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Abstract: 

Within-field variation in sugar beet yield and quality was investigated in three commercial 

sugar beet fields in the east of England to identify the main associated variables and to 

examine the possibility of predicting yield early in the season with a view to spatially 

variable management of sugar beet crops. Irregular grid sampling with some purposively-

located nested samples was applied. It revealed the spatial variability in each sugar beet 

field efficiently. In geostatistical analyses, most variograms were isotropic with moderate 

to strong spatial dependency indicating a significant spatial variation in sugar beet yield 

and associated growth and environmental variables in all directions within each field. The 

Kriged maps showed spatial patterns of yield variability within each field and visual 

association with the maps of other variables. This was confirmed by redundancy analyses 

and Pearson correlation coefficients. The main variables associated with yield variability 

were soil type, organic matter, soil moisture, weed density and canopy temperature. Kriged 

maps of final yield variability were strongly related to that in crop canopy cover, LAI and 

intercepted solar radiation early in the growing season, and the yield maps of previous 

crops. Therefore, yield maps of previous crops together with early assessment of sugar 

beet growth may make an early prediction of within-field variability in sugar beet yield 

possible. The Broom’s Barn sugar beet model failed to account for the spatial variability in 

sugar yield, but the simulation was greatly improved when corrected for early canopy 

development cover and when the simulated yield was adjusted for weeds and plant 

population. Further research to optimize inputs to maximise sugar yield should target the 

irrigation and fertilizing of areas within fields with low canopy cover early in the season.  
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1. Chapter One: Introduction and Literature Review. 

 

1.1 Introduction: 

A major concern of agriculturists has been devoted recently to increase land productivity 

in order to meet the world food demand for increasing world population, which is expected 

to reach 9 billion by 2050 (Pati et al., 2011, Oliver et al., 2013). However, the environment 

and the costs of production are another growing concern; therefore they should be 

considered when increasing the land productivity. For this purpose, a precise investigation 

of crop environment such as soil properties and micro-climate which can differ 

significantly in spatial and temporal scales is required (Heege, 2013). Especially for some 

crops such as sugar beet, as the world demand of sugar is expected to reach 140 million 

tons per year (Draycott, 2008, Samson-Bręk, 2010). This thesis considers modelling and 

mapping the within field variability in sugar beet yield and aims to identify the main 

driving variables potentially causing within-field variation. Therefore most of the 

environmental factors that have a potential influence on sugar beet yield have been 

investigated as well as the interaction between these variables. In addition, the possibility 

of anticipating the non-uniformity in final economic yield early in the growing season or 

from yield information of the previous crop has also been examined. 

Conventionally, most commercial agricultural fields are generally managed with uniform 

application of tillage and agronomic inputs which can adversely affect the environment, 

increase the costs of production and waste natural resources (Montanari et al., 2012). 
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However, it is well-known that there is within-field variability at different spatial and 

temporal scales (Webster and Oliver, 2007), which affects crop development and is 

reflected in the non-uniformity in yield (Heege, 2013). This variability could be managed 

by applying the right amount of inputs in the right place at the right time in order to 

optimize benefits, increase sustainability and decrease adverse environmental impacts 

(Mondal et al., 2011, Najafabadi et al., 2011, Diacono et al., 2013). Factors such as soil 

fertility, pH, water deficit, weeds, pests and diseases could be managed spatially, while 

others such as soil texture, topography and climate conditions cannot (Sadler et al., 1998, 

Frogbrook et al., 2002). Some of these variables are visible and can be seen easily from 

ground based, airborne and satellite imagery, while others such as temperature and soil 

chemical composition are difficult to see and require direct measurement and soil analysis 

(Webster and Oliver, 2007). 

In England, recent studies predict that sugar yield is likely to increase in the future by about 

0.5-1.5 t/ha in sandy soils and 2 t/ha in loamy soils by 2050 and 4 t/ha by 2080, due to the 

advances in plant breeding and agronomic progress (Richter et al., 2006), but the variation 

in sugar beet yield due to weather condition is more likely to increase in un-irrigated areas 

(Freckleton et al., 1999), because in these areas the effect of water stress is additional to the 

effect of temperature and solar radiation (Jaggard et al., 2007). The variation within regions 

is expected to be higher than the variation between regions due to the variability in soil 

properties (Richter et al., 2006). Therefore identifying spatial variation in environmental 

conditions could provide important information for water and nutrient management and 

fertilizer application in sugar beet fields (Sağlam et al., 2011, Montanari et al., 2012) and 
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consequently optimize benefits, increase sustainability and decrease adverse environmental 

impact. For this purpose various studies have been conducted to address the causes of 

within-field variation in crop yield. Some of these studies have attributed this variation to 

soil texture and soil organic matter (Taylor et al., 2003, Shaner et al., 2008, Karaman et al., 

2009a), soil nutrients (Vanek et al., 2008, Rodriguez-Moreno et al., 2014), which have a 

significant effect on crop yield, to the variation in soil available water in relation soil types, 

field topography and the proportion of sand and stones (Vanek et al., 2008, Zhang et al., 

2011a, Korres et al., 2013), to management practice (Taylor et al., 2003) or to some other 

driving variables such as the diffusion of water and nutrient which are quite complex and 

are difficult to investigate (Lark, 2012). However, only a few studies have considered the 

spatial variability in sugar beet fields and most of these studies considered a single 

environmental variable such as soil organic matter (Karaman et al., 2009a), soil nutrient 

(Franzen, 2004, Karaman et al., 2009b), soil moisture content (Zhang et al., 2007, Zhang et 

al., 2011a), or diseases and nematodes (Reynolds, 2010, Hbirkou et al., 2011). In addition, 

the spatial relationship between the studied environmental variable and sugar beet growth 

or yield was not examined, thus the studied variable might not be limiting the yield. The 

within-field variation could be due to the combined influence of different soil and micro-

climate factors and it is quite difficult to isolate the effect of a single environmental factor. 

These factors can be laid into four main groups as follows: soil texture which can affect soil 

moisture and soil structure, topography in relation to micro-environment, soil nutrients and, 

weeds, diseases and pests (Godwin and Miller, 2003). Therefore, detecting the spatial 

variability in sugar beet yield in relation to the independent and combined effects of 
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different environmental variables is required and likely to be important to achieve the 

improvement in sugar beet growth and yield. 

In addition, crop stress is usually observed and treated when it becomes visible; by which 

time the damage has already occurred and the crop may not recover fully (Bouma, 1997). 

For example the appearance of Rhizoctonia crown and root rot in sugar beet fields can be 

revealed by aerial photographs, but only when it is moderately to severely infected 

(Reynolds, 2010), when chemical treatments might not reduce its effect on final yield. Also 

the effect of water stress on the crop is usually seen only when the crop starts wilting 

(Zhang et al., 2011a), and it has been found that exposing a sugar beet crop to water stress 

in early growth stages even for short periods can significantly reduce the final sugar yield 

(Yang et al., 2007). Therefore, anticipating the spatial variability in sugar beet yield early in 

the growing season could help the farmer to take precautions to avoid or mitigate the 

damage. Furthermore, simulating within-field variability in sugar beet yield using the crop 

preceding sugar beet in the rotation as a predictor also needs to be assessed, since this might 

help to reveal expected variation in sugar beet yield and anticipate the spatial and temporal 

variation over many years. Moreover, modelling the growth of sugar beet crop based on the 

spatial variability in micro- environmental conditions has not been taken into consideration 

yet as the current models are usually applied only on a regional basis. 
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1.2 Sugar beet crop: 

Sugar beet along with sugar cane are the two main global sources of sucrose, for which 

there is a large global market of high economic importance. Sugar beet is considered as a 

new crop developed from white fodder beet in the 18
th

century, and producing the sugar 

from sugar beet was one of the important agricultural achievements in the 19
th

 century 

(Draycott, 2008). It is now grown under a wide range of temperate weather conditions; it is 

grown as a summer crop in the northern parts of temperate areas and as a winter crop in 

southern parts of these areas (Draycott, 2008).  In most of Europe sugar beet is an un-

irrigated crop, it is usually sown in spring and the sugar accumulation starts early in the 

growing season. The long vegetative growth period increases the sugar percentage in the 

root due to extending the sugar accumulation period (Jaggard et al., 2009).  For sugar 

production the growing season in these areas is usually between 170-200 days. Mild 

weather during the growing season can significantly increase the root yield, and low 

temperatures near the end of the season can enhance sucrose accumulation (Samson-Bręk, 

2010).  

Sugar beet currently supplies approximately 40 million tonnes of sucrose annually which 

represents 30% of global demand of sucrose, approximately 75% of this amount being 

produced by Europe and United States, while sugar beet production is not significant in 

central Asia and Caucasus countries, due to unsuitability of weather conditions (FAO, 

2012). The top ten sugar beet producers in Europe with the average area planted by sugar 

beet, total production, the yield per hectare and the percent global share in 2010 are listed in 
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Table 1.1 (FAO, 2012). These countries produce more than 60% of sugar and the top 

country is France which produces approximately 14% of world production of sugar beet.  

Table 1.1: The areas planted with sugar beet (1000 ha), total root production (1000 tonnes) and root 

yield (tonnes/ha) in the world and the ten largest sugar beet producers in Europe 2010 (FAO, 2012). 

Country 
  Area planted 

(1000 ha) 
Roots production 

(1000 tonnes) 
Roots yield 
(tonnes /ha) 

Percent global 

share 

World 4676 228452 48.86 -  

France 383 31910 83.32 13.97 

Germany 367 23858 65.01 10.44 

Russia  924 22256 24.09 9.74 

Turkey 329 17942 54.53 7.85 

Ukraine 492 13749 27.95 6.02 

Poland 200 9823 49.12 4.30 

United Kingdom 122 7686 63.01 3.36 

Netherlands 71 5280 74.37 2.31 

Belgium 59 4465 75.68 1.95 

Italy 63 3550 56.35 1.55 

 

In 2010-2011 sugar beet occupied approximately 3% of the UK arable land, and this 

produced around 1.3 million tonnes of sugar with an average root yield of 75 t/ha (Limb, 

2014). Sugar beet yield (t/ha) in UK has significantly increased from the period between 

1981 and 2013 (Fig. 1.1a), the significant increase in yield was associated with significant 

declines in the area planted to sugar beet (Fig. 1.1b) and the number of growers (Limb, 

2014). Similar trends were also observed in France for the period between 1980 and 2010, 

but was associated with decrease in sugar beet prices (Boizard et al., 2012). This could be 

due to the changes in the EU support polices, which reduced sugar beet production in 

Europe by 20% and the area harvested also reduced to less than 1% of total world arable 

land in 2009 (FAO, 2012). The recent increase in sugar yield in the UK, which is estimated 
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to be around 0.111 t/ha/year on UK tonnes and about 0.204 t/ha/year in the official 

varieties trials, is due to the improvements in sugar beet varieties and agronomic practice, 

in addition to the ability of sugar beet plant to adapt to the recent weather conditions 

(Jaggard et al., 2007, Jaggard et al., 2009). 

 

Figure 1.1: Average sugar beet yield (from British Sugar data) from 1981 to 2013 (A), and the UK area 

harvested (B) (Limb, 2014). 
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The role of plant breeding appears to be greater than agronomic practices because 

improved varieties have significantly increased root sugar content from 12% to 20% with 

improvement in yield and other chemical content as well as increasing sugar beet 

resistance to diseases and pests. The amount of white sugar produced by sugar beet has 

therefore increased (Draycott, 2008). Conversely, changes in some other agronomic 

processes such as extending the period of crop processing by storing beets after harvest 

and reducing the irrigated areas have reduced sugar beet yield (Jaggard et al., 2009). 

Despite the significant increases in sugar beet yield per ha over last four decades, sugar 

beet growers face various challenges and the recent changes in weather conditions are 

considered to be a major challenge to sugar beet production in the UK. Some of the 

environmental factors that affect sugar beet growth are outside the grower’s control, while 

others such as plant nutrients can be added in different ways by growers and achieve 

significant benefits (Draycott and Christenson, 2003). Perhaps the most important factor in 

Europe is soil moisture, since most sugar beet is rain-fed. In addition sugar beet growers 

regularly suffer from uneven plant populations due to the lack or delay of irrigation 

(Sadeghian and Yavari, 2004). On the other hand, in the Mediterranean region the effect of 

temperature on sugar beet yield is considered to be greater than the effect of drought, due 

to the increase in the evapotranspiration rate (Abd-El-Motagally, 2004). The effect of 

some of these factors on sugar beet growth and production might occur at different spatial 

and temporal scales. Investigating the spatial variation in sugar beet yield and its relation 
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to the soil properties and micro-climate condition is important to maximise the yield, 

reduce the costs of production and adverse environmental impact. 

 

1.3 Precision agriculture (PA): 

Precision agriculture is a modern technique, growing rapidly in western countries. Its 

scientific goal is to develop a farm’s management with the potential of increasing the land 

productivity based on precise information about spatial variability in environmental 

attributes that potentially cause yield variation (Mondal et al., 2011). Based on this 

approach the fertilizers, seeds and pesticides can be customized to specific zones rather 

than uniformly applied across a field by increasing the amount of the inputs where they are 

required and decreasing where not (Bouma, 1997, Rains and Thomas, 2009, Pati et al., 

2011, Oliver et al., 2013). Conventionally, most of the recommendations about agricultural 

inputs such as fertilizer and pesticides were derived for uniform application. However, the 

environmental variables such as solar radiation, available water, soil properties and 

topography are never uniform even within the field scale (Heege, 2013). As a consequence 

of uniform application, parts of the field will receive less inputs than required, which 

might limit the yield, while other parts might receive more than they need, which will 

waste the natural resources and may adversely affect the environment such as by leaching 

nutrient and pesticide to the ground water and contaminating it (Oliver et al., 2013). This 

has prompted researchers and farmers to adopt precision agriculture, so that the spatial 

variation in yield and associated environmental variables can be identified and managed by 

variable rate application of the inputs, which can enhance the yield uniformity and reduce 
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the adverse environmental impact (Auernhammer, 2001, Najafabadi et al., 2011, Oliver et 

al., 2013). Precision agriculture (PA) in relation to climate and soil conditions is expected 

to have an increasingly important role during the 21
st 

century, which needs the 

combination of spatial technologies such as global positioning system (GPS), geographic 

information system (GIS) and remote sensing, as well as the possibility of analysing the 

spatial relationship between mapped variables in order to conduct management practice 

according to the spatial and temporal variability across the natural and agricultural 

landscapes (Berry et al., 2003, Najafabadi et al., 2011, Clay, 2011). 

Precision agriculture has been widely examined for its profitably and accuracy over the 

last decade and promising results have been achieved. The economic advantages of 

variable rate nitrogen fertilization in sugar beet fields were estimated to be about US$50 

ha
-1

 for grid based sampling and about US$ 113ha
-1

 for zone based sampling compared to 

uniform application (Franzen, 2004). The average increase in gross incomes, which means 

the advantages of maximizing the yield with minimizing the inputs, is estimated to be 

around US$ 150 ha
-1

 in maize field and US $51 ha
-1

 in soybean by applying precision 

agriculture (Amado and Santi, 2011). In addition the amount of herbicides applied, costs 

and required working hours were significantly lower compared to uniform application 

(Pedersen et al., 2005, Mohammadzamani et al., 2009).  

Due to the advances in the spatial technologies that have an important role in the adoption 

of precision agriculture, it becomes possible and easy to collect information for mapping 

the yield of many crops. Remote sensing can provide reliable information about the land 

cover, land use changes and plant growth (Delegido et al., 2011). For example it can 
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provide an accurate map of leaf area index or crop cover which might be correlated with 

the within field variation in yield (Martinez et al., 2010). In addition an accurate yield map 

for combinable crops can be produced cheaply by the combine harvester during the harvest 

(Griffin, 2010, Heege, 2013). However the map of yield or any other crop growth 

parameters during growing season provided by these techniques is not sufficient for 

implementation of precision agriculture, because it does not map the actual stress, but it 

usually represents the plant response to the stress, and different environmental variables 

can cause a similar pattern of stress (Jones and Schofield, 2008). Therefore an accurate 

map of the main environmental variables that have a potential causal influence on yield 

variation is also required. For some variables such as soil properties and water status, this 

map cannot be provided by the combine harvester and will not be accurate enough if it 

provided by remote sensing. For example the soil available water can only be detected by 

traditional remote sensing techniques for shallow depths, which is not useful to detect the 

water status for root crops such as sugar beet that absorb the water from 100 cm (Rains and 

Thomas, 2009). Therefore the field needs to be sampled and all the data should be based 

on these samples. On the other hand sampling the field intensively to obtain an accurate 

map for management is difficult and expensive (Webster and Lark, 2012), and the 

measurements will just represent the locations at which the samples have been taken 

(Scannavino et al., 2011). Using geostatistical methods of interpolation such as Kriging 

that can predict the value of the property in unsampled locations (Oliver, 2010), but the 

sampling protocol to obtain the best prediction is still controversial (Kerry, 2003). 

Therefore precision agriculture needs a combined approach between different techniques 

to produce an accurate map with reducing the sampling efforts (Kerry et al., 2010), 
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because each of these techniques has its limitations if it is applied separately, and 

combining two or more of these technologies will be complementary to each other, and 

this will broaden the scope for which they are applicable (Gao, 2002). It has become 

evident that  promising results can be obtained by integrating remote sensing techniques 

with soil map and crop measurement (Oliver et al., 2013). For example using remote 

sensing techniques for mapping an environmental property can be associated with an error 

that needs to be statistically quantified by ground truthing (Rocchini et al., 2013). The 

information about spatial variation provided by remote sensing, electrical conductivity 

scanning and yield mapping by a combine harvester is useful not only for detecting the 

stress in crop growth or to identify soil types, it is also needed to identify management 

zones for variable rate applications and to guide sampling schemes for geostatistical 

analysis (Bouma, 1997, Kerry and Oliver, 2007a, Kerry et al., 2010). Using the auxiliary 

data provided by these techniques as a covariate can enhance prediction of spatial 

variability in soil properties (Minasny and McBratney, 2007), and it can be a useful to 

monitor the patterns of variation over time and link it with ground truth data of the soil 

properties or micro-climate for precision agriculture applications in the following crop in 

the rotation.  

 

1.3.1 Precision agriculture tools: 

As the implementation of precision agriculture requires the adoption of spatial technologies 

such as GPS, GIS and remote sensing and methods of mapping the spatial patterns, its 

application has now become more promising as a result of the progress in these techniques. 
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The availability of these technologies provides an easy way to gather important information 

about crops and environment. Each of these technologies is described in the following 

sections. 

1.3.1.1 Global Positioning System (GPS): 

GPS, was used initially as a navigation system developed by the United States military to 

identify the position on the earth and it is based on 24 satellites distributed in the earth’s 

orbit (Rains and Thomas, 2009, Chu Su, 2011). The main merits of GPS are that the signal 

is free and can be used at any time and it works without the effect of weather. Therefore its 

application has become more popular world-wide and the instruments can identify each 

satellite’s position by receiving its broadcasted signal to provide a triangulated georeference 

(Auernhammer, 1999, Shanwad et al., 2002). Accuracy has now increased from about 100 

m to about 10cm (Gavric and Martinov, 2007). As a result of the development of GPS and 

its integration with other technologies such as remote sensing and GIS, the spatial data 

about crop condition can be collected easily and efficiently and it can be used by the farmer 

or their advisors for managing their fields site-specifically (Gao, 2002, Corwin and Lesch, 

2005, Aziz et al., 2009). The accurate data required for precision agriculture cannot be 

provided by the raw GPS; therefore it requires an additional signal from known reference to 

obtain desirable accuracy such as differential GPS that use the additional signal (Rains and 

Thomas, 2009).  In addition to differential GPS, real time kinematic global positioning 

system (RTK GPS), which is the most accurate generation of GPS is available for 

agricultural purposes that need more accuracy. The required accuracies of GPS for various 

agriculture applications are given in Table 1.2. 
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1.3.1.1.1 Differential Global Positioning System (dGPS): 

Differential global positioning system (dGPS) is an enhancement to global positioning 

system (GPS) which improved the position accuracy of GPS from 15 m to 10 cm in case of 

the best implementation. In 1987 the U.S. Coast Guard Research and Development (R & D) 

Centre announced that the accuracy of GPS has been improved significantly by using dGPS 

correction broadcast to local user equipment within the coverage area of the correction 

broadcast (Schlechte and Officer, 1994). It operates based on triangulating the signal 

released from the satellites and it can receive and combined real time correction data 

provided by the coast guard GPS correction system which made significant improvement in 

the accuracy of GPS and it can provide resolution within one meter (Nagchaudhuri et al., 

2005). This resolution is sufficient to determine the position within agriculture fields for 

different applications and most  agricultural equipment used for precision agriculture are 

provided with this kind of GPS (Rains and Thomas, 2009), and it has been widely used for 

yield mapping, yield monitoring, soil sampling which are important for describing the 

spatial variation (Chu Su, 2011).  One of the main advantages of using dGPS is that it can 

solve the digital noise problems with some specifications, but the main drawback of its 

application in agriculture is that it increases the cost of operation (Mondal et al., 2011). 

 

1.3.1.1.2 Real Time Kinematic Positioning System (RTK GPS): 

RTK GPS is one of the most accurate kinds of GPS; it can provide the position information 

within centimetres accuracy (Mondal et al., 2011). RTK GPS commercially became 
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available in 1992 with measurement capabilities within 1 to 4 cm accuracy (Buick, 2006). 

Due to its sensitivity of use (horizontal ±2 cm, vertical ±4 cm), and being easy to be 

applied, it has become more preferable and most widely used  in many studies especially 

mapping environmental variables and mining survey (Yılmaz et al., 2006). It also can be 

used effectively for topographic mapping and it has 5cm accuracy for elevation, due to its 

capability to extract extra information by assessing the carrier of the GPS signal (Sudduth, 

1998). However, it is more expensive than some other precision agriculture equipment such 

as machine vision guidance system (Slaughter et al., 2008). It can provides autonomous 

systems with better results for robotic weed control and it can be used for more accurate 

variable rate application, but it is still relatively expensive and it increases the costs for 

autonomous systems (Pedersen et al., 2005, Chu Su, 2011). 

 

Table 1.2: The required accuracies of GPS signals for agricultural application (Auernhammer, 1999). 

 

Required accuracy Task Examples 

± 10 m Navigation 
 Targeting of fields (machinery ring, contractor) 

 Targeting of storage area (forestry) 

±1m 

 

Job execution 

Information 

Documentation 

 Local field operations with yield monitoring, 

fertilizing, plant protection, soil sampling, action 

in protected areas 

 Automated data acquisition 

±10 cm Vehicle guidance 
 Gap and overlay control (fertilizing, spraying)  

 Grain combining 

±1cm 
Implement (tool) 

guidance 
            Mechanical weed control 
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1.3.1.2 Geographic Information System (GIS): 

According to the National Centre of Geographic Information and Analysis (NCGIA), GIS 

can be defined as “a system of hardware, software and procedures to facilitate the 

management, manipulation, analysis modelling, representation and display of 

georeferenced data to solve complex problems regarding planning and management of 

resources” (Mutluoglu and Ceylan, 2009). The main feature of GIS is that it can integrate, 

analyse, and model the data from different sources depending on its powerful analytical 

functionality (Gao, 2002). As most of the environmental variables that relate to agriculture 

have some form of spatial variation, the adaption of GIS software in precision agriculture 

provides a great opportunity to visualize these data especially if that might be difficult to 

present in other ways (Pierce and Clay, 2007). For example, many maps of different 

variables or different years can be combined to describe the interaction between them and 

detect the variation patterns over many years (Blackmore, 2003). The integration of GIS 

with other techniques is important for precision agriculture (Gao, 2002), and the 

combination of GIS and GPS is most important for creating a map that can show the farmer 

which parts of the field need more inputs than others (Bullock et al., 2002, Nutter et al., 

2011). In addition, the advanced generation of GIS is provided by the geostatistical analyst 

toolbar, which has filled the gap between GIS and geostatistics. This is useful to quantify 

the quality of the surface map by estimating the statistical errors associated with prediction 

(Johnston et al., 2001, Shahbazi et al., 2013). However, using GIS is still unreliable for 

weed mapping, as the different maps of weed distribution produced by GIS based on 

different sampling schemes and starting points were not related to each other (Backes and 

Plümer, 2003). This might be a serious issue especially if the map has over or 
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underestimated the actual distribution of weeds, because it will waste the chemical 

resources and may affect the long term spreading of specific weeds (Backes and Plümer, 

2003).  

 

1.3.1.3 Remote sensing: 

Remote sensing can provide multispectral information based on emitted radiation from the 

target point, which could be a bare soil or vegetative cover as a series of narrow wavelength 

across a geographical location (Diacono et al., 2013, Meroni et al., 2009). This information 

can then be utilized to describe the spatial variation in biotic and abiotic variables of the 

ecosystem such as land cover, land use, vegetation and soil properties, as well as detecting 

the changing patterns over time (Rocchini et al., 2013). The combination of remote sensing 

with GPS and GIS increases its capability to detect and map the spatial and temporal 

variability in crop growth and soil properties and has become an important tool for 

precision agriculture (Sivarajan, 2011). In addition, it can provide a good explanation of the 

relationship between crop biophysical data or vegetative indices such as vegetation 

development, photosynthetic activity, biomass accumulation, leaf area index (LAI), and 

crop evapotranspiration (ET), with crop production (Jayanthi, 2003). Remote sensing 

technologies involve different systems such as satellite-based systems (satellite images), 

airborne-based systems (aerial photography) and ground-based systems (e.g. with vehicle 

mounted camera). The adaptation of remote sensing imagery for in field decision making 

has some limitations such as the high cost, non-availability in real time and it requires high 

scientific knowledge to analyse and interpret data. Providing low or no-cost value-added 
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products that can be interpreted easily is one of the ways to face these challenges (Zhang et 

al., 2010a). The main factor affecting the reliability of remote sensing is that it describes the 

gradual variation in a property as a set of discrete non-interacting classes which might lead 

to loss of some information when classifying and processing the images (Rocchini et al., 

2013).  

 

1.3.1.3.1 Satellite images: 

Most kinds of satellite images are originally multispectral, but they have lower spatial 

resolution compared to other kinds of remote sensing technologies (Reynolds, 2010). 

Satellite imaging has become a useful tool in precision agriculture. It has many advantages 

such as that it can capture large areas, the possibility of analysing a single image, it can 

process rapidly, accurate information is available using different wavebands, the 

availability of previous images for comparison and the data can be recorded without any 

administrative limitation by national government (Sivarajan, 2011). The most important 

source for precision agriculture is QuickBird, due to its high resolution especially the red 

(630 to 690 nm) and near infrared portions of the spectrum (760 to 900 nm) (Laudien et al., 

2004). This technique could be used to map leaf area index, which is important for decision 

making for irrigation and canopy management (Johnson et al., 2003, Silva et al., 2007). For 

example Franzen (2004) divided satellite images of a sugar beet field into different green 

and yellow areas to develop management zones for variable nitrogen fertilization. The same 

approach was followed by the farmers in Red River Valley in Minnesota. They used 

Landsat TM derived normalized differential vegetation index (NDVI) of a sugar beet field 
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to create  zones to estimate site-specific nitrogen credits, the higher dark green area 

indicated higher N, which needed less fertilizer for the following crops in these zones and 

the farmer saved $30 per hectare (Zhang et al., 2010a). To identify the optimal number of 

management zones automatically and delineate them using satellite imagery, the zones 

based on satellite image with NDVI value were significantly correlated with soil organic 

matter concentration (Zhang et al., 2010b). The NDVI map provided by satellite images can 

also be used for detecting the damage caused by diseases (Mondal et al., 2011), and thus it 

has successfully detected the area of sugar beet field affected by Rhizoctonia crown and 

root rot by measuring the chlorophyll content of sugar beet foliage (Reynolds, 2010). For 

weed detection, satellite imagery is effective for detecting weeds against bare soil in the 

early growth of  row crops (Lamb, 1995), but it is difficult at letter growth stages, due to the 

small difference between weeds and crop in spectral signature (Mondal et al., 2011). The 

high spatial resolution of soil moisture data (10 m) was achieved only by active remote 

sensing that have their own energy source for illumination such as the laser and radar 

(Barrett et al., 2009). On the other hand the active sensors have a low temporal resolution 

and are more sensitive to surface parameters than passive microwave sensors (Lakhankar et 

al., 2009). The spatial information about soil moisture can be provided by remote sensing 

(Wigneron et al., 2003), but only for a few centimetres depth, whereas plants absorb 

moisture from a depth of more than one metre in some cases (Zhang et al., 2011a). 

However, using satellite images in precision agriculture has some limitations such as the 

effect of clouds on the data clarity, low spatial resolution and cannot provide data for real 

time management (Sivarajan, 2011). In addition, it is not spatially precise enough to map 
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the variables which makes it difficult to superimpose two sets of data such as a yield map 

and a satellite image (Clay, 2011). 

 

1.3.1.3.2 Aerial photographs: 

Aerial photography means the photographs of the ground that taken from an elevated 

position by some platforms such as fixed-wing aircraft, helicopters, balloons, blimps and 

dirigibles, rockets, kites, poles, and vehicle mounted poles. These photos  have been used 

more frequently in precision agriculture, due to many advantages such as the flexibility of 

data collection frequently during growing season, the effect of clouds can be avoided, it can 

provide high spatial resolution, and it is possible to adjust the altitude and resolution, so that 

each image can cover a large area to reduce the costs (Sadler et al., 1998, Laudien et al., 

2004, Reynolds, 2010, Mondal et al., 2011, Sivarajan, 2011).  

The reliability of aerial photography in precision agriculture has been widely assessed and, 

it can provide good information about spatial variation in soil properties and crop growth 

with a very high spatial resolution of less than 0.5 m per pixel (Sivarajan, 2011). In a study 

conducted by Kyvery et al. (2012), colour and near infrared aerial photographs were used to 

predict the final corn nitrogen status. The results indicated the possibility of using 

normalized late-season to predict final corn N status in large-scale on farm studies. To 

develop management zones (MZ) for variable rate application, Fleming et al. (2000) used 

aerial photographs as an alternative method to grid sampling. The results of management 

zones identified by aerial photographs were as effective as grid sampling for variable rate N 

application and relatively cheaper than grid sampling. In another study, multispectral 

http://en.wikipedia.org/wiki/Aircraft
http://en.wikipedia.org/wiki/Helicopter
http://en.wikipedia.org/wiki/Balloon_(aircraft)
http://en.wikipedia.org/wiki/Blimp
http://en.wikipedia.org/wiki/Dirigible
http://en.wikipedia.org/wiki/Rocket
http://en.wikipedia.org/wiki/Kite_aerial_photography
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airborne images were used to detect the within-field variability in sugar beet yield. The 

flight occurred within 1 hour of solar noon and at 7,500 feet (2,285 m) above the ground 

surface resulting in 1m pixel resolution, and the results indicate the reliability of this way 

for estimating sugar beet yield (Gat et al., 2000). Despite these positive results of the ability 

of aerial photography to detect the yield, the data are less reliable and more expensive than 

can be obtained by a ground platform multi-spectral radiometer (Reyniers et al., 2006).  

Using unmanned aircraft,  Rasmussen et al. (2013) carried out weed mapping and they 

indicated the possibility of unmanned aircraft for site-specific weed management. They also 

found that the images taken at high altitude covering approximately 3000 m
2
 with a 

resolution of 17 mm per pixel can provide useful information about weeds. However it 

needs suitable differences in spectral reflectance between weeds and their background soil 

and plant canopy and sufficient spatial and spectral resolution to detect weed plants (Lamb 

and Brown, 2001), and it cannot be used to detect weed densities of < 19 plants m
2
 

(Gerhards and Christensen, 2003). 

To detect the spatial variability in soil water content within sugar beet fields, aerial 

photography for Bury St Edmunds and Thetford in the UK from the years 1946-2003 were 

obtained and analysed. The results indicated the possibility of using aerial photographs to 

detect soil available water using wilting of sugar beet as an indicator, but it also needs some 

soil samples to ensure its reliability, since the wilting may occur due to stress caused by 

nitrogen deficiency or virus infection (Zhang et al., 2011a).  Airborne sensing was also 

used to detect fungal diseases in sugar beet by Laudien et al. (2004). After image analysis 

the healthier patches appeared as lighter areas, while infected areas were darker. It has also 
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been found to be a reliable tool to detect Rhizoctonia crown and root rot (RCRR) in sugar 

beet crop moderately to severely infected (Reynolds, 2010). 

 

 

1.3.1.4 Electrical Conductivity (EC): 

Recently, the electrical conductivity (EC) scanner has been widely used in precision 

agriculture to describe within-field spatial variability in some soil properties (Lund et al., 

1999, Shaner et al., 2008), and is considered as a fast, easy, reliable, and cheap method for 

mapping within field heterogeneity in soil properties (Mondal et al., 2011). Due to the 

strong relationship between soil properties and soil EC (Kitchen et al., 2003, Sudduth et 

al., 2005), the variability in soil biophysical characters such as soil texture, organic matter, 

soil moisture, soil temperature and cation exchange capacity can affect soil EC readings 

provided by the scanner (Corwin and Lesch, 2005). The changes in EC readings are based 

on the principals of electromagnetic induction, which can produce an electromotive 

force across a conductor when it is exposed to a time varying magnetic field. Therefore the 

spatial variation in these properties can be predicted from the variability in soil EC 

provided by an electromagnetic induction instruments (Abdu and DA Jones, 2007), and 

then it can be correlated to the spatial variability in crop yield (Lund et al., 1999, Sudduth 

et al., 2005). However, the map of EC alone is not sufficient to predict the variability in 

soil properties (Johnson et al., 2001). It might be reliable to predict the variation in some 

properties that are strongly correlated with EC (Corwin and Lesch, 2005), but it could not 

be reliable to identify soil quality and to provide information about soil physicochemical 

parameters (Mondal et al., 2011). The main advantages of EC map is that it can show the 

https://en.wikipedia.org/wiki/Electromotive_force
https://en.wikipedia.org/wiki/Electromotive_force
https://en.wikipedia.org/wiki/Electrical_conductor
https://en.wikipedia.org/wiki/Magnetic_field
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scales of the spatial variation, which is useful to direct soil sampling instead of grid 

sampling, which reduce the costs of intensive sampling (Shaner et al., 2008).  

