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APPROXIMATION PROPERTIES OF β-EXPANSIONS

SIMON BAKER

Abstract. Let β ∈ (1, 2) and x ∈ [0, 1
β−1 ]. We call a sequence (εi)

∞
i=1 ∈

{0, 1}N a β-expansion for x if x =
∑∞
i=1 εiβ

−i. We call a finite sequence
(εi)

n
i=1 ∈ {0, 1}n an n-prefix for x if it can be extended to form a β-

expansion of x. In this paper we study how good an approximation is
provided by the set of n-prefixes.

Given Ψ : N→ R≥0, we introduce the following subset of R

Wβ(Ψ) :=

∞⋂
m=1

∞⋃
n=m

⋃
(εi)ni=1∈{0,1}n

[ n∑
i=1

εi
βi
,

n∑
i=1

εi
βi

+ Ψ(n)
]

In other words, Wβ(Ψ) is the set of x ∈ R for which there exists infinitely
many solutions to the inequalities

0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n).

When
∑∞
n=1 2nΨ(n) < ∞ the Borel-Cantelli lemma tells us that the

Lebesgue measure of Wβ(Ψ) is zero. When
∑∞
n=1 2nΨ(n) = ∞, deter-

mining the Lebesgue measure of Wβ(Ψ) is less straightforward. Our main
result is that whenever β is a Garsia number and

∑∞
n=1 2nΨ(n) = ∞

then Wβ(Ψ) is a set of full measure within [0, 1
β−1 ]. Our approach makes

no assumptions on the monotonicity of Ψ, unlike in classical Diophantine
approximation where it is often necessary to assume Ψ is decreasing.

1. Introduction

Let β ∈ (1, 2) and Iβ := [0, 1
β−1

]. Given x ∈ Iβ we say that a sequence

(εi)
∞
i=1 ∈ {0, 1}N is a β-expansion for x if the following equation holds

(1.1) x =
∞∑
i=1

εi
βi
.

It is a simple exercise to show that x has a β-expansion if and only if

x ∈ Iβ. Expansions of this form were pioneered in the papers of Parry [17]

and Rényi [20]. One significant difference between integer base expansions

and β-expansions, is that almost every x ∈ Iβ has uncountably many β-

expansions, unlike in the integer base case where every number has a unique

expansion except for a countable set of exceptions which have precisely two.

Whenever we use the phrase “almost every,” we always means with respect
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2 S. BAKER

to Lebesgue measure. The fact that almost every x ∈ Iβ has uncountably

many β-expansions is due to Sidorov [22].

We say that a finite sequence (εi)
n
i=1 ∈ {0, 1}n is an n-prefix for x if there

exists (εn+i)
∞
i=1 ∈ {0, 1}N such that

x =
n∑
i=1

εi
βi

+
∞∑
i=1

εn+i

βn+i
.

So an n-prefix for x is simply any sequence of length n that can be extended

to form a β-expansion for x. It is straightforward to show that a sequence

(εi)
n
i=1 ∈ {0, 1}n is an n-prefix for x if and only if

(1.2) 0 ≤ x−
n∑
i=1

εi
βi
≤ 1

βn(β − 1)
.

When (εi)
n
i=1 ∈ {0, 1}n is an n-prefix for x, we also define the number∑n

i=1 εiβ
−i to be an n-prefix for x. Whether we are referring to a sequence

or a number should be clear from the context. We refer to any number of

the form
∑n

i=1 εiβ
−i as a level n sum.

In this paper we study how well a typical x ∈ Iβ can be approximated

by its prefixes. To this end we introduce the following general setup. Let

Ψ : N→ R≥0 and

Wβ(Ψ) :=
∞⋂
m=1

∞⋃
n=m

⋃
(εi)ni=1∈{0,1}n

[ n∑
i=1

εi
βi
,

n∑
i=1

εi
βi

+ Ψ(n)
]
.

Alternatively, Wβ(Ψ) is the set of x ∈ R such that for infinitely many n ∈ N
there exists a level n sum satisfying the inequalities

(1.3) 0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n).

Our goal is to understand how well a typical x ∈ Iβ is approximated by

its prefixes. In (1.3) the approximation to x is given by a level n sum, not

necessarily an n-prefix for x. However, as the following argument shows, if

(1.3) is satisfied by a level n sum then it must also be satisfied by an n-prefix

for x. For if (εi)
n
i=1 satisfies (1.3) and (εi)

n
i=1 is not an n-prefix for x, then

Ψ(n) > (βn(β− 1))−1 by (1.2). Every element of Iβ has an n-prefix for each

n ∈ N. Let us denote the n-prefix for x by (ε′i)
n
i=1. Applying (1.2) we see

that

0 ≤ x−
n∑
i=1

ε′i
βi
≤ 1

βn(β − 1)
< Ψ(n).

Therefore, if x ∈ Wβ(Ψ) then there exists infinitely many n-prefixes for x

satisfying (1.3).
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When
∑∞

n=1 2nΨ(n) <∞ the Borel-Cantelli lemma tells us that λ(Wβ(Ψ)) =

0. Here and throughout λ(·) denotes the Lebesgue measure. Motivated by

observations and results from metric number theory, we expect that if∑∞
n=1 2nΨ(n) = ∞ and the level n sums are distributed sufficiently uni-

formly throughout Iβ then Wβ(Ψ) is a set of full measure within Iβ.

