia. *On Zanthoxylum myriacanthum 62% of all trees sampled (including those 

with only closed stem domatia) were occupied by ants, however 100% of all trees sampled with open hollow-stem domatia were occupied by 

ants. 
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Figure legends 

Figure 1 A, Vachellia erioloba, camelthorn tree in acacia-dominated savanna at Kuzikus 

Wildlife Reserve, Namibia. B, Swollen-thorn domatia of V. erioloba with ant nest entrance 

hole visible on left thorn. C, Open swollen-thorn domatia containing a Tapinoma nest. 

 

Figure 2 Occupation of nest-sites and numerical dominance of four ant species on V. erioloba 

at Kuzikus Wildlife Reserve. White bars represent each species as a proportion of the total 

number of ant nests found on trees. Black bars represent each species as a proportion of the 

total number of individuals (including workers, alates, queens, and brood) recorded during 

surveying. Sample size is indicated by numbers above each bar. Data underlying figure 2 are 

deposited in the Dryad Digital Repository, doi:10.5061/dryad.s9f7c (Campbell et al. 2015) 

 

Figure 3 Mean (+SE) number of nest-sites per branch for the four ant species on V. erioloba 

at Kuzikus Wildlife Reserve. Analysis of variance showed that nest-site density varies 

significantly (F3, 211=3.603, P < 0.05) between ant species (Cataulacus n = 40, Crematogaster 

n = 75, Tapinoma n = 94 and Tetraponera n = 6). Different letters indicate significant 

differences (P < 0.001) using Tukey HSD test for post hoc comparisons. 

 

Figure A1 Diagrammatic representation of multiple species co-occupancy on V. erioloba 

trees at Kuzikus Wildlife Reserve, Namibia.  Small circles indicate the presence of non-

swollen thorns, large circles indicate swollen thorns, i.e domatia, that are suitable potential 

nest sites for ants. Occupants of domatia are indicated by the pattern within the large circle as 

follows; empty = no occupant, black = Tapinoma, dots = Crematogaster, vertical stripe = 

Cataulacus, horizontal stripe = Tetraponera 
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Figure 2 
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Figure 3 
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