 

1.3.1.5 Yield monitoring: 

The spatial variation in the yield is the final consequence of the spatial variation in 

environmental variables and in plant growth and development at different growth stages. 

Therefore producing a yield map and evaluating its statistical relationship with other 

agronomic variables is important for managing the spatial variation in the following crops 

(Mondal et al., 2011). Nowadays, the yield of many crops such as cereal grains, rapeseed, 

cotton and vegetables can be monitored site-specifically. The attempts to record the yield 

of cereal crops by combine harvester were started in 1980 and it has been commercially 

applied since 1990. For yield monitoring, combine harvesters need other technologies to 

be integrated in addition to the harvesting system (Fig 1.2). These include a product output 

sensor (t/ha), which needs to be calibrated according to the crop, area sensing (ha/h), 

which is calculated by measuring the speed of the harvester multiplied by the width of 

cutting unit, georeferencing system which is usually dGPS, and a storage and processing 

data system plus a computer for final mapping (Demmel, 2013). When the harvester 

operates, the output sensor automatically records the yield every few seconds. At the same 

time the GPS  provides positional information and the output of this system represent the 

spatial yield data that clearly shows how the collected data is spatially auto-correlated 

(Chu Su, 2011). As a result of availability of yield monitors and GPS, the spatial data of 

yield based on mass flow or volumetric methods and grain moisture content can be 
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collected easily and cheaply (Griffin, 2010), but most of the farmers do not know how to 

deal with it. The yield map produced by these data can support the farmer or their advisor 

with two valuable kinds of information: yield production, and the spatial variation in yield 

that can be visualized as a coloured map (Rains and Thomas, 2009). These data can also be 

used for spatiotemporal analysis to predict the spatial variation in a following crop or to 

improve the prediction of variables sampled sparsely. For this purpose, the values at the 

neighbouring points of denser data (yield of previous crop) provided by the combine 

harvester relative to the position of sparse data (sugar beet crop) can be averaged to 

represent value at the locations of the sparse data (Griffin, 2010). Simmonds et al. (2013) 

used historic yield maps of rice crop in different fields in the Sacramento Valley of 

California. Their results indicated that the patterns of spatial variation in some fields were 

temporally constant and related to the distribution of soil organic matter, nitrogen, 

potassium and salts. These results will allow implementation of precision management in 

the rice production system, which in turn can increase the productivity and efficiency of 

using the water and nutrients. Similar results were also found by Amado and Santi (2011) 

in Southern Brazil. They found almost constant patterns of spatial variability in yield of 

different crops (soybean, maize and wheat) in a six years rotation, and it was found to be 

related to soil water infiltration. In a study conducted by Blackmore (2000) in the UK, he 

found that patterns of the spatial variation over 6 years were more stable when a single 

crop (winter wheat) was considered than those when multiple crops (winter wheat and oil 

seed) were considered. However, the spatial variability is not always stable on a temporal 

basis. The high productive areas in one year may be less productive in the following years 

(Kleinjan et al., 2007), since the within field variation in crop yield is due to the combined 
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effect of different environmental variables (Rains and Thomas, 2009, Griffin, 2010, 

Hakojärvi et al., 2013), and most of the variables especially that relates to weather 

conditions are not constant temporally. In another study, Blackmore et al. (2003) observed 

a significant pattern of spatial variation in the yield map of  a single year, but these 

patterns were less obvious when the yield maps of six years were combined into a single 

trend map. This means the spatial variation might not follow the same patterns over many 

years; therefore the historical yield maps cannot be reliable to predict the spatial variability 

in the following crop. In addition, managing the field based on the yield map of previous 

crop is not recommended, but it can be used to estimate the amount of nutrients absorbed 

by the crop (Blackmore, 2003), and how different parts of the field can be low or high 

yielding in different years in relation to weather and soil properties (Blackmore et al., 

2003) .  

Despite the ability of this technology to provide a large amount of spatial yield data, 

transforming these data to useful information for management practice needs care (Griffin, 

2010), due to the associated error that can contaminate these data and affect its reliability 

such as the appearance of outliers (Chu Su, 2011). The main sources of error affecting the 

yield data listed by Blackmore (2003) are as follows: 

 The width of crop entering the cutting system varies, 

 Time lag of threshing the grains which may not be in conjunction with 

georeferencing, 

 The accuracy of the data provided by the GPS, 

 Losing grains from the combine harvester, 
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 Other sources of error that are related to calibrating the sensors following the 

instruction of manufacture and accuracy of the sensor itself. 

To produce an accurate map, the raw yield data should go through procedures to identify 

and remove any unexpected values which are due to one or more of sources mentioned 

above. Some of these values can be adjusted, while others may not, so they have to be 

removed from the data set. This procedure has different names; it is usually called data 

cleaning, data filtering or most commonly called expert-filter, which involves the map of 

data point that can be assessed by the editor based on his intuition, experience and prior 

knowledge about the field, combine harvester, crop and GPS (Blackmore, 2003, Griffin, 

2010). 

 

 

Figure 1.2: Illustration  of the  sensing systems in combine harvester (Heege, 2013). 
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1.3.2 Precision agriculture challenges: 

Despite the rapid advances in precision agriculture especially in developed countries, and 

the large numbers of studies that have been conducted to evaluate the reliability, 

profitability and adaptation of precision agriculture, its application commercially has been 

limited due to the following challenges: 

1. Time challenges: the time needed for providing and starting the techniques, for 

training to use them, to overcome the obstacles that may appear and the time needed to 

achieve the benefit from the investment (Wiebold et al., 1998, Reichardt et al., 2009, 

Najafabadi et al., 2011) 

2. Economic challenges: this involves the high costs of PA equipment, the cost of 

developing the hardware and software and the cost of training to use them (Kitchen et 

al., 2002, Lavergne, 2004, Adrian, 2006, Gavric and Martinov, 2007, Najafabadi et 

al., 2011). 

3. Uncertain achievements: this involves the errors that can be associated with using a 

computer program or any other tools, uncertain profits from the investment, the doubt 

about the reliability of PA tools and the accuracy of the information, different 

performance from different kinds of machines, and using incompatible software 

(Wiebold et al., 1998, Kitchen et al., 2002, Lavergne, 2004, Adrian, 2006, Gavric and 

Martinov, 2007, Reichardt et al., 2009, Atanasov et al., 2010, Najafabadi et al., 2011). 

4. Knowledge and experiences: this involves lack of advice on how to use the field map, 

lack of training, lack of qualification and experts among farmers and the older farmers 
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with low education and knowledge about computers and new techniques, and lack of 

knowledge about the role of PA in agriculture, in addition the PA techniques still 

untaught in most universities (Wiebold et al., 1998, Kitchen et al., 2002, Lavergne, 

2004, Nagchaudhuri et al., 2005, Adrian, 2006, Gavric and Martinov, 2007, Reichardt 

et al., 2009, Mondal et al., 2011, Najafabadi et al., 2011) 

5. Exploring and interpreting the data: this involves the difficulty in protecting the 

quality of the data, difficulty to analyse, interpret and present the data in an easy way 

for the farmers to understand (Bouma, 1997, Kitchen et al., 2002). 

The economics and a lack of knowledge and experience are considered to be the greatest 

challenges facing the adoption of precision agriculture commercially. Particularly the lack 

of qualification and experts among the farmers and initial cost of PA techniques compared 

to other (Najafabadi et al., 2011). Whilst, the crucial one for the scientists is presenting 

methods that can explore variation in space and time in useful way that can help farmers 

for their management (Bouma, 1997). 

The main limitation of PA application in developing countries such as Iran and India are 

the lack of knowledge, small size of farms, planting different kinds of crops in specific 

area, marketing effects and high costs (Shanwad et al., 2002, Gavric and Martinov, 2007, 

Mondal et al., 2011, Najafabadi et al., 2011). While the main limitation to PA adoption in 

European countries such as Bulgaria is the lack of required financial resources and limited 

access of Bulgarian farmers to European funds and the difficulty of using existing 

resources (equipment, people, warehouse), integrated with current technology entrants and 

a lack of comprehensive research about PA (Atanasov et al., 2010). 
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1.4 Geostatistics in precision agriculture: 

The applications of geostatistics in environmental science were started in 1980 by a British 

soil scientist, namely Richard Webster and his team when they aimed to create a prediction 

map of soil properties. However their work was related to the environment more than 

precision agriculture, and it was adapted for precision agriculture by David Mulla in 1988 

(Oliver, 2010). Geostatistics is an analytical tool that deals specifically with the 

georeferenced data that relies on the spatial correlation in order to predict the values of the 

variable across the field (Hengl, 2007). As a result of the existence of this tool in 

environmental research and the availability of various computer packages, it has become 

possible to overcome the economic problems of large number of samples required for 

mapping soil properties (Karaman et al., 2009b). It can also deal with remote sensing data 

to predict the spatial variability and to optimize the spatial sampling (Hengl, 2007). 

However, geostatistics is more sophisticated than conventional statistics in which some 

other statistical components need to be involved such as the variogram, which is a set of 

semivariances plotted against the lag distances between the measurements to describe the 

way in which the property can vary across a geographical location (Fig 1.3), or covariance 

that describes the spatial correlation between the points as a function of the lag distances 

(Webster and Oliver, 2007). Understanding and estimating these components are necessary 

to predict the quantity of the environmental variables at un-sampled locations (Sherman, 

2011). 

Estimating  the  variogram  is  more  useful  than  the  covariance  because  it  can  be  

adapted easily,  especially  when  non  stationary  observations  exist  and  it  can  be 
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estimated  without knowing  the  mean,  therefore it has been considered as a corner stone 

of geostatistics (Webster and Oliver, 2007, Sherman, 2011). 

 

 

1.4.1 The variogram: 

The geostatistical theory behind the variogram is the Methods of Moment (MoM) 

(Matheron, 1965), considering the fact that the values of one variable at locations close to 

each other are more similar than those located further away (Fig 1.3). The experimental 

variogram needs to be modelled by a suitable mathematical model in order to describe the 

variation across the whole region, so that the value of the property can be predicted at 

unsampled locations (Hengl, 2007, Webster and Oliver, 2007). However choosing the best 

model is controversial, as some people judge it by eye, which is unreliable, because the 

variance might vary significantly from one point to another. A solution to this is to judge it 

visually by selecting one or more models with suitable shape and then statistically select the 

one which gives minimum Residual Sum of Square (RSS) or with mean square error close 

to the prediction variance (Webster and Oliver, 2007, Oliver and Webster, 2014) 

After fitting the model, three components will be identified which are important for the 

prediction. The maximum variance that the variogram can reach, which is called the sill 

(C1), it is the correlated variance that describe the continuity, the distance at which it 

reaches 95% of the sill is called the range (a) (Fig 3.1), which represents the limit of the 

spatial dependency in which the points separated by distance shorter than the range are 

spatially dependent and the points located further away are deemed spatially independent. 

It also represents the average extent of the patches when the variation appears as the 



 

31 

 

patches with low and high values (Hengl, 2007, Webster and Oliver, 2007). The range 

might vary from a few metres to some kilometres according to both the region and the 

variable of interest. However, most environmental variables show spatial dependency at a 

range between 20 and 110 m (Heege, 2013). It has been found to be as short as 40 m for 

soil biological factors and as long as 90 m for other soil properties and plant production 

(Groffman, 1997). Identifying the range is essential for site-specific management as it can 

be used as control distances especially when it depends on a square grid, so that the 

precision management can be adjusted to not exceed that range (Heege, 2013). 

The variogram should intercept the Y axis at the origin (0 variance) as the spatial variation 

is expected to be continuous and the differences between two samples at 0 distance should 

be 0. However, quite often it intercepts the Y axis at a positive value constituting that the 

property is discontinuous. This is called the nugget effect (C0) (Fig 1.3) a name which 

started with gold mining when they noticed that the gold nuggets appeared independently 

of one another (Clark, 2010, Oliver, 2010). Some statisticians totally attribute it to 

sampling error which can be avoided by suitable sampling scheme. Others attribute it to 

the measurement error or white noise that represents the small scale variation which is not 

covered by the current sampling scheme (Clark, 2010, Colbach and Forcella, 2011). 

However, the measurement error could be involved, but the main one is the uncorrelated 

variance that might occur at distances shorter than the minimum sampling interval 

(Webster and Oliver, 2007, Oliver and Webster, 2014). The positive nugget value should 

never be replaced by 0 when it appears, as it will affect the reliability of the variogram 

which in turn will affect the prediction of values at unsampled locations (Clark, 2010). 
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 If the variogram appears as a horizontal line, it is referred to as pure nugget. This indicates 

non-spatial dependency. Since most environmental variables vary continuously this type of 

variogram may not be expected (Kerry, 2003), and if it happens then it would be due to the 

use of large sampling intervals, which exceed the actual scale of the variation in the field 

(Oliver, 2010). 

When the nugget variance exists, not all the variation which occurs in distances shorter 

than the range will be spatially dependent, therefore the ratio of nugget to sill (C0/(C1+ 

C0)) is usually used to quantify the degree of the spatial dependence (Vieira et al., 2008, 

Karaman et al., 2009b). On the other hand Oliver and Webster (2014) recommend not 

relying on this ratio to describe the underlying variation, but rather it can be used for 

inference of the large measurement error or inefficient sampling intervals or both.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3: The experimental variogram of the data of crop canopy cover in July 2012 in White Path 

field presented as an example of a typical shape of variogram. 
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1.4.1.1 The reliability of the experimental variogram: 

Since the calculation of the experimental variogram is based on a set of spatial data, its 

reliability might significantly be affected by the structure, distribution and quality of these 

data. The main factors that have a potential effect on the reliability of the variogram are 

asymmetry of the data, number of sampling points and separation distance, anisotropy and 

the trends (Oliver and Webster, 2014),  and it has been explained as follows: 

 

 

1.4.1.1.1 Asymmetry:  

This means the departure from a normal distribution and it can be caused by a long upper 

or lower tail in the values or by outliers which have unexpected  large or small values 

(Webster and Oliver, 2007).  Since the variogram computed by MoM is based on the 

variances, any departure from normality can overestimate the variances and widen the 

confidence limit which consequently changes the shape of the variogram. Therefore the 

data should be explored by histogram, box plot, or coefficient of skewness before 

computing the variogram (Kerry and Oliver, 2007b, Oliver and Webster, 2014). If any 

departure from normality is observed, the data may then need to be transformed, so that an 

approximation to a normal distribution can be achieved and the variogram should then be 

computed from transformed data. Webster and Oliver (2007) recommend taking the square 

root of the data which may normalize it if the coefficient of skewness is between 0.5 and 1, 

while it needs to be transformed to logarithms if it exceeds 1. If the high skewness is due 

to the presence of outliers they recommend removing them from the analysis. However, 

transforming the data or removing outliers should not be done before computing the 
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variogram from the original data and then deciding whether to transform it or not. In 

addition, a high skewness exceeding  ±1 may not indicate the necessity of transforming the 

data especially for a large set of data (Oliver, 2010). In the study conducted by Hbirkou et 

al. (2011) a high coefficient of skewness (1.2) was found in the data set of nematode 

distribution in a sugar beet field and transforming it to Log10 did not reduce the skewness. 

Therefore they had to work with original data. The departure from normality is more 

common in the case of weeds, as the weed density is concentrated largely in some patches 

and most of the other patches may be weed free or with low weed density. Therefore the 

outliers in this case are not the result of a single point and cannot be removed to obtain 

normality (Colbach and Forcella, 2011). Kerry and Oliver (2007b) showed that with the 

presence of outliers the shape of the variogram did not alter, but the nugget, sill and nugget 

to sill ratio (C0, C1 and C0/(C1+ C0)) were increased. This effect was less obvious for large 

sample sizes than for small ones. They also found constant decrease in the C0, C1 and 

C0/(C1+ C0) by transforming the data to square roots and logarithms.  However, for 

removing the outliers from spatial yield data, Chu Su (2011) recommend using the 

averaged differences algorithm method. This method is based on comparing the value of 

each point with the average value at neighbouring points by identifying large numbers of 

neighbours which is sufficient to cover the area of interest. They considered this as the best 

method to avoid the effect of both point and regional outliers in which it can involve the 

spatial autocorrelation and identify the spatial variation between the neighbouring points.  
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1.4.1.1.2 Sample size and lag intervals: 

The experimental variogram computed by MoM can be affected significantly by the 

sample size and the distance between sampling points. Therefore, for a reliable variogram 

at least 100 samples per field are required and the sampling intervals should approximately 

represent the scales of the variation. However a reliable variogram with less than 100 

points can be computed by Residual Maximum Likelihood (REML) (Kerry and Oliver, 

2007a, Oliver and Webster, 2014). This is explained in more detail in section 1.5.2.    

 

 

1.4.1.1.3 Trends: 

A trend appears as a gradual increase or decrease in the value of the property across the 

field or in one side rather than a patchy distribution of low and high values, and the mean 

will therefore change based on the geographical position. Consequently the variogram 

shape will be affected and will increase steeply and indefinitely with increasing the lag 

distance which significantly affects the prediction (Oliver and Webster, 2014).  As in the 

case of few sampling points, the effects of trends can be avoided and the reliable 

variogram can be computed by identifying the trend and then estimating the variogram of 

the residual by REML methods (Lark, 2012). This method is parametric and accurate, 

because it depends on the general increase in the lag, which can avoid the effect of trends 

and rely on the covariance parameter only (Kerry and Oliver, 2007a). 
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1.4.2 Kriging: 

The term Kriging usually refers to the geostatistical methods of prediction based on the 

weighting average that can provide the best linear unbiased predictor (BLUP) for optimal 

interpolation in the geographical space (Oliver, 2010, Sherman, 2011). The idea of this 

method started early in the 1950’s in the mining industry by the South African engineer D. 

G. Krige and the statistician H. S. Sichel. However, the mathematical formula of the 

method was derived a few decades later by the French mathematician, G. Matheron 

(Hengl, 2007, Webster and Oliver, 2007, Franzen, 2011). Consequently it has become 

possible to solve the stochastic problem that is associated with using the mathematical 

model of interpolation by considering the way that the variable can vary in space from the 

information provided by the variogram or covariance computed previously, and it can also 

provide the prediction variance to ensure the reliability of the interpolation (Oliver, 2010, 

Sherman, 2011). Some people considered Kriging as a sophisticated version of Inverse 

Distance Methods (IDW) of interpolation (Hengl, 2007). While some others decide 

between Kriging and IDW method based on the coefficient of variation (CV). They found 

that IDW methods are more effective than Kriging when the CV ˂ 25%, and the better 

interpolation can be achieved by Kriging when the %CV is higher (Franzen, 2011). 

However, more primitive methods such as inverse distance weighting and splines could be 

easy and useful for initial examination of data, since they do not consider the associated 

error and spatial structure of data (Lamb and Brown, 2001, Harper and Clark, 2006). 

Therefore Kriging methods become a promising technique and the key component for 

precision agriculture in which it can predict and visualize the value of property in the space 

(Scannavino et al., 2011). The main merits of a geostatistical map that separate it from an 
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ordinary map, is that the geostatistical map is a predicted map created based on 

quantitative statistical methods and it depends on the actual data, while the conventional 

map is created based on empirical knowledge (Hengl, 2007). Although the interpolated 

map may not be more precise than the ordinary map (Kempen et al., 2012), its use is 

important to reduce the cost of the sampling with the possibility of quantifying the 

prediction error statistically (Lamb and Brown, 2001). 

Kriging methods embody least square methods that can be used for spatial prediction under 

different conditions. Ordinary Kriging (OK) is the most robust and commonly used method 

and it needs only the primary information of the variogram for interpolation, it assumes that 

the mean is constant and unknown (Oliver and Webster, 2014).  

Ordinary Kriging can deal effectively with the assumption of intrinsic stationary. However, 

it is not applicable when there are strong trends in the data. A solution to this is provided by 

the Universal Kriging that can deals with non-stationery and random component, but it 

needs the covariance component to be modelled for residual by incorporating REML 

methods into Kriging (Lark, 2012). This is also approved by Martinez et al. (2010) when 

they examined different Kriging methods to map spatial variation using auxiliary data, they 

found that Universal Kriging was the best interpolation method when non-stationary trends 

exist providing high accuracy under different sample sizes, while optimum results were 

achieved by Ordinary Kriging under a good stratified sampling design.  

Ordinary Kriging can be divided into two kinds, punctual and block Kriging. In the case of 

block Kriging the mean value for certain block within the map is estimated, while in 

punctual Kriging the target point could be a point within the field (Heege, 2013). For some 

agricultural purposes block Kriging was found to be more useful as it helps the farmers for 
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variable rate application of agricultural inputs such as fertilizer and pesticide as long as it 

does not exceed the effective width of agricultural machinery which is usually 24 m width 

in Europe (Webster and Oliver, 2007, Oliver and Webster, 2014). In punctual Kriging the 

overall accuracy can be optimized because the actual sampling locations and sensing points 

are free from any kind of error, however this could be the only advantage of the punctual 

Kriging and it cannot be useful for application in commercial fields as there is no 

machinery that can do a punctual job (Heege, 2013). In practice, with section control on 

booms, a 6 m block is preferable and the potential resolution required is for the individual 

nozzle control on a sprayer. On the other hand the predicted variance is larger in punctual 

Kriging than in block Kriging, because in the punctual method the nugget variance is 

involved and the predicted variance cannot be less than that, whereas in block method the 

nugget variance is split into within block variance and so it doesn’t associate with the 

prediction variance (Oliver and Webster, 2014). In addition, ordinary Kriging was also 

found to be the best unbiased estimator for interpolating soil biological indices (Shahbazi et 

al., 2013). 

 

 

1.5 Sampling for precision agriculture: 

Sampling protocol is an essential step in geostatistics application in which it has a 

significant influence on the reliability and accuracy of the variogram that relies on the 

number of the samples and the intervals (Oliver and Webster, 2014), as well as the precise 

arrangement of the sampling points is essential for precision agriculture (Montanari et al., 

2012). Inefficient sampling plans are considered to be the main source of error associated 
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with managing agricultural fields and it represents 80-85% of total error (Siqueira et al., 

2010). Therefore planning ahead for sampling design in environmental studies is essential 

to support the subsequent analysis of the data and decision making (Oliver, 2010), and this 

needs to involve some considerations such as the sufficient number of samples, the precise 

location of each sampling point and a suitable separation distance between sampling points 

(Martinez et al., 2010). 

 

 

1.5.1 Choice for sampling: 

Different approaches to sampling design are available today, and the most commonly used 

methods can be summarized as follows: 

 

1.5.1.1 Random sampling: 

Random sampling is easy to apply. The points are selected separately and all sampling 

points have the same probability and the mean of the samples can represent the population. 

However, due to the uneven separation of the points, it has a high variance and therefore it 

is inefficient to detect the variation especially in patchy distributions such as that of insects 

and weeds (Mulla, 1997, Bogaert and Russo, 1999, Martinez et al., 2010, Webster and 

Lark, 2012) 

 

 

1.5.1.2 Systematic sampling design: 

Systematic sampling can provide a uniform cover of the study area and the most popular 

one is the rectangular grid. It is more efficient than random sampling in which it can 
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provide the same information with lower cost. On the other hand each of the points does 

not have an equal probability and therefore it might not provide an accurate estimation of 

the variance (Mulla, 1997, Martinez et al., 2010, Webster and Lark, 2012). 

 

 

1.5.1.3 Nested samples: 

This kind of sampling provides the possibility of partitioning the variance into different 

components which can then be attributed to different spatial scales and identify these 

scales that are associated with a large proportion of the variance. These are two kinds of 

sampling schemes: balanced and unbalanced. The latter is more efficient, because it can 

increase the confidence and estimate the variance at more intervals than balanced ones 

with the same number of samples. However, it is a more sophisticated design and it needs 

statistical analysis using Residual Maximum Likelihood (REML) (Webster and Lark, 

2012). 

 

 

1.5.1.4 Stratified random sampling: 

This kind of sampling design is considered as the most efficient design, as it can cover the 

domain evenly by dividing it into blocks based on known distributions of specific 

environmental factors (Webster and Lark, 2012). Also it can provide an accurate estimate 

of the variance and the possibility of distributing sampling efforts according to the 

variability of the phenomenon being assessed and the more variable parts of the field can 

receive extra sampling effort (Mulla, 1997, Martinez et al., 2010, Webster and Lark, 

2012).  
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As mentioned above making a decision about the suitability of any sampling design 

depends on the purpose of the sampling. For example, to compute a reliable variogram it 

needs to include some degree of spatial nesting in order to reveal the variation over shorter 

distances. It can also be designed to be efficient for Kriging which needs an even coverage 

of the domain, because it relies on the variogram and the distribution of samples around the 

target point rather than actual values at sampling points (Webster and Lark, 2012). Locating 

the additional samples purposively based on the previous knowledge provided by a scaled 

variogram or grid samples can significantly optimize the interpolation of soil properties in 

which it can reduce the prediction variance in these locations (Pereira et al., 2013). The 

uneven and irregular separation of sampling points is inefficient for mapping the 

environmental variables and an irregular grid sample was found to be more effective than a 

regular grid, because the shape of most fields is irregular (Webster and Oliver, 2007).  Grid 

sampling (systematic sampling) has been considered as the most effective design to detect 

within-field variability in soil properties and creating the map for variable-rate fertilizer 

application (Kerry et al., 2010, Franzen, 2011). It is essential and one of the earliest 

methods to provide the best information about soil properties for the land users especially 

when the points are close to each other (Chang et al., 2003, Shaner et al., 2008). However, 

Montanari et al. (2012) found that grid sampling with uniform intervals did not efficiently 

reveal the spatial variation in soil properties in the study areas of Oxisols and Alfisols. To 

provide accurate information it needs to be sampled densely which increases the costs of 

sampling (Fleming et al., 2000, Shaner et al., 2008). Attempting to obtain representative 
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sampling based on information about the variability in soil type and crop biomass provided 

in advance by remote sensing could overcome this problem (Mulla, 1997).  

 

1.5.2 Sample size and intervals: 

As mentioned, the reliability of the experimental variogram depends mostly on the sample 

size and the spatial scale over which samples have been taken. The economic status of the 

farmer sometimes limits the sample size and taking one sample per hectare as is usual in 

commercial fields has been found to be inefficient for computing the variogram for a large 

area and does not represent the actual scales of the spatial variation in fields (Kerry and 

Oliver, 2007a). Selecting large sampling intervals wider than the scale of the variation may 

lose a lot of information about the spatial dependency and the experimental variogram 

could appear as pure nugget. In contrast, selecting small sampling intervals to reveal short-

range variation is difficult and cannot be afforded in many cases (Mulla, 1997, Webster and 

Oliver, 2007). The large difference between the sampling intervals and the scales of the 

spatial variability is considered as the main problem affecting the efficiency of the grid 

sampling design (Haberle et al., 2004). Therefore sampling intervals should represent the 

scales of the variation in order to detect the spatial variation efficiently and to increase the 

detection of spatial dependency (Kerry, 2003, Webster and Oliver, 2007). Webster and 

Oliver (2007) and Oliver and Webster (2014) pointed out that the accuracy of the variogram 

can be increased with increasing the number of the samples, because it narrows the 

confidence limit and decreases the standard deviation, as the same data can be replicated 

many times when calculating the variogram. They also recommend using at least 100 
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samples for a variogram with appropriate confidence, and at least 144 samples for more 

reliable variogram. However, this number may not be adequate if short range variation 

exists, on the other hand it could be too many if the scales of the variation are long (Kerry 

et al., 2010). Moreover, lower sampling in commercial fields when there is a high 

concentration of soil nutrients might result in the same recommendations as those that can 

be derived when sampling densely and there are low concentrations of nutrients. While, 

Hengl (2007) mentioned that at least 50 sampling points are needed per field to compute a 

reliable variogram, but an accurate variogram based on less than 100 samples can be 

calculated using REML rather than MOM. The sample size of 50 with appropriate 

separation distance is sufficient to estimate the REML variogram and the accuracy of the 

data is the same as the MOM variogram based on 100 samples (Kerry and Oliver, 2007a). 

Montanari et al. (2012) concluded that the best number of sampling points and the intervals 

can be identified using a scaled semivariogram for which it can integrate different variables 

in one variogram and the number of required samples can be identified using the formula 

developed by Van Groenigen et al. (1997) which is based on the %CV of the data as 

follows: 

 

 𝒏 =  (
𝒕⍺.𝐂𝐕

𝑫
)𝟐                                           Equation 1- 1 

 

Where n is minimum number of samples required, t⍺ is the value of student t (at 95% 

probability), CV is the coefficient of variation and D is the percentage of the variance from 

an average variance of different attributes.  
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Furthermore, Kerry and Oliver (2007a) suggested that using the average variogram 

calculated cheaply from ancillary data provided by remote sensing could be an effective 

tool to guide sampling as the variation in the property could be due to the interaction 

between different soil variables. Lark (2012) has also raised the possibility of using a mixed 

linear model framework to identify efficient methods for sampling which can deal with 

intrinsic variance. In addition an existing variogram calculated from sampling the field or 

ancillary data such from remote sensing can explain the range of the variation and guide the 

future sampling (Kerry et al., 2010) as the sampling intervals can be determined by using 

the half of the variogram range of the available ancillary data (Kerry, 2003).  For Kriging 

interpolation, Li (2010) has found that the accuracy of the prediction of different 

interpolation methods was significantly improved with reducing the sampling intervals 

from 500 m to 250 m. In a study conducted in Guariba, in São Paulo State, Brazil , using  

an additional 20 samples improved the accuracy of the Kriging map with Relative 

Improvement Index (RI) of 2% for soil chemical properties and 1% for soil physical 

properties by Pereira et al. (2013). The RI can be identified as follows: 

 

                                       𝐑𝐈 =
𝝈𝒔𝒔

𝟐 −𝝈𝒐𝒔𝒔
𝟐

𝝈𝒐𝒔𝒔
𝟐  𝑿 𝟏𝟎𝟎                                       Equation 1- 2 

 

Where σss
2  and σoss

2  are respectively the prediction variance before and after using 

additional sampling (Pereira et al., 2013) . 

In addition, to ensure the reliability and the accuracy of the map produced from the remote 

sensing data, it also requires some ground based measurements. For this purpose Debaene 
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et al. (2014) used different calibration schemes to reduce number of samples required for 

calibrating the maps of soil properties based on remote sensing data. The maps of most soil 

properties were best calibrated with 79 samples (1.5 sample/ha) and there was not much 

difference with the result of using the complete data set of 379 samples. In summary the 

more data involved, the more reliable the variogram, and the number of the samples 

depends on the purpose of sampling, the variable of interest, the methods of analysis and 

availability of previous information about the spatial variability. 

 

 

1.6 Within-field variability in some environmental variables affecting sugar 

beet: 

The productivity of agricultural lands is not always constant, it might vary temporally 

between years due to the variability in weather conditions, or spatially within fields due to 

the variability in the soil properties, aspect, salinity, nutrient management, and across years 

and within fields induced by the interaction between weather conditions, management 

practices and soil properties (Oliver et al., 2013). The spatial variation in crop yield is 

usually due to the spatial variability in some environmental factors influencing crop 

growth and performance that might not be observed or managed precisely by the 

agronomist (Rains and Thomas, 2009, Griffin, 2010), such as the soil properties, weather 

conditions during the growing season and the interaction of soil properties and weather 

conditions on crop growth and development (Hakojärvi et al., 2013). It is quite challenging 

to identify the relationships between these variables (Liu et al., 2013). The spatial variation 

in crop yield and associated environmental variables might not be the same in different 
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years; the high yielding areas in one year may be low yielding in another year due to the 

variability in weather conditions and the crop response. In general, the constant spatial 

variability is mainly due to the internal factors such as field topography and soil properties. 

The temporal variation on the other hand is due to external factors such as climate, pests 

and disease. In addition, some of the spatial variability might be related to the management 

practice rather than environmental factors, as almost 50% of the spatial variability in cereal 

yields found within the distance separating the tramlines (Taylor et al., 2003). The 

interaction among these factors makes it difficult to address the main driving variables 

(Simmonds et al., 2013). Identifying the spatial variation in these factors precisely is 

important for precision agriculture (Karaman et al., 2009b), and evaluating its relationship 

with the variation in crop yield is a key component for precision agriculture, and it has 

developed significantly over the last two decades. The patterns of within-field variability 

in these variables could be randomly distributed throughout the field as small spots or it 

could be nested variation distributing as a patches of low and high values of the property 

changing in both distance and direction (Heege, 2013). The potential effect and the spatial 

variability of each of these factors as well as the possible ways of identifying and 

managing it are described in detail in the following sections. 

 

 

1.6.1 Field topography: 

Field topography is considered to be one of the main driving variables behind within field 

variation in which it can affect the crop growth and yield directly from its effect on 

microclimate condition such as solar radiation and air temperature, or indirectly from its 
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effect on soil properties such as soil nutrients and soil temperature that can affect crop 

growth and development. However, for most agricultural fields, the field topography 

cannot be changed, but it rather can be used to understand the variation (Godwin and 

Miller, 2003) and perhaps to exploit it. The effect of the topography is very significant in 

the semiarid areas, due to its effect on soil moisture, which is the major problem limiting 

crop growth in these areas (Zeleke and Cheng, 2004). With the presence of more complex 

field topography, soil forming factors and erosion will vary accordingly and this might 

reflect on crop yield (Kumhálová et al., 2008). Therefore describing the topographic 

features such as the slope degree and aspect of the field may be important for 

implementation of precision agriculture (Pachepsky et al., 2001a, Zeleke and Cheng, 

2004). Although, the main features of topography can be assessed visually, it is important 

that they are quantified in order to understand their relation to yield and other 

environmental variables (Godwin and Miller, 2003).  