With the above in mind we introduce the following definition. We say

that β is approximation regular if for each Ψ : N→ R≥0 satisfying
∑∞

n=1 2nΨ(n) =

∞, we have Wβ(Ψ) is a set of full measure within Iβ. We make the following

conjecture.

Conjecture 1.1. Almost every β ∈ (1, 2) is approximation regular.

We cannot hope to extend this almost every statement to an every state-

ment. For example, if we take β to be a Pisot number, i.e., a real algebraic

integer strictly greater than 1 whose conjugates all have modulus strictly

less than 1. Then the cardinality of the set of level n sums is of the order

βn. This follows from Garsia’s results [10]. Taking Ψ(n) = 2−n it is clear

that
∑∞

n=1 2nΨ(n) =∞. However a simple covering argument appealing to

the Borel-Cantelli lemma implies λ(Wβ(Ψ)) = 0.

In this paper we fail to prove Conjecture 1.1. Instead we show that

whenever β is a special type of algebraic integer known as a Garsia number

then β is approximation regular. For our purposes a Garsia number is a

positive real algebraic integer with norm ±2, whose conjugates are all of

modulus strictly greater than 1. Recall that the norm of an algebraic integer

β is defined to be the product of β with all of its conjugates. The reader

should be aware that in the literature Garsia numbers are not always defined

to be positive, and in some cases are taken to be complex. Garsia numbers

were first studied as a separate significant class of algebraic integers in a

paper by Garsia [10]. For more on Garsia numbers we refer the reader to

the paper of Hare and Panju [12] and the references therein.

Our main result is the following.

Theorem 1.2. Let β ∈ (1, 2) be a Garsia number. Then β is approximation

regular.

Remark 1.3. It is worth commenting on the fact that throughout this pa-

per we have imposed no restrictions on the monotonicity of Ψ. In classical

Diophantine approximation, when Ψ : N→ R≥0 is decreasing the set

W (Ψ) :=
{
x ∈ R : there exists infinitely many (p, q) ∈ Z×N such that

∣∣∣x−p
q

∣∣∣ ≤ Ψ(q)
}
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is either null or full with respect to Lebesgue measure depending on whether∑∞
q=1 qΨ(q) converges or diverges. In [6] Duffin and Schaeffer showed that it

is not possible to relax the monotonicity assumption on Ψ. They constructed

a function Ψ : N→ R≥0 such that
∑∞

q=1 qΨ(q) =∞ yet λ(W (Ψ)) = 0.

Suppose β is approximation regular and Ψ : N→ R≥0 satisfies
∑∞

n=1 2nΨ(n) =

∞. For a Lebesgue generic x ∈ Iβ it is natural to ask whether x has a β-

expansion (εi)
∞
i=1 ∈ {0, 1}N such that the inequalities

0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n)

are satisfied for infinitely many n ∈ N. This turns out to be the case when-

ever Ψ satisfies a mild technical condition. We say that Ψ : N → R≥0 is

decaying regularly if for each m ∈ N there exists Cm ∈ N such that

(1.4)
Ψ(n+m)

Ψ(n)
≥ 1

Cm

holds for every n ∈ N. We emphasise that the constant Cm is allowed to

depend onm. As an example, when Ψ(n) = 2−n then Ψ is decaying regularly.

For each m ∈ N we can take Cm = 2m.

Theorem 1.4. Let β be approximation regular and suppose Ψ : N→ R≥0 is

decaying regularly and satisfies
∑∞

n=1 2nΨ(n) = ∞. Then for almost every

x ∈ Iβ there exists a β-expansion for x satisfying the inequalities

0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n)

for infinitely many n ∈ N.

As an application of Theorem 1.2 and Theorem 1.4 we have the following

result.

Corollary 1.5. Let β ∈ (1, 2) be a Garsia number. Then for almost every

x ∈ Iβ there exists a β-expansion of x which satisfies the inequalities

0 ≤ x−
n∑
i=1

εi
βi
≤ 1

n2n log n

for infinitely many n ∈ N.

In Section 3 we prove Theorem 1.2 and in Section 4 we prove Theorem

1.4. In Section 5 we discuss the connection between the set Iβ \Wβ(Ψ) and

the set of points with a unique β-expansion. We end our introduction by

giving a summary of related work undertaken by other authors.
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In two recent papers by Persson and Reeve [18, 19], the authors consid-

ered a setup similar to that of our own. Let

Kβ(Ψ) :=
∞⋂
m=1

∞⋃
n=m

⋃
(εi)ni=1∈{0,1}n

[ n∑
i=1

εi
βi
−Ψ(n),

n∑
i=1

εi
βi

+ Ψ(n)
]
.

Notice that Wβ(Ψ) ⊆ Kβ(Ψ). In the definition of Kβ(Ψ) the level n sums

form the centres of the significant intervals. Whereas in the definition of

Wβ(Ψ) the level n sums are the left endpoints of the significant intervals.

The reason we have insisted on the level n sums being the left endpoints

is because we are interested in the approximation provided by an n-prefix,

rather than a general level n sum. It is an obvious consequence of (1.2) that

if x <
∑n

i=1 εiβ
−i then (εi)

n
i=1 ∈ {0, 1}n cannot be an n-prefix for x.

Persson and Reeve studied the set Kβ(Ψ) when Ψ(n) = 2−αn for some

α ∈ (1,∞). In this case
∑∞

n=1 2nΨ(n) always converges. Motivated by Fal-

coner [9] they studied the intersection properties of Kβ(Ψ). In [9] Falconer

defined Gs to be the set of A ⊆ R, which have the property that for any

countable collection of similarities {fj}∞j=1, we have

dimH

( ∞⋂
j=1

fj(A)
)
≥ s.