To identify the direct and indirect effects of field topography on crop yield, different 

studies have been conducted.  Zhang et al. (2011b) found spatial variation in soil organic 

matter (OM), total phosphorus (P) and total nitrogen (N) were related to both the aspect 

and the steepness of slopes, but this relationship differed when they considered only the 

aspect or slope. They also found significant increases in the studied variables by 33.8, 23.3 

and 22.4% for OM, N and P, respectively when the cross-slope tillage was compared to 

down-slope tillage. A high dependency of yield and nutrients on field topography was also 

found by Kumhálová et al. (2008). In their study near Brague-Czech Republic, three crops 

were involved; winter rapeseed, winter wheat and oat in 2004, 2005, and 2006, 

respectively. They noticed that the effect of field topography in the driest year was greater 
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with correlation coefficient of 60% compared to the 20% correlation coefficient in the 

wettest years of the studied period. Similar results were also observed by Kleinjan et al. 

(2007) in a maize field located in east-central South Dakota. They found the area at the 

bottom of a slope that sometimes experiences excess soil moisture, produced high corn 

yields in dry years and the production was low to moderate in the wet years. This could be 

due to the effect of topography on the ability of soil to retain moisture during the dry years. 

This effect has been explained in another study conducted by Pachepsky et al. (2001b), 

based on the results of regression analysis, they found that the field topography accounted 

for 60% of the variation in soil water content, which could be due to the effect of 

topography on soil texture which has a direct effect on soil water holding capacity.  Due to 

the effect of field topography on soil water content the upslope length has been considered 

by Zeleke and Cheng (2004) as a best predictor for grain yield and biomass at different 

spatial scales and they found high correlation coefficient 93% between scaling indices and 

grain yield. The distribution of some insects such as sugar beet root maggot, Tetanops 

myopaejormis in relation to field topography was also examined by MacRae (2003) in 

sugar beet field, in Red River Valley in Minnesota, and the results showed that the 

emergence of the insect depended on field topography: the population of the insect was 

significantly reduced in water standing zones of the field which was caused by the 

topography. In a study conducted by Dixit and Chen (2011) in southern Mallee of Victoria, 

Australia. They attributed the within field variation in temperature in a wheat field to the 

field topography. Their results showed that in bare soils only the minimum temperature 

related to field topography, while both minimum and maximum temperature were related 

to field topography in the presence of a wheat crop. 
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Although, the effect of field topography on a crop’s yield and micro-environment 

conditions has been examined in different studies and significant results have been 

achieved, simulating the yield of some crops such as sugar beet also needs to be examined 

and modelled based on micro-environmental conditions. These conditions might vary 

according to the aspect and steepness of the within field slopes which may affect the 

accumulation of sugar, due to its effect on foliage cover and photosynthesis rate and an 

attempts is made to investigate this here in this thesis .    

 

 

1.6.2 Temperature: 

Temperature is an important weather variable affecting sugar beet growth and yield. The 

accumulation of sugar in sugar beet roots is highly affected by temperature. A warm 

temperature between 15-17°C in July and August with high nitrogen availability is 

important for sugar beet vegetative growth, while exposing sugar beet to a period of low 

temperature will stimulate flowering (bolting) causing the stem elongation and will 

consume the stored sugar in the root for seed development (Draycott, 2008). For successful 

development of a sugar beet crop in the UK, the thermal time has to be from 2400- 2700 

°C d (Samson-Bręk, 2010). A warm temperature early in spring with a low fluctuation 

between day and night temperatures is important for germination of sugar beet seed and 

allows early sowing. Low temperature is however important at the end of the growing 

season to limit the vegetative growth and induce sugar accumulation in the root (Samson-

Bręk, 2010). Since 1976 to 2004 the average air temperature in the UK has increased by an 

average annual rate of 0.045°C which has allowed sugar beet to be sown earlier than 1
st
 of 
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April, which in turn has extended the period of crop growth and this is associated with an 

increase the sugar yield by 0.025 and 0.032  t/ha/year sugar in both rain-fed and irrigated 

areas respectively (Jaggard et al., 2007). Extending the growing season of sugar beet is 

important to avoid the risk of yield losses due to water deficit (Freckleton et al., 1999). In 

addition to the role of temperature in early sowing, warmer summers will have a direct 

effect on sugar beet canopy cover. The development of sugar beet canopy from emergence 

to full ground cover is highly dependent on temperature. Therefore warmer conditions in 

spring would enhance vegetative growth and increase the amount of solar radiation 

intercepted by the crop canopy (Jaggard et al., 2009). Temperature combined with the 

amount of solar radiation intercepted are considered to be the main factors determining the 

accumulation of dry matter in sugar beet (Qi et al., 2005). Kenter et al. (2006) found that 

increasing temperatures from sowing to July from 14 to 18°C significantly increased the 

dry weight of both leaves and roots of sugar beet, while crop growth was adversely 

affected by high temperatures during July and August, then it became independent of 

temperature at the end of growing season. They also observed that in Germany 18°C was 

the best average daily air temperature for the development of tap roots. Freckleton et al. 

(1999) stated that the variation in temperature and rainfall are the main factors limiting 

sugar beet yield in the UK. Their results indicated increase in sugar beet yield with 

increasing the amount of precipitation and decreasing the temperature, except for the 

temperature during April, which was found to be positively correlated to the yield. They 

also found that the crop’s response to temperature can be increased by increasing nitrogen 

fertilization. 



 

51 

 

From these studies it has become clear that the effect of temperature on sugar beet growth 

and yield has been well investigated and different models have been derived to simulate 

sugar beet yield based on weather data. However most of these studies relied on the 

weather data provided by a small number of weather stations representing whole regions. 

This weather data may not represent the actual crop micro-climate, as the air temperature 

in the crop canopy may differ from the air temperature at the weather station (Monestiez et 

al., 2001), and it might vary from one field to another or even within the same field. The 

within field variability in air temperature was investigated by Dixit and Chen (2011). They 

installed 25 temperature loggers in 164 ha wheat farm in the southern Mallee of Victoria, 

Australia near the flowering stage. They attribute the variation in minimum and maximum 

air temperature to the field topography and variations were more obvious in the presence 

of a crop canopy than above bare soil. Therefore the differences in air temperature at 

different locations in a field should be considered when modelling the effect of 

temperature on sugar beet; an attempt to do this is described in this thesis. 

 

 

 

1.6.3 Solar radiation: 

Solar radiation interception highly influences the production of dry matter and consequently 

the accumulation of sugar in the sugar beet root. In the UK, this topic has been investigated 

at Brooms Barn Research Station (Draycott, 2008). High sugar yield per ha is strongly 

associated with the amount and duration of insolation, especially during August and 

September, which are the important times for sucrose accumulation (Samson-Bręk, 2010). 

Crop growth is a result of the accumulated daily increase in the amount of solar radiation 
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interception and the radiation use efficiency, which could be small in daily rate but it has an 

essential contribution to the final sugar yield (Jaggard et al., 2009).  This effect is strongly 

related to air temperature, such that temperature and solar radiation interception are the 

main factors determining sugar accumulation in sugar beet when water and fertilizer are 

optimally available (Qi et al., 2005, Kenter et al., 2006). The warm summers in the UK 

have accelerated the crop canopy development which in turn has increased the amount of 

solar radiation interception (Kenter et al., 2006, Jaggard et al., 2009). A similar relationship 

also exists between solar radiation interception and crop water use, as the increase in solar 

radiation interception is usually associated with increase in the rate of photosynthesis, dry 

matter production and transpiration, which inevitably increases the crop’s requirement for 

water (Draycott, 2008, Jaggard et al., 2009).  

Investigating the potential effect of solar radiation on crop growth and yield has been 

carried out on regional bases assuming an even distribution of solar radiation in a specific 

geographic area. However, the incident solar radiation can clearly vary at a global scale 

based on the earth’s geometry and the position of the sun. In a small landscape such as in 

agricultural fields, the distribution of solar radiation is mainly affected by field topography. 

The presence of slopes at different gradients and orientations may cause significant 

variation in the received solar radiation which in turn leads to spatial variation in micro-

environment such as soil and air temperature, soil moisture, evapotranspiration and 

photosynthesis (Fu and Rich, 1999). In sloping surfaces, the received solar radiation usually 

involves three components: the direct beam from the sun received at the surface without the 

effects of the atmosphere in scattering or absorbing; diffuse radiation which is affected by 

the atmosphere; and the hemispherical reflected radiation which is a small component 
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reflected from the surface lying at a lower altitude to the point in question (Allen et al., 

2006). Therefore the information about the orientation and aspect of topography has been 

considered to describe the relative distribution of solar radiation, but the usual methods did 

not successfully include the daily and annual variation in solar radiation and shading effect 

as well as its relation to variation in crop growth (Pierce Jr et al., 2005).  

A model was developed by Kumar et al. (1997) to calculate the incident solar radiation for 

any location within agricultural fields at any time of the day and year based on the digital 

elevation model. In addition, a comprehensive geometric map of solar radiation based on a 

digital elevation model (DEMs) can now be produced by Solar analyst tool developed by 

Fu and Rich (1999) as an extension in ArcView GIS. This map can explain the effect of 

elevation, orientation and atmospheric condition on distribution of solar radiation. The 

same approach was further developed by Pierce Jr et al. (2005) to estimate the potential 

relative radiation based on DEMs and they found significant differences among four 

comprehensive radiation proxies, and its reliability has been validated when compared with 

the results of intensive measurements.   

Allen et al. (2006) developed an analytical extra-terrestrial radiation model based on 

general algorithms that take into account the effect of atmospheric permeability and slope 

on the direct beam, diffuse and reflected radiations to produce clear sky solar radiation 

curves which do not require local calibration. The method was also found useful as a tool to 

convert global solar radiation on a flat surface to nearby slope. The information about solar 

radiation is usually provided by a sparse network of stations which are too widely spaced 

making accurate interpolation almost impossible. Therefore some other related 

environmental variables such as air temperature can be used to simulate solar radiation. 
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Montero et al. (2009) proposed a numerical model to generate the solar radiation map based 

on the shadow distribution in each time step. The accuracy of the model depends on the 

number of points at which the measurements are taken. They recommend improving the 

interpolation method in the future in order to obtain better results. However, the 

interpolation methods are usually used to predict solar radiation in areas where there are no 

weather stations, but these methods are not efficient in the areas where there is complex 

topography that might be the main source of variation in received solar radiation. The 

topographic information provided by the DEM is effective to estimate solar radiation in the 

areas of complex topography (Tovar‐Pescador et al., 2006). Considering the topographic 

information provided by the DEM and the map of topographic parameters such as the slope, 

aspect and hillshade in the radiation transfer model is an efficient and cheap way to predict 

solar radiation in a specific area (Cioban et al., 2013). Bojanowski et al. (2013) indicate the 

feasibility of using daily air temperature to predict daily solar radiation precisely without 

requiring a site specific empirical coefficient which needs some measurements of solar 

radiation provided by a weather station. The results obtained by this method were as 

reliable as these obtained by the ground-based measurements. Bennie et al. (2008) have 

adjusted the incoming solar radiation for the topography, which they used to determine the 

micro-environment on two chalk grassland fields and its relation to the distribution of some 

plant species. For this purpose they used two methods to estimate incoming solar radiation: 

a spatially explicit method, which depends on the information derived by the DEM, while 

the second method is called spatially implicit, which is based on the statistical distribution 

of the slope and aspect. The performance of the implicit model was almost the same as the 

performance of the explicit methods, but it was limited by the parameterization of slope and 
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aspect indicating the importance of the variability in topography to identify the 

microclimate of the area no previous attempts have used this approaches within a single 

field as far as known.   

 

1.6.4 Available water: 

As with other crops, the available water is one of the important conditions for sugar beet 

production, because most physiological processes such as cellular functions and turgor 

pressure depend on water. The current sugar beet varieties are more tolerant of drought than 

older varieties. The amount of water required for sugar beet production varies from 350 mm 

per growing season in temperate areas to more than 1000 mm in arid areas (Draycott, 

2008). This amount can be increased linearly with increasing solar radiation, and most of 

this water is absorbed from 0-60 cm deep in the soil and only 5% is absorbed from 100-150 

cm (Jaggard et al., 2009). In non-irrigated areas such as most of Europe, the water deficit is 

considered to be the main factor causing yield losses of sugar beet. The potential loss in 

sugar beet yield due to water stress is expected to increase in the future and is predicted to 

reach 22% by 2050 and 35% by 2080 (Richter et al., 2006) based on current varieties and 

agronomy. Kenter et al. (2006) found a significant relationship between available water and 

root dry matter of sugar beet during July and August. In a study conducted by Monti et al. 

(2006) near Parano in Italy, a significant reduction in the rate of photosynthesis and 

accumulation of dry matter under water stress was observed. This reduction was strongly 

associated with reduction in sugar yield. They concluded that reducing the water to 30% of 

field capacity for 37 days in early growth stages even for short period, significantly reduced 
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the final sugar yield. The losses in sugar yield were not compensated when water was 

provided. Therefore any recommendation about irrigation of sugar beet could be useful 

when water stress can be expected and spatial variability in water supply across the fields 

could help to improve water use efficiency of the crop. 

Soil moisture is highly related to some other environmental variables and therefore it is 

highly variable at different spatial and temporal scales and the patterns of the variation are 

usually influenced by different factors such as precipitation, soil properties, topography and 

some agronomic practices (Korres et al., 2013, Hatfield and Kitchen, 2013). Vieira et al. 

(2008) stated that spatial variation in soil moisture in one year might follow the same 

patterns in other years in a study conducted near Ottawa in Canada, but the temporal 

variation and the spatial dependency can be remarkably reduced when the soil becomes 

drier. This is due to hydrological conductivity affecting the rate of evaporation throughout 

the field. They also attributed the constant variation in soil moisture over time to the 

topographical structure.  The lowest spatial coefficient of variation (CV=12%) was 

observed in winter through to the end of March when there is high precipitation with low or 

no crop canopy, while a high CV was observed in the period from April to June reaching 

the maximum value of 22% at the beginning of June. This could be due to variability in 

growth of sugar beet and winter wheat crops which caused variation in the amount of 

absorbed soil moisture and evapotranspiration, which are considered to be the main factors 

causing small scale variation in soil moisture (Korres et al., 2013). In a study conducted by 

Pachepsky et al. (2001a) in Beltsville Agricultural Research Centre in USA. The results of 

regression analysis showed that over 60% of the spatial variation in soil moisture related to 
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field topography, and the soil moisture retention was significantly decreased with the 

increase in slope. 

As the soil available water is important for crop growth, it is expected that within field 

variability in soil moisture can cause spatial variation in crop yield. However in a study 

conducted by Hakojärvi et al. (2013) Agrifood  Research  Finland, the spatial variation in 

some crops such as wheat and barley was not sufficiently explained by variability in soil 

available water. A possible reason for that might be the influence of some other variables 

such as lodging, cold weather and excess soil moisture. 

To detect spatial variation in soil moisture in sugar beet fields, aerial photographs supported 

with some samples have been used by Zhang et al. (2007) and Zhang et al. (2011a). They 

found that the variation in soil moisture can cause spatially variable wilting in sugar beet, 

which changes the colour and height of the leaves in a way that can be easily detected by 

aerial images. According to their results, the wilting areas were associated with low soil 

moisture which was also associated with higher proportions of sand and stones, while 

unwilted areas were associated with high soil moisture and soil clay content. The variation 

in total available water at 1 m depth was significantly different between stressed and 

unstressed areas. Due to the wilting patterns in the sugar beet crop, it can be used as a good 

predictor to detect within field variability in soil moisture. However the method could not 

be reliable without some soil sampling because the wilting patterns in sugar beet could be 

due to other variables. In another study near Missouri in USA, Jiang et al. (2007) found a 

significant relationship between soil electrical conductivity and the available water of 1.2 m 

soil profile with R
2
=0.67 and 0.87 respectively in two fields and it was also highly 

correlated with topsoil thickness. 
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1.6.5 Soil properties: 

Within the field scale, soil properties are often highly variable causing spatial variation in 

crop yield and quality which could be due to the variability in soil type, microclimate, 

drainage, field topography, soil preparation and previous cropping. This variability in soil 

variables can be associated with spatial and temporal variability in crop biomass, weeds, 

pests and diseases (Oliver et al., 2013). Since crop yield is strongly affected by the variation 

in soil properties, it is important to map the spatial variability in soil properties over which 

the farmer has some control for successful application of precision agriculture (Oliver, 

2010). Due to the availability of current spatial technology such as remote sensing and 

electrical conductivity as well as appearance of geostatistical methods for interpolation with 

different sampling schemes, it has become possible to detect and map the within field 

variability in soil properties. This information can then be linked to the crop growth in order 

to derive spatially variable recommendations. Detecting the variation in soil properties is 

often a complex issue and it is difficult to be modelled by available simple models because 

it is controlled by different chemical and physical factors (Lark, 2012). Predicting spatial 

variation in crop biomass based only on soil properties is difficult in the case of high spatial 

variation, due to the interaction between soil properties, weather conditions and field 

topography (Hakojärvi et al., 2013). Therefore a variety of methods have been examined by 

soil scientists to detect spatial variability in different soil parameters and their relation to 

crop variability which is described for each parameter in the following sections. 
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1.6.5.1 Soil physical properties: 

As the emergence of sugar beet seedlings is affected by soil compaction, the sensitivity of 

sugar beet crop to soil physical properties increases just after emergence because the best 

yield can be determined by the rapid extension of crop roots early in the season. Therefore 

sugar beet should be grown in soils with appropriate porosity, a porosity percentage of 50% 

comprising 25% water and 25% air being ideal for sugar beet crop (Draycott and 

Christenson, 2003). The most desirable soils for growing sugar beet crop are medium 

compact, light and medium-heavy clay soils. It can also be grown successively in well-

managed heavy clay soils (Samson-Bręk, 2010). 

Soil physical properties can directly affect the crop growth and yield through the 

mechanical resistance to seed emergence and root extension and the porosity. Perhaps the 

most influential one for many crops is the soil water infiltration capacity as it combines the 

effect of many other soil physical parameters such as soil structure, porosity, soil resistance, 

bulk density, and soil compaction. The high infiltration zones had high available water and 

associated with high yields of soybean, maize and wheat, which followed each other in a 

six year rotation, while the low infiltration zones had low available water and low yield of 

these crops (Amado and Santi, 2011). Soil texture is also considered as an important 

variable and it strongly relates to other soil properties such as porosity, water holding 

capacity, nutrient availability and soil erosion, therefore mapping the spatial variation in 

soil texture can be used as an indicator for site specific management and precision 

agriculture (Safari et al., 2013). However, changing soil texture would take a very long time 

(Draycott and Christenson, 2003).  Taylor et al. (2003) examined the spatial variability in 

three cereal fields (winter barley and winter wheat) over four years in England. The spatial 
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variability in yields was found to be related to soil types in dry years, which in turn related 

to the spatial variability in soil available water. Lamb and Brown (2001) attributed 

inconsistent patterns of spatial variation in NDVI of a wheat crop measured at two different 

growth stages to the variation in soil texture and rainfall, which in turn affected the 

availability of nutrients and water.  Hbirkou et al. (2011) found a strong correlation 

between the spatial distributions of the nematode, Heterodera schachtii, and soil physical 

conditions in a variable sugar beet field in the Lower Rhine Basin in Germany. The soil EC 

and texture maps show that the areas of different soil conditions were associated with 

different populations of the nematode, indicating that the potential infection of sugar beet 

by H. schachtii may increase in deep soil with light texture (sandy loam) to medium texture 

(silt loam) as this is the best soil for H. schachtii. A high positive correlation coefficient 

between alkaline phosphomonoesterase enzyme produced by soil microbes and sand 

content of the soil was found by Shahbazi et al. (2013) in different land use conditions in 

Mirabad area, North West of Iran, indicating the importance of porosity for effective 

respiration and metabolic activity. Hanse et al. (2011b) investigated the reasons for 

significant differences in sugar beet yield between neighbouring pairs of growers located 

throughout the Netherlands, which were almost under the same conditions of soil and 

climate, and they found that  the soil physical properties were the main factors associated 

with the differences. They attributed this difference to soil management practices by the 

growers during seed bed preparation, which significantly affected the soil physical 

properties such as soil structure, compaction and porosity. Soil texture reflects many soil 

attributes such as permeability, water holding capacity, nutrient storage and erosion, and 

consequently the crop growth and yield, and so mapping the spatial variation in soil texture 



 

61 

 

is important for precision agriculture (Safari et al., 2013).  Zhu et al. (2013) identified two 

physical soil properties; horizon texture and the depth to clay as related to the crop’s yield 

(maize, soybean winter wheat) in an agricultural landscape located in central Pennsylvania, 

USA. Therefore, they produced a functional map combining these two physical properties 

for managing the crops and soil moisture. However, Kempen et al. (2012) compared the 

soil maps created based on spatial and non-spatial models, the validation of results showing 

that predictions based on spatial models were not more accurate than predictions based on 

non-spatial models. 

 

 

1.6.5.2 Soil Organic Matter (SOM) 

Soil organic matter has an important role in agricultural fields since it improves soil 

structure and nutrient status, enhances the ability of soil to hold water, its cation exchange 

capacity (CEC) and biodiversity. Perhaps the most important role is improving the soil 

condition for many soil organisms, which in turn is important for nutrient cycling, organic 

matter decomposition, hydrology and gaseous exchange (Oliver et al., 2013). The 

availability of SOM in a sugar beet field can improve the yield by improving soil properties 

and providing the crop with nutrients and especially nitrogen at different growth stages 

(Draycott and Christenson, 2003, Draycott, 2008). As a result of repeated application of 

farm compost, the soil physical, chemical and biological properties were significantly 

improved and the yields of studied crops (potato, fodder beet and maize) were also 

significantly increased. Most of this improvement was correlated to the increase in soil 

organic carbon and total N, which were therefore considered as the main factors likely to be 
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affecting crop productivity (D’Hose et al., 2014). Under different land use conditions 

Shahbazi et al. (2013) found a strong correlation between soil microbial biomass and SOM 

at different spatial scales. Therefore, mapping spatial variation in SOM could provide the 

agronomist with useful information to identify degraded locations with the possibility of 

managing it and doing other agro-environmental improvements accordingly (Lamb and 

Brown, 2001). For this purpose different studies have been conducted and a variety of 

methods have been examined. Karaman et al. (2009a) used a 20X20 m grid for mapping 

SOM in a sugar beet field, and they found spatial variation in both the top and the subsoil 

SOM. They also found that top SOM was more variable (CV=17.8%) than subsoil SOM 

(CV=13.1%). In a study conducted in southern Brazil, the spatial variability in SOM was 

found to be related to soil type, field topography and landscape. Most of the spatial 

variation in SOM was attributed to water erosion in the areas with concave or convex 

topography, as the water erosion was associated with SOM on the slopes and shoulder 

areas, but with higher SOM in lower zones (Amado and Santi, 2011). In another study a 

Kriged map of SOM in a 26 ha field based on 172 samples split the field into three zones, 

while a map of the same field produced from remote sensing images of bare soil 

differentiated the field into seven different zones. Low yielding zones were almost always 

associated with low SOM zones. The remote sensing was found to provide better 

information about the spatial distribution of SOM than the ground based measurements 

(Mulla, 1997). A similar conclusion was also obtained by Debaene et al. (2014), using a 

map produced using visible and near-infrared spectroscopy which showed the same patterns 

of spatial variability in SOM as a map produced from 379 soil samples with the same level 

of accuracy and lower costs. 
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1.6.5.3 Soil pH: 

Soil pH has a significant effect on crop performance such that low pH can significantly 

reduce the concentrations of nutrients available to the plant. Sugar beet in particular is very 

sensitive to acidic soils and it prefers neutral soil pH levels, because low pH can cause 

poor germination and plant establishment, limiting root growth and leading to unreliable 

yields (Draycott and Christenson, 2003, Samson-Bręk, 2010). The measurements of soil 

pH can be used as an indicator of root development and soil condition and are useful to 

derive some management strategies (Scannavino et al., 2011). Spatial variation in soil pH 

can be associated with spatially variable crop yields. Most of the spatial variation in soil 

pH is strongly related to field topography, because it exposes the field to the effect of 

water erosion, which can lead to spatial variation in soil pH (Amado and Santi, 2011). As 

soil acidity affects the concentration of available nutrients, the interpolation maps 

produced by Lamb and Brown (2001), showed spatial variation in soil pH and the areas 

with high pH were associated with a high concentration of magnesium. However, the 

results did not show any significant relationship with crop yield. The spatial variability in 

soil pH at different layers in 58 field locations of Kumeu River Winery, New Zealand, was 

investigated by Scannavino et al. (2011), who found that the upper soil layers (5-15 cm) 

were more acid than the subsoil layers (15-25 and 25-35 cm). However, Cirkel et al. 

(2014) stated that high spatial and temporal variation in soil acidity might be a source of 

systematic error, and the strong relationship between soil pH and crops yield found in 

different studies, was associated with high residual variance. They also found that most of 

this variation in soil pH can be anticipated from soil moisture, as the high correlation 
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between soil pH and crop were observed in the dry plots (93%) and it decreased to 59% in 

the wet plots. 

 

1.6.5.4 Soil available nutrient: 

The main elements that need to be available in large amounts for sugar beet are N, P, S, K, 

Ca, Mg and Na (Draycott and Christenson, 2003). As the crop growth and yield highly 

depend on nutrient availability, the within-field variation in some nutrients is associated 

with spatial variation in yield and quality. For example, a good performance of root crops 

such as sugar beet, needs uniform distribution of phosphorus in the root zone; therefore the 

spatial variation in soil phosphorus could potentially lead to spatial variation in sugar beet 

yield (Karaman et al., 2009b).  Field topography, weather conditions, soil parent material, 

management practices and land use are considered to be the main factors causing spatial 

variation in soil nutrients (Liu et al., 2013, Zhang et al., 2011b). Perhaps the most 

influential one is the field topography including both slope degree and aspect (Godwin and 

Miller, 2003, Zhang et al., 2011b), which expose nutrients to water erosion resulting in 

high nutrient concentrations in some areas and low concentrations in others (Amado and 

Santi, 2011). However, the areas of low nutrient availability are not necessarily associated 

with low crop yield; they might rather produce larger yields than areas of high nutrient 

concentrations. This could be because the yield is limited by factors other than nutrient 

availability or it could be due to the negative effect of supra-optimal concentration of some 

nutrients, a problem that can be exacerbated by uniform fertilizer applications (Griffin, 

2010). Rodriguez-Moreno et al. (2014) investigated the spatial distribution of soil nutrients 
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in two winter wheat fields located in the Czech Republic and its relation to crop growth. 

They found that soil potassium, calcium and nitrogen were the main factors related to the 

spatial variability in crop growth in one field, while the related factor was only soil 

moisture in the other field.  They also found that spatial variability in both crop growth and 

nutrient was related to climate, field topography and soil type. Amado and Santi (2011) 

observed in their study in Southern Brazil, that areas with high concentration of P were 

associated with high concentration of K with a correlation coefficient of 0.68. In another 

study conducted in the Sacramento Valley of California, Simmonds et al. (2013) observed 

temporal change in the spatial distribution of SOM, N, P, K and salts as a result of water 

movement in four rice fields, but they were related to the yield only in the zones with high 

salinity.  Haberle et al. (2004) observed spatial variability in soil N in both top and sub-soil 

layers with almost the same degree of variation, and the relationship between N levels in 

top and sub-soil layer was positive. They also mentioned that N leaching to deep sub-soil 

layers may reduce the negative impact of N on sugar beet, and providing it remains there, 

it can be utilized later. Liu et al. (2006) attribute the variability in available N to soil 

organic matter and cation exchange capacity, which both control the natural N 

mineralization, leaching which reduces the N in the root zone, and some other factors that 

affect N uptake by the crop such as solar radiation and available water. In a study 

conducted by Mulla (1997), the Kriged map shows that the areas of low phosphorus were 

associated with areas of low organic matter, but the areas of high phosphorus did not 

associate with high organic matter. The spatial variation in some soil micro-nutrients such 

as Fe, Mn and Zn was also observed in the study conducted in northeast China by Zhang et 
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al. (2013) and they mentioned that the relationship between soil micro-nutrients can vary 

over different spatial scales.  

The nutrient status of the field has a high potential to be one of the main driving variables, 

or it could interact with other environmental variables and cause spatial variation in crop 

yield over which the farmer has a control over the duration of a single crop. Therefore, the 

spatial variability in available nutrients should be mapped and it is essential to investigate 

their relationship to the variation in crop yield and performance, so that it can be managed 

accordingly when the nutrient is a limiting factor. The map of nutrient status in relation to 

the map of crop yield or biomass can help the farmer to avoid the consequences of the 

uniform fertilization, which may result in over fertilization in some areas and under 

fertilization in others, which in turn increases the costs, wastes the materials and may 

adversely affect the environment (Oliver et al., 2013). The spatial variation in crop yield in 

relation to nutrients can be managed by VRA, which is based on dividing the field into 

different management zones according to nutrient availability. These zones can be 

identified based on spatial data of soil analysis or the crop response obtained from soil 

sampling, remote sensing, electrical conductivity or yield monitoring (Chang et al., 2003, 

Franzen, 2004, Zhang et al., 2010b). However, VRA technique is usually applied based on 

the regional recommendations for fertilizer and it needs to be based on very precise local 

information to avoid any inappropriate application of nutrients, which might lead to the 

same or worse results as may be obtained from uniform application (Bullock et al., 2002). 
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1.6.6 Weeds: 

For sugar beet in particular, the competition for solar radiation by weeds is considered as 

the most influential, as tall weeds can shade the relatively low crop plants and decrease 

photosynthetic rate. Small weeds can also affect sugar beet plants shortly after emergence 

when the crop plants are too small and cannot compete. In both ways weeds affect the 

amount of light received by  the crop, which reduces the dry matter accumulation and 

consequently reduces the sugar yield (Draycott, 2008). Usually weeds are controlled by the 

uniform spraying of herbicides, assuming the uniform distribution of weeds throughout the 

field, while in fact, many weeds tend to appear as patches with a high density in some 

areas and other areas may be weed free or have a low density of weeds. The location of 

these patches and weeds species may also change over time (Thornton et al., 1990, Nutter 

et al., 2011). In addition, the distribution of weeds can be affected by field management. 

For example, using an irrigation system such as a split-bed furrow can cause non-uniform 

weed distribution in the seedline due to the non-uniform distribution of water (Slaughter et 

al., 2008). The information about weed distribution and species is necessary for site 

specific weed control, and integrating the information of soil properties into the weeds 

map can be useful to estimate the losses in crop yield due to weed competition (Gerhards 

and Christensen, 2003). Their results show a significant reduction in the amount of 

herbicides for controlling weeds in sugar beet field site-specifically by an average 36% for 

grass weeds and 41% for broad-leaved weeds.  However, producing an accurate map of 

weed distribution is still challenging and a variety of methods have been examined for 

their reliability in weed mapping. Image capture and analysis are most frequently used as 

the cost effective methods, but light intensity is considered as the main limitation to 



 

68 

 

distinguishing the sugar beet plants from weeds that can affect the red, green and blue 

components (Jafari et al., 2006, Slaughter et al., 2008). Nieuwenhuizen et al. (2007) 

identified about 97% of volunteer potato plants in sugar beet field under cloudy conditions 

and this percentage reduced to 49% under sunny conditions, due to the higher light 

intensity. Machine vision has been found as a useful tool for many other agriculture 

applications, but it cannot be used effectively for weed detection due to overlapping of 

crop leaves (Jafari et al., 2006). Rasmussen et al. (2013) referred to the potential of weed 

detection from altitudes more than 50 m using a fixed wings unmanned aircraft system, at 

this height the image can cover 3000 m
2
 with resolution of 17 m per pixel. However this 

resolution may not be enough to detect weeds at densities important to the farmer. 

 

 

1.6.7 Diseases: 

Sugar beet is sensitive to the various pests and diseases, although their effects have been 

mitigated by developing varietal resistance and using effective pesticides, the yield losses 

due to diseases and pests is a concern. Increasing land productivity usually requires 

intensive plant rotation and agricultural machinery movements, which might contribute to 

an increase in crop infection by some soil borne diseases, especially in Europe (Draycott, 

2008). As the environmental conditions can spatially vary within the field scale, the 

suitable condition for development of some diseases can also vary causing variable 

distribution of biotic constraints. Therefore, considering the spatial variation in some 

environmental variables especially soil properties may be important for site-specific crop 

protection (Patzold et al., 2008). The appearance of beet cyst nematode, Heterodera 
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schachtii, which is causing severe sugar beet losses worldwide, is found to be distributed 

in heterogeneous patches mostly associated with soil texture. In the fields experiencing 

spatial variation in soil properties the distribution of the nematode was moderately to 

strongly correlated to soil EC (R
2
=0.47 to 0.74) indicating to the potential usefulness of 

soil mapping for precision crop protection (Hbirkou et al., 2011). Producing a map 

explaining the spatial relationship between environment properties and the distribution of 

insects, may also be useful in anticipating the outbreak of insect problems and planning for 

their management (French et al., 2011). MacRae (2003) stated that emergence of the adult 

sugar beet root maggot, Tetanops myopaejormis, which is one of the most influential sugar 

beet insects, is highly affected by field topography, which is in turn affected by soil 

moisture. The ability of the insect pests to emerge has been significantly reduced in low 

areas of the field where there is high soil moisture. 

 In a four year study conducted in the Netherlands by Hanse et al. (2011a), the total yield 

losses of sugar beet due to pests and diseases is estimated to be around 30.2% in clay soils 

and 13.1% in sandy soils for top sugar beet growers, rising to 37.1 and 16.7% respectively 

for average growers. This means that the effect of pests and disease on sugar beet may 

vary according to the soil type as well as the growers. They conclude that the main reason 

for lower losses in sugar beet fields of the top growers was due to earlier sowing and more 

fungicide applications compared to the average growers. 

Using remote sensing to detect diseases in a sugar beet field has been found to be feasible, 

as it relates to some vegetative indices such as NDVI that can be measured by remote 

sensing which are higher in healthy crop and lower in infected areas (Laudien et al., 2004, 

Reynolds, 2010). The changes in vegetative indices can happen, due to the decreases in 
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chlorophyll content which start 3 weeks after infection, but did not appear until the crop 

was severely infected and its influence on root yield reached 25-50% (Reynolds, 2010). It 

follows that detection by remote sensing is useful only as historical record, since control 

would need to be implemented long before the problem was detected by remote sensing. In 

many cases, disease control has to be implemented prophylactically and also uniformly, 

due to the rapid distribution of some air borne spores.   

 

 

1.7 Motivation of the study: 

Most agriculturalists are interested nowadays to maximize the yield with the possibility of 

minimizing the agronomic inputs to reduce the costs of production and protect the 

environment. This may partly be achieved by applying precision agriculture approaches, 

which can identify the variation and manage it to improve yields and profitability and also 

reduce the environmental impacts of food production (Oliver et al., 2013). To apply 

precision agriculture, the within-field variability in crop growth and associated 

environmental variables need to be determined. However, the intra-field variability in 

sugar beet yield and quality is generally unknown; therefore, it needs to be quantified in 

relation to soil properties and micro-climate condition. The observed variability in crop 

environment can then be managed by customizing the inputs to the areas where they are 

needed (Lamb and Brown, 2001, Mondal et al., 2011, Najafabadi et al., 2011). 

As a result of the advances in spatial technology such as GPS, remote sensing and machine 

vision, the intra-field variability in yield and biomass of many crops can now be identified 

easily and cheaply (Delegido et al., 2011, Franzen, 2004, Heege, 2013, Rocchini et al., 
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2013, Zhang, 2011), but yield maps are still not available for sugar beet. However,  these 

data represent the crop’s response to stresses, which could have resulted from different 

kinds of stresses such as water deficit, lack of nutrients, mineral toxicity, salinity or crop 

protection issues (Blackmore, 2003, Jones and Schofield, 2008), and therefore, the correct 

interpretation may be unclear without sampling and ground truthing (Zhang et al., 2010b). 

In addition, treating the spatial variability  late in the season might be useless, especially in 

the case of sugar beet, because the accumulation of dry matter and sucrose start early in the 

season (Draycott, 2008). Therefore, predicting and treating the within field variation in 

sugar beet growth and development early in the growing season can add great value to the 

implementation of precision agriculture. Thus identifying the main factors causing early 

season variation and their correlation with final yield and sugar content was a major topic 

for study in this thesis. 

In addition, the yield map provided by the combine harvester for the crops preceding sugar 

beet such as winter wheat or rapeseed also need to be examined for their utility in 

predicting the spatial variation in sugar beet yields. Although, they might not show the 

same patterns of variation because the crop is different and the environment can differ 

from one year to another (Blackmore, 2003), the long term variation such as that caused by 

field topography and soil type can be consistent over many years and the variation in some 

factors such as soil moisture can follow the same patterns (Vieira et al., 2008). Yield maps 

were available for two out of three fields studied, and so this correlation has been 

investigated. 

The sugar beet growth model developed in Brooms Barn Research Station has been used 

in various studies to simulate sugar beet yield in relation to weather conditions (Jaggard et 
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al., 2009, Jaggard et al., 2007, Qi et al., 2005, Richter et al., 2006). However the model 

used to predict sugar beet yield has always been based on regional weather data 

considering one soil type, while the incident solar radiation, air temperature, soil moisture, 

and soil properties can all be affected by field topography including both aspect and slope, 

which may cause spatial variation in evapotranspiration, photosynthesis and crop yield (Fu 

and Rich, 1999, Godwin and Miller, 2003, Pachepsky et al., 2001a, Zeleke and Cheng, 

2004, Zhang et al., 2011b). Therefore the sugar beet growth model has been applied and 

developed here to simulate sugar beet growth and yield based on the micro-climate taking 

into account the within field variation in solar radiation, air temperature, soil moisture and 

soil type.  

 

 

1.8 Study objectives and hypotheses: 

Within-field variability in sugar beet yield, growth and associated environmental variables 

has been investigated under the topic “Towards More Precise Sugar Beet Management 

Based on Geostatistical Analysis of Spatial Variability within Fields”. The general aims 

were to map within-field variability in sugar beet yield and growth in three commercial 

fields and identify the main associated variables in order to provide information, which 

might be useful for precise management of sugar beet crop. A subsidiary objective was to 

examine the feasibility of modelling and anticipating the spatial variation in sugar beet 

yield based on early assessment of the micro-environment and crop growth which might 

add value to spatially variable applications of crop inputs.  
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1.8.1 Objectives: 

1- To identify the main variables associated with spatial variation in sugar beet 

growth and in root and sugar yield; 

2- To examine the possibility of early prediction of spatial variation in sugar beet 

yield based on measurements of crop condition and biomass taken early in the 

growing season. 

3-  To assess the possibility of using the yield map of the crop preceding sugar beet in 

the rotation to predict the spatial variation in sugar beet crop.  

4- To adapt and validate the sugar beet growth model developed in Brooms Barn 

research station for modelling spatial variation in sugar beet growth and yield 

across individual field.  

 

1.8.2 General hypothesis: 

1- The main variables correlated with spatial variability in sugar beet could be the 

field topography, soil texture and soil organic matter through their effects on other 

soil properties and the micro-climate, 

2- Variation in some environmental variables and crop biomass observed early in the 

growing season can be used to predict the spatial variation in the yield and quality 

of sugar beet at harvest, 

3- The yield map of crop preceding sugar beet can be a useful tool for predicting the 

spatial variation in the yield and quality of sugar beet. 
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4- The within field variation in sugar beet yield can be simulated using the Broom’s 

Barn sugar beet growth model based on spatial variation in micro-environment in 

the field .   

 

1.9 Thesis outlines: 

 Chapter 2 explain the general materials and methods and the study sites used for 

this study; 

 Chapter 3 present results of statistical and geostatistical analysis of some 

environmental variables and examines the relationship between them. 

 Chapter 4 considers the spatial variation in sugar beet growth, yield and quality in 

relation to the spatial variability in the studied environmental variables and the 

possibility of predicting the spatial variability in sugar beet yield at harvest based 

on early assessments of crop growth and the yield map of  the previous crop. 

 Chapter 5 considers the methods, the results and discussion of modelling sugar beet 

growth based on micro-environment. 

 Chapter 6 presents the general discussion of the previous chapters and provides an 

overview for general conclusions from those chapters and hypothesis testing. 
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2. Chapter Two: Research Methodology. 

This chapter considers the general methodologies that have been used in this thesis to 

obtain the data used in most of the following chapters. However, methods particular to a 

specific chapter are described in more detail in that chapter. 

 

 

2.1 Research sites: 

The field work has been conducted in the east of England, where sugar beet production is 

located (Richter et al., 2006). The presence of sugar beet factories, sugar beet farmers with 

efficient equipment and knowledge, and at the time, Brooms Barn sugar beet research 

station in this region facilitated this study. Three commercial sugar beet fields were 

selected in collaboration with BBRO, British Sugar, Brooms Barn, Agrii and Trumpington 

farm company on the basis of known intra-field variability in soil type and aspect that 

there was likely to be significant spatial variation in factors deemed likely to be important 

as driving variables for sugar yield. Two of these fields namely White Patch in Brooms 

Barn research station and T32 in Trumpington estate near Cambridge were selected for the 

2012 growing season, and one field, which is called WO3 and located in Great Shelford 

near Cambridge, was selected for 2013 season. Some details of these three fields and 

agronomic practices provided by the farmers are presented in Table 2-1 and their locations 

are identified in Fig. 2-1. Crop management and field operations differed from one field to 

another, but they were uniform across each field, the farmer being responsible for all 

operations. 
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2.1.1 White Patch field in 2012: 

The field is located in Broom’s Barn sugar beet research station in the geographic 

coordinates 52.25 °N and 0.5728 °E. Its area is around 9 ha and it is called White Patch 

due to the presence of areas with high concentration of chalk, which makes it appear to 

have a white patch in aerial images. There was a slope in this field starting from the south 

west corner (82 m above sea level) toward the east and north east corner (65 m above sea 

level) with an average gradient of 4 % (Fig. 2-2). According to the soil analysis at Brooms 

Barn farm using a regular 40x40 m soil sampling grid (5 samples per ha), reported by 

(Draycott and Evans, 2012), the field has three different soil types; loam, calcareous loam 

and calcareous sandy clay loam (Appendix 1.1). This information provided an initial 

picture of spatial variation to identify the number and the allocation of samples needed in 

the present study (Webster and Lark, 2012). Parts of White Patch field were not however, 

available for this study due to the presence of other experiments, but 91 plots were 

distributed in the field to represent all three types of soil (Fig. 2-3). 

 

 

2.1.2 T32 field in 2012: 

This field was also selected for the 2012 growing season and it is located in Trumpington 

estate approximately 2 miles to the south of Cambridge city centre in geographic areas 

52.18 °N and 0.105 °E and it belongs to the Trumpington Farm Company. The area of the 

field is around 12 ha and it includes a small slope in the eastern side with an average 

gradient of 3% and some areas with gravel (Fig 2-3). Some information about the spatial 

distribution of some nutrients was also available (Appendix 1.2.), but only based on 12 soil 
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samples (one per ha). Therefore it was not reliable enough to guide sampling, in contrast to 

White Patch, because the small number of samples with large intervals cannot adequately 

represent the scales of the variation in an agricultural field (Kerry et al., 2010). 

 

 

2.1.3 WO3 in 2013: 

This field was selected for the 2013 growing season. It is located in Great Shelford three 

miles in the southeast of Cambridge city centre and three miles east of T32 field in the 

geographic area 52.167 °N and 0.1432 °E. It is also belongs to the Trumpington Farm 

Company. The total area of the field is around 29 ha, but the study was confined to 

approximately 12 ha in the western part of the field (Appendix 2.2), which was more 

variable in soil types according to the recent soil analysis of the field again based on one 

sample per hectare (Appendix 1.3). It also involves a high slope from southwest (38 m 

above sea level) toward northeast (18 m above sea level) with an average gradient of 4.3 % 

(Fig 2.4), and this part of the field was selected due to an expected effect on soil properties 

and microclimate which might in turn affect the crop yield.  

The yield maps produced by the combine harvester for two crops preceding sugar beet 

(rapeseed and winter wheat) were available for WO3 and for the immediately preceding 

winter wheat in T32 (Appendix 2.1). These maps were useful for sampling in particular for 

WO3 in 2013 (Appendix 2.2), as it was helpful to select the part of the field which showed 

more small scale variation for this study.  
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Figure 2.1: Study sites and the locations of the fields and weather stations overlaid on Google Earth 

map in 8th of September 2014. 
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Table 2.1: The area, variety planted, number of samples, date of planting and harvesting, previous crop and some field operation during the growing season at 

each field. 

Applications White Patchfield T32 field WO3field 

Field area ha 9 12.2 12 ha identified from 29 

Variety planted Valeska Bullfinch SY Muse 

Number of plots identified 91 90 114 

Date of planting 23/03/2012 16/03/2012 05/03/2013 

Date of harvesting the plots 24/09/ 2012 02/10/2012 26/11/2013 

Previous crop Winter wheat Winter wheat Winter wheat 

 

Nitrogen fertilization 

40 kg N/ha on 03/April/2012 

80 kg  N/ha on 13/April/2012 

58.3 kg N/ha on 23/March/2012 

80 kg N/ha on 25/May/2012 

60 kg N/ha on9/April/2013 

 

 

 

 

 

Herbicide applications 

1. 1.25L Betanal Maxxpro+1L 

Bettix Flo + Oil at 1L/ha applied 

on 17/May/2012, 

2. 1.25L BetanalMaxxpro+ Venzar 

at 0.4L /ha applied on 

24/May/2012, 

3. 1.25L BetanalMaxxpro+ Venzar 

at 0.4L /ha applied on 

24/May/2012. 

 

1. 3L/ha Takron (06237) applied on 

22/March/2012, 

2. 2.5L/h Beetup+0.39 L/ha 

Oblix500+20.5g/h Debut+0.4L/ha 

Venzar Flo+0.5L/h Defiant SC + 

1.033L/ha Cropspray 11E  applied 

on 17/May/2012 

3. 2.5L/ha OptE Man+5.16 kg/ha 

Bittersalz+0.55 L/ha Laser+1L/ha 

Cropspray 11E applied on 

22/July/2012 

1. 4 L/ha Takron (06237) applied on 

14/March/2012, 

2. 1 L/ha Beetup+0.45 L/ha 

Oblix500+0.8 L/ha Target SC+1 

L/ha Opteman applied on 

25/April/2013, 

3. 1.6 L/ha Beetup+1.55 L/ha 

Defiant SC +0.8 L/ha Target 

SC+1.13 L/ha Opteman applied 

on 07/May/2013, 

4. 2.46 L/ha Beetup+0.5 L/ha 

Defiant+1 L/ha Cropspray 

11E+0.45 L/ha Oblix500+30 g/ha 

Debut applied on 17/June/2013 
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2.2 Sampling strategy: 

The sampling scheme followed in this study was designed to assess the spatial dependency 

in the data and describe within field variation in yield and associated environmental 

variables (Khosla et al., 2010) using geostatistics. To map within field variation, the 

sampling protocol was designed to represent the scales of the variation (Kerry et al., 2010), 

because the best prediction of spatial variation depends on collecting high quality and 

representative data (Minasny and McBratney, 2007). Therefore, a suitable number of 

sampling locations (plots) were identified in each field with some nested samples to 

quantify the variation over shorter distances and the nugget effect (Webster and Oliver, 

2007, Webster and Lark, 2012). The sampling strategy followed in this study was an 

irregular grid in two dimensions in the three fields, but the number of samples and the 

intervals differed from one field to another. In the 2012 season, 91 plots were identified in 

White Patch field, and the sampling intervals for most of the plots ranged between 24 and 

40 m for the main plots, and 10 m for nested samples (Fig. 2.2). In the same season, 90 

plots were identified in T32 field with 40 m intervals and 20 m for nested samples (Fig. 

2.3). In the 2013 season in WO3 field, the number of samples was increased to 114 plots 

with 36 m intervals for the main plots and 9 m for the nested samples in order to improve 

the variogram and to represent the scales of the variation (Fig. 2.4). The availability of a 

yield map of the previous crop in WO3 and a soil map in White Patch was important to 

guide sampling, especially to identify the location of the nested samples, which can 

enhance the accuracy of the predicted maps (Pereira et al., 2013).  
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Figure 2.2: The elevation map of White Patch field (9 ha) in 2012 and the distribution of sampling 

points, (   ) plots without loggers, (    ) plots with air temperature loggers and (   ) plots with both soil 

and air temperature loggers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The elevation map of T32 field (12 ha) in 2012 and the distribution of sampling points (   ) 

plots without loggers, (   ) plots with air temperature loggers and (   ) plots with both soil and air 

temperature loggers. 
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Figure 2.4: The elevation map of WO3 field (12 ha) and the distribution of sampling points (   ) plots 

without loggers, (    ) plots with air temperature loggers and (   ) plots with both soil and air 

temperature loggers. 

 

Therefore, the nested samples in WO3 field were mostly located in the areas that seemed 

to have short range variation, but in White Patch field their allocation was designed to 

represent the different soil types and field aspects in addition to revealing small scale 

variation. In T32, their location was systematically identified between the main rows, 

because there was no clear small scale variation in the yield of the previous crop. The field 

headlands and tractor wheelings were avoided when sampling. The area of each plot was 

2x2 m in all three fields and included four rows of crop which was planted with 50 cm 

between rows in each field. 
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2.3 Measurements: 

2.3.1 Soil properties: 

From each of the identified 2X2 m plots, three cores of soil were taken diagonally from 0-

30 cm depth using a Dutch auger with 5 cm diameter. The three cores of the soil were 

mixed thoroughly in one polythene bag to represent the area of the plot. These samples 

were then air dried by spreading out in the glasshouse with good ventilation for 2 to 4 days 

according to the wetness of the samples. Once air dry, the samples were ground using a 

mortar and pestle and sieved through a 2 mm diameter sieve. The samples were again put 

in the plastic bags and kept in a cold room (2-4°C) prior to laboratory analysis. They were 

air dried again under laboratory conditions for at least 24 hours before starting each 

analysis and followed by oven drying for some specific analysis. 

 

 

2.3.1.1 Soil particle size analysis: 

The percentage of each soil particle size were identified using a simplified hydrometer 

method  (Sheldrick and Wang, 1993). This method can identify the percentage of each soil 

component (clay, sand and silt) based on estimating the density of soil suspension using 

Bouyoucos hydrometer after 40 seconds of settling the solution and repeating it after 2 

hours. However, reading the hydrometer scale is difficult when there is a high 

concentration of undecomposed organic carbon, but this can be solved by adding one or 

two drops of octan-2-ol (Loveland and Whalley, 2001).  
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2.3.1.2 Soil organic matter (SOM): 

The total soil organic matter was determined in each sample using the Loss-On-Ignition 

(LOI) method  (Ben‐Dor and Banin, 1989, Jones Jr, 1999). Approximately 10 g of 2 mm 

air dried soil was placed in a ceramic container and weighed. After recording the weight 

(soil sample + container) the samples were oven dried at 105 °C for at least 4 hours. Then 

the samples were placed in the desiccators to cool, weighed again and placed in a muffle 

furnace at 400 °C for at least 8 hours. The difference in weight after drying at 105 °C and 

400 °C estimates the total organic matter. 

For spatial prediction of soil organic matter, Frogbrook and Oliver (2001) showed that the 

LOI method overestimated organic matter content compared with acid dichromate 

oxidation, due to the loss in some other components during the ignition. However the 

variogram and the produced maps of organic matter estimated by both methods showed 

similar patterns of the spatial variation indicating to the utility of LOI to describe the 

spatial variation in soil organic matter (Frogbrook and Oliver, 2001). 

 

 

2.3.1.3 Soil nutrients: 

The available soil nitrate, phosphate, potassium and magnesium in mg/l were estimated for 

each sieved and air dried soil sample using Soil Test model 10 produced by Palintest Ltd, 

Palintest House, Kingsway, Team Valley, Gateshead, Tyne & Wear, UKN, E1 1 ONS. The 

instructions in the Palintest (Soil Test 10) manual were followed for the analyses. A plastic 

container was filled to 50 ml mark with deionised water, 2.5 ml of N or K extraction 

powder was added for extracting N or K, while for P and Mg, five P or Mg extractions 
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tablets were added. Then the container was capped and shaken to dissolve the 

powder/tablet and 2 ml soil was added for each N, P or K, and 10 ml for Mg. The tubes 

were capped again and shaken for 1 minute before being filtered into another container. 

From the filtered solutions 10 ml of each N and K solution, 1 ml of Mg solution and 2 ml 

of P solution were placed in 10 ml photometer tubes. The volume was made up to 10 ml 

mark with deionised water for Mg and P, and then a specific reagent tablet for each 

element was added and left for 2 for K and 10 minutes for N, P and Mg for colour to 

develop. Finally, the photometer reading was reset to zero by inserting a blank tube, then 

the sample tube inserted and the results were displayed as a form of digital readout. 

 

 

 

2.3.1.4 Soil pH and conductivity: 

The pH and conductivity (EC) meters of Palintest Soil Test 10 were used to measure soil 

acidity and electrical conductivity in each sieved and air dried soil sample. For soil pH, 4 

ml of soil were placed in the plastic tube and made up to 10 ml with the deionised water. 

For electrical conductivity the plastic tube was filled with 50 ml deionised water to which 

10 ml of soil was added.  The plastic tubes were capped and shaken for one minute, then 

the meters were immersed and readings were taken for pH and the unit of EC was 

microsiemens (µS) .  The meters were rinsed before and after use with deionised water.  
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2.3.2 Micro-climate factors: 

2.3.2.1 Soil temperature: 

To record soil temperature, five loggers (MadgeTech, Temp1000IS: Logger Shop 

Technology, 189 Ashley Road, Poole, Dorset, BH14 9DL, UK) were buried in the soil at a 

depth of 10 cm at five different locations in White Patch and T32 fields in 2012. These 

loggers were set up to record the soil temperature at 15 minutes intervals throughout the 

growing season. Unfortunately, these loggers failed to record the data in WO3 in 2013 due 

to a fault in the loggers. These five locations were chosen purposefully according to the 

differences in the soil type and the topography (Fig. 2.2, 2.3, 2.4), and the loggers were put 

in the field after crop emergence. Five loggers are insufficient to allow geo-spatial analysis 

of soil temperature, but might give an idea whether it does differed spatially and its 

relation to air temperature and other variables. 

 

 

2.3.2.2 Canopy temperature: 

To record the crop canopy temperature and humidity 45 data loggers (iButton DS1922L 

Thermocron temperature and DS1923 Hygrochron temperature) manufactured by Dallas 

Semiconductor (16 Kingfisher Court, Newbury, Berkshire RG14 5SJ, UK) were 

distributed in each field in 2012. The number was increased to 90 loggers in WO3 in 2013. 

These loggers were installed when the plants had a canopy (two pairs of real leaves) at 31
st
 

of May 2012 in White Patch and T32 and 22
nd

 of May 2013 in WO3. The loggers were set 

up to record canopy temperature every 30 minutes during the growing season. There was 

an attempt made to shield these from direct solar radiation, wind, rain and wild animals by 
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placing them in the crop canopy in 2012 season. In the 2013, loggers in WO3 were 

covered by polystyrene cups (size 12 oz), and these cups were covered with aluminium foil 

to reflect the direct solar radiation (Fig. 2.6). Since the memory was not large enough to 

save the data for entire season, the data were downloaded approximately every month and 

the heights of the loggers in the canopy were adjusted at the same time. The daily average, 

minimum and maximum temperature were calculated for each plot along the growing 

season. Because the canopy temperatures were only recorded in 45 plots in each of White 

Patch and T32 fields in 2012, the values at the plots where there were no loggers was 

estimated by averaging the data of the neighbouring sensors located within a 25 m radius.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: The polystyrene cups covered with aluminium foil to protect the loggers. 
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In order to understand how the soil temperature is affected by the canopy temperature; 

these data were compared with soil temperature in plots which included soil and air 

temperature loggers. In addition, these data were one of the inputs for the sugar beet model 

as applied to each plot. To visualize the spatial variation in canopy temperature, the 

average monthly temperatures were calculated for each month and plot and the maps were 

produced for each field using the ArcGIS software Editor 10 (ESRI, Redlands, CA, USA). 

 

 

2.3.2.3 Soil volumetric moisture content: 

The soil volumetric moisture content was measured at different growth stages and readings 

were taken at three different locations in each plot. For this purpose a theta probe ML2 

manufactured by Delta-T Devices (130 Low Road, Burwell, Cambridge, CB25 0EJ, UK) 

with 10 cm probe length was used initially in the two fields in 2012, while later readings in 

2012 and all readings in 2013 were taken using FieldScout TDR 300 soil moisture meter 

produced by Spectrum Technologies (3600 Thayer Court, Aurora, IL 60504, USA) with a 

20 cm probe length to measure the soil moisture to a greater depth. Although the recorded 

data were not in time series along the growing season, at each time the soil moisture 

measured the readings from all plots were taken within a period of 2-3 hours and when it 

was not raining.  This provided some important information about the spatial distribution 

of soil moisture in the field which relates to the ability of the soil at different locations of 

the field to retain water and its relation to crop growth and performance. 
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2.3.3 Crop growth assessment: 

2.3.3.1 The percentage of solar radiation interception: 

The percentage solar radiation interception was measured for each plot at different growth 

stages using the Ceptometer AccuPAR model LP-80 produced by Decagon devices (3735 

Myrtle Street, Burnaby, BC V5C4E7, Canada). The readings of Photosynthetically Active 

Radiation (PAR) from above and below the canopy were taken at three different locations 

in each plot and the differences between above and below values represent the amount of 

solar radiation intercepted by the crop canopy. The amount of incident radiation can 

change rapidly causing large differences in the absolute readings. Therefore, data has been 

normalized by calculating the percentage of solar radiation intercepted by the crop at each 

location.   

 

 

 

2.3.3.2 Leaf Area Index (LAI): 

The Leaf Area Index was also estimated by the Ceptometer during measuring solar 

radiation interception. The AccuPAR calculates LAI based on the equation developed by 

Norman and Jarvis (1974) to estimate the scattered and transmitted PAR as follows: 

 

  𝛕 = 𝐞𝐱𝐩 {
𝐀(𝟏−𝟎.𝟒𝟕𝐟𝐛 )𝐋

(𝟏−
𝟏

𝟐𝐤
)𝐟𝐛−𝟏

}                                Equation 2. 1 
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Where τ is the fraction of transmitted PAR, A=0.283+0.785a+0.159a
2
 where a is the 

absorptivity of the leaf at PAR wavelengths and is assumed it to be equal to 0.9,  fb  is the 

fraction of incident of PAR, and K is the extinction coefficient of the canopy which can be 

calculated using the equation simplified by Campbell (1986) as follows: 

 

                                        𝐊 =
𝟏

𝟏 𝐜𝐨𝐬 𝚹
                                         Equation 2. 2                                      

 

Where ϴ  is the zenith angle of the sun, and LAI can be calculated by inverting the 

equation 2-1 as follow; 

 

                                   𝐋 =
[(𝟏−

𝟏

𝟐𝐤
)𝐟𝐛−𝟏]𝒍𝒏𝛕

𝐀(𝟏−𝟎.𝟒𝟕𝐟𝐛 )𝐋
                              Equation 2. 3                                 

 

All these calculations were done automatically when measuring above and below canopy 

PAR.  

 

 

2.3.3.3 Plant population: 

The length of the plot was extended another 2 metres (4 X 2 m) for this purpose and the 

number of plants was counted within 8 m
2
 (16 m length of the crop row) in 17 and 18 of 

May 2012 respectively in White Patch and T32 fields and 13 of June 2013 in WO3 field, 

and used to estimate the plant population /ha. 
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2.3.3.4 The percentage of crop canopy cover: 

To identify the within-field variability and the temporal changes in crop foliage cover, the 

images of the plots were captured using a hand held camera (Nikon D90 12MP DSLR 

Camera with 18-105mm VR Lens) and analysed using WinDIAS 3 software, version 3.2 

manufactured by Delta-T Devices. The images were captured at three different stages 

during growing season; 01/June, 02/July and 13/August 2012 in White Patch and 01/June, 

17/July and 17/August in 2012 in T32 field, and 20/June, 16/July and 17/August 2013, in 

WO3. 

The relative canopy growth rate (CGR, %d
-1

) was calculated from the data of crop canopy 

cover for the period from 1
st
 of June to 2

nd
 and 17

th
 of July 2012 in White Patch and T32, 

respectively, and from 20
th

 of June to 16
th

 of July 2013 in WO3 as follows: 

 

𝐂𝐆𝐑 =
𝐂𝐚𝐧𝐨𝐩𝐲 𝐜𝐨𝐯𝐞𝐫 𝐢𝐧 𝐉𝐮𝐥𝐲−𝐂𝐚𝐧𝐨𝐩𝐲 𝐜𝐨𝐯𝐞𝐫 𝐢𝐧 𝐉𝐮𝐧𝐞

𝐂𝐚𝐧𝐨𝐩𝐲 𝐜𝐨𝐯𝐞𝐫 𝐢𝐧 𝐉𝐮𝐧𝐞∗𝐍𝐮𝐦𝐛𝐞𝐫 𝐨𝐟 𝐝𝐚𝐲𝐬
∗ 𝟏𝟎𝟎       Equation 2. 4 

 

2.3.3.5 Weed assessment: 

Weeds were assessed in each plot and estimated as weed population/m
2
. The weed 

population comprised different weed species associated with growth of sugar beet plant. 

The main weeds in White Patch and T32 fields in 2012 were Mayweed (Matricaria sp.), 

Speedwell (Veronica hederifolia), Fat-hen (Chenopodium album), Black-grass 

(Alopecurus myosuroides), and Wild Oat (Avena fatua). In WO3 in 2013 the main species 

were only Black-grass and Brassica (Brassica napus).  
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2.3.4 Post-harvest measurements: 

The plots were harvested a few days before the commercial harvest of the field. In White 

Patch field, T32 and WO3, the plots were harvested on 25
th

 September 2012, 2
nd

 October 

2012 in 2012, and 26
th

 November 2013 respectively. The two central rows from each plot 

were harvested in the 2012 season, while due to the poor plant establishment in WO3 field 

in 2013; the area was increased for some plots to the whole plot or in some cases double 

plot (4X2 m) to obtain the required weight of beets for the analysis, which was 

approximately 15 kg. The leaves were severed from the roots by cutting just below the 

crown using knives designed for this purpose. The roots were then put in the large white 

woven polypropylene sacks size 30X45 cm, labelled and then sent within 16 hours to the 

British Sugar factory in Wissington for analysis in exactly the same way as for commercial 

farmers. 

At the sugar factory the roots were weighed, washed to remove soil and weighed again for 

final fresh tare weight of roots in kg, which was multiplied by different amounts according 

to plot area. The clean samples then went through the factory system to determine the 

sugar content based on polarimetry methods, while the flame photometry was used to 

measure impurity and the root content of amino acids and potassium in mg/100 gm of beet 

as for commercial fields. All these processes at the sugar factory are based on the Official 

and Tentative Methods Recommended by the International Commission for Uniform 

Methods of Sugar Analysis (ICUMSA) which is described by Whalley and Siegfried 

(1964). 

After estimating the root yield (t/ha) and sugar content for each plot, the sugar yield (t/ha) 

was then computed as follows; 
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Sugar yield (t/ha) = Root yield (t/ha) × % Sugar        Equation 2. 5                

 

And the yield value (£/ha) was calculated as follow; 

 

Yield value (£/ha) = [Roots yield (t/ha) × the price of tonne of root (£/t)] × F 

Equation 2. 6 

The price per tonne of root was £27.53 in the 2012 season and £26.51 in the 2013 season. 

F= fixed adjustment to value for each %sugar as applied to commercial sugar beet crops 

(Appendix 3) (Walters, personal communication). 

Since the price per tonne of roots is constant for all plots and the differences in adjustment 

value were small between the plots, yield values showed similar patterns of the variability 

between plots as roots or sugar yield. The main advantages of calculating the yield value 

(£/ha) is to describe the variation in the financial outputs. As the input costs incurred by 

the farmer were uniform throughout the field, the variation in yield value shows the areas 

of the field of high and low profitability and areas where possible intervention could 

improve the economic benefits (Blackmore, 2003). 

 

 

2.4 Yield map of crop preceding sugar beet crop: 

For the spatio-temporal prediction of within field variability in sugar beet yield based on 

the yield map of the previous crop, the yield maps of crops preceding sugar beet in the 

rotation from the combine harvester (2007 Claas Lexion 580+ on tracks) were available for 
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T32 and WO3 fields at the Trumpington farm company (Appendix 2). This harvester 

estimates the crop yield (t/ha) based on mass flow and assigns the measured yield to 

georeferenced locations in the field (Demmel, 2013). The yield maps were available for 

winter wheat in T32 and WO3 in 2011 and 2012, respectively and for oilseed rape in WO3 

in 2011. The raw data of yield and the GPS coordinates underlying these maps were 

obtained and used for further analysis in this study.  These data usually contain many 

outliers, which usually appear as a result of different kinds of errors associated with the 

harvest operation (Blackmore, 2003, Chu Su, 2011). Therefore the raw data were 

examined to determine and remove any anomalous values in a process which is usually 

called data cleaning or data filtering. The procedure followed was to omit points with zero 

value, values less than half of the mean yield or more than one and half times the mean 

yield and, points with no georeferencing coordinates (Kerry, 2003).  

For correlating the yield map of sugar beet which is measured at points away from each 

other with the yield map of previous crops, it was important to find the value of previous 

crops at the points where sugar beet yield was measured. As the yield data of the previous 

crop is very densely sampled and may not be exactly coincident with plots where sugar 

beet yield measured, the yield data of previous crop were averaged at four neighbouring 

points in different directions of each plot (Griffin, 2010). An example of this processing is 

given in Appendix 4. Since the previous crops are different (winter wheat in T32 field and 

winter wheat and oilseed rape in WO3), it was necessary to avoid the unit (t/ha) in order to 

compare between different crops. Therefore, the values at each point were standardised as 

percentage of the mean value of the field, which show how the yield at each point can 
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deviate from the mean of the field, and it is calculated as described by Blackmore (2000) 

as follows: 

 

𝐬𝐢 = (
𝐲𝐢

ȳ
) 𝐗 𝟏𝟎𝟎    Equation 2. 7 

 

Where siis the standardised yield (%) at point i, yi is the yield (t/ha) at a certain point and 

ȳ is the mean of the yield for that year. The results of this equation which is also called the 

relative percentage yield were averaged at each point to produce the spatial trends map. 

To identify the parts of the field, which were relatively low output in one year and high 

output in other year comparing to the mean, the temporal variance for each point was 

calculated using the equation described by Blackmore et al. (2003) as follows: 

 

𝛔𝐢
𝟐 =

∑ (𝐘𝐭,𝐢−ȳ𝐭)𝟐𝐭𝟐
𝐭𝟏

𝐧
   Equation 2. 8 

 

Where σi
2 is the temporal variance at plot i, t1 and t2 is the time in years between 2011 and 

2013 in WO3 field and between 2011 and 2012 in T32 field, Y is the yield in year t at plot 

i, and ȳt is the mean of the yield for the whole field in years t, and n the number of year 

included. 

Any part of the field with low temporal variance will be considered as temporally constant, 

because the yields in different years are close to the mean. Parts with high temporal 
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variance are considered as temporally inconstant, because it tends to be highly productive 

in some years and low in other years (Blackmore et al., 2003). 