Persson and Reeve generalised the definition of Gs to arbitrary intervals I

by defining Gs(I) := {A ⊆ I : A + diam(I)Z ∈ Gs}. The main results of

[18, 19] can be summarised in the following theorem.

Theorem 1.6. Let α ∈ (1,∞) and Ψ(n) = 2−αn.

• For all β ∈ (1, 2), dimH(Kβ(Ψ)) ≤ 1
α

.

• For almost every β ∈ (1, 2), Kβ(Ψ) ∈ Gs(Iβ) for s = 1
α
.

• For a dense set of β ∈ (1, 2), dimH(Kβ(Ψ)) < 1
α
.

• For all β ∈ (1, 2), Kβ(Ψ) ∈ Gs(Iβ) for s = log β
α log 2

.

• For a countable set of β ∈ (1, 2), dimH(Kβ(Ψ)) = log β
α log 2

.

The approximation properties of β-expansions were also studied in a

paper by Dajani, Komornik, Loreti, and de Vries [4]. Given x ∈ Iβ and

(εi)
∞
i=1 a β-expansion for x. We say that (εi)

∞
i=1 is an optimal expansion if

for every other β-expansion for x the following holds for all n ∈ N,

x−
n∑
i=1

εi
βi
≤ x−

n∑
i=1

ε′i
βi
.

In other words, a β-expansion for x is an optimal expansion if for each

n ∈ N the n-prefix (εi)
n
i=1 always provides the closest approximation to x.

Before we state the main result of [4] we recall the definition of a multinacci
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number. A multinacci number is the unique root of an equation of the form

xn = xn−1 + · · · + x + 1 lying in (1, 2), where n ≥ 2. The golden ratio is a

multinacci number, this is the case when n = 2. It can be shown that every

multinacci number is a Pisot number. The main result of [4] is the following.

Theorem 1.7. • Let β be a multinacci number, then every x ∈ Iβ has

an optimal expansion.

• If β ∈ (1, 2) is not a multinacci number, then the set of x ∈ Iβ

with an optimal expansion is nowhere dense and has zero Lebesgue

measure.

2. Preliminaries

In this section we state the necessary background information from the

theory of Bernoulli convolutions. Let β ∈ (1, 2), the Bernoulli convolution

associated to β is defined to be the measure µβ where

µβ(E) = P
({

(εi)
∞
i=1 ∈ {0, 1}N :

∞∑
i=1

εi
βi
∈ E

})
,

for any Borel set E ⊆ R. Here P is the (1/2, 1/2) probability measure

on {0, 1}N. It is a long standing problem to determine precisely those β

for which µβ is absolutely continuous with respect to Lebesgue measure.

When µβ is absolutely continuous we denote the density function by hβ. We

emphasise that the density function is only defined almost everywhere.

Jessen and Wintner showed that µβ is either absolutely continuous with

respect to the Lebesgue measure or purely singular [13]. This was later

improved upon by Simon and Mauldin [16], who showed that µβ is either

equivalent to the Lebesgue measure or purely singular [16]. Erdős in [7]

showed that whenever β is a Pisot number then µβ is purely singular. No

other examples of β ∈ (1, 2) for which µβ is singular are known. In a stand-

out paper, Solomyak proved that for almost every β ∈ (1, 2) the Bernoulli

convolution is absolutely continuous [23]. This was later improved upon in

a paper of Shmerkin [21], where it was shown that the set of β ∈ (1, 2)

for which µβ is singular has Hausdorff dimension zero. Loosely speaking,

it is believed that whenever the level n sums are distributed sufficiently

uniformly throughout Iβ, then the associated Bernoulli convolution will be

absolutely continuous. Similarly, when the level n sums are distributed suf-

ficiently uniformly throughout Iβ we expect β to be approximation regular.

As such, the results of Shmerkin and Solomyak lend some weight to the

validity of Conjecture 1.1.
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The following theorem due to Garsia [10] will be essential in our later

work.

Theorem 2.1. If β ∈ (1, 2) is a Garsia number then µβ is absolutely con-

tinuous. Moreover, the density of µβ is bounded above by

2∏k
i=1(γi − 1)

.

Here γ1, . . . , γk are the conjugates of β.

Garsia numbers are the largest explicit class of real numbers for which

it is known that µβ is always absolutely continuous.

Our proof of Theorem 1.2 also requires the following results taken from

Kempton [14]. These results emphasise the connection between β-expansions

and Bernoulli convolutions. Given β ∈ (1, 2) and x ∈ Iβ, we denote the set

of n-prefixes for x by Σβ,n(x). In [14] the author studied the growth rate of

|Σβ,n(x)|. In particular they studied the following limits

f(x) := lim inf
n→∞

(β − 1)βn

2n
|Σβ,n(x)|,

and

f(x) := lim sup
n→∞

(β − 1)βn

2n
|Σβ,n(x)|.

The main results of this paper are the following two theorems.

Theorem 2.2. The Bernoulli convolution µβ is absolutely continuous if and

only if

0 <

∫
Iβ

f(x)dx <∞.

In this case the density hβ of µβ satisfies

hβ(x) =
f(x)∫

Iβ
f(y)dy

.

Theorem 2.3. Suppose that

0 <

∫
Iβ

f(x)dx <∞.

Then µβ is absolutely continuous with density function

hβ(x) =
f(x)∫

Iβ
f(y)dy

.

Conversely, if µβ is absolutely continuous with bounded density function hβ

then f satisfies

0 <

∫
Iβ

f(x)dx <∞.
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When β ∈ (1, 2) is a Garsia number, Theorem 2.1 tells us that µβ is ab-

solutely continuous with bounded density function hβ. Combining Theorem

2.2 and Theorem 2.3 the following Proposition is immediate.

Proposition 2.4. Let β ∈ (1, 2) be a Garsia number and x ∈ Iβ be such

that hβ(x) is defined. Then there exists K1 > 1 and N(x) ∈ N sufficiently

large such that for all n ≥ N(x)

hβ(x)

K1

≤ βn

2n
|Σβ,n(x)| ≤ K1hβ(x).

Here K1 only depends on β.

Proposition 2.4 will be a vital tool when it comes to proving Theorem

1.2.

3. Proof of Theorem 1.2

Our proof of Theorem 1.2 is inspired by the work of Beresnevich [1, 2].

However, it is not a simple case of swapping notation where appropriate, a

much more delicate argument is required.

We start by proving several technical lemmas. The following lemma is

due to Garsia [10].

Lemma 3.1. Let β ∈ (1, 2) be a Garsia number and (εi)
n
i=1, (ε

′
i)
n
i=1 ∈

{0, 1}n. If (εi)
n
i=1 6= (ε′i)

n
i=1 then∣∣∣ n∑

i=1

εi
βi
−

n∑
i=1

ε′i
βi

∣∣∣ > K2

2n
.

For some strictly positive constant K2 that only depends on β.

The proof of Lemma 3.1 is well known. However to keep our work as self

contained as possible we provide a short proof.

Proof. Let (εi)
n
i=1, (ε

′
i)
n
i=1 ∈ {0, 1}n and assume (εi)

n
i=1 6= (ε′i)

n
i=1. We intro-

duce the following polynomials

P (z) = ε1z
n−1 + · · ·+ εn−1z + εn

and

P ′(z) = ε′1z
n−1 + · · ·+ ε′n−1z + ε′n.

Since β is an algebraic integer with norm ±2 it satisfies no polynomials

with coefficients in {−1, 0, 1}. Therefore P (β) − P ′(β) 6= 0. Moreover, if

γ1, . . . , γk denotes the conjugates of β then

(3.1) (P (β)− P ′(β))
k∏
i=1

(P (γi)− P ′(γi)) ∈ Z \ {0}.
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Taking the absolute value of (3.1) and applying a trivial lower bound, we

see that (3.1) implies the following inequalities

1 ≤
∣∣∣(P (β)− P ′(β))

k∏
i=1

(P (γi)− P ′(γi))
∣∣∣

≤
∣∣∣P (β)− P ′(β)

∣∣∣ k∏
i=1

(1 + |γi|+ · · ·+ |γn−1
i |)

<
∣∣∣P (β)− P ′(β)

∣∣∣ k∏
i=1

|γni |
|γi| − 1

≤
∣∣∣P (β)− P ′(β)

∣∣∣ 2n
βn

k∏
i=1

1

|γi| − 1

= 2n
∣∣∣ n∑
i=1

εi
βi
−

n∑
i=1

ε′i
βi

∣∣∣ k∏
i=1

1

|γi| − 1
.

Which implies the required lower bound. In the above we have used the fact

βn
∏k

i=1 |γi|n = 2n. This follows from the fact that the norm of β is ±2. �

Recall the Lebesgue differentiation theorem. This theorem states that if

f ∈ L1(R) then for almost every x ∈ R the following holds

(3.2) lim
r→0

1

2r

∫
Br(x)

f(y)dλ(y) = f(x).

Here Br(x) denotes the closed interval centred at x with radius r. Given

f ∈ L1(R), we call any x ∈ R satisfying (3.2) a Lebesgue differentiation point

for f. The Lebesgue differentiation theorem tells us that given f ∈ L1(R),

almost every x ∈ R is a Lebesgue differentiation point for f. With this

theorem in mind we establish the following lemma.

Lemma 3.2. Let β ∈ (1, 2) be a Garsia number, and let x ∈ Iβ be a

Lebesgue differentiation point for hβ satisfying hβ(x) > 0. Let r∗(x) be such

that

hβ(x)

2
≤ 1

2r

∫
Br(x)

hβ(y)dλ(y)

for all r ∈ (0, r∗(x)). Then there exists L ∈ N and κ ∈ (1, 2) such that for

all r ∈ (0, r∗(x)) the following inequality holds

λ
({
y ∈ Br(x) : hβ(y) ≤ 1

L

})
≤ κr.

Moreover, L and κ only depend upon β and x.
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Proof. Fix β and x that satisfy the hypothesis of the lemma. We begin by

relabelling the upper bound for the density provided by Theorem 2.1. Let

C :=
2∏k

i=1(γi − 1)

where γ1, . . . , γk are the conjugates of β. To each L ∈ N we associate

AL :=
{
y ∈ Br(x) : hβ(y) ≤ 1

L

}
.

For r ∈ (0, r∗(x)) the following inequalities hold from the trivial estimates

hβ(x)

2
≤ 1

2r

(∫
AL

hβ(y)dλ(y) +

∫
Br(x)\AL

hβ(y)dλ(y)
)

≤ 1

2r

( 1

L
λ(AL) + (2r − λ(AL))C

)
.(3.3)

Manipulating (3.3) yields

(3.4) λ(AL)
(
C − 1

L

)
≤ r(2C − hβ(x)).