 

 

 

 

2.5 Weather data: 

The locations of weather stations used in this study are shown in Fig 2.1. The weather data 

of White Patch field in 2012 season were provided by Rothamsted Research Station based 

on the weather station located 300 m from White Patch field. For T32 and WO3 fields in 

2012 and 2013 seasons, the weather data were downloaded from the Centre for 

Environmental Data Archival (CEDA) Web Processing Service (http://ceda-

wps2.bdc.rl.ac/ui/home), which provides the weather observations throughout the UK from 

1859 to the present. The Botanic Garden station at the University of Cambridge was the 

nearest weather station (approximately 1.3 miles northeast of T32 field and 2.0 miles north 

of WO3 field). The minimum and maximum temperatures (°C) of each site and season 

were based on average of daily observations and the rainfall (mm) was based on daily 

amount. The data of solar radiation was also required for this study, especially for adapting 

the crop growth model, but it was not available at those stations. The Linton: Chilford Hall 

in Cambridgeshire was the nearest station to provide the data for solar radiation. This 

station is located approximately 14 miles southwest of White Patch field and 8-10 miles 

southwest of T32 and WO3. The summary of weather data for all the sites and season is 

given in Fig 2.6 and 2.7. 

http://ceda-wps2.bdc.rl.ac/ui/home
http://ceda-wps2.bdc.rl.ac/ui/home
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In general, the 2013 season in WO3 was colder than the 2012 season in both sites at the 

beginning of the growing season (Fig 2.6), and then the maximum temperature increased 

and became warmer in the middle of growing season compared to the 2012 season. The 

cold period (<5 °C) in WO3 in 2013 was long (from January to middle of March) 

compared to the 2012 season in the other two fields. In both sites in 2012 the average, 

minimum and maximum temperatures followed similar patterns with small fluctuations 

from one month to another (Fig 2.6 A and B).  The highest mean daily temperature 

recorded was in August 2012 reached 22.55°C in Brooms Barn and 21.2°C in 

Trumpington, while it reached 23.85°C in August 2013 in Shelford.  In 2013 season, the 

low minimum air temperature during March (<1°C) was associated with low soil 

temperature  (2.7°C), while the mean soil temperature was not affected so much by the air 

temperature in 2012 and it was much warmer (6 and 8 °C) respectively in Trumpington 

and Brooms Barn (Fig 2.7. A-C).  The highest soil temperature in August in both sites and 

seasons was 17 and 18 °C respectively in Trumpington and Brooms Barn in 2012 season, 

while it was higher and reached 20.73 °C at WO3 in 2013. The warmer period (June and 

July) in 2013 in Shelford was also much drier than the 2012 season in both sites (Fig 2.7 

D-F).  The amounts of precipitation were lower 14.9 and 43.6 mm in June and July 2013, 

respectively compared to the same period in 2012. In general the amount of precipitation 

was higher in 2012 growing season (March to September), as it reached 502 and 441 mm 

in White Patch and T32 respectively, while in 2013 season in WO3, although the growing 

season was longer (March to end of November), but the amount of precipitations was only 

401 mm. 
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Figure 2.6: The monthly average, minimum and maximum temperatures (°C) at (A) Brooms Barn and 

(B) Trumpington in 2012, and (C) at Great Shelford in 2013 (Rothamsted and CEDA). 
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Figure 2.7: The left hand side (A- C) is the soil temperature (degrees Celsius) to 10 cm depth 

respectively at Brooms Barn and Trumpington in 2012 and Shelford in 2013; the right hand side (D- 

F) is the monthly amount of precipitation (mm) respectively at these locations (Rothamsted and 

CEDA). 
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2.6 Geographic coordinates and altitude data: 

An accurate georeferencing of the points at which the measurements were taken was 

essential for subsequent analysis. For this study differential Global Positioning System 

(dGPS), Trimble Nomad 900B Mobile Computer (The Barcode Warehouse Ltd, Telford 

Drive, Newark Industrial Estate, Nottinghamshire, NG24 2DX) was used for 

georeferencing the plots in White Patch and T32 field in 2012, while in the 2013 season 

RTK GPS type Topcon grs-1 (Topcon Positioning Systems, Inc., 7400 National Drive, 

Livermore, CA USA 94550) provided more accurate georeferencing in WO3 field. The 

device was located in the centre of each plot and the latitude and longitude data were 

recorded in decimal degrees (WGS 1984) and then transformed to British National Grid 

Reference. The altitude data for each plot in White Patch field were estimated when 

georeferencing the plots using the Nomad, while more dense altitude data were available 

from the yield maps of the previous crops for T32 and WO3 fields. The altitude data were 

then used to estimate the slope and aspect of each plot and produce the digital elevation 

map. 

 

 

2.7 Field topography: 

The elevation maps which show some topographic features of each field were created 

based on the elevation data provide by the GPS in White Patch field and the combine 

harvester in T32 and WO3 fields using ArcGIS Editor 10 (ESRI, Redlands, CA, USA). 



 

101 

 

Then the slope and aspect were identified for each point in order to calculate the amount of 

solar radiation received by each plot from the global solar radiation which in turn was used 

for spatio-temporal simulation of sugar beet yield and described in detail in Chapter 5. 

Because the studied areas were relatively small fields, there were no complex topographic 

features such as a lot of undulations. However, each field included a slope with different 

heights and aspects, which are likely to influence the micro-environment especially the 

incident solar radiation and some soil attributes. 

 

 

2.8 Data Analysis: 

2.8.1 Statistical Analysis: 

2.8.1.1 Data exploration: 

For any statistical analysis, it was important to explore the data and the possible methods 

of the analysis were then decided. Summary statistics including minimum, mean and 

maximum values, standard deviation, coefficient of variation and skewness were 

calculated for each set of data. Calculating the coefficient of variation is important for 

geostatistical analysis, as it indicates the degree of spatial variation rather than the 

accuracy as in conventional statistical analysis. A skewness value more than +1 or less 

than -1 indicates departure from a normal distribution, which can be due to a long upper or 

lower tail or the presence of outliers in the data set (Oliver and Webster, 2014). To make 

the skewed data approximately normal for computing the variogram, it was transformed to 

logarithms and/or the outliers were removed. The outliers were however returned back and 
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the complete original data was used for Kriging interpolation (Webster and Oliver, 2007). 

If transforming the data or removing outliers did not improve the variogram, the original 

data was used for computing the variogram (Oliver, 2010). 

 

 

2.8.1.2 Correlation: 

To examine the relationship between different environmental variables and crop 

parameters, the Pearson Product-Moment Correlation Coefficient was also calculated as 

follows: 

 

                                                    𝐫 =
∑ 𝐙𝐱𝐙𝐲

𝐧−𝟏
                                    Equation 2. 9                                    

 

Where r is the correlation coefficient,  Zx and Zy are the values of variables X and Y, and 

n is the number of observations.  

The significance of correlation coefficients against zero was tested based on Lowry (2014) 

as follows, 

 

                                   𝐭 =
𝐫

𝐬𝐪𝐫𝐭[(𝟏−𝐫𝟐 )/(𝐍−𝟐)
                                 Equation 2. 10 

 

Where r is a correlation coefficient, N is the number of samples on which an observation 

of r is based. 

The correlation coefficients were calculated and tested using GenStat software (15
th

 

edition). 
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The differences between different correlation coefficients were also tested for their 

significance using a tool provided by Soper (2015), which is based on the method of Fisher 

(1921). 

 

 

2.8.1.3 Multivariate analysis: 

In order to investigate the interrelationships between sugar beet yield, quality, crop growth 

parameters and the studied environmental variables, the Redundancy Analysis (RDA) was 

used to quantify the independent effects of each variable and the partial effect of many 

variables together on the spatial variability. RDA is a canonical or constrained kind of 

Principle Components Analysis (PCA) and it closely relates to multiple linear regression 

analysis (Kenkel et al., 2009). It was performed based on a set of response variables (yield 

and quality of sugar beet) plotted against a set of explanatory variables (measurements of 

crop biomass and soil properties). It illustrates how the variability in studied variables 

relates to the variability in sugar beet yield and which variables are more related than 

others. In addition it may reveal whether the within-field variability is constant over the 

growing season through examining the relationship between sugar beet yield and some 

growth parameters such as crop canopy cover and LAI assessed a different times.   

The RDA analysis and the orientation diagrams were performed using Canoco 5 (Šmilauer 

and Lepš, 2014). The analysis was first performed for each field separately, then the root 

yield was normalized as a percentage of the mean for each field and combined together, 

the analysis was then performed for all fields together to identify the variables that have a 
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strong association in all fields.  In addition, analysis was performed using the normalized 

crop canopy cover in June as a response variable to identify the relationship between the 

studied environmental variables and early assessment of crop canopy cover. 

 

 

 

2.8.2 Geostatistical Analysis: 

After exploring the data statistically, a decision of whether to transform it, remove the 

outliers or use the original data was made, and the data were then prepared for 

geostatistical analysis.  The methods of geostatistical analysis followed in this study are 

those recommended by Oliver and Webster (2014) and incorporated the following steps:  

After identifying the area of interest, a suitable number and arrangement of sampling 

locations were identified and the sampling protocol was chosen to be suitable for the 

purpose of analysis; 

The data were explored in the same way as for conventional statistics to identify the 

outliers and transform the data where necessary; 

The experimental semivariances were estimated and modelled by a valid mathematical 

model, after removing a trend if there is one; and 

The points were Kriged and the values in un-sampled locations predicted and mapped. 
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2.8.2.1 Computing the experimental variogram: 

The experimental variogram, which summarizes the way in which the studied variables 

were spatially varied within field scales was computed based on Matheron’s Method of 

Moments (Matheron, 1965) using the general formula as follows: 

 

𝛄(𝐡) =
𝟏

𝟐𝐦(𝐡)
∑ [𝐙(𝐱) − 𝐙(𝐱 + 𝐡)]𝟐𝐦(𝐡)

𝐢=𝟏                 Equation 2. 11 

 

Where 2m(h) is the number of paired comparisons at lag (h), Z(x) and Z(x+h) are the 

values of the property at two locations separated by distance h.  

Any semivariances computed from this equation at a specific lag distance are only the 

average of a set of semivariances at that lag and it describes the spatial dependency in a set 

of discrete data which is itself subject to measurement and sampling error (Webster and 

Oliver, 2007). The step lengths were slightly different from the actual sampling intervals 

for some variables, because using the actual intervals sometimes resulted in an erratic 

experimental variogram, which was difficult to fit a model (Oliver, 2010). This could be 

due to the fact that the sampling intervals were not exactly the same across the fields, 

especially in White Patch, and in addition, the lower accuracy of dGPS instruments used in 

2012 season. The maximum lag distances modelled also differed from one variable to 

another because it was changed when the variogram became erratic, but in no case did it 

exceed more than one half of the field. The experimental variogram was computed and 

modelled using the GenStat software (15
th

 edition) (Payne, 2009). 
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However the variogram was not computed for some variables such as air temperature, 

because it was recorded only at 45 points which is not enough for a reliable variogram 

(Oliver and Webster, 2014). In addition it was not computed for some other variables such 

as weed density, which occurred in high density in some plots, but was absent in most of 

the other plots (Fig 2.8) resulting in large number of outliers, which cannot be removed 

(Colbach and Forcella, 2011). The value of available phosphorus was also zero for most of 

the plots in WO3, which made it difficult to compute the variogram. Therefore maps 

showing the scales of within-field variation in these variables were produced without 

considering the variogram parameters but their statistical correlations with yield and other 

variables were still investigated.  

 

 

 

 
Figure 2.8: Picture (A) a patch from White Patch field which was almost free from weeds and picture 

(B) is another patch of the same field with high weed density. Both images were captured on 5
th

 of July 

2012. 
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2.8.2.2 Modelling the variogram: 

The next step after computing and plotting the experimental variogram was to model it by 

a suitable mathematical function, so that point to point fluctuations can be smoothed and 

the variation across the field can be quantified as required for predicting the value in 

unsampled locations by Kriging (Webster and Oliver, 2007). For each variable, a suitable 

model was selected, which was best fitted to that variogram from a group of available 

models in the drop down menu in GenStat software editor 15 and ArcGIS Editor 10 (ESRI, 

Redlands, CA, USA). The decision on which model was the best was made based on 

visual assessment first. If more than one model looked appropriate then the model which 

gave the smallest residual sum of squares (RSS) was selected (an example of fitting the 

model is given in Appendix 6). If it was still hard to choose, the model was selected from 

the results of cross validation after Kriging (Johnston et al., 2001, Oliver and Webster, 

2014). However, in most of the models there is a clear difference in the RSS, and 

therefore, the selection was made based on RSS. The models which best fitted to the 

variograms of most variables in this study were spherical, pentaspherical, circular and 

exponential and their mathematical expressions are as follows: 

Spherical model           𝛄(𝐡) = 𝐜 {
𝟑𝐡

𝟐𝐚
−

𝟏

𝟐
(

𝐡

𝐚
)

𝟑

}   for h ≤ a 

= 𝐜    for h ˃ a 

Equation 2. 12 

Where c is the sill variance and a is the range in metres. The spherical model is the most 

common in geostatistics as it can describe the variation in one, two and three dimensions, 

and it can explain the variations that are distributed as patches with high and low values and 
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the average extent of these patches is the range of the variogram (Frogbrook et al., 2002, 

Webster and Oliver, 2007). 

 

Pentaspherical model         𝛄(𝐡) = {𝐜 {
𝟏𝟓𝐡

𝟖𝐚
−

𝟓

𝟒
(

𝐡

𝐚
)

𝟑
+

𝟑

𝟖
(

𝐡

𝐚
)

𝟓

}} for h ≤ a 

= 𝐂      for h ˃ a 

Equation 2. 13 

The pentaspherical model (Equation 2.13) curve more gradual than that of the spherical 

model  

Circular model  𝛄(𝐡) = 𝐜 {𝟏 −
𝟐

𝛑
𝐜𝐨𝐬−𝟏 (

𝐡

𝐚
) +

𝟐𝐡

𝛑𝐚
√𝟏 −

𝐡𝟐

𝐚𝟐
} for h ≤ a 

      = 𝐜              for h ˃ a 

Equation 2. 14 

In the circular model (Equation 2.14) the fitted line curves tightly after reaching the sill and 

it almost works in a similar way as the bounded linear model: 

 

Exponential model                       𝛄(𝐡) = 𝐜 {𝟏 − 𝐞𝐱𝐩 (𝟏 −
𝐡

𝐫
)}               Equation 2. 15 

 

The exponential (Equation 2.15) model is most commonly used to direct sampling 

schemes in soil science and it represents an autoregressive relationship. It approximately 

approaches the sill with parameter r that identifies the spatial extent rather than the range, 

and the range is approximately  = 3r (Webster and Oliver, 2007) 
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2.8.2.3 Kriging interpolation: 

The final step of geostatistical analysis was to predict the value of the property in 

unsampled locations and present a map showing the within-field variation using Kriging. 

The method is based on an averaged weighting that can provide best unbiased linear 

prediction (UBLP) with minimum variance (Oliver, 2010, Sherman, 2011). Because the 

mean value of the studied variables is unknown and the main aim of Kriging in this study 

was to visualize the variation in a certain variable and its relation to other variables, the 

interpolations were made using ordinary punctual Kriging methods (Webster and Oliver, 

2007). The prediction by ordinary punctual Kriging and estimating the associated variance 

were based on the following equations: 

 

�̌�(𝐱𝟎) = ∑ 𝛌𝐢𝐙(𝐱𝐢)
𝐧
𝐢=𝟏                            Equation 2. 16                     

 

Where (x0) is the target point and λi is the weight. To guarantee an unbiased estimation the 

sum of weights is made to equal one, that is, 

 

∑ 𝛌𝐢
𝐧
𝐢=𝟏 = 𝟏                                  Equation 2. 17                               

 

and the expected error is E[Ž(x0) − Z(xi)] = 0. The prediction variance can be calculated 

as follows:  
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𝐕𝐚𝐫[�̌�(𝐱𝟎)] = 𝐄 [{�̌�(𝐱𝟎) − 𝐙(𝐱𝐢)}
𝟐

]                     Equation 2. 18 

= 𝟐 ∑ 𝛌𝐢𝛄
𝐧
𝐢=𝟏 (𝐱𝐢,𝐱𝟎) − ∑ ∑ 𝛌𝐢𝛌𝐣 𝛄(𝐱𝐢,𝐱𝐣)

𝐧
𝐣=𝟏

𝐧
𝐢=𝟏                   Equation 2. 19 

 

Where γ(xi,x0) are the semivariances between the value at the ith
 point and the point that 

needs to be predicted and γ(xi,xj) are the semivariances between the values of Z at ith
 and 

jth
 points (Webster and Oliver, 2007). 

 To assess how well the model predicted the value of the property in unsampled locations, 

cross validation was done for each Kriging map. The components that were identified by 

cross validation were the mean error (ME), which ideally needs to be close to zero, the 

root mean square error RMSE, which needs to be as small as possible, and the mean 

squared deviation ratio (MSDR), which needs to be close to one (Johnston et al., 2001, 

Webster and Oliver, 2007).   

The Kriging interpolations and the cross validation were done using the geostatistical 

Analyst tool in ArcGIS software (10
th

 edition, ESRI, Redlands, CA, USA) which has 

bridged the gap between GIS and geostatistics by modelling the spatial variation and 

interpolating it within the study area (Johnston et al., 2001, Shahbazi et al., 2013). As  

most agricultural data has some form of spatial component, which might be difficult to 

visualize, the information provided by ArcGIS was found useful when mapping within 

field variability (Pierce and Clay, 2007). The model type and its parameters (sill, range and 

nugget variance) given by GenStat software were used with the original data set for 

interpolation by ArcGIS. 
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2.8.3 Ordinary mapping: 

Due to insufficient samples or the zero value of most of the points, it was difficult to 

calculate the variograms for air temperature and weeds, and also the data of the previous 

crop was very dense, which was not requiring prediction. Therefore the maps were created 

using an Inverse Distance Weight (IDW) in order to visualize the spatial variation in these 

variables.  
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3. Chapter Three: Within-field Variation in Environmental Variables. 

This chapter considers the within-field variability in some environmental variables which 

have a potential influence on sugar beet growth and yield based on geostatistical analysis. 

The data of each variable was first explored using the descriptive statistics and the spatial 

variability in the studied variables was described by the variogram and visualized by the 

maps which presented in this chapter.  

 

 

3.1 Background: 

As most of the environmental variables controlling crop growth and development such as 

solar radiation, available water, soil properties and topography can vary spatially even over 

few metres (Heege, 2013), within field variation in crop yield and biomass should also be 

expected. Thus, identifying the spatial variability in some physical variables, which are 

likely to be the main driving variables, is important to understand the spatial variation in 

sugar beet growth and yield. The variability in soil conditions can cause spatial and 

temporal variability in crop biomass, weeds, pests and diseases (Oliver et al., 2013). The 

variation in micro-climate such as canopy temperature and solar radiation in addition to 

soil properties, however,  can be mainly due to the field topography (Fu and Rich, 1999, 

Godwin and Miller, 2003, Zhang et al., 2011b). The spatial distribution of some variables 

may appear to be uniform, but geostatistical methods can precisely visualized their spatial 

variability and predicted their values in unsampled locations (Zhang et al., 2013). The 

investigated variables were soil texture (percentage of sand, clay and silt), organic matter, 
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soil available nutrients (nitrate, phosphate, potassium and magnesium), pH, electrical 

conductivity, soil volumetric water content, and canopy temperature. The spatial 

variability in these variables and the correlation between them are discussed separately for 

each field. 

 

 

3.2 White Patch field in 2012: 

Based on the descriptive statistics of soil attributes in White Patch field (Table 3.1) most of 

the variables had low skewness values. Some of the studied variables were therefore 

normally distributed, which is desirable for geostatistical analysis, because any departure 

from a normal distribution may overestimate the variance (Kerry and Oliver, 2007b, 

Montanari et al., 2012). However the data of some variables such as soil available nitrate, 

phosphate and magnesium were positively skewed 0.96, 1.6 and 1.8 respectively, but the 

approximate normal distribution was achieved by transforming the data to logarithms 

(Base 10: Appendix 5.1). The CV values were high for most of the variables suggesting 

significant variability in the spatial distribution of these variables. The CV values were the 

highest at 88.5 and 136% respectively for soil available phosphate and magnesium. For 

some other variables such as soil pH and soil moisture in July the spatial distribution was 

almost uniform with CV of 3.6 and 8% respectively. The pH value was in general high 

with a mean of 8.4, which could be due to the presence of calcareous patches in this field 

according to the recent soil map created by (Draycott and Evans, 2012) (Appendix 1), as 

the pH value in some of these patches reached 9. The soil was much moister in July with a 
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mean value of 53% and less variable with a CV of 8%, due to higher amount of 

precipitation in July (Fig 2.7 D), while it was the driest in August with mean of 24% and 

most variable with a CV of 20.3%, due to variability in soil type. 

The results of geostatistical analysis confirmed significant spatial variation in most of soil 

attributes in White Patch field (Table 3.1). The fitted models differed, but for most of the 

variables in this field the spatial variation was best accounted by the exponential model, 

which along with the spherical model are usually the best models for describing the spatial 

variability in soil properties (Webster and Oliver, 2007, Montanari et al., 2012). The 

variograms for some variables were almost typical (Fig 3.1) as the variance increases with 

increasing the lag distances and become slightly flat after approaching the sill. The spatial 

variation in these variables is therefore, expected to be patchy and mostly revealed by the 

sampling schemes followed in this study. However, the variogram of log-magnesium had a 

high nugget variance of 0.25, while it was a pure nugget for soil available potassium. 

Although a pure nugget variogram should not be expected, because the environment is 

continuous, the value of soil potassium changed over short distances, e.g. from 38 mg/l to 

455 mg/l. In addition measurement error could lead to high nugget values (Kerry, 2003, 

Webster and Oliver, 2007). Most of the observed variation was spatially correlated as there 

was a strong spatial dependency (%C0/(C0+C)<25), for most of the variables, but it was 

moderate ranged between 30% for soil organic matter and 71% for Log-magnesium. The 

range of spatial dependency, which represents the average extent of the variation differed 

significantly for one variable to another; being as short as 37 m for silt and as long as 220 

m for Log-magnesium (Table 3.1). 
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Table 3.1: Results of statistical and geostatistical analysis of some soil physical and chemical attributes in White Patch field in 2012. 

 

  Descriptive statistics 
  

Geostatistics 
  

Variables 
Mean Min Max SD CV% Skew Model 

Range 

(m) 
Sill (C1) 

Nugget variance 

(C0) 
%C0/(C0+C1) 

Soil Particles, %            

Clay 28.6 19 40 5.7 19.8 0.035 Spherical 106 29.4 0 0 

Sand 67.3 51.3 79.7 7 10.5 -0.05 Exponential 190 49.8 6 10.8 

Silt 4.2 0 10 2.3 55.6 0.52 Circular 37 5.2 0 0 

Soil Organic Matter, % 3.4 1.9 5 0.5 15.1 0.47 Exponential 69 0.18 0.08 30.8 

Soil pH 8.4 7.8 9 0.3 3.6 -0.22 Exponential 123 0.09 0 0 

Soil EC, µS  116.8 70 160 19.7 16.8 -0.24 Exponential 115 282.6 88.4 23.8 

Soil available nutrients 

mg/l soil solution 

           

Nitrate 14.8 4.5 30 6 40.6 0.96 - - - - - 

Log  Nitrate 2.6 1.5 3.4 0.39 15 0.06 Spherical 50 0.098 0.067 40 

Phosphate 3.4 1 12 3.03 88.5 1.6 - - 

Log Phosphate 0.93 0 2.5 0.73 78 0.75 Spherical 207 0.35 0.26 43 

Potassium 330 38 455 130 39.3 -0.6 Pure Nugget - - - - 

Magnesium 24.6 1.5 145 33.5 136 1.8 - - - - - 

Log  Magnesium 1 0.18 2.2 0.59 59 0.43 Exponential 220 0.13 0.25 71 

Volumetric moisture 

content, % 

           

17/ May 34 21 56 6 19.3 0.46 Pentaspherical 82 38 2.3 5.7 

02/June 36.7 21 54 6 16.8 0.04 Spherical 64 33 8.6 20 

06/July 53 44 68 4 8 0.5 Spherical 119 12.4 4.3 26 

13/August 24 14 39 5 20.3 0.57 Exponential 127 24 1.76 6.8 
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Figure 3.1: The experimental variograms and fitted models for (A) %clay, (B) %sand and (C) %silt, 

(D) %organic matter, (E) soil pH, (F) EC µS (variance*100), (G) Log nitrate mg/l, (H)  log phosphate 

mg/l, (I) potassium mg/l (variance*1000), (J) Log magnesium mg/l and soil volumetric moisture in (K) 

May, (L) June, (M) July and (N) August in White Patch Field in 2012. Parameters of fitted models are 

in Table 3.1. 
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The patterns of spatial variation in soil attributes are illustrated in the Kriging maps (Fig 

3.2). The spatial variability in clay, organic matter, magnesium and soil moisture content at 

different growth stages had almost similar patterns, as most of the areas with high values 

of these variables were located along the western site of the field, which is also the most 

elevated part and extended toward the middle. In addition, some of the patches with low 

values of these variables were also coincident and located in the lowest part of the field.  

The spatial distribution of most soil attributes in this field was positively and significantly 

correlated to soil clay content (P<0.05: Appendix 9.2). The correlation coefficients of soil 

clay content were 0.49, 0.36, 0.33 and 0.39 with silt, soil organic matter, soil pH and 

electrical conductivity, respectively and 0.43, 0.20, 0.51 and 0.41 with soil moisture 

content in May, June, July and August respectively. On the other hand, soil clay content 

was negatively associated with the soil available phosphate with significant correlation 

coefficient -0.30, and not related to soil available potassium with correlation coefficient of 

0.06 (Table 3.7 A). 

The summary statistics of average canopy temperature are given in Table 3.2 and the 

spatial variation was illustrated by the maps created based on Inverse Distance Weight 

(IDW) shown in Fig 3.3. The average mean temperature during the growing season was 

16.6°C and ranged from 15 to 18°C at different stages during the growing season. The 

average minimum temperature for all the season was 12°C and the average maximum was 

23°C. In general, the canopy temperature was higher in August and lower and more 

variable during September with CV of 7.4% compared to 6.2% for the average mean of all 

the season.  
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Figure 3.2: Interpolation maps of (A) %clay, (B) %sand and (C) %silt, (D) %organic matter, (E) soil 

pH, (F) EC µS, (G) available nitrate, mg/l, (H) phosphate mg/l and (I) magnesium mg/l, soil volumetric 

moisture in (J) May, (K) June, (L) July and (M) August and (N) elevation m in White Patch filed in 

2012. The relevant variograms are in Fig. 3.1. 
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Although the CV values were in general low, small changes in canopy temperature might 

cause significant differences in crop growth and sugar accumulation. The patterns of 

spatial variation in average mean temperature were similar at different stages of 

development as most of the areas with low temperature were located in the west part of the 

field, and the warmer areas were mostly located in the southeast corner and extended 

toward the north. Most of the warm areas were coincident with low and steep areas, which 

are also the same areas of low crop canopy cover. The average maximum temperature 

during the season was also followed a similar patterns especially for the areas of high 

value, but it slightly differed from the average minimum. 

In addition, the canopy temperature was found to be correlated to soil temperature in the 

five plots at which the soil temperature was recorded. The highest correlation coefficient 

between canopy and soil temperature was 0.95 during June and it was 0.90 for all the 

season (Table 3.7 B). This indicates that the temperature in the root zone was related to 

canopy temperature and varied in a similar way. Thus, the spatial variation in temperature 

at the root zone can be predicted within the field from the spatial variability in canopy 

temperature. Furthermore, the canopy and soil temperature were negatively correlated to 

soil moisture at different growth stages. The effect of soil temperature on soil moisture 

seems to be greater than the effect of canopy temperature. The relation between soil 

temperature and soil moisture was greater in August with r of -0.71 and it was relatively 

weaker in July with r of -0.45. 
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Table 3.2: The summary statistics of average mean, minimum and maximum canopy temperature °C 

at different stages in White Patch field in 2012. 

 

 

 

Figure 3.3: The maps of average monthly mean canopy temperature (°C) based on daily records in 

White Patch field in 2012 season, (A) in June, (B) July (C) August, (D) September and (E) for all the 

season, and (H and I) are respectively for the average minimum and maximum for all the season. 
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Average minimum Average maximum Average Mean 

Month  Mean Min Max  %CV Mean Min Max %CV Mean Min Max  %CV 

June  10.3 9.1 11.4 3.4 22.2 19.2 24.8 6.1 15.5 14.2 17.3 5.7 

July  13.5 12.7 15.3 2.8 23.8 19.3 28.3 8.6 17.5 15.7 20.3 7.2 

August  13.6 12.8 15.5 2.8 24.3 19.8 32.1 10.1 18 16.2 20.9 6.5 

September  10.2 9.3 11.4 4.3 21.3 17.4 30.2 13.1 15 13.3 17.9 7.4 

Season  12 11.4 13.5 2.7 23 19.3 28.8 7.9 16.6 15.2 18.9 6.2 
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3.3 T32 field in 2012: 

The summary statistics of the soil attributes data are given in Table 3.3. There were high 

skewness values for silt, soil available phosphate, potassium and magnesium at T32 field 

which indicates a departure from normal distribution. The high skewness values were also 

associated with high CV values, which might affect the reliability of the experimental 

variogram. However, transforming the data significantly improved the distribution of the 

data (Appendix 5.2) and the CV values were reduced from 61.8, 106, 38.4 and 132% to 

32.4, 78, 6.8 and 65% respectively for square root of silt and logarithm of available 

phosphate, potassium and magnesium. The percentage of sand in T32 field was in general 

high with mean value of 74.4% and it had almost a uniform distribution with a CV of 

4.7%. The soil pH was neutral with a mean of 7.5 and had a low variability with a CV of 

5.7%.  Although the available magnesium was much more variable, the mean value was in 

general low (8.4 mg/l), as the concentration of soil available magnesium usually ranges 

from 10 to 500 mg/l (Draycott and Christenson, 2003). As was the case in White Patch 

field, the soil was much wetter in July with mean of 41%, but less variable with CV of 

12.2%, while it was driest and most variable in August with a mean of 19% and CV of 

27%, which suggests that the variation in soil moisture is more evident when the soil is 

dry, due to the variability in soil types and their ability to retain moisture.  

The experimental variograms of the soil variables in T32 field (Fig 3.4) and the model 

parameters (Table 3.3) indicate significant spatial variation in all variables. The shape of 

the variogram and fitted models differed from one variable to another.  
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Table 3.3:  Results of statistical and geostatistical analysis of some soil physical and chemical attributes at T32 field in 2012. 

 

SD: Standard deviation, a: Range, C1:Sill, C0: Nugget variance, Log: Logarithm, SQR: Square root 

  Descriptive statistics 
  

Geostatistics 
  

Variables 
Mean Min Max SD CV% Skew Model 

Range 

(m) 

Sill 

(C1) 

Nugget 

variance(C0) 
%C0/(C0+C1) 

Soil Particles, %            

Clay 20.8 15 28 2.8 13.6 0.18 Pentaspherical 116 5.9 1.66 22 

Sand 74.4 65 80 3.5 4.7 -0.28 Pentaspherical 305 6.8 6.2 47.7 

Silt 4.8 0.5 13 3 61.8 0.94 - - - - - 

SQR-Silt 2.1 0.7 3.6 0.7 32.4 0.2 Spherical 126 0.23 0.29 55.8 

Soil Organic Matter, % 3.4 2.2 4.4 0.4 11.9 0.03 Circular 190 0.11 0.07 38.9 

Soil pH 7.5 6.2 8.3 0.4 5.7 -0.57 Circular 141 0.12 0.05 29.4 

Soil EC, µS 92.9 50 160 26.5 28.5 0.38 Circular 127 341 284 45.4 

Soil available nutrients mg/l            

Nitrate 17.7 9 28 4.3 24.4 0.18 Spherical 164 10.3 9.96 49 

Phosphate 8.97 1 38 9.5 106 1.22 - - 

Log Phosphate 1.56 0 3.6 1.2 78 0.03 Pentaspherical 93 0.82 0.51 38 

Potassium 185 80 380 71 38.4 1.22 - - - - - 

Log Potassium 2.24 1.9 2.6 0.15 6.8 0.46 Exponential 180 0.013 0.012 48 

Magnesium 8.4 1 65 11 132 2.7 - - - - - 

Log  Magnesium 1.6 0 4.2 1 65 0.41 Circular 95 0.64 0.44 42 

Soil moisture content, %            

06/June 28 16 41 5.2 18.6 0.005 Exponential 266 23.6 13.8 37 

06/July 41 30 52 5 12.2 0.15 Exponential 270 27 4 13 

13/ August 19 8 28 5 27 -0.54 Spherical 169 18 2.5 12 
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The variograms for most of the variables became flat after they approached the sill 

indicating a bounded variation. For some variables, however, there was a large nugget 

variance which is more likely to be unresolved variation, because the sampling interval 

was 40 m for most of the plots, which is the main problem in grid sampling (Haberle et al., 

2004). As a result, the estimation of the degree of spatial dependency was only moderate 

for most of the variables, but there was strong spatial dependency for soil moisture during 

July and August and clay with values of 13, 12 and 22% respectively. The ranges of spatial 

dependency were high for most variables and ranged from 93 m for phosphate to 270 m 

for soil moisture during July.  

The spatial variation in these variables is more evident in the maps created by Kriging (Fig 

3.5). The spatial distribution of some variables had almost similar patterns, but as the range 

value differed, the average extent of variation also differed from one variable to another. 

Similar patterns of spatial variation were observed for clay, soil pH, electrical 

conductivity, and soil moisture in June and August, as most of the areas with high values 

of these variables were on the eastern side of the field, which is also the most elevated 

side. In addition most areas with low values of these variables were coincident and located 

on the lower side of the field. The spatial variation in soil available nitrate and to some 

extent soil moisture followed an almost similar pattern as soil organic matter with 

significant correlation coefficients of 0.28, 0.25 0.42 and 0.34, respectively with soil 

nitrate and soil moisture in June, July and August, while the spatial variation in soil 

available phosphate was similar to the variation in sand with a correlation coefficients of 

0.30 (Table 3.8 A).   
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Figure 3.4: The experimental variograms and fitted models for (A) %clay, (B) %sand and (C) SQR-

%silt, (D)%organic matter, (E) soil pH, (F) EC µS (variance*100), (G) nitrate mg/l, (H) log phosphate 

mg/l, (I) Log potassium mg/l, J-Log magnesium mg/l, and soil volumetric moisture content in  (K) 

June, (L) July and (M) August in T32 Field in 2012. Parameters of fitted model are in Table 3.3. 
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Figure 3.5: Interpolation maps for (A) %clay, (B) %sand and (C) %silt, (D) %organic matter, and (E) 

soil pH, (F) EC µS, soil available (G) nitrate mg/l, (H) phosphate mg/l, (I) potassium mg/l and (J) 

magnesium mg/l, %soil moisture content in (K) June, (L) July and (M) August and (N) elevation m in 

T32 filed in 2012. The relevant variograms are in Fig. 3.4 
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The mean canopy temperature during the growing season was 16.2°C and ranged from 

14.6 to 17.7°C at different stages (Table 3.4). As in White Patch field, the canopy 

temperature was higher in August and lower in September. In addition, the canopy 

temperature was more variable during September with CV of 6.4% in T32 field compared 

to 4.4% for the average mean for whole the season. The mean canopy temperature of T32 

was close to that in White Patch but less variable. The patterns of the spatial variation in 

canopy temperature measured at different times were similar at different growth stages 

(Fig 3.6), except in June and the maximum temperature for the whole season, which 

slightly differed from other months. The higher parts of the field were also cooler by 

almost 2°C than the lower parts, and the warmer areas were also coincident with areas of 

low crop canopy cover. 

The variability in canopy temperature was found to be correlated to the soil temperature 

with r of 0.91 for the whole season in the five plots where both soil and canopy 

temperature were recorded (Table 3.8 B). The variability in soil moisture measured at 

different growth stages was negatively correlated to the variability in soil and canopy 

temperature, but as in White Patch field the variability in soil moisture was related to soil 

temperature more than air temperature especially in August with a correlation coefficient 

of -0.86 (Table 3.8 B). 
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Table 3.4: The summary statistics of average mean, minimum and maximum canopy temperature °C 

at different stages in T32 field in 2012. 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: The maps of average monthly mean canopy temperature (°C) based on daily records in 

T32 field in 2012 season, (A, B, C and D) in June,  July, August, and September  respectively and (E) 

for all the season, and (F and H) are respectively for the average minimum and maximum for all the 

season 

 Average minimum Average maximum Average Mean 

Month Mean Min Max  %CV Mean Min Max %CV Mean Min Max  %CV 

June 12.2 9.6 14.0 8.2 20.3 16.4 23.8 6.0 15.2 13.7 16.5 4.1 

July 13.1 12.3 13.9 2.4 22.0 18.4 28.3 9.2 16.8 15.5 19.4 4.9 

August 13.1 12.3 13.9 2.4 23.4 19.2 27.1 7.1 17.7 16.3 19.8 4.4 

September 9.5 8.3 11.0 6.3 20.8 14.7 29.3 11.8 14.6 12.5 17.9 6.4 

Season 12.2 11.4 13.1 3.0 21.7 17.4 25.1 6.3 16.2 14.7 17.9 4.4 
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3.4 WO3 field in 2013: 

Based on the summary statistics of the data of soil variables (Table 3. 5), the soil in WO3 

field seems to be clayey, as the mean value was 40% and ranged from 29.8 to 52%, but it 

was not very variable with a CV of 11.6%. The mean value of the available phosphate was 

0.55 mg/l, because the value was 0 at more than 90% of the plots and only a few plots gave 

values between 2 and 13 mg/l, and therefore, the data were strongly and positively skewed 

and had a high CV value of 356%. The reason for unavailability of phosphate in WO3 

could be the high proportion of clay in this field, which increases the adsorption of soil 

available phosphate by some clay minerals such as goethite and gibbsite (Fontes and 

Weed, 1996). Some of the studied variables such soil pH and soil EC had a uniform spatial 

distribution throughout the field with CVs of 2 and 9.3%, respectively. The results also 

indicate an approximate normal distribution for the data of most variables except for soil 

available phosphate and magnesium. The availability of soil moisture was in general low 

and the values were close to each other at different times of year, but it was more variable 

in July with CV of 25%, due to low precipitation (Fig 2.7 F). 

The way in which the soil properties spatially varied in WO3, is described by the 

experimental variograms (Fig 3.7) for which the model parameters are given in Table 3.5. 

The spatial variation in most soil attributes was accounted for by the circular model. It was 

not possible to compute the variogram for soil available phosphate, due to the large 

number of zero values in the data set, and the variogram for potassium appeared as pure 

nugget indicating that all the variation was occurring within the minimum sampling 

intervals. 
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Table 3.5: Results of statistical and geostatistical analysis of some soil physical and chemical attributes in WO3 field in 2012 

 

SD: Standard deviation, a: Range, C1:Sill, C0: Nugget variance, Log: Logarithm

  Descriptive statistics 
  

Geostatistics 
  

Variables 
Mean Min Max SD CV% Skew Model 

Range 

(m) 

Nugget 

(C1) 

Nugget 

(C0) 
%C0/(C0+C1) 

Soil Particles, %            

%Clay 40 29.8 52 4.6 11.6 0.32 Circular 81 10.6 8.9 46 

%Sand 52.6 36 66.3 5.5 10.5 -0.29 Circular 85 15.4 10.7 41 

%Silt 7.4 1.25 17.5 2.7 36.7 0.46 Spherical 69 2.5 3.6 59 

Soil Organic Matter, % 4.3 2.9 6.3 0.55 13 0.62 Pentaspherical 112 0.17 0.14 45 

Soil pH 7.8 7.3 8.2 0.16 2 0.03 Circular 73 0.016 0.011 40.7 

Soil EC, µS  235 180 300 21.8 9.3 0.13 Circular 58 157 270 63.2 

Soil Nutrients             

Available phosphate mg/l 0.55 0 13 1.96 356 4.6 - - 

Available potassium mg/l 232 15 455 147 63 0.43 Pure Nugget - - - - 

Available magnesium  mg/l 16 3 65 12.3 76 1.54 - - - - - 

Log  Magnesium 2.5 1.01 4.2 0.76 30.3 -0.09 Circular 44 0.23 0.34 60 

Soil moisture content, %            

06/June 0.27 0.15 0.38 0.06 22.3 0.26 Circular 121 0.0032 0.0005 13.5 

06/July 0.22 0. 1 0.34 0.05 25 -0.15 Circular 114 0.0027 0.0005 15.6 

11/September 0.20 0.14 0.28 0.03 14.6 -0.13 Circular 169 0.00048 0.00018 27 
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The degree of spatial dependency was moderate for most of the variables, which could be 

due to the high levels of clay in this field, which can cause locally erratic variation in other 

related soil attributes (Kerry, 2003), except for soil moisture in June and July, which had 

strong spatial dependencies of 13.5 and 15.6% respectively. The range of spatially 

correlated variation also differed from one variable to another: it was as short as 44 m for 

magnesium and as long as 169 m for soil moisture in September.  

The relation between field topography and some soil attributes is evident in WO3 as in the 

other two fields in which the most elevated part of the field (southeast corner) was most 

clayey and also associated with high values of silt and EC (Fig 3.8). However most of the 

areas of high organic matter content were located in the low and level zones of the fields, 

perhaps due to the water erosion, which decrease the concentration of organic matter in the 

back slope and increase it in the low zones (Amado and Santi, 2011). The variation in 

available magnesium distributed as small patches throughout the field and most of the 

areas of low magnesium were concentrated in the southeast and northwest corners of the 

field. However, the interpolation maps for potassium were not created for White Patch and 

WO3 fields, because the variograms were pure nugget and the mean value of soil 

potassium in this case can be assumed to be applied throughout the field (Oliver, 2010, 

Oliver and Webster, 2014). 

 

 

 



 

131 

 

Figure 3.7: The experimental variograms and fitted models for (A) %clay, (B) %sand and (C) SQR-

%silt, (D) %organic matter, (E) soil pH, (F) EC µS (variance*100), (G) potassium mg/l 

(variance*1000), (H) Log magnesium mg/l and soil volumetric moisture content (variance/1000) in (I),  

June, (J) July and (K) September in WO3 field in 2013. Parameters of fitted models are in Table 3.5. 
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Figure 3.8: Interpolation maps for (A) %clay, (B) %sand and (C) %silt, (D) %organic matter, (E) soil 

pH, (F) EC µS, (G) available magnesium mg/l, and %soil moisture content in (H) June, (I) July and (J) 

August and (K) elevation m in WO3 field in 2013. The relevant variograms are in Fig. 3.7. 
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The mean canopy temperature during the growing season in WO3 was 14.6 °C and ranged 

from 5.9 to 20.7 °C at different growth stages, with an average minimum temperature of 

9.1 °C and a maximum of 21.4°C. This was lower than for the other two fields because the 

2013 season was extended to the end of November, which had the lowest minimum 

temperature of 1.7 °C. The highest CV value for the mean temperature was 3.9% for both 

August and September and it was in general less variable in 2013 than in 2012 (Table 3.6). 

In addition the patterns of spatial variation differed in 2013 season compared to 2012 

season. The higher areas in WO3 in 2013 had higher canopy temperature except for June 

and November (Fig 3.9). Whereas in 2012 in White Patch and T32 the warmer areas were 

coincident with areas of low canopy cover and the cooler areas were mostly associated 

with high canopy cover. 
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Table 3.6: The summary statistics of average mean, minimum and maximum canopy temperature °C 

at different stages in WO3 Field in 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: The maps of average monthly mean canopy temperature (°C) based on daily records in 

WO3 field in 2013 season, (A) in June, (B) July (C) August, (D) September, (E) October, (F) November 

and (G) for all the season, and (H and I) are respectively for the average minimum and maximum for 

all the season 

 

 Average minimum Average maximum Average Mean 

Month Mean Min Max  %CV Mean Min Max %CV Mean Min Max  %CV 

June 8.7 8.2 9.3 2.7 22.3 18.1 25 4.2 14.8 13.4 15.9 3 

July 13 12.4 14.1 2.6 29.7 25.3 37.3 5.5 20.7 19.1 22.9 2.7 

August 11.8 11 12.9 3.5 26.5 21.6 31.6 6.9 18.3 16.6 20.3 3.9 

September 8.7 7.6 9.5 5.3 21 17.2 26.1 7.2 14 12.9 15.9 3.9 

October  8.4 7.6 9.1 3.9 16.6 14.4 19.6 5.2 12.1 11.4 13 2.2 

November 2.6 1.7 3.3 12 9.5 7.9 13.7 7.6 5.9 5.3 6.4 3.4 

Season 9.1 8.4 9.8 3.1 21.4 17.8 24.7 4.3 14.6 13.4 15.6 2.5 
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3.5 Conclusion: 

Most measured variables significantly varied across each field, White Patch, T32 and 

WO3. The soil was in general sandier in T32 field, but also less variable, while it was 

more clayey in WO3 and more variable.  The highest CV values were observed for soil 

nutrients especially for soil available phosphate and magnesium in all three fields. On the 

other hand soil pH had almost a uniform spatial distribution with lower CV values, 

especially in White Patch and WO3 with CV of 3.6 and 2% respectively. The soil at White 

Patch field had higher mean value of soil pH, while it was neutral in T32 and WO3. The 

soil volumetric moisture content was lower in WO3 in 2013, but more variable compared 

to the other fields in 2012, 2012 being a wetter year. 

Most of the variation in soil attributes was spatially dependent as the variograms had a low 

nugget variance and reached the sill semi-variance, albeit at different lag distances. The 

degree of the spatial dependency detected, was high for most of the variables in White 

Patch, but it was moderate for most of the studied variables in T32 and WO3, due to higher 

nugget variance. The high nugget variance could be due to the sampling scheme, which 

was not able to resolve the variation which occurred over short distances as in T32, or due 

to high levels of clay as in WO3, which may have caused locally erratic variation in some 

related attributes. 

In all three fields, the most elevated parts were associated with higher clay content. The 

spatial variation in soil clay content was correlated with soil organic matter, soil available 

magnesium and soil moisture in White Patch, but with soil pH, electrical conductivity, soil 

potassium and soil moisture in T32, while it was only correlated with silt and electrical 
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conductivity in WO3. In all three fields, the areas of high soil organic matter were 

associated with higher soil moisture content. 

The canopy temperature also varied spatially across each field. It was less variable in WO3 

and the patterns of spatial variation also differed compared to other two fields, as the 

higher parts were cooler in White Patch and T32, but warmer in WO3. In addition, a strong 

relationship was observed between the canopy temperature and soil temperature at root 

zone in the plots where the soil temperature was measured. Therefore, the soil moisture is 

expected to vary spatially in a similar way as the spatial variability in canopy temperature. 

Since the spatial variability in the studied environmental variables is expected to be related 

to sugar beet growth and yield, the link between these variables and sugar beet growth, 

yield and quality will be examined and discussed in chapter four. This might help to 

determine the main associated environmental variables, which might be considered as the 

potential driving variables. 
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Table 3.7: Correlation coefficients between (A) soil properties and, (B) between soil and air temperature °C and soil moisture in White Patch in 

2012, the bold numbers are significantly different from 0 (see Appendix 9.2 for P values). 

  (A)  %Soil particles 
SOM Soil pH EC 

Soil available nutrients mg/l   Soil moisture content 

Clay Sand Silt Nitrate Phosphate K Mg   May June July 

%Soil particles 
%Sand -0.96  - 

            
%Silt 0.49 -0.71  -                       

 %OM 0.36 -0.29 0  - 
          

 Soil pH 0.33 -0.35 0.29 -0.1  -                   
 EC, µS  0.39 -0.42 0.33 0.03 0.32  - 

        

Soil available 

nutrients mg/l 

Nitrate -0.13 0.13 -0.09 -0.05 -0.17 0.04  - 
       

Phosphate -0.3 0.30 -0.15 -0.01 -0.07 -0.28 0.03  -             
K 0.06 -0.08 0.13 -0.03 0.27 0.25 -0.35 0.09  - 

     
Mg 0.15 -0.16 0.11 0.19 0.10 0.16 0.12 0.03 0.15  -         

%Soil moisture 

content 

17/ May 0.43 -0.35 0.03 0.43 0.0 0.22 0.06 0.01 0.06 0.27 
 

 - 
  

02/June 0.20 -0.13 -0.09 0.49 -0.10 0.03 -0.04 0.10 -0.05 0.19   0.37  -   

06/July 0.51 -0.43 0.08 0.43 0.30 0.07 -0.13 -0.26 0.01 0.1 
 

0.38 0.41  - 

   13/ August 0.41 -0.36 0.11 0.40 0.10 0.11 -0.22 -0.13 0.18 0.2   0.51 0.45 0.58 

 

 

(B) June July August September Season 

Soil moisture with canopy temperature  -0.15 -0.31 -0.29 - - 

Soil moisture with Soil temperature  -0.55 -0.45 -0.71 - - 

Soil temperature with canopy temperature  0.95 0.86 0.87 0.84 0.90 

 



 

138 

 

Table 3.8: Correlation coefficients between (A) soil properties and, (B) between soil and air temperature °C and soil moisture in T32 in 2012, the 

bold numbers are significantly different from 0 (see Appendix 9.4 for P values). 

 

 

(B) June July August September Season 

Soil moisture with canopy temperature  0.37 -0.05 -0.23 - - 

Soil moisture with Soil temperature  -0.07 -0.09 -0.86 - - 

Soil temperature with canopy temperature  0.60 0.89 0.90 0.91 0.94 

 

 

(A) 
 

%Soil particles 
%OM Soil pH EC 

Soil available nutrients mg/l 
 

Soil moisture content 

Clay Sand Silt Nitrate Phosphate K Mg 
 

June July 

%Soil 

particles 

%Sand -0.57 - 
           

%Silt -0.28 -0.63 - 
          

 
%OM -0.02 -0.27 0.33 - 

         

 
Soil pH 0.30 -0.18 -0.08 0.26 - 

        

 
EC, µS 0.25 -0.49 0.34 0.33 0.43 - 

       

Soil available 

nutrients mg/l 

Nitrate -0.05 0.01 0.04 0.28 0.12 0.30 - 
      

Phosphate -0.31 0.30 -0.06 -0.21 -0.45 -0.51 -0.27 - 
     

K 0.11 -0.14 0.07 0.04 0.05 0.37 0.07 -0.19 - 
    

Mg -0.09 0.12 -0.06 -0.13 -0.29 -0.27 -0.19 0.04 -0.08 - 
   

Soil moisture 

content 

06/June 0.37 -0.36 0.07 0.25 0.35 0.29 0.11 -0.39 -0.03 0.01 
 

- 
 

06/July -0.05 -0.10 0.17 0.42 0.35 0.12 0.21 -0.19 -0.23 -0.15 
 

0.37 - 

13/ August 0.36 -0.39 0.11 0.34 0.53 0.49 0.33 -0.57 0.10 -0.24 
 

0.61 0.44 
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Table 3.9: Correlation coefficients between some studied soil properties in WO3 filed in 2013, the bold numbers are significantly different from 

0 (see Appendix 9.6 for P values). 

 

 

 

 

 

  
%Soil particles 

%OM Soil pH EC 
Soil available nutrients mg/l 

 

Soil moisture 

content 

Clay Sand Silt Phosphate K Mg 
 
June July 

%Soil particles 
Sand -0.87  -           

Silt 0.05 -0.54  -          

 
OM -0.14 0.16 -0.08  -         

 
Soil pH 0.10 -0.07 -0.03 -0.04  -        

 
EC, µS 0.34 -0.31 0.05 0.02 -0.27  -       

Soil available 

nutrients mg/l 

 

Phosphate 0.01 -0.01 -0.01 -0.03 0.13 0.11  -      

K -0.22 0.10 0.18 -0.05 -0.19 -0.03 -0.05  -     

Mg -0.13 0.17 -0.12 0.10 -0.21 0.00 -0.05 0.07  -    

Soil moisture 

content 
 

6-Jun -0.27 0.28 -0.11 0.32 0.15 -0.21 0.00 0.11 0.35  -  

6-Jul -0.33 0.33 -0.11 0.19 0.10 -0.40 -0.10 0.00 0.12  0.36 - 

September -0.04 -0.05 0.16 0.07 0.08 0.07 0.08 -0.05 0.12  0.24 0.16 
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4. Chapter Four: Spatio-Temporal Variation in Sugar Beet Yield and 

Quality: 

The spatial variability in crop yield may arise from the effects of spatial variability in soil 

attributes, above ground variables and crop parameters (Stafford et al., 1996). Mapping 

within-field variability in crop growth and yield and comparing it with the spatial variation 

in environmental variables, may indicate those environmental variables which can be 

considered as the potential driving variables (Rodriguez-Moreno et al., 2014). However it 

is important to examine the relationship between the variability in crop growth and the 

environment early in the growing season, so that the related environmental variables can 

be identified and managed before they impair the growth of the crop. Using ground based 

sensors to assess the crop growth status is considered an effective method to detect the 

crop stress and requirements within the growing season (Cao et al., 2012). In addition, for 

some fields, yield maps of previous years are available, but most farmers do not know how 

to deal with them. Therefore this chapter considers the potential of predicting the spatial 

variability in sugar beet yield and quality based on the variability in some crop growth 

parameters assessed at different growth stages using ground based sensors. It also aims to 

examine the relationship between the spatial variability in sugar beet yield and the spatial 

variability in the yield of preceding crops in order to assess the utility of the yield maps of 

previous crops to predict the within-field variability in a current sugar beet yield. In 

addition the relationship between the yield map of sugar beet and the maps of some 

environmental variables was also investigated.   
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4.1 Within-variation in sugar beet yield, quality and some biological 

variables: 

The methods of collecting the data used in this chapter are described in Chapter Two. This 

section concentrates on the results of statistical and geostatistical analysis of these data to 

describe the spatial variability in some biological measurements assessed during the 

growing season in addition to the yield, quality and some post-harvest measurements. It 

also investigates the relationship between the spatial variability in sugar beet yield, quality 

and the spatial variability in environmental variables described in Chapter Three.   

 

4.1.1 Descriptive statistics: 

Most measurements of sugar beet growth, yield and quality had low skewness values (< ± 

0.7: Tables 4.1-4.3). Some of the studied variables therefore had an approximate normal 

distribution. However, some variables such as relative canopy growth rate and weeds 

density in all three fields as well as the amino acid content in the beets in White Patch 

were positively skewed with values ranged from 0.85 to 3.35. Transforming the data to 

logarithms significantly improved the distribution of amino acid content and the canopy 

growth rate, but it did not improve the distribution of weed density,  due to the presence of 

many outliers that could not be removed, as the weeds usually appear as patches of high 

density in some parts of the field, while other parts might be weed free or with a low 

density (Colbach and Forcella, 2011). In addition some growth parameters in WO3 had a 

higher positive or negative skewness (Table 4.3), indicating a departure from the normal 

distribution, but transforming these data did not improve the distribution, because the 

value was too low in some plots compared to others due to the sub-optimal plant 

population density in these plots. Therefore the original data set was used for the analysis, 
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as  highly skewed data does not always require transformation (Kerry and Oliver, 2007b, 

Hbirkou et al., 2011). 

The CV values for sugar beet yield and most of growth parameters in all fields exceeded 

10%, indicating a significant spatial variation in crop growth and yield. However, the 

percentage of sugar almost had a uniform distribution in all three fields with CV values 

ranged from 1.7 to 2.4%, while weed density had the highest CV values ranging from 106 

to 165% in all three fields and associated with higher skewness values (Tables 4.1-4.3). In 

general the variability in sugar beet growth and yield was much higher in WO3 with CV 

values ranging from 14.7 to 102% (Table 4.3), while they were between 7.9 and 56.4% in 

White Patch (Table 4.1) and between 2.8 and 37.8% in T32 (Table 4.2). 

T32 field had a relatively higher mean yield value of £2500 ha
-1

, which was also the most 

uniform among  the field with a CV of 11.3% (Table 4.2) compared to White Patch and 

WO3 fields, which had mean values of £1850 and £1870 ha
-1

and CVs of 21.3 and 32%, 

respectively (Tables 4.1 and 4.3). The mean plant population in WO3 was very low at only 

50800 plants/ha (Table 4.3) indicating poor plant establishment, as the target plant 

population for optimum sugar yield and economic profits is 80000 to 100000 plants/ha 

(Jaggard et al., 2011). However, the plant establishment varied significantly throughout 

WO3 field and ranged from 22000 to 81000 plants/ha (Table 4.3). In 2012 season, the 

plant populations were optimal with mean values of 91000 and 95000 plants/ha in White 

Patch and T32, respectively (Tables 4.1 and 4.2). 

The growth parameters, namely percentage of crop canopy cover, intercepted solar 

radiation and LAI were more variable early in the growing season than later on. For 

example, the CV values of crop canopy cover in June were 38.8, 22.5 and 71.5%, 

respectively in White Patch, T32 and WO3, while it was 9.5, 3.7 and 66.5%, respectively 

in July and 7.9, 2.8 and 42.2%, respectively in August (Tables 4.1 - 4.3). This is because 
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later in the season most of the ground was covered by the crop foliage, which makes 

differences less visible, but the variability in LAI and intercepted solar radiation was also 

mitigated, which might suggest more rapid crop growth in the plots where the growth was 

weaker early in the growing season as a result of increases in air temperature, incident 

solar radiation and/or it could be because the crop responded to the uniform application of 

agronomic inputs applied by the farmer. The crop also bolted to a much more obvious 

extent in the 2013 season and the number of bolters ranged from 0 to 1.5 plants /m
2
with a 

CV of 102% (Table 4.3). 

 

Table 4.1: Summary statistics of sugar beet growth, yield and quality in White Patch in 2012. 

Variables Mean Min Max SD CV% Skew 

Measurements during growth season    

Plant population/ha 91000 66200 116000 13200 14.5 -0.09 

%Crop cover-01/June 8.5 2.87 17.5 3.3 38.8 0.7 

%Crop cover-02/July 79 63 92 7.5 9.5 -0.46 

%Crop cover-13/Aug. 80.2 65 92 6.3 7.9 -0.63 

%Intercepted radiation-01/June 7 0 16 3.96 56.4 0.27 

%Intercepted radiation-17/July 72.2 48 92 10.7 14.8 -0.23 

  LAI-01/June 0.11 0 0.25 0.05 47.9 0.15 

LAI-17/July 1.9 0.77 3.45 0.6 31.3 0.32 

Relative canopy growth rate, %d
-1

 30.2 13.3 77.8 13.1 43.3 1.3 

Log- Relative canopy growth rate 3.3 2.6 4.4 0.4 12.1 0.26 

Weed density/m
2
 2.6 0 22 4.34 165 3.35 

Post-harvest measurements 
      

Roots yield t/ha 58.4 36.5 89.5 12.4 21.2 0.47 

%sugar 17.7 16.3 18.7 0.42 2.4 -0.13 

Sugar Yield t/ha 10.3 6.3 16.6 2.2 21.1 0.43 

Yield value £/ha 1850 1120 2990 394 21.3 0.41 

Amino acid mg/100g beet 6.45 3 12 1.89 29.3 0.87 

Log-Amino acid mg/100g beet 1.83 1.01 2.48 0.28 15.6 0.08 

Potassium mg/100g beet 110 90 145 9.9 9 0.71 
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Table 4.2: Summary statistics of sugar beet growth, yield and quality in T32 in 2012. 

 

Table 4.3: Summary statistics of sugar beet growth, yield and quality in WO3 in 2013. 

Variables Mean Min Max SD CV% Skew 

Assessment during growth season       

 Plant population/ha 95000 70000 115000 12400 13.1 -0.19 

%Crop cover-01/June 25 10 36 5.6 22.5 -0.75 

%Crop cover-17/July 87 81 95 3.2 3.7 0.29 

              %Crop cover-17/Aug. 91 86 96 2.5 2.8 0.16 

%Intercepted radiation-17/July 88.9 80 95 3.3 3.7 -0.54 

%Intercepted radiation-17/Aug. 85.8 71 97 5.55 6.5 -0.1 

  LAI-17/July 3.1 1.7 4.7 0.67 21.6 0.4 

LAI-17/Aug. 2.9 1.5 4 0.51 17.5 0.03 

Relative canopy growth rate, %d
-1

 8.3 4.4 20 3.15 37.8 1.95 

Log- Relative canopy growth rate 2.1 1.5 3 0.31 15.2 1.01 

Weed density/m
2
 0.58 0 3.2 0.62 106 1.98 

Post-harvest assessments 
      

Roots yield t/ha 75.7 56 98 8.35 11 -0.04 

%sugar 18.3 17.6 19.1 0.31 1.7 -0.02 

Sugar Yield t/ha 13.8 10.4 16.8 1.45 10.5 -0.13 

Yield value £/ha 2500 1870 3320 282 11.3 0.05 

Amino acid mg/100g beet 6.2 4 10 1.4 21.9 0.54 

Potassium mg/100g beet 121 101 144 8.8 7.2 0.28 

Variables Mean Min Max SD CV% Skew 

Assessment during growth season       

Plant population/ha 50800 22000 81000 10600 20.9 -0.05 

         Number of bolting plants/ha 0.35 0 1.5 0.35 102 0.95 

%Crop cover-20/June 11.5 0.09 45 8.2 71.5 0.82 

%Crop cover-16/July 20 0.14 66 13.3 66.5 0.49 

%Crop cover-17/Aug. 57.3 8.3 91.7 24.2 42.2 -0.56 

%Intercepted radiation-16/July 36.7 1.1 72.7 17.5 47.7 -0.07 

%Intercepted radiation-17/Aug. 70.2 15 96.9 17.3 24.7 -1.25 

%Intercepted radiation-11/September 78.0 32 94.7 11.4 14.7 -1.4 

LAI-16/July 0.9 0.03 2.1 0.49 54.6 0.38 

LAI-17/Aug. 2.3 0.1 5.2 0.97 41.6 0.02 

LAI-11/Sept. 2.4 0.5 3.8 0.65 27.7 -0.74 

 Relative canopy growth rate, %d
-1

 4.4 0.03 16 3.14 70.8 1 

Log-Relative canopy growth rate 1.9 0.17 4 0.79 40.2 -0.07 

Weed density/m
2
 1.1 0 7.8 1.44 136 2.45 

Post-harvest assessments 
      

Roots yield t/ha 68 9 120 21.5 31.6 -0.59 

%sugar 16.2 15 17.3 0.36 2.2 0.22 

Sugar yield t/ha 11.1 1.4 18.9 3.5 31.8 -0.62 

Yield value £/ha 1870 230 3130 596 32.0 -0.63 

Amino acid mg/100 beet 14.8 10 21 2.4 15.9 0.53 

Potassium mg/100 beet 127 99 162 13.7 10.8 0.56 
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4.1.2 Geostatistical analysis: 

4.1.2.1 The variograms: 

The results of geostatistical analysis confirmed that there was significant spatial variation 

in sugar beet growth, yield and quality parameters in all three fields. The variograms for 

most of variables reached a sill, indicating a bounded variation in all fields and the 

maximum variance was generally covered by the sampling scheme for each field (Figs. 

4.1-4.3). The main exception was the percentage of sugar, which had a low spatial 

variability and appeared as pure nugget in T32 and WO3 fields (Figs 4.2 and 4.3).  The 

spatial variation of the various pre and post-harvest parameters was accounted for by 

different models, which were selected by the best fit to the semivariances with lowest 

Residual Mean Square (RMS). However, the spatial variation in most parameters in all 

three fields was most often accounted for by the circular and exponential models (Tables 

4.4-4.6). The spatial variability in root yield, sugar yield and yield value was best 

accounted for by the circular model in all three fields and the exponential model was the 

best fit to the spatial variation in amino acid beet content. The variogram of root content of 

amino acid in White Patch field and relative canopy growth rate in all fields were 

computed based on transformed data, since the original data resulted in an erratic 

variogram, which was difficult to model. 

Most of the observed variation in sugar beet growth and yield was spatially correlated, as 

the degree of spatial dependency was strong to moderate for most variables (Tables 4.4-

4.6). In White Patch, the variation in sugar beet growth and yield was strongly spatially 

correlated with C0/(C0+C1) ratios ranging from 0 to 31%, but the variation in beet quality 
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parameters (sugar, amino acid and potassium) was only moderately spatially correlated 

(C0/(C0+C1) = 42 to 55%: Table 4.4) 

In T32, most variation was moderately spatially correlated C0/(C0+C1) = 37 to 49%: Table 

4.5), but crop canopy cover at different growth stages, LAI in July, log-canopy growth rate 

and beet content of potassium were strongly spatially correlated C0/(C0+C1) = 4 to 25%: 

Table 4.5). In WO3, the degree of spatial dependency ranged from 0 to 58%, being strong 

for some growth parameters and moderate for yield and quality (Table 4.6). The strong and 

moderate spatial dependencies for the studied variables confirmed that most of the 

variability in crop yield and growth is mainly due to the separation distance. However, the 

distance over which the variance was spatially correlated (range) differed from one 

variable to another, which means the average extent of the variation was not similar for all 

the variables even within one field. In White Patch, the range parameter for the growth 

measurements ranged from 61 to 159 m, but it was more similar for the post-harvest 

measurements and ranged from 90 to 109 m (Table 4.4). While in T32 and WO3, the range 

parameters were longer for most of the variables and ranged from 176 to 380 m and from 

112 to 208 m, respectively (Tables 4.5 and 4.6). The spatial variation in sugar beet yield in 

White Patch field was patchier than in the other fields, as the maximum variance was 

reached over shorter distances compared to T32 and WO3. 
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Table 4.4. Geostatistical analysis of sugar beet growth, yield and quality in White Patch in 

2012. 

 

 

Table 4.5: Geostatistical analysis of sugar beet growth, yield and quality in T32 in 2012. 