We may assume that L ∈ N is sufficiently large that C −L−1 > 0. In which

case

(3.5) λ(AL) ≤ r
(2C − hβ(x)

C − 1/L

)
.

As L→∞ it is obvious that

2C − hβ(x)

C − 1/L
→ 2C − hβ(x)

C
.

Since (2C − hβ(x))C−1 ∈ (1, 2), we deduce that there exists L ∈ N and

κ ∈ (1, 2) such that for all r ∈ (0, r∗(x)) we have λ(AL) ≤ κr. Moreover,

both L and κ only depend upon x and β. �

We also make use of the following lemma due to Chung and Erdős [3].

Lemma 3.3. Let (En)∞n=1 be a sequence of measurable sets contained in a

bounded interval. If the sum
∑∞

n=1 λ(En) =∞, then we have

λ(lim sup
n→∞

En) ≥ lim sup
k→∞

(
∑k

n=1 λ(En))2∑k
n=1

∑k
m=1 λ(En ∩ Em)

.

We are now in a position to give our proof of Theorem 1.2.

Proof of Theorem 1.2. The proof of Theorem 1.2 depends on an application

of the Lebesgue density theorem. The Lebesgue density theorem states that

if E ⊆ R is a measurable set, then for almost every x ∈ E the following

holds

lim
r→0

λ(E ∩Br(x))

2r
= 1.
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As a consequence of the Lebesgue density theorem, to show that Wβ(Ψ) is a

set of full measure within Iβ, it suffices to show that for almost every x ∈ Iβ
there exists δ > 0 such that

(3.6) λ(Wβ(Ψ) ∩Br(x)) ≥ δr.

For all r sufficiently small. Here δ is allowed to depend on x but is not

allowed to depend on r. This will be the strategy we employ to show Wβ(Ψ)

is of full measure. It is worth noting that the Lebesgue density theorem is

simply the Lebesgue differentiation theorem when f is the indicator function

on E.

For the rest of the proof we fix x ∈ Iβ. We only need to show that (3.6)

holds for almost every x ∈ Iβ. We may therefore assume without loss of

generality that: hβ(x) exists, hβ(x) > 0, and x is a Lebesgue differentia-

tion point for hβ. In which case, both Proposition 2.4 and Lemma 3.2 can

be applied. The fact that we can take hβ(x) > 0 is a consequence of the

aforementioned work of Simon and Mauldin [16], who showed that if µβ is

absolutely continuous with respect to the Lebesgue measure then it is in

fact equivalent to the Lebesgue measure.

For ease of exposition we break what remains of our proof into three

parts.

(1) Replacing Ψ with Ψ̃.

Let K2 be as in Lemma 3.1. So for (εi)
n
i=1 6= (ε′i)

n
i=1 then

(3.7)
∣∣∣ n∑
i=1

εi
βi
−

n∑
i=1

ε′i
βi

∣∣∣ > K2

2n
.

Let Ψ̃(n) = min{Ψ(n), K22−n} then
∑∞

n=1 2nΨ̃(n) =∞. To see why
∑∞

n=1 2nΨ̃(n) =

∞ we remark that if
∑∞

n=1 2nΨ̃(n) < ∞ then there must exist infinitely

many n ∈ N for which Ψ̃(n) = K22−n. This is a consequence of
∑∞

n=1 2nΨ(n)

diverging. However, this implies that for infinitely many n ∈ N the term

2nΨ̃(n) equals K2, and as K2 > 0 the sum must diverge.

Clearly Wβ(Ψ̃) ⊆ Wβ(Ψ). Therefore, to show that (3.6) holds and Wβ(Ψ)

is a set of full measure within Iβ, it is sufficient to show that the following

analogue of (3.6) holds for some δ > 0 and for all r sufficiently small

(3.8) λ(Wβ(Ψ̃) ∩Br(x)) ≥ δr.
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The important feature of our new function Ψ̃ is that (3.7) implies that

for (εi)
n
i=1 6= (ε′i)

n
i=1 we have

(3.9)
[ n∑
i=1

εi
βi
,

n∑
i=1

εi
βi

+ Ψ̃(n)
]⋂[ n∑

i=1

ε′i
βi
,

n∑
i=1

ε′i
βi

+ Ψ̃(n)
]

= ∅.

This observation will prove useful later on in our proof.

(2) Construction of the En.

Let r ∈ (0, r∗(x)) and L ∈ N be as in Lemma 3.2. Let

BL :=
{
y ∈ Br(x) : hβ(y) ≥ 1

L

}
.

Lemma 3.2 tells us that λ(BL) ≥ ωr where ω := 2− κ > 0. Importantly ω

only depends upon β and x.

Proposition 2.4 tells us that for almost every y ∈ Iβ there existsN(y) ∈ N
sufficiently large that

(3.10)
hβ(y)

K1

≤ βn

2n
|Σβ,n(y)| ≤ hβ(y)K1.

for all n ≥ N(y). Using the upper bound for the density provided by The-

orem 2.1, we see that for almost every y ∈ BL there exists N(y) ∈ N such

that

(3.11)
1

LK1

≤ βn

2n
|Σβ,n(y)| ≤ 2K1∏k

i=1(γi − 1)
.

for all n ≥ N(y). Now let us take N∗ ∈ N to be sufficiently large that

(3.12)

λ
({
y ∈ BL :

1

LK1

≤ βn

2n
|Σβ,n(y)| ≤ 2K1∏k

i=1(γi − 1)
for all n ≥ N∗

})
≥ ωr

2
.