 

 

Variables Model 
Range 

(m) 

Sill 

 (C1) 

Nugget 

(C0) 
%C0/(C0+C1) 

Assessment during growth season   

Plant population/ha Circular 117 9.77*10
7
 3.87*10

7
 28 

%Crop cover-01/June Circular 70 10.2 0 0 

%Crop cover-02/July Circular 83 52.8 3 5 

%Crop cover-13/Aug. Circular 130 26.5 12 31 

%Intercepted radiation-01/June Pentaspherical 159 11.9 4.5 27 

%Intercepted radiation-17/July Exponential 152 123 15 11 

  LAI-01/June Circular 114 0.002 0.0008 27 

LAI-17/July Spherical 86 0.28 0.09 24 

Log- relative canopy growth rate Circular 61 14 0 0 

Post-harvest assessments  
    

Roots yield t/ha Circular 94 149 0 0 

%sugar Circular 109 0.116 0.08 42 

Sugar Yield t/ha Circular 93 4.7 0 0 

Yield value £/ha Circular 93 144320 8152 5.3 

Log-Amino acid mg/100g beet Exponential 100 0.03 0.037 55 

Potassium mg/100g beet Circular 90 49 49.4 50 

Variables Model 
Range 

(m) 

Sill 

 (C1) 

Nugget 

(C0) 
%C0/(C0+C1) 

Assessment during growth season     

 Plant population/ha Exponential 315 9.22*10
7
 9.03*10

7
 49 

%Crop cover-01/June Pentaspherical 236 33.9 2.5 7 

%Crop cover-17/July Circular 229 13.4 0.55 4 

              %Crop cover-17/Aug. Circular 205 6.5 1.5 18 

%Intercepted radiation-17/July Circular 222 6.7 5.6 46 

%Intercepted radiation-17/Aug. Circular 176 17.9 14.8 45 

  LAI-17/July Exponential 255 0.40 0.12 23 

LAI-17/Aug. Circular 217 0.19 0.11 37 

Log-Relative canopy growth rate Pentaspherical 265 0.1 0.015 13 

Post-harvest assessments  
    

Roots yield t/ha Circular 224 45.7 33 42 

%sugar Pure Nugget - - 0.09 - 

Sugar Yield t/ha Circular 240 1.5 0.9 38 

Yield value £/ha Circular 241 48933 41956 46 

Amino acid mg/100g beet Exponential 380 1.2 0.99 45 

Potassium mg/100g beet Exponential 255 74.8 24.4 25 
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Table 4.6: Geostatistical analysis of sugar beet growth, yield and quality in WO3 in 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables Model 
Range 

(m) 

Sill 

 (C1) 
Nugget (C0) %C0/(C0+C1) 

Assessment during growth season     

Plant population/ha Exponential 126 6.79*10
7
 2.12*10

7
 24 

         Number of bolting 

plants/ha 
Spherical 120 0.05 0.06 58 

%Crop cover-20/June Circular 132 36 16 31 

%Crop cover-16/July Circular 126 122 13.5 10 

%Crop cover-17/August Circular 112 518 26.1 5 

%Intercepted radiation-16/July Circular 132 175 95.9 35 

%Intercepted radiation-17/Aug. Exponential 192 284 22.8 7.5 

%Intercepted radiation-11/Sept. Circular 147 73.2 46.3 39 

LAI-16/July Circular 122 0.10 0.09 48 

LAI-17/August Exponential 131 0.83 0 0 

LAI-11/September Exponential 163 0.28 0.09 25 

Log-relative canopy growth rate Circular 39 0.36 0.18 33 

Post-harvest assessments  
    

Roots yield t/ha Circular 115 253 141 36 

%sugar Pure Nugget - - 0.11 - 

Sugar yield t/ha Circular 116 6.9 3.7 35 

Yield value £/ha Circular 117 190964 113393 37 

Amino acid mg/100g beet Exponential 208 4.4 1.55 26 

Potassium mg/100g beet Pentaspherical 122 93 77 45 
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Figure 4.1: The experimental variograms of (A) plant population (variance*10
5
), %crop canopy cover 

(B) in June, (C) in July and (D) in August, %intercepted radiation (E) in June and (F) in July, LAI (G) 

in June (variance/1000) and (H) in July, (I) Log-relative canopy growth rate, %d
-1

, (J) root yield (t/h), 

(K) %sugar , (L) sugar yield (t/h), (M) yield value £/ha (variance *100), (N) log amino acid 

(variance/100) and (O) potassium (mg/100g beet) in White Patch field in 2012. Parameters of fitted 

model are in Table 4.4. 
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Figure 4.2: The experimental variograms of (A) plant population (variance*10
5
), %crop canopy cover 

(B) in June, (C) in July and (D) in August, %intercepted radiation in (E)in July and (F) in August, 

LAI (G) in July and (H) in August, (I) Log-relative crop canopy growth rate, %d
-1

, (J) root yield (t/h), 

(K) %sugar, (L) sugar yield (t/h), (M) yield value (£/h) (variance *1000), (N)  Amino acid and (O) 

potassium (mg/100g beet) in T32 field in 2012. Parameters of fitted model are in Table 4.5. 
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Figure 4.3: The experimental variograms of (A) plant population (10000/ha), (B) number of bolting 

plants/m
2
, %crop canopy cover (C) in June, (D) in July and (E) in August, %intercepted solar 

radiation (F) in July, (G) in August and (H) in September,  LAI (I) in July, (J) in August and (K) in 

September, (L) Log-relative canopy growth rate, %d
-1

, (M) root yield (t/h), (N) %sugar (variance/100), 

(O) sugar yield (t/h), (P) yield value (£/ha) (variance*1000), (Q and R) amino acid and potassium 

(mg/100g beet) at WO3 field in 2013. Parameters of fitted model are in Table 4.6. 
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4.1.2.2 Interpolation maps: 

The Kriging maps clearly separate low and high yielding zones in each field. In White 

Patch, the yield value varied from £1120 to 2990 ha
-1

 throughout the field (Table 4.1). The 

most productive areas (> £1850 ha
-1

) were located along the western boundary of the field 

and extended toward the north east, while the less productive areas (< £1850 ha
-1

) were 

located in the south east part and extended to the middle with a small patch appearing on 

the north side (Fig 4.4 M).  In T32, the yield value was varied from £1870 ha
-1

 in some 

part of the field to £3310 ha
-1 

in some other parts (Table 2). The most productive areas (> 

£2500 ha
-1

) being located in the south east part of the field and extending toward the 

middle, while the less productive (< £2500 ha
-1

) areas were in the west site of the field and 

in the north east corner (Fig 4.5 L). The variation in yield value was much higher in WO3 

being as low as £232 in some parts and as high as £3130 ha
-1 

in others (Table 3). The most 

productive areas (> £1870 ha
-1

) were located in the south west of the field and extended 

toward the north, while the least productive areas (< £1870 ha
-1

) were mostly found in the 

south east corner (Fig 4.6 O). 

In all three fields, higher yielding areas at final harvest were associated with higher crop 

canopy cover, interception of solar radiation and LAI as measured in June, July and 

August, while low yielding areas were associated with low values of these parameters 

(Figs 4.4-4.6). Although, the observed variability in crop growth parameters was much 

higher at early growth stages than later on, the patterns of spatial variability in these 

parameters were almost constant over the growing season and similar to those observed for 

final yield in all three fields. Maps of sugar beet yields were closer visually to the maps of 

crop canopy cover as assessed early, on the 1
st
 of June 2012 in White Patch and T32 and in 

the 20
th

 of June 2013 in WO3 in comparison to the assessment made in July and August 
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(Figs. 4.4-4.6). These visualizations of the relationship between the spatial variability in 

root yield and growth parameters were also evident from the strong correlation coefficients 

(Tables 4.7-4.9), which were significantly different from zero (P<0.05: Appendices 7.2-

7.6). The correlation coefficients between root yield and crop canopy cover in White 

Patch, T32 and WO3 were 0.81, 0.66 and 0.80, respectively in June, but only 0.60, 0.65 

and 0.74, respectively in July and even lower in August with values of 0.58, 0.54 and 0.72, 

respectively (Tables 4.7-4.9). 

The maps of plant population density also had some spatial association with the maps of 

root yield. The degree of spatial association was much higher in WO3 with a correlation 

coefficient of 0.72 (Table 4.9), which means most of the variation in sugar beet growth and 

yield was due to variability in plant population, but it also accounted for some variability 

in White Patch and T32 with a significant correlation coefficient of 0.51 in both fields 

(Tables 4.8 and 4.9). 

The maps of some post-harvest quality measurements (amino acid, potassium in all fields 

and sugar content in White Patch) showed some distinct patterns of spatial variation (Figs. 

4.4-4.6), but their relation to sugar beet growth and yield differed from field to field. They 

were almost not related to the growth and yield in White Patch (Fig 4.4), but in T32 the 

map of amino acid content showed some association with the map of yield (Fig 4.5) with 

significant correlation coefficient of 0.36 (Table 4.8), while the root yield was negatively 

correlated to potassium content in WO3 with correlation coefficient of -0.50 (Table 4.9). 

Not surprisingly sugar beet growth and yield were negatively related to the spatial 

distribution of weeds in the three fields, as weed densities were lower in the high yielding 

areas of the field and higher in low yielding parts (Figs. 4.4-4.6), with significant 
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correlation coefficients of -0.40, -0.50 and -0.21 in White Patch, T32 and WO3, 

respectively (Tables 4.7-4-9). 

In addition, the maps of relative canopy growth rate from 01/06 to 02/07/2012 in White 

Patch, 01/06 to 17/7/ 2012 in T32 and 20/06 to 17/07/2013 in WO3 showed some distinct 

patterns of spatial variability and had a negative association with spatial variability in root 

yield in all three fields (Figs. 4.4-4.6) with significant correlation coefficients of -0.60, -

0.60 and -0.28 in White Patch, T32 and WO3, respectively. In WO3 a map showing the 

distribution of bolting plants were also produced. A higher number of bolting plants was 

apparent in the areas at which the plant population and root yield were higher (Fig 4.6 B). 

In White Patch, the map of sugar beet yield showed some spatial association with the maps 

of soil clay content and organic matter with significant correlation coefficients of 0.36 and 

0.51, respectively (Table 4.7) and to some extent soil magnesium, but most of soil 

attributes had a weak association with some quality parameters (Figs 4.4 and 3.2, chapter 

three). The variability in beet content of sugar and amino acid were negatively related to 

pH, which was in general high across the White Patch, and the beet content of sugar and 

potassium were negatively correlated to soil available nitrate (Table 4.7). In T32, the maps 

of sugar beet yields were related to the maps of soil content of silt, organic matter, 

available nitrate and soil pH (Figs 4.5 and 3.5, chapter three) with significant correlation 

coefficients of 0.23, 0.35, 0.36 and 0.25, respectively (Table 4.8). The maps of beet 

content of amino acid and potassium had some association with the maps of soil clay 

content, but they negatively related or not related to other soil attributes (Table 4.8). While 

in WO3, the spatial variability in root yield was associated with spatial distribution of soil 

content of sand, organic matter and available magnesium (Figs 4.6 and 3.8, chapter three) 

with correlation coefficients of 0.40, 0.32 and 0.32 respectively (Table 4.9). The areas of 
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high clay content in WO3 associated with lower yield of sugar beet, since it had a lower 

plant population, but it was associated with higher potassium content of beet (Fig 4.6).  

In all three fields the high yielding areas were associated with higher soil moisture content 

and low yielding areas with lower soil moisture content at different growth stages (Figs 

4.4, 4.5, 4.6, 3.2, 3.5 and 3.8). The correlation coefficients between root yield and soil 

moisture measured at different growth stages were always statistically significant (P<0.05) 

and ranged from 0.45 to 0.52 in White Patch (Table 4.7), from 0.33 to 0.52 in T32 (Table 

4.8) and from 0.24 to 0.55 in WO3 (Table 4.9). 

On the other hand, the spatial variation in sugar yield was negatively related to the spatial 

distribution of canopy temperature in all three fields. Higher yielding areas were associated 

with lower canopy temperature at different growth stages and vice versa in low yielding 

parts (Figs 4.4, 4.5, 4.6, 3.3, 3.6 and 3.9). The negative relationship was stronger between 

the root yield and average maximum canopy temperature for the season in White Patch 

and T32 with correlation coefficients of -0.56 and -0.25, respectively (Tables 4.7 and 4.8), 

while in WO3 it was negatively stronger with the average temperature during August with 

coefficient of -0.48 (Table 4.9).  
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Figure 4.4: Interpolation maps of (A) plant population (1000 plant/ha), %crop canopy cover (B) in 

June,  (C) in July and (D) in August, %intercepted radiation (E)in June and (F) in July, LAI (G) in 

June and (H) in July, (I) relative canopy growth rate, %d
-1

, (J) root yield (t/h), (K) %sugar, (L) sugar 

yield (t/h), (M) yield value (1000 £/h), (N) amino acid and (O) potassium (mg/100g beet), (P) weeds /m
2 

in White Patch field in 2012. The relevant variograms are in Fig. 4.1. 
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Figure 4.5: Interpolation maps of (A) plant population (1000 plant/ha), %crop canopy cover (B)in 

June, (C) in July and (D) in August, %intercepted radiation (E) in July and (F) in August, LAI (G) in 

July and (H) in August, (I) relative canopy growth rate, %d
-1

, (J) root yield (t/h), (K) sugar yield (t/h), 

(L) yield value (1000 £/h), (M) amino acid and (N) potassium (mg/100g beet), and (O) weeds m
2
 in T32 

field in 2012. The relevant variograms are in Fig. 4.2. 
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Figure 4.6: Interpolation maps of (A) plant population, (B) number of bolting plants /m2, %crop 

canopy cover (C) in June, (D) in July and (E) in August, %intercepted solar radiation (F) in July, (G) 

in August and (H) in September, LAI (I) in July, (J) in August and (K) in September, (L) relative 

canopy growth rate, %d
-1

, (M) root yield (t/h), (N) sugar yield (t/h), (O) yield value (1000 £/h), (P) 

amino acid and  (Q) potassium (mg/100g beet), and (R) weeds/m
2
 in WO3 field in 2013. The relevant 

variograms are in Fig. 4.3. 
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Table 4.7: Correlation coefficients between sugar beet yield and quality, and studied physical 

and biological variables in White Patch in 2012 (Bold numbers are significantly different 

from 0). 

 

 

 

 
Plant density Root yield 

Root content of 

Sugar Amino acid Potassium 

Soil properties 

%Clay -0.07 0.36 -0.01 -0.06 0.19 

%Sand 0.10 -0.27 0.01 0.05 -0.21 

%Silt -0.11 -0.04 0.00 -0.02 0.15 

%Organic mater 0.17 0.51 0.12 0.00 0.08 

pH -0.02 -0.01 -0.21 -0.19 -0.09 

  EC, µS 0.02 0.06 -0.09 -0.14 -0.08 

Nitrate, mg/l 0.08 -0.12 -0.27 -0.06 -0.21 

Phosphate, mg/l 0.15 -0.03 0.14 0.12 0.09 

Potassium, mg/l -0.19 -0.13 0.15 0.05 0.13 

Magnesium, mg/l -0.06 0.04 0.03 -0.10 0.10 

Soil moisture, 

% 

17/May 0.30 0.51 0.02 -0.23 0.19 

02/June 0.04 0.47 0.15 -0.11 0.16 

06/July 0.10 0.45 0.07 -0.09 0.25 

13/August 0.13 0.53 0.25 -0.06 0.36 

Average 

canopy 

temperature 

June -0.28 -0.24 -0.16 -0.09 -0.17 

July -0.21 -0.25 -0.12 -0.10 -0.14 

August -0.23 -0.33 -0.10 -0.20 -0.15 

September -0.25 -0.41 -0.02 -0.19 -0.12 

Mean season -0.25 -0.32 -0.11 -0.15 -0.16 

Min season 0.02 0.09 0.28 -0.03 0.13 

Max season -0.40 -0.56 -0.23 -0.14 -0.01 

Weeds density, m
2
 -0.06 -0.40 -0.06 -0.28 -0.31 

Crop measurements      

 Plant density/ha - 0.51 -0.06 -0.25 -0.26 

%Crop cover-01/June 0.53 0.81 -0.01 -0.16 -0.07 

%Crop cover-02/July 0.16 0.60 0.18 0.34 0.23 

              %Crop cover-13/August 0.24 0.58 -0.01 0.03 0.21 

%Intercepted radiation-01/July 0.52 0.60 0.09 -0.04 0.00 

%Intercepted radiation-17/Aug. 0.23 0.67 0.34 0.26 0.20 

  LAI-01/July 0.52 0.46 0.09 -0.06 -0.04 

LAI-17/August 0.15 0.55 0.33 0.36 0.19 

%Relative canopy growth rate -0.51 -0.60 -0.08 0.27 0.06 

Roots yield t/ha 0.51 - 0.03 -0.02 0.03 

%sugar -0.06 - - 0.06 0.31 

Amino acid mg/100g beet -0.25 - - - 0.12 

Potassium mg/100g beet -0.26 - - - - 
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Table 4.8: Correlation coefficients between sugar beet yield and quality, and studied physical 

and biological variables in T32 field in 2012 (Bold numbers are significantly different from 

0). 

 

 

 

 
Plant density Root yield 

Root content of 

Sugar Amino acid Potassium 

Soil 

properties 

%Clay 0.08 0.09 0.10 0.19 0.21 

%Sand -0.18 -0.27 -0.15 -0.22 -0.02 

%Silt 0.13 0.23 0.08 0.08 -0.17 

%Organic mater 0.32 0.35 0.01 0.09 -0.54 

pH 0.15 0.25 0.05 0.24 -0.15 

  EC, µS 0.13 0.15 0.06 0.16 -0.04 

Nitrate, mg/l 0.36 0.36 -0.07 0.08 -0.19 

Phosphate, mg/l -0.18 -0.17 0.08 -0.29 0.03 

Potassium, mg/l -0.05 -0.14 0.14 0.19 0.09 

Magnesium, mg/l 0.15 -0.19 -0.16 -0.03 0.06 

Soil moisture, 

% 

02/June 0.24 0.33 0.06 0.27 -0.02 

06/July 0.28 0.52 -0.01 0.18 -0.24 

13/August 0.23 0.47 0.08 0.34 -0.12 

Average 

canopy 

temperature 

June -0.13 -0.05 0.16 -0.08 -0.09 

July -0.07 -0.10 0.11 -0.25 -0.12 

August -0.22 -0.21 0.06 -0.27 -0.02 

September -0.06 -0.06 -0.20 -0.07 0.15 

Mean season -0.17 -0.16 0.10 -0.24 -0.05 

Min season -0.39 -0.22 0.16 -0.37 0.13 

Max season -0.04 -0.25 -0.03 -0.18 0.07 

Weeds density, m
2
 -0.24 -0.50 0.11 -0.39 0.03 

Crop measurements      

 Plant density/ha - 0.51 -0.06 0.38 -0.31 

%Crop cover-01/June 0.43 0.66 -0.11 0.23 -0.21 

%Crop cover-17/July 0.45 0.65 -0.03 0.46 -0.13 

              %Crop cover-17/Aug. 0.44 0.54 0.13 0.17 -0.31 

%Intercepted radiation-17/July 0.49 0.63 -0.09 0.45 -0.11 

%Intercepted radiation-17/Aug. 0.43 0.50 0.02 0.39 -0.26 

  LAI-17/July 0.38 0.60 -0.10 0.53 -0.07 

LAI-17/August 0.44 0.54 0.05 0.38 -0.18 

%Relative canopy growth rate -0.39 -0.60 0.15 -0.17 0.16 

Roots yield t/ha 0.51 - -0.11 0.36 -0.18 

%sugar -0.06 -  - -0.32 -0.16 

Amino acid mg/100g beet 0.38 - -  - 0.26 

Potassium mg/100g beet -0.31 - - - - 
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Table 4.9: Correlation coefficients between sugar beet yield and quality, and studied physical 

and biological variables in WO3 in 2013 (Bold numbers are significantly different from 0). 

 
Plant density Root yield 

Root content of 

Sugar Amino acid Potassium 

Soil 

properties 

%Clay -0.34 -0.34 -0.26 0.11 0.45 

%Sand 0.38 0.40 0.32 -0.18 -0.44 

%Silt -0.19 -0.24 -0.20 0.16 0.11 

%Organic mater 0.17 0.32 0.14 -0.06 -0.06 

pH -0.10 -0.04 -0.07 -0.20 -0.16 

  EC, µS 0.07 -0.03 -0.22 0.23 0.15 

Phosphate, mg/l 0.10 -0.01 -0.17 -0.09 -0.09 

Potassium, mg/l 0.10 0.05 0.13 -0.09 -0.02 

Magnesium, mg/l 0.29 0.32 0.15 -0.03 -0.09 

Soil moisture, 

% 

06/June 0.40 0.55 0.30 -0.37 -0.44 

06/July 0.23 0.37 0.17 -0.07 -0.30 

11/September 0.20 0.24 -0.17 0.13 -0.08 

Average 

canopy 

temperature 

June 0.17 0.29 0.24 -0.16 -0.19 

July -0.38 -0.35 -0.14 0.08 0.25 

August -0.40 -0.48 -0.26 0.14 0.36 

September -0.36 -0.39 -0.17 0.10 0.31 

October -0.22 -0.17 -0.02 0.02 0.15 

November -0.07 0.06 0.14 -0.08 -0.03 

Mean season -0.30 -0.28 -0.09 0.05 0.22 

Min season -0.29 -0.25 -0.16 0.10 0.28 

Max season -0.30 -0.33 -0.20 0.11 0.34 

Weeds density, m
2
 -0.11 -0.21 -0.12 -0.01 0.16 

Crop measurements      

 Plant density/ha - 0.71 -0.23 -0.18 0.45 

Bolting plants  0.36  0.40  0.11  -0.10  -0.24 

%Crop cover-20/June 0.71 0.80 0.30 -0.22 -0.47 

%Crop cover-16/July 0.70 0.74 0.33 -0.24 -0.51 

              %Crop cover-17/Aug. 0.62 0.72 0.19 -0.36 -0.38 

%Intercepted radiation-16/July 0.60 0.67 0.45 -0.25 -0.56 

%Intercepted radiation-17/Aug. 0.61 0.69 0.38 -0.31 -0.57 

%Intercepted radiation-11/Aug. 0.54 0.71 0.27 -0.20 -0.43 

  LAI-16/July 0.58 0.64 0.41 -0.27 -0.55 

LAI-17/August 0.66 0.70 0.29 -0.29 -0.40 

LAI-11/September 0.59 0.79 0.30 -0.21 -0.41 

%Relative canopy growth rate -0.16 -0.28 -0.02 0.15 0.02 

Roots yield t/ha 0.72  - 0.33 -0.18 -0.50 

%sugar 0.23 -   - -0.35 -0.30 

Amino acid mg/100g beet -0.18 -  -   - 0.14 

Potassium mg/100g beet -0.45 - - - - 
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4.2 How does within-field variation in the yield of the preceding crop relate 

to that of the sugar beet crop? 

4.2.1 Yield maps of a single year: 

The wheat yield in 2011 in T32 field was more variable with a CV of 25% than sugar yield 

in 2012, which had a CV value of 11%.  In WO3 field the CV values were high being 35 

and 32% respectively for oilseed rape in 2011 and sugar yield in 2013, while it was lower 

(13%) for wheat yield in 2012 (Table 4.10). The low CV values in 2012 season in both 

fields could be due to it being a wet year, which in turn would decrease the spatial 

variability in water stress related to site-specific water holding capacity and soil hydraulic 

conductivity. However, some of the spatial variability observed in the yield of the previous 

crops was associated with the spatial variability of the following sugar beet crop with 

significant correlation coefficients (P<0.001) in both fields (Figs 4.7 and 4.8). In T32 field, 

the correlation coefficient for sugar yield in 2012 and wheat yield in 2011 was 0.57 (Table 

4.10), while in WO3 the correlations were 0.50 with oilseed rape in 2011 and 0.48 with 

wheat yield in 2012 (Table 4.10). The sugar beet yield maps for these two fields therefore 

reflect to some extent those of the previous crops. Nevertheless, the spatial variability in 

the yield of previous crops visually appears to be patchier than sugar yield (Figs 4.7 and 

4.8), which could be because the yield map of the previous crops were based on a very 

large number of samples, which revealed spatial variation over shorter distances, whereas 

the map of sugar yield was based on many fewer samples located further apart, especially 

in T32 field (Table 4.10). Although some of the high yielding areas were not always 

identical, most of the low yielding areas were coincident. For example, in T32 field the 

western part of the field, which is at the lowest altitude and has a relatively high 

percentage of sand, had below average yields (for the field), while most areas in the middle 
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of the field had an above average yield for both wheat and sugar beet (Fig 4.7, A and B). 

In WO3 field, the south east corner of the field was the low yielding for all crops (oilseed 

rape, winter wheat and sugar beet), whereas the high yielding areas varied temporally, 

except for some small patches in the north of the field, which were high yielding in all 

three years (Fig 4.8, A, B and C).  The low yielding areas in WO3 were at the highest 

altitude and also more clayey, perhaps indicating a clay cap (Figs 4.8 and 3.8 K).   

 

4.2.2 The map of average relative yield and temporal stability: 

Since the crops were different each year, yields were normalized as a percentage of the 

mean for each year at each point. The average standardized yield was taken at each point 

for different years to produce the map of average relative yield which shows the general 

patterns of spatio-temporal variation (Figs 4.7 C and 4.8 D). In T32 field the yield of only 

one preceding crop was available (winter wheat), therefore it was not possible to calculate 

the temporal variance for this field, but it was possible for WO3, as yield maps for three 

crops were available. In both fields, the CV values for the average normalized yield were 

between the highest and lowest CV values for the single crops (Table 4.10). This means 

that the variability in one year cancelled out some of the variability in other years, because 

some high yielding areas in one year may have been low yielding in another year. In T32 

field, the average relative yield varied from 68 to 131% (Table 4.10). The relative yield 

map at T32 field had similar patterns to the maps of a single year, especially for the low 

yielding areas for example in the west part, while the south east corner of the field was 

consistently high yielding (Fig. 4.7). In WO3 field, the average standardized yield ranged 

from 46 to 133% (Table 4.10), and again the relative yield map was similar to the yield 

maps of a single year, especially for oilseed rape and sugar beet (Fig 4.8) with south east 
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of the field consistently low yielding (Fig. 4.8 D). The map of temporal variance in WO3 

identified the areas, which had inconsistent patterns over three years. The temporal 

variance was relatively high along the south side of the field (Fig 4.8 E). In general, the 

temporal variance tends to be greater in the areas where the yield was much lower or 

higher than the mean value of the yield. However, the patterns of the spatial variability 

were almost temporally consistent in the area from middle down towards the north side 

where the yield was close to the mean value and this involved much of the field. By 

combining the maps of average relative yield and temporal variance, the map of 

management zones was manually produced which divided WO3 field to different zones 

(Fig. 4.8 F): stable and low yielding in the south east corner, unstable and high yielding in 

the south west corner, stable and medium yielding in the middle with a small patch in the 

north, a small patch of unstable and medium yielding in the west, and stable and high 

yielding, which involved most areas in the north and some areas in the west (Fig. 4.8 F).  

 

 Table 4.10: The summary statistics and correlation coefficients for sugar yield, previous 

crops (winter wheat and oilseed rape) and average standardized yield. All the correlation 

coefficients are statistically significant (p< 0.001). 

 

 

  Summary statistics Correlation coefficient 

Fields Crops 
No. of 

points 
Mean Min Max CV 

Sugar 

yield 

Wheat 

yield 

Oilseed 

rape 

T32 

Winter wheat, 2011 1290 8.8 4.2 12.8 25 0.57 … ... 

Sugar beet, 2012 90 13.8 10.4 17 11 … … … 

Average standardized yield 90 100 68 131 15 0.78 0.96 … 

          

WO3 

Oilseed rape, 2011 1597 3.6 1.2 6.5 35 0.5 0.52 … 

Winter wheat, 2012 1727 8.7 4.6 13.5 13 0.48 … … 

Sugar beet, 2013 114 11 1.4 18.9 32 … … … 

 Average standardized yield 114 100 46 133 20 0.68 0.87 0.84 
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Figure 4.7: The interpolation maps for the yields of (A) wheat in 2011, (B) sugar in 2012, and the 

average relative yield of both crops (C) in T32 field. 
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Figure 4.8: The interpolation maps for WO3 for yields of (A) Oilseed rape in 2011, (B) wheat in 2012, 

(C) sugar in 2013, average relative yield (D), the temporal variance (E), and management zones with 

low, medium and high yielding zones which may be either stable or unstable from year to year.  

 

 

Low stable  

Low unstable 

Medium unstable 

Medium stable 

High unstable 

High stable 

 

A-Oilseed rape yield t/ha, 2011 

1.2 

1.8 

2.4 

2.9 

3.3 

4.0 

4.5 

5.6 

6.5 

 
 
 
 

4.5 

7.0 

8.0 

8.5 

9.0 

9.5 

10.0 

13.5 

 
 
 
 

B-Wheat yield t/ha, 2012 

1.3 
5.5 
8.0 
9.0 
11 
12 
13 
14 
16 
19 

 
 
 
 

C-Sugar yield t/ha, 2013 

45 
66 
79 
91 
98 
106 
111 
116 
123 
145 

 
 
 

D-Average relative yield, %  

0.9 

140 

280 

420 

550 

690 

800 

1100 

 
 
 
 

E-Temporal variance  

0    160         300 

F- Management zones  



 

167 

 

 

4.3 How does within-field variability in sugar beet yield and quality relate to 

the physical and biological variables? 

The relationships between the variability in sugar beet yield and quality and most 

environmental variables assessed using redundancy analysis were statistically significant 

in all three fields, although the associated variables differed from one field to another. In 

White Patch, the total variability accounted for by the first four constrained axes was 

50.3%, of which the 38% accounted for by the first two, was statistically significant 

(P<0.001), which means that the combined effect of the explanatory variables can be 

explained by only two constrained axes (Table 4.11). The quality parameters (root content 

of sugar, amino acid and potassium) were closely related to each other, but not related to 

the root yield, as the angles are almost perpendicular to each other (Fig 4.9). Based on the 

independent effects of the predictors (Table 4.12), the crop canopy cover in June (CC), 

plant population (PP), soil organic matter (SOM), soil moisture content (SMC) and soil 

clay content had a strong positive association with the variability in root yield, (P ≤ 0.006), 

while the elevation (Elev), relative canopy growth rate (CGR) (P ≤ 0.001), soil available 

magnesium (Mg) and minimum canopy temperature (P ≤ 0.027) were strongly and 

positively associated with variability in beet content of sugar, amino acid and potassium. 

On the other hand, the variability in both yield and quality were negatively well related to 

the distribution of weeds and averages mean (MeT), maximum canopy temperature 

(MaxT) and soil available nitrate (P ≤ 0.05), since the arrows point in opposite directions 

(Fig 4.9). However, the stepwise analysis identified fewer variables whose partial effects 

were statistically significant (P ≤ 0.05).   
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Table 4.11: The summary statistics of four constrained axes of the redundancy analysis for 

the sugar beet crop in each field separately and for combined analysis including all three 

fields. The combined analysis was carried out using normalized values of root yield and 

canopy cover in June. 

 

 

 

Axis 1 Axis 2 Axis 3 Axis 4 

White Patch 

    
Eigenvalues 0.21 0.17 0.09 0.03 

Explained variation  21 38 47.4 50.3 

Pseudo-canonical correlation 0.91 0.72 0.62 0.41 

Explained fitted variation  41.4 75.5 94.1 100 

P values <0.001 <0.001 0.01 0.97 

T32 
    

Eigenvalues 0.25 0.12 0.05 0.04 

Explained variation  25 36.8 41.9 45.5 

Pseudo-canonical correlation 0.87 0.62 0.67 0.38 

Explained fitted variation  54.2 81 92.2 100 

P values <0.001 0.09 0.89 0.98 

WO3 
    

Eigenvalues 0.33 0.06 0.04 0.03 

Explained variation  33 39 43.2 46.1 

Pseudo-canonical correlation 0.85 0.59 0.44 0.44 

Explained fitted variation 71.7 84.6 93.7 100 

P values <0.001 0.28 0.69 0.92 

All  fields 
    

Eigenvalues 0.47 0.16 0.07 0.01 

Explained variation  46.9 63 70.1 71.4 

Pseudo-canonical correlation 0.95 0.77 0.70 0.47 

Explained fitted variation  65.7 88.2 98.1 100 

P values <0.001 <0.001 0.001 0.047 

All  fields based on canopy cover in June     

Eigenvalues 0.73 0.0 0.0 0.0 

Explained variation  73 73 - - 

Pseudo-canonical correlation 0.85 0.55 - - 

Explained fitted variation  100 100 - - 

P values <0.001 1 - - 
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Table 4.12: The percentage of variation accounted for by the explanatory variables and its 

significance (P values) as an independent (single effect) and combined (partial effect) based 

on redundancy analysis for the sugar beet crop in each field separately or for all fields 

together, the combined analysis being based on normalized values of root yield and canopy 

cover in June. 

 

 

 White Patch T32 WO3 All fields Canopy cover 

Variables Single Partial Single Partial Single Partial Single Partial Single Partial 

%Crop canopy cover 
(CC) 

16.7 
P<.001 

16.7 
P<.001 

13.6 
P<.001 

13.6 
P<.001 

23.4 
P<.001 

23.4 
P<.001 

11.3 
P<.001 

5.4 
P<.001 

- - 

Plant population/ha 
(PP) 

9.8 
P<.001 

3.9 
P=.004 

12.5 
P<.001 

3.4 
P=.009 

19.4 
P<.001 

2.8 
P=.004 

38.3 
P<.001 

9.3 
P<.001 

- - 

%Relative anopy 
growth rate (CGR) 

13.6 
P<.001 

2.4 
P=.022 

11.2 
P<.001 

0.3 
P=.8 

2.0 
P=.08 

1.1 
P=.13 

4.7 
P<.001 

0.4 
P=.016 

- - 

Previous wheat crop 
t/ha 

- - 
12.6 

P<.001 
2.1 

P=.043 
11.6 

P<.001 
2.0 

P=.017 
- - - - 

%Clay 
4.3 

P=.006 
2.0 

P=.021 
2.4 

P=.08 
1.5 

P=.14 
8.8 

P<.001 
1.1 

P=.12 
30.3 

P<.001 
2.0 

P<.001 
56.1 

P<.001 
2.7 

P<.001 

%Sand 
3.0 

P=.035 
- 

3.5 
P=.017 

2.9 
P=.019 

11.0 
P<.001 

1.8 
P=.02 

32.0 
P<.001 

<0.1 
P=.7 

58.2 
P<.001 

1.1 
P<.001 

%Silt 
0.7 

P=.66 
<0.1 

P=.99 
1.3 

P=.32 
0.6 

P=.5 
3.4 

P=.006 
- 

22.0 
P<.001 

0.1 
P=.31 

42.7 
P<.001 

0.7 
P=.004 

%Soil organic matter 
(SOM) 

7.2 
P<.001 

0.7 
P=.75 

10.2 
P<.001 

6.5 
P<.001 

3.6 
P=.007 

0.5 
P=.45 

20.1 
P<.001 

0.4 
P=.017 

25.6 
P<.001 

0.1 
P<.088 

Soil pH 
2.0 

P=.11 
1.6 

P=.07 
3.6 

P=.02 
0.5 

P=.6 
1.8 

P=.11 
1.7 

P=.028 
7.3 

P<.001 
0.5 

P=.008 
1.2 

P<.07 
0.7 

P=.011 

Electrical 
conductivity (EC) 

0.8 
P=.62 

0.4 
P=.65 

1.4 
P=.29 

0.7 
P=.46 

2.7 
P=.021 

0.9 
P=.22 

39.3 
P<.001 

0.5 
P=.004 

64.6 
P<.001 

64.6 
P<.001 

Nitrate mg/l (N) 
3.4 

P=.021 
1.1 

P=.18 
4.3 

P=.007 
0.3 

P=.75 
- - - - - - 

Phosphate  mg/l (P) 
1.2 

P=.38 
3.0 

P=.009 
1.7 

P=.22 
0.8 

P=.36 
1.0 

P=.28 
1 

P=.12 
0.3 

P=.48 
0.1 

P=.27 
0.8 

P=.28 
0.1 

P=.41 

Magnesium  mg/l 
(Mg) 

3.2 
P=.027 

0.6 
P=.46 

0.7 
P=.6 

0.9 
P=.3 

3.7 
P=.005 

0.7 
P=.27 

17.2 
P<.001 

0.1 
P=.33 

20.2 
P<.001 

0.1 
P=.75 

Potassium  mg/l (K) 
1.5 

P=.23 
<0.1 

P=.99 
2.1 

P=.11 
1.4 

P=.14 
0.7 

P=.54 
0.8 

P=.26 
3.0 

P=.001 
<0.1 

P=.57 
4.0 

P<.001 
0.1 

P=.64 

Soil moisture content 
(SMC) 

5.2 
P<.001 

0.7 
P=.39 

4.7 
P=.003 

0.8 
P=.39 

18.3 
P<.001 

4.4 
P<.001 

17.5 
P<.001 

1.5 
P<.001 

16.5 
P<.001 

2.9 
P<.001 

Canopy temperature °C          

Mean (T) 
4.1 

P=.005 
1.1 

P=.18 
2.3 

P=.09 
1.6 

P=.1 
2.4 

P=.035 
0.5 

P=.44 
27.7 

<0.001 
0.4 

P=.011 
- - 

Min (Tmin) 
2.8 

P=.024 
1.9 

P=.043 
0.8 

P=.56 
0.6 

P=.5 
3.9 

P=.008 
0.7 

P=.31 
42.9 

<0.001 
42.9 

<0.001 
- - 

Max (Tmax) 
9.3 

P<.001 
1.8 

P=.06 
2.4 

P=.09 
0.6 

P=.5 
5.1 

P=.002 
0.4 

P=.6 
7.1 

P<.001 
0.4 

P=.026 
- - 

Weeds density/m
2
 

(Weed) 
13.3 

P<.001 
8.2 

P<.001 
10.9 

P<.001 
5.1 

P<.001 
3.2 

P=.018 
0.7 

P=.32 
5.7 

P<.001 
1.1 

P<.001 
- - 

Elevation, m (Elev) 
7.1 

P=.001 
1.6 

P=.09 
2.6 

P=.06 
0.5 

P=.6 
17.2 

P<.001 
1 

P=.13 
13.4 

P<.001 
6.2 

P<.001 
5.6 

P<.001 
- 

Aspect ° 
1.2 

P=.39 
2.9 

P=.006 
0.5 

P=.8 
0.7 

P=.4 
1.6 

P=.11 
0.4 

P=.5 
6.7 

P<.001 
<0.1 

P=.45 
13.6 

P<.001 
0.2 

P=.18 
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The most important explanatory variables in White Patch field were crop canopy cover in 

June and weed density, which accounted for by 16.7 and 8.2%, respectively of the 

explained variation in sugar beet yield and quality. Some other variables such as soil 

available magnesium and phosphate, average minimum canopy temperature, canopy 

growth rate, soil clay content, field aspect and plant population density also had significant 

contributions (P<0.05) accounting for 1.9 to 3.9% of variability (Table 4.12).  