Throughout our proof N∗ is allowed to depend on r. Let

C :=
{
y ∈ BL :

1

LK1

≤ βn

2n
|Σβ,n(y)| ≤ 2K1∏k

i=1(γi − 1)
for all n ≥ N∗

}
.

Upon relabelling, any y ∈ C satisfies

(3.13)
1

K3

≤ βn

2n
|Σβ,n(y)| ≤ K3

for all n ≥ N∗. Where K3 is some positive constant depending only upon β

and x. Importantly K3 does not depend on r.

We now focus our attention on the interval Br(x). Fix n ≥ N∗ where

N∗ is as above. We now fill Br(x) with closed intervals satisfying certain

desirable properties. We may pick a set of closed intervals satisfying the

following:
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• Each interval is of width (βn(β − 1))−1.

• Each of these intervals are strictly contained in Br(x).

• If they intersect it is only at a shared endpoint.

• They cover all of Br(x) except for a set of measure at most ωr/4.

To assert that a set of intervals satisfying this covering property exist, it

is necessary to assume that N∗ is sufficiently large. This is permissible as

N∗ is allowed to depend on r. Let {Inj } denote a set of intervals satisfying

the above properties. It is a consequence of (3.12) and the above properties

that

(3.14) λ
(⋃

j

Inj ∩ C
)
≥ ωr

4
.

Without loss of generality, we may assume that the enumeration of the set

{Inj } is such that In1 is the leftmost interval, then In2 sits immediately to

the right of In1 , then In3 sits immediately to the right of In2 , and so on.

This implies that for any two distinct intervals in {Inj } whose subscript

have the same parity, there is at least one interval of size (βn(β − 1))−1

sitting between them. We partition {Inj } into two subsets, those with an

odd subscript {Inj,odd} and those with an even subscript {Inj,even}. It is a

consequence of (3.14) that

λ
(⋃

j

Inj,odd ∩ C
)
≥ ωr

8
or λ

(⋃
j

Inj,even ∩ C
)
≥ ωr

8
.

Without loss of generality we assume that λ(
⋃
Inj,odd ∩ C) ≥ ωr

8
. Let

J := {Inj,odd : int(Inj,odd) ∩ C 6= ∅}.

Each Inj,odd is of width (βn(β − 1))−1, therefore

|J | ≥
[βn(β − 1)ωr

8

]
.

We pick a subset of J with cardinality precisely [β
n(β−1)ωr

8
]. Abusing notation

we also denote this set by J .

For each Inj,odd ∈ J we choose a point αnj ∈ int(Inj,odd) ∩ C. Since |J | =

[β
n(β−1)ωr

8
] we have

(3.15) |{αnj }| =
[βn(β − 1)ωr

8

]
.

For each αnj , let {νns,j} denote the set of n-prefixes Σβ,n(αnj ). We are now in

a position to define the set En. Let

(3.16) En :=
⋃
αnj

⋃
νns,j∈Σβ,n(αnj )

[νns,j, ν
n
s,j + Ψ̃(n)].



14 S. BAKER

For distinct αnj , α
n
j′ we have |αnj − αnj′ | > (βn(β − 1))−1. This is because

αnj and αnj′ are in the interior of distinct Inj and Inj′ , where j and j′ have

the same parity. Recall that it is as a consequence of our construction that

for any two intervals of the same parity there exists an interval of width

(βn(β − 1))−1 sitting between them. By (1.2) each element of Σβ,n(αnj ) is

contained in [αnj − 1
βn(β−1)

, αj], and similarly each element of Σβ,n(αnj′) is

contained in [αnj′ − 1
βn(β−1)

, αnj′ ]. Therefore Σβ,n(αnj ) ∩Σβ,n(αnj′) = ∅, and by

(3.9) we may conclude that any two distinct intervals [νns,j, ν
n
s,j + Ψ̃(n)] and

[νns′,j′ , ν
n
s′,j′ + Ψ̃(n)] appearing in (3.16) are disjoint. Making use of this fact,

along with (3.13) and (3.15) we observe the following inequalities

(3.17)
[βn(β − 1)ωr

8

] 2n

βnK3

Ψ̃(n) ≤ λ(En) ≤
[βn(β − 1)ωr

8

]2nK3

βn
Ψ̃(n).

It is clear that (3.17) implies

(3.18)
2nr

K4

Ψ̃(n) ≤ λ(En) ≤ 2nrK4Ψ̃(n),

for some positive constant K4 that only depends upon β and x.

Clearly lim supn→∞En ⊂ Wβ(Ψ̃) ∩ Br(x). Therefore to show that there

exists δ > 0 for which (3.8) holds, it suffices to show that there exists δ > 0

such that

(3.19) λ(lim sup
n→∞

En) ≥ δr.

Equation (3.18) and our divergence assumption implies
∑∞

n=N∗ λ(En) =∞.

Therefore we can apply Lemma 3.3. In the next part of our proof we obtain

a lower bound for λ(lim supn→∞En) using Lemma 3.3. As we will see this

lower bound yields a δ so that we satisfy (3.19).

(3) Applying Lemma 3.3 to En.

To begin with, let M0 ∈ N be sufficiently large that

(3.20)

M0∑
n=N∗

2nΨ̃(n) > 1.

Let m,n ≥ N∗. For any νms,j, the number of νns′,j′ whose corresponding in-

terval [νns′,j′ , ν
n
s′,j′ + Ψ̃(n)] may intersect [νms,j, ν

m
s,j + Ψ̃(m)] is at most

2 +
Ψ̃(m)

K22−n
= 2 +

2nΨ̃(m)

K2

,

by Lemma 3.1. Therefore

(3.21) λ
(
En ∩ [νms,j, ν

m
s,j + Ψ̃(m)]

)
≤ Ψ̃(n)

(
2 +

2nΨ̃(m)

K2

)
.
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Applying (3.13) and (3.15) it is clear that∣∣∣⋃
αmj

Σβ,m(αmj )
∣∣∣ ≤ [βm(β − 1)ωr

8

] 2m

βm
K3.

Therefore

(3.22)
∣∣∣⋃
αmj

Σβ,m(αmj )
∣∣∣ ≤ 2mrK5.

Where K5 is some positive constant depending only on β and x. Combining

(3.21) with (3.22) we obtain the following bound

(3.23)

λ(En∩Em) ≤ 2mrK5

(
Ψ̃(n)

(
2+

2nΨ̃(m)

K2

))
≤ 2rK5

(
2mΨ̃(n)+

2n+mΨ̃(n)Ψ̃(m)

K2

)
.

We now give an upper bound for the double summation appearing in the

denominator in Lemma 3.3. First of all we split up the terms in this sum-

mation

(3.24)

M0∑
n=N∗

M0∑
m=N∗

λ(En ∩ Em) =

M0∑
n=N∗

λ(En) + 2

M0∑
n=N∗+1

n−1∑
m=N∗

λ(En ∩ Em).

By (3.18) and (3.20) we obtain

(3.25)

M0∑
n=N∗

λ(En) ≤ rK4

M0∑
n=N∗

2nΨ̃(n) ≤ rK4

( M0∑
n=N∗

2nΨ̃(n)
)2

As a consequence of (3.23) we obtain

(3.26)
M0∑

n=N∗+1

n−1∑
m=N∗

λ(En ∩Em) ≤ 2rK5

M0∑
n=N∗+1

n−1∑
m=N∗

(
2mΨ̃(n) +

2n+mΨ̃(n)Ψ̃(m)

K2

)
.

We now split the summation in (3.26) into two summations. For the first

summation we have the following bound

(3.27)

M0∑
n=N∗+1

n−1∑
m=N∗

2mΨ̃(n) ≤
M0∑

n=N∗+1

2nΨ̃(n) ≤
( M0∑
n=N∗

2nΨ̃(n)
)2

.

For the second summation in (3.26) we observe

(3.28)

M0∑
n=N∗+1

n−1∑
m=N∗

2n+mΨ̃(n)Ψ̃(m) ≤
( M0∑
n=N∗

2nΨ̃(n)
)2

.

Combining (3.18), (3.24), (3.25), (3.26), (3.27) and (3.28) we obtain

(3.29)(∑M0

n=N∗ λ(En)
)2

∑M0

n=N∗
∑M0

m=N∗ λ(En ∩ Em)
≥

r2K−2
4

(∑M0

n=N∗ 2nΨ̃(n)
)2

r(K4 + 4K5 + 4K−1
2 K5)

(∑M0

n=N∗ 2nΨ̃(n)
)2 .
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Letting

δ :=
K−2

4

K4 + 4K5 + 4K−1
2 K5

it is clear that δ only depends on β and x. Combining Lemma 3.3 and (3.29)

we obtain

λ(lim sup
n→∞

En) ≥ δr.

Therefore (3.19) holds and we may conclude that Wβ(Ψ) is a set of full

measure within Iβ. �

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4. Our proof is straightforward and

relies on basic properties of the Lebesgue measure. For ease of exposition we

briefly recall the definition of decaying regularly. We say that Ψ is decaying

regularly if for each m ∈ N there exists Cm ∈ N such that

(4.1)
Ψ(n+m)

Ψ(n)
≥ 1

Cm

for every n ∈ N.
Suppose Ψ : N → R≥0 satisfies

∑∞
n=1 2nΨ(n) = ∞. Given k ∈ N let

Ψk : N → R≥0 be defined via the equation Ψk(n) := Ψ(n)k−1. For each

k ∈ N the summation
∑∞

n=1 2nΨk(n) also diverges. If β is approximation

regular then Wβ(Ψk) is a set of full measure within Iβ for each k ∈ N.

Therefore

Ωβ(Ψ) :=
∞⋂
k=1

Wβ(Ψk)

is also of full measure. Let

Γβ(Ψ) := Iβ \ Ωβ(Ψ),

so if β is approximation regular then λ(Γβ(Ψ)) = 0. We introduce the

functions T0(x) = βx and T1(x) = βx−1.We will denote a typical element of

{T0, T1}n by a = (a1, . . . , an). Moreover, we let a(x) denote (an ◦· · ·◦a1)(x).

By {T0, T1}0 we denote the set consisting of the identity function. Let

∆β(Ψ) :=
∞⋃
n=0

⋃
a∈{T0,T1}n

a−1(Γβ(Ψ)).

Since T−1
0 and T−1

1 are both similitudes it follows that λ(∆β(Ψ)) = 0 when-

ever β is approximation regular. We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Assume β is approximation regular, Ψ : N → R≥0

is decaying regularly and
∑∞

n=1 2nΨ(n) = ∞. Let x ∈ Iβ \ ∆β(Ψ). By the
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above Iβ \∆β(Ψ) is a set of full Lebesgue measure within Iβ. We now show

that x has a β-expansion (εi)
∞
i=1 which satisfies

0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n)

for infinitely many n ∈ N. Since x ∈ Iβ \∆β(Ψ) it is clear that x ∈ Wβ(Ψ).

Therefore there exists infinitely many solutions to the inequalities

0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n).

Let (ε1i )
n1
i=1 be the first sequence whose level n1 sum satisfies these inequali-

ties. Without loss of generality we may assume (ε1i )
n1
i=1 is an n1-prefix for x.

In which case, multiplying through by βn1 in (1.2) gives us

(Tε1n1 ◦ · · · ◦ Tε11)(x) = βn1x− ε11βn1−1 − · · · − ε1n1−1β − ε1n1
∈ Iβ.

Let C1 ∈ N be sufficiently large that

(4.2)
ΨC1(n)

βn1
≤ Ψ(n+ n1),

for all n ∈ N. Such a C1 exists since Ψ is decaying regularly. Since x ∈
Iβ \∆β(Ψ) we have (Tε1n1 ◦ · · · ◦ Tε11)(x) ∈ Wβ(ΨC1). Therefore there exists

(ε21, . . . , ε
2
n2

) such that

(4.3) (Tε1n1 ◦ · · · ◦ Tε11)(x)−
n2∑
i=1

ε2i
βi
≤ ΨC1(n2).

Dividing through by βn1 in (4.3) and applying (4.2) yields

x−
n1∑
i=1

ε1i
βi
− 1

βn1

n2∑
i=1

ε2i
βi
≤ ΨC1(n2)

βn1
≤ Ψ(n1 + n2).

Without loss of generality we may assume that (ε11, . . . , ε
1
n1
, ε21, . . . , ε

2
n2

) is an

n1 + n2 prefix for x.

Since x ∈ Iβ \∆β(Ψ) we have (Tε2n2 ◦· · ·◦Tε21 ◦Tεn11 ◦· · ·◦Tε
1
1
)(x) ∈ Wβ(Ψk)

for each k ∈ N. We choose C2 ∈ N sufficiently large that

ΨC2(n)

βn1+n2
≤ Ψ(n+ n1 + n2),

for all n ∈ N. We then repeat the above argument with C1 replaced by C2,

and (Tε1n1 ◦ · · · ◦ Tε11) replaced by (Tε2n2 ◦ · · · ◦ Tε21 ◦ Tε1n1 ◦ · · · ◦ Tε11) to obtain

a sequence (ε31, . . . , ε
3
n3

) such that

x−
n1∑
i=1

εi
βi
− 1

βn1

n2∑
i=1

ε2i
βi
− 1

βn1+n2

n3∑
i=1

ε3i
βi
≤ Ψ(n1 + n2 + n3).
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Again we may assume that (ε11, . . . , ε
1
n1
, ε21, . . . , ε

2
n2
, ε31, . . . , ε

3
n3

) is an n1 +n2 +

n3 prefix for x.

Repeatedly applying the above procedure we obtain an infinite sequence

(εi)
∞
i=1 which forms a β-expansion for x and satisfies

0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n)

for infinitely many n ∈ N. �

5. Final comments

In this final section we make a few comments on the connection between

the set of points with a unique β-expansion and Iβ \Wβ(Ψ). Let

Uβ :=
{
x ∈

(
0,

1

β − 1

)
: x has a unique β-expansion

}
.

Uβ is a well studied object. It is a consequence of the work of Daróczy and

Kátai [5], and Erdős, Joó and Komornik [8], that Uβ is nonempty if and

only if β ∈ (1+
√

5
2
, 2). Let βc ≈ 1.78723 be the Komornik-Loreti constant

introduced in [15]. Glendinning and Sidorov showed in [11] that: Uβ is count-

able if β ∈ (1+
√

5
2
, βc), Uβc is uncountable with zero Hausdorff dimension,

and Uβ has strictly positive Hausdorff dimension if β ∈ (βc, 2). Moreover,

dimH(Uβ)→ 1 as β → 2.

The significance of the set Uβ is that if x ∈ Uβ then

(5.1)
κ

βn(β − 1)
≤ x−

n∑
i=1

εi
βi
≤ 1

βn(β − 1)

for all n ∈ N. Where (εi)
∞
i=1 is the unique β-expansion for x, and κ is

some strictly positive constant that only depends on x. The existence of the

constant κ can be seen as a consequence of the symbolic interpretation of

Uβ provided by Lemma 4 from [11]. Equation (5.1) then implies that for

any Ψ(n) = O(γ−n) where γ > β there are finitely many solutions to the

set of inequalities

0 ≤ x−
n∑
i=1

εi
βi
≤ Ψ(n).

Therefore if Ψ decays sufficiently quickly and β ∈ (1+
√

5
2
, 2) then Iβ \Wβ(Ψ)

is always infinite. We finish with an example that emphasises the above.

Example 5.1. Take β ≈ 1.76929, the appropriate root of x3 − 2x− 2 = 0.

Then β is a Garsia number and by Theorem 1.2 is approximation regular.

In which case if we take Ψ(n) = 2−n we have Wβ(Ψ) is of full measure. Yet

by the above Iβ \Wβ(Ψ) contains an infinite set.
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