 

Figure 4.9: Ordination biplots based on redundancy analysis of the sugar beet yield and quality data 

(filled head arrows) with environmental variables, crop growth parameters and weed density used as 

explanatory variables (empty head arrows) in White Patch field in 2012 (see Table 4.12 for 

abbreviations). 

 



 

171 

 

 

Some variables such as weeds, soil organic matter, soil moisture content and elevation 

were good predictors as independent variables, but their contributions were not significant 

when added to other predictors in the redundancy analysis.  Some soil attributes such as 

soil available potassium (K), conductivity (EC), soil pH and percentage of silt were not 

significantly correlated to the variability in yield and quality and the percentage of sand 

was also redundant when apportioning the variance. 

In T32 field, the yield data of the previous wheat crop averaged for the plots where sugar 

beet measurements were taken was also included as an explanatory variable. The total 

variation in sugar beet yield and quality captured by the model was 45.5%, but only the 

first axis was statistically significant (P<0.001), which captured 25% of the variability 

(Table 4.11).  The quality parameters in this field were not as closely related to each other 

as in White Patch field and the plots with higher root yield had higher root content of 

amino acid, but lower contents of potassium and sugar (Fig 4.10). The percentage of sugar 

was not significant, since it had almost a uniform distribution throughout the field with a 

CV of 1.7% (Table 4.3). 

The plots with higher root yield significantly had a higher crop canopy cover, plant 

population density and wheat yield (P< 0.001) and were positively associated with the 

distribution of some soil attributes such as organic matter, soil moisture, available nitrate 

and soil pH (P ≤ 0.05). On the other hand, a higher root yield was strongly and negatively 

associated with weed density, relative canopy growth rate (P = 0.001) and percentage of 

sand (P = 0.02) (Table 4.12). A higher beet content of amino acids and potassium occurred 

in the elevated parts of the field, which were also associated with higher soil clay content, 

but did not have a significant effect on fitting the model (Fig. 4.10). However, only a few 
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variables were significant when the combined effect was considered, making a significant 

partial contribution to the variation explained in the redundancy analysis. The stepwise 

analysis identified the crop canopy cover, organic matter, weeds, plant population, 

percentage of sand and wheat yield as the most important predictors for the within field 

variability in sugar beet yield and quality (P< 0.05). The crop canopy cover accounted for 

13.6% of the explained variation followed by the soil organic matter and weed density, 

which contributed by 6.5 and 5.1% respectively, and it ranged from 2.1 to 3.4% for the 

plant population, percentage of sand and wheat yield (Table 4.12). 

 

Figure 4.10: Ordination biplots based on redundancy analysis of the sugar beet yield and quality data 

(filled head arrows) with environmental variables, crop growth parameters and weed density used as 

explanatory variables (empty head arrows) in T32 field in 2012 (see Table 4.12 for abbreviations). 
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In WO3 field, the yield data of previous wheat crop was also included in the redundancy 

analysis as an explanatory variable. The four constrained axes captured 46.1% of the 

variability in sugar beet yield and quality, but only the first constrained axis was 

statistically significant (P =0.001) and accounted for 33% of the explained variation  in 

sugar beet yield and quality (Table 4.11). The explanatory variables behaved differently in 

this field, as the root yield had a negative relationship with beet content of amino acid and 

potassium and was positively related to the percentage of sugar (Fig 4.11). Most of the 

selected explanatory variables in this field appeared to be significant independent 

predictors (P< 0.05), except for canopy growth rate, soil pH and available soil phosphate 

and potassium (Table 4.12), but only few variables had significant partial effects (P< 0.05) 

on the fitted model. These variables were crop canopy cover in June, which accounted for 

23.4% of the variation followed by soil moisture content, plant population, previous wheat 

yield, percentage of sand and soil pH (Table 4.12). 

A higher root yield occurred in the lower parts of the field, which had lower clay content 

and yield was strongly associated with higher plant population, crop canopy cover, soil 

moisture, organic matter, percentage of sand and available magnesium (Fig. 4.11). In 

addition, the yield data of the previous wheat crop was strongly and positively related to 

the variability in sugar beet root yield and percentage of sugar (P=0.001), suggesting the 

usefulness of yield data from the previous crop as a predictor of within field variability in 

sugar beet yield (Fig 4.11).  

The redundancy analysis therefore identified the most important variables associated with 

sugar beet yield and quality in each field. Some of these variables appeared to be 

significant predictors in more than one field and the redundancy analysis for all fields 

together, highlighted the most consistent variables associated with the spatial variability in 
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sugar beet yield and quality (Fig 4.12). The combined explanatory variables accounted for 

71.4% of the variability in the combined yield and quality, the four axes being statistically 

significant (P<0.05), but the first axis captured about 47% of the variability (Table 4.11). 

The model highlighted all the environmental variables as significant independent 

predictors (P<0.001) of variability in yield and quality, except soil available phosphate 

(P=0.48) (Table 4.12). The variability in root yield had a strong positive relationship with 

crop canopy cover, soil moisture content, soil organic matter, plant population, soil pH and 

soil available magnesium and potassium (Fig 4.12). 

 

 

Figure 4.11: Ordination biplot based on redundancy analysis of the sugar beet yield and quality data 

(filled head arrows) with environmental variables, crop growth parameters, weeds density and 

previous wheat yield used as explanatory variables (empty head arrows) in WO3 field in 2013 (see 

Table 4.12 for abbreviations). 
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On the other hand, relative canopy growth rate, canopy temperature (T, Tmin and Tmax) 

and weed density were negatively related to the variability in root yield. The plots with a 

higher percentage of sugar had a lower root content of amino acid and were located in the 

elevated areas with a high percentage of sand, canopy temperature, canopy growth rate, 

soil moisture, crop canopy cover and soil pH, while a higher root content of amino acid 

occurred in the areas with higher soil organic matter, clay and silt content, soil EC and soil 

available magnesium (Fig 4.12). As the plant population density had always a strong 

positive association with root yield in the single and combined analysis, it had always a 

strong negative association with some quality parameters (percentage of amino acid and 

potassium). Although, most of the explanatory variables were very significant (P<0.001) 

as an independent predictors, the role of some variables such as percentage of sand and 

silt, soil available phosphate, magnesium and potassium and field aspect became less 

important in the combined analysis. The stepwise analysis picked up minimum canopy 

temperature, plant population; elevation and crop canopy cover as the best predictors, 

contributing 42.9, 9.3, 6.2 and 5.4%, respectively of the explained variability (Table 4.12). 

Because of the potential use of early canopy cover for crop management, a further analysis 

was carried out in which the normalized crop canopy cover in June for all three fields was 

included as a response variable instead of normalized root yield and the quality parameters 

were replaced by plant population density, weed density and canopy growth rate. The 

canopy temperature (T, Tmin and Tmax) and weeds, and crop parameters (canopy cover, 

canopy growth rate and plant population) were excluded from the analysis as explanatory 

variables.  
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Figure 4.12: Ordination biplot based on redundancy analysis of the normalized and combined root 

yield for all field and quality data (filled head arrows) with combined environmental variables crop, 

growth parameters, and weed density used as explanatory variables (empty head arrows) (see Table 

4.12 for abbreviations). 

 

The selected soil attributes accounted for 73% of the variation, but all this variation was 

explained by the first constrained axis only, which was statistically significant (P<0.001) 

(Table 4.11). The combined crop canopy cover behaved in the redundancy analysis in the 

same way as the combined root yield (Fig. 4.13). A higher canopy growth rate and weed 

density occurred in the areas of low canopy cover in June. The variability in crop canopy 

cover and other response variables were significantly related to all the selected 

environmental variables (P<0.001), except soil pH (P=0.07) and available phosphate 

(P=0.12) (Table 4.12). Soil organic matter, soil moisture content and soil available 

magnesium had a strong positive association with crop canopy cover (Fig. 4.13). However, 
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the role of soil available nutrient (P, K and Mg) was not significant when combined with 

other variables (Table 4.12). Soil electrical conductivity had a higher partial effect on the 

explained variation (64%: P<0.001) followed by soil moisture content and soil particles 

(clay, sand and silt) (P<0.001). The plant population was highly related to the soil particles 

and aspect, a higher population occurred in the areas of higher soil content of sand and 

south facing slopes, which could be warmer and more favorable for seedling emergence. 

 

 

Figure 4.13: Ordination biplot based on redundancy analysis of the normalized and combined crop 

canopy cover in June for all field and quality data (filled head arrows) with combined environmental 

variables used as explanatory variables (empty head arrows) (see Table 4.12 for abbreviations). 
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4.4 Discussion: 

The variograms for most of variables reached the sill, indicating a significant spatial 

variability in sugar beet growth, yield and quality and the variation is therefore expected to 

be patchy. The nugget variance was high for some variables in T32 and WO3 fields, but 

the degree of spatial dependency was strong to moderate for most variables.  

The patterns of spatial variability in sugar beet growth and yield were clearly visualized by 

the interpolation maps. These patterns tend to have some visual association with spatial 

distribution of some environmental factors, which are therefore likely to be the main 

driving variables. Thus, soil moisture content and organic matter had a consistent positive 

association with yield variability, while weed density and mean canopy temperature had a 

negative association in all three fields. Perhaps the most important factor was soil 

moisture, since the accumulation of dry matter in sugar beet roots is known to be highly 

related to available soil moisture during June and July (Qi et al., 2005, Kenter et al., 2006). 

However, the patterns of spatial variability in sugar yield also had some association with 

some other environmental variables, although these differed from field to field; they 

include soil available nutrient, soil particles (clay, silt and sand), pH, electrical 

conductivity and elevation. The sugar yield was positively correlated to soil clay content in 

White Patch, but negatively related in WO3 field, which might be accounted for by the 

poor seedling emergence of sugar beet in clayey soils, especially under the cool conditions, 

which prevailed in March 2013 with mean temperature of 3.5 °C and not only affected in 

emergence in WO3, but in many early sown fields of sugar beet in the East of England in 

2013 (Stevens, 2015). Since the plant establishment significantly varied throughout WO3, 

it is expected that another variable interacted with the effect of low temperature on 
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seedling emergence, which is more likely to be soil type, since most of the plots with 

lower plant population had higher clay content.  

In general, the spatial variability in sugar beet yield and quality was not strongly related to 

any single environmental variable. It appears as though the spatial variability in sugar beet 

yield might, however be due to the combined effect of different environmental variables, 

as each of these variables had some contribution to the spatial variability in sugar beet 

yield and quality. However, some of these variables such as soil organic matter, soil 

moisture, soil texture and weed density were shown to have consistent effects on the 

spatial variability in sugar beet yield across all three fields. 

It is also important to note that under the uniform management practiced by the farmer the 

spatial variability in sugar beet growth and yield appeared to be consistent over the 

growing season, since the patterns of yield variability were similar to those observed for 

crop canopy cover, intercepted solar radiation and the LAI at different growth stages. 

These variables as observed early in the growing season could therefore be considered as a 

good predictor of the likely spatial variability in final sugar yield under uniform field 

management. A higher variability in crop canopy cover in June and its stronger association 

is not surprising, since the canopy developed and covered most of the ground by July and 

August reducing the amount of the variability which could be detected. However, the late 

development and more uniform canopy cover in July and August might not be associated 

with more uniform root development and sugar yield across the field, since the 

accumulation of dry matter starts early in the growing season (Draycott, 2008), so that the 

early assessment of crop canopy before canopy closure was the best predictor of final yield 

variability. This was further supported by the negative relationship between the spatial 

variability in sugar beet yield and relative canopy growth rate from June to July in all three 
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fields, since the plots with low canopy cover in June tend to have a higher growth rate in 

mid-summer, which made the canopy cover less variable throughout the field in July.  

Observing the spatial variation in crop canopy cover and some associated environmental 

variables early in the growing season could therefore help the farmer to identify the areas 

which might need more or less inputs than other areas to avoid or mitigate the spatial 

variability in sugar yield or at least reduce the costs of production. Future research is 

clearly needed to test this hypothesis under field condition. 

Although, higher plant populations might increase the dirt tare weight and might not 

increase the sugar yield (Jaggard et al., 2011), sub-optimal plant populations were 

particularly associated with areas of relatively low sugar yield at final harvest, especially 

in WO3. 

The research has also shown for the first time how some of the spatial variation in sugar 

yield can be predicted from the yield map of previous wheat or oilseed rape crop. The 

yield map of sugar beet in both fields showed some degree of spatial association with the 

yield map of the previous crop and the yield data of previous wheat crop showed its 

relevance to the spatial variability in sugar beet yield in the ordination analysis. However, 

the degree of spatial variability differed from one year to another and the yield maps of 

single crops also showed some distinct patterns of spatial variability from one year to the 

next such that the temporal variance map of WO3 in particular showed unstable temporal 

variation. The annual variability in weather may therefore cause unstable temporal patterns 

of variation between years (Simmonds et al., 2013), which are considered to be the main 

source of the temporal variability in the crop yield (Oliver et al., 2013). The spatial 

variation in yield has also been found to be unstable from year to year in other studies 

(Blackmore et al., 2003, Fountas et al., 2004, Simmonds et al., 2013), but it is significant 
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that there was some degree of spatial association in this research between the yield maps of 

sugar beet and the previous crop, especially in the lower yielding parts of the fields, which 

perhaps need more attention by the farm manger. WO3 field was therefore classified into 

different zones based on the productivity and stability over  three years (Fig. 4.8 F) 

following (Blackmore et al., 2003), for which it can be treated differently by the farmer, 

but this might not be reliable enough for two reasons: First, the management zone map is 

based only on one field and the yield data is of only three years. Secondly, some parts of 

the fields (south east corner for example) were low yielding in all three years, but it 

appears in the map to be temporally unstable, because yields in this part largely differed 

from low for wheat and oilseed rape to very low for sugar beet, and so the farmer might 

incorrectly consider this as being high yielding in one year and low yielding in another 

year.   

The links between sugar beet yield and quality and early growth and environmental 

variables as well as previous crop yield, which were visually demonstrated in the maps, 

were confirmed by the redundancy analysis. This analysis quantified the independent and 

partial association of explanatory variables with sugar beet yield and quality. The analysis 

helped to simplify the interpretation, since very few variables had significant partial effects 

on the explained variation when the combined effects of all variables were taken into 

account. Hence, although some variables are seem to be important if they are considered 

individually, they do not improve the prediction when all variables analyzed together 

(Lepš and Šmilauer, 2003). For example, the clay, sand and silt content of the soil are all 

related to each other as well as to soil electrical conductivity and soil moisture content, so 

that not all need to be considered. This is also true to some extent for crop canopy cover, 

plant population and relative canopy growth rate. 
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Overall and most consistently in all three fields, the independent and partial effects of crop 

canopy cover in June was most significant followed by plant population density, which 

makes them the most important early season predictors for within field variability in crop 

yield.  In T32 and WO3, the yield of the previous winter wheat crop also improved the 

predictability of the spatial variability in sugar beet yield and quality across these two 

fields. Although soil moisture, organic matter, clay content, canopy temperature, available 

nutrient, elevation and weed density were strongly associated with the variability in yield 

and quality, their partial effects on fitting the overall model were not always significant 

and inconsistent from one field to another. 

Due to the strong relationship between crop canopy cover in June and root yield, the crop 

canopy cover in June behaved in a similar way as root yield when used as a response 

variable instead of root yield in redundancy analysis. Since the environmental variables 

(soil organic matter, soil moisture content and soil available magnesium) associated with 

root yield were strongly associated with canopy cover in June and the areas with low 

canopy cover or plant population density are more likely to have a higher weed density.  

Therefore, it is suggested to look at the spatial variability in these variables as soon as the 

spatial variability in crop canopy cover is observed and attempts should be made to 

improve the canopy development. Some of these variables such as soil moisture content, 

nutrients and weeds can be treated by site-specific irrigation, fertilizer or herbicide 

applications during the growing season to increase the early canopy development and 

decrease the spatial variability in final yield, while managing soil organic matter might 

take more than one growing season, but it is still recommended to add the farm compost 

repetitively each season to improve soil physical, chemical and biological quality. 
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4.5 Conclusions: 

The main conclusions obtained from the results of this chapter are as follows: 

1. A significant spatial variability in sugar beet growth, yield and quality was observed 

throughout each field. This was particularly and most importantly evident in the yield 

value, which varied from 1120 to 2990, 1870 to 3320 and 230 to 3130 £/ha
-1

in White 

Patch, T32 and WO3, respectively. 

2. The spatial variability in sugar beet yield could be correlated with the variability in 

soil moisture, soil type, soil organic matter, elevation, weeds and canopy temperature 

in almost all fields, and most of the variables were confirmed to be significant 

independent predictors in the redundancy analysis. Few of them appeared to be 

significant when the interaction and confounding effects were taken into account. 

3. The variability in sugar beet yield and quality was negatively related to the canopy 

temperature, but the percentage of sugar had a positive association with minimum 

canopy temperature 

4. The spatial variability in sugar beet yield was found to be strongly correlated to the 

variability in some growth parameters measured at different times during the growing 

season. Among these variables, crop canopy cover in June was identified as a good 

predictor of within field variability in final sugar yield and together with crop plant 

population if sub-optimal, could be useful in spatially-variable field management by 

the farmer. 

5. The yield map of sugar beet had some degree of spatial association with the yield 

map of previous crops (winter wheat or oilseed rape), these maps can therefore also 

be used as a useful tool to predict some spatial variability in sugar beet yield. 
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6. The spatial variability in crop canopy cover in June was related to soil attributes in a 

similar way as root yield at final harvest, indicating the possibility of early 

management of sugar beet.   

In order to make the predictability evident in these results from three fields, more generally 

applicable and useful to farmers as well as to understand the driving variables better, the 

feasibility of simulating the final sugar yield based on within field variability in air 

temperature, solar radiation and soil types will be explored in Chapter five, by applying the 

Broom’s Barn sugar beet growth simulation model to the three fields studied. This model 

has been widely used to simulate sugar beet yield, but only on a regional basis. In chapter 

five, attempts are made to adapt the model on a spatially variable basis in each field to 

explore whether it is possible to explain the variation in sugar yield based on weather 

variables, soil types and also an observation of early canopy development and sugar beet 

plant establishment. 
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5. Chapter Five: Within-Field Simulation of Sugar Beet Yield Based on 

Micro-environment. 

5.1 Background: 

The sugar beet crop shows significant spatio-temporal variation in crop yield and, as 

shown in chapters 3 and 4 these variables are correlated with the growth, development and 

consequently the yield of sugar beet. In this chapter, the effects of these factors on sugar 

beet growth and yield are simulated on a spatio-temporal basis using the Broom’s Barn 

sugar beet growth simulation model (Jaggard and Werker, 1999, Richter et al., 2001), 

which is described in complete detail by Qi et al. (2005). This deterministic model 

considers the combined influence of temperature, solar radiation, rainfall, potential 

evapotranspiration and soil available water capacity on accumulation of dry matter and 

sugar yield and is driven by weather  variables on a daily simulation assuming a plant 

population of more than 75000 plants/ha (Qi et al., 2005). The model has been widely 

applied to simulate sugar beet growth and yield based on weather data and to understand 

the future of sugar beet production in the UK and Germany under the impact of climate 

change (Freckleton et al., 1999, Pidgeon et al., 2001, Richter et al., 2001, Kenter et al., 

2006, Richter et al., 2006, Jaggard et al., 2007, Jaggard et al., 2009). The simulated sugar 

yield was close to  the actual sugar yield under different weather and soil conditions from 

1980 to early of 2000s, but it underestimated the sugar yield with beginning of 2008, due 

to the improvement in varieties and agronomic practice (Qi et al., 2013). Therefore, the 

model was recalibrated recently to match the new varieties and agronomic practices (Qi et 

al., 2013). However, in most of these studies the model was applied for temporal 

simulation of sugar beet yield and it was applied on regional bases using the weather data 

collected from weather stations located far from the field and on standard surface. 
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Whereas, the weather data provided by a standard weather station may significantly vary 

from weather data provided by weather sensors located in agricultural plots (Monestiez et 

al., 2001). To model the variability in sugar beet yield in the UK under climate change, 

Richter et al. (2006) expected that the variability in sugar beet yield within the regions will 

be higher than between regions, due to the variability in soil properties. Therefore the 

spatial variability in the environment should not be ignored when modelling sugar beet. 

The model was applied based on spatially variable soil properties and weather condition by 

Launay and Guérif (2003) in France and Kenter et al. (2006) in Germany, but the data was 

not dense enough for spatial interpolation and the spatial variability that might occur 

within a single field has never been considered for sugar beet as far as known. In another 

study however, Hakojärvi et al. (2013) modelled the growth of spring cereals based on 

spatial variability in some soil physical properties over three years in Finland. They found 

that the spatial variability in the simulated crop biomass was much lower than the actual 

spatial variability in crop biomass. They concluded that the crop biomass cannot be 

simulated based on spatial variability on some soil physical properties in the case of high 

variability, because some of the variability could be due to other variables such as weather 

and field topography.  A weakness of these attempts has been the assumption of a uniform 

distribution of solar radiation across the region or field. Incident solar radiation, however, 

will vary even within the field scale, controlled by the field topography, especially the 

slope and aspect (Fu and Rich, 1999, Allen et al., 2006), except in completely level fields. 

The accumulation of dry matter and sugar is therefore predicted to vary within-field, since 

accumulation of dry matter is a function of intercepted solar radiation (Werker and 

Jaggard, 1998, Draycott, 2008, Jaggard et al., 2009) if provided water is not limiting. 

Different methods are now available to calculate the incident solar radiation and potential 

evapotranspiration for any location within the field based on a digital elevation model, 
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slope and aspect and the map of spatial variability in solar radiation can also be produced 

(Kumar et al., 1997, Fu and Rich, 1999, Pierce Jr et al., 2005, Allen et al., 2006). The 

spatial variability in solar radiation and air temperature can together cause spatial 

variability in potential evapotranspiration and the crop’s requirement of water. This 

chapter, therefore, investigates the ability of the Broom’s Barn model to simulate sugar 

beet development and yield on a spatially-variable basis. Since the model assumes good 

crop establishment, satisfactory (non-limiting) conditions of water and nutrients and an 

absence of pests, weeds and disease (Qi et al., 2005), the yield gap between simulated and 

actual yield is also explained and adjustments necessary to account for the failure to satisfy 

these assumptions  in different parts of each field are identified. 

 

5.2 Methodology: 

5.2.1 The components of the model: 

The main components of the Broom’s Barn sugar beet growth model and the way in which 

it simulates the crop biomass and accumulation of sugar are described in Figure 5.1 (Qi et 

al., 2005). Under non-limiting growth conditions, the accumulation of dry matter and 

sugar is mainly accounted for by the solar radiation and temperature. The effect of 

temperature on the accumulation of crop biomass and sugar is simulated by the model 

through predicting its effect on the emergence of sugar beet seedlings, the development of 

crop canopy cover and rooting depth (Qi et al., 2005, Jaggard et al., 2007). The 

accumulation of crop biomass was found to be positively related to temperature at the 

beginning of the growing season, negatively related in July and August and independent at 

the end of the growing season in Germany (Kenter et al., 2006). The increase in average 
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daily temperature over last four decades has allowed sugar beet to be sown earlier in the 

UK (Jaggard et al., 2007) and it is expected to be sown an additional ten days earlier by 

2050 (Boizard et al., 2012), which might contribute to a significant increase in sugar yield.  

The model determines the sugar beet growth as a result of the daily interception of solar 

radiation and radiation use efficiency, which depends not only on crop foliage cover, but 

also the available space for the crop canopy to extend (Werker and Jaggard, 1998, Jaggard 

et al., 2009). The final sugar yield results from the daily accumulation of dry matter and its 

apportioning to sugar (Werker and Jaggard, 1998). It assumes a decrease in the radiation 

use efficiency with increasing accumulation of dry matter and the age of the crop (Jaggard 

and Werker, 1999). The model was further developed by Richter et al. (2001) to simulate 

the impact of water stress on the development of crop foliage cover and the influence of 

diffuse radiation in the canopy on radiation use efficiency. Since the new sugar beet 

varieties are more droughts tolerant and rhizomania-resistant than older varieties in 

addition to improvement in agronomy such as seed priming, the model consistently 

underestimated the sugar yield from 2008. Therefore the model was recalibrated by Qi et 

al. (2013), by reducing the thermal time required from sowing to 50% emergence from 

140 °C d to 90 °C d, the influence of drought on potential radiation use efficiency was 

adjusted to 42% of its possible value calculated in previous study by (Werker and Jaggard, 

1998) , and the impact of canopy age on potential radiation use efficiency was adjusted to 

50% of its old value.  

The model consists of a set of deterministic mathematical functions to estimate a daily 

accumulation of crop biomass and sugar, the amount of solar radiation intercepted by the 

crop foliage, total dry matter accumulated based on potential radiation use efficiency and 

the conversion of dry matter to sugar yield (Fig. 5.1). 
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Figure 5.1: Components and controlling environmental variables in the Broom’s Barn sugar beet 

growth simulation model modified from Qi et al. (2005). 

 

 

All the equations of the model and the ways in which it simulates different crop parameters 

are described in detail by Qi et al. (2005) and summarized in Table 5.1. The specifications 

and values of some parameters are also given in Table 5.2.  

The model simulates the canopy cover and rooting depth as function of daily increment in 

air temperature above a base temperature of 3°C from the 50% seedling emergence 

(Werker and Jaggard, 1998).  
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Table 5.1: The main components and variables of Broom’s Barn sugar beet growth model and their mathematical 

equations (Qi et al., 2005). Parameter values of constants are given in Table 5.2. 

 

 

Parameters Mathematical equations 

Crop canopy cover (ƒ), m
2
 m

-2
 ƒ = ƒ

0 
exp (µ

min
(𝑇 − 𝑇0) +

µ
0

− µ
min

ν
(1 − e−ν(𝑇−𝑇0))) 

Final net relative growth cover rate (µmin),  

d
-1

 
µmin = µmin0(2 − ƒstress) 

The rate of change in canopy from µ0to 

µmin (ν),  d
-1

 
ν = ν0(1 + 0.1(1 − ƒstress)) 

Effect of water stress (ƒstress) ƒstress =
2

1 + exp{−ƒdt(𝑄rel − 0.02)}
− 1 

Rooting depth (𝐃), m 𝐷 = 𝐷sowing + I0 exp (
𝛽0

𝛿
(1 − e−δ(𝑇−𝑇0))) 

Daily  increase in dry matter (ΔW), gm
-2

 d
-

1
 

Δ𝑊 = εƒS 

Intercepted radiation use efficiency (𝜀),  

gMJ−
1
 

𝜀 = 𝜀0

𝐸a

𝐸p

exp (−𝛾𝑤) 

Daily increase in sugar yield (ΔY),   gm
-2

 

d
-1

 
Δ𝑌 = Δ𝑊 (

𝐾𝑊

1 + 𝐾𝑊
) 

Total dry matter (W), gm
-2

 𝑊 =
1

𝛾
log {1 + 𝛾ε ∑ (ƒ𝑆

𝐸a

𝐸p

)

tf

t=t0

} 

Total sugar yield (Y),  gm
-2

 𝑌 = 𝑊 −
1

𝑘
log(𝐾𝑊 + 1) 

Evapotranspiration (ET)  

Daily soil surface ET (ΔSSE), mm d
-1

 ΔSSE = 1.5(1 − ƒ) 

Potential crop ET (𝐸p),  mm d
-1

 𝐸p = 1.25ƒ × ETgrass 

Actual crop ET (𝐸a),  mm d
-1

 𝐸a = min (𝐸p, 𝐸max ) 

Daily maximum ET (𝐸max ),  mm  𝐸max =
𝜓soil−𝜓crop

𝑅crop + 𝑅soil

,  

Resistance of water movement within 

rooting zone  Rsoil and crop  Rcrop,  
𝑅crop + 𝑅soil=c1+c2

1

𝐷
((

𝑄

𝑄fc

)−(2b+3) − 1) 

Soil texture related water content at field 

capacity (𝑄fc), kg m
-3

 
𝑄fc = a2(

a2

5
)(1

b⁄ ) 

Water potential in rooting zone (𝜓soil), 

kPa 𝜓soil = −5 (
𝑄

𝑄fc

)
−b

 

Water content in rooting zone (𝑄),  kg m
-3

 𝑄 = 𝑄fc −
SMD

𝐷
 

Soil moisture deficit (SMD), mm SMD = SMD(t−1) + ΔSSE + 𝐸a − 𝑅 
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Table 5.2: Specifications and values of some parameters and variables used in the original Broom’s Barn sugar 

beet growth model and their mathematical equations (Qi et al., 2005). 

Parameters Description Values Units 

β0 Rate of increases of D when  T =T0 0.00935 d
-1

 

𝛿 Rate of decay in β0 to 0 0.002715 d
-1

 

ψcrop Canopy water potential −1500 kPa 

ε0 Potential radiation use efficiency 1.80 gMJ
-1

 

μ0 Increasing rate in canopy cover at T =T0 0.06556 d
-1

 

μmin0 Rate of decay in canopy cover at T =T0 −0.000169 d
-1

 

μmin μmin0 as affected by water stress  d
-1

 

γ 
decaying coefficient of radiation 

conversion coefficient 
0.00014 g

-1
m

2
 

b Soil texture related values (2-18) 
This parameter varies across each field according to the 

variability in soil texture 

Dsowing Root depth at sowing 0.02 m 

ƒ0 Initial canopy cover when T = T0 0.0015 m
-2 

m
2
 

ƒdt Response factor 
Increase linearly from 6 to 12 with increasing the 

thermal time from 700 to1700 °C 

I0 Length of epicotyls when T = T0 0.0491 m 

k Sugar partitioning coefficient  0.00148 g
-1

m
2
 

Mp 

Regression coefficient of the relationship 

between observed sugar yield and plant 

population 

0.000081, 0.00006 and 0.00023  in White Patch, T32 

and  WO3, with standard error of 0.00002, 0.00001 and 

0.00002, respectively 

Mw 

Regression coefficient of the relationship 

between observed sugar yield and squared 

root of observed weed density 

3.1, 2.0 and 1.4 in White Patch,  T32 and  WO3, 

respectively with standard error of 0.42, 0.3 and 0.5 

respectively 

Pobs Observed plant population  Variable across each field Plant/ha 

Pw Observed weed density Variable across each field Plant/ha 

Qrel Relative water content 
Calculated as ratio of the daily available water content 

and available water content at field capacity  

R Rainfall 
Obtained from the nearest weather station for 

each field 
 mm d

-1
 

S Incident solar radiation,  

Field value obtained from local weather 

station and this calculated for each plot based 

on slope degree and aspect (see text)MJ m
-2

d
-1

 

 

T 
Thermal time above base temperature of 3 

°C from sowing 

Recorded every 30 minutes from 45 sensors distributed 

in each of White Patch and T32 fields, and 89 sensors in 

WO3 field  °Cd 

T0 
Thermal time above base temperature of 3 

°C from sowing to 50% crop emergence 
90 °Cd 

t Time  

t0 and tf The crop emergence and final harvest, respectively in which the ΔW is calculated 

ν0 Rate of change of μ, from μ0 to μmin 0.005866 d
-1

 

ν ν0 as affected by water stress  d
-1
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To quantify the influence of water stress, the soil water stress factor (ƒstress, Table 5.1) is 

simulated as a logistic function, which changes between 1 and 0 according to relative 

water content (𝑄𝑟𝑒𝑙) (Qi et al., 2005). The relative water content is the percentage of daily 

available water content from the available water at field capacity. The response factor (ƒ
dt

) 

has a value, which starts initially from 6 and increases up to 12 with increase in thermal 

time from 700 to 1700 °Cd (Richter et al., 2001). The yield loss due to water stress is to 

some extent compensated by early sowing and extending the growing season (Freckleton 

et al., 1999, Richter et al., 2006) 

The evapotranspiration (ET) from the bare soil is assumed to be constant (1.5 mm d
-1

). 

However, the model does not allow the ET from the soil surface (ΔSSE) to exceed that 

from standard grass (ETgrass), which is calculated based on the Penman–Monteith equation 

for a standard grass sward (Allen et al., 1998). The daily actual ET is assumed to be the 

same as daily potential ET, but if the available water in the rooting zone is not enough or 

slow moving, then the actual ET will be equal to the daily maximum ET (Emax) that might 

occur. The value of (Emax) can vary according to the differences in water potential in the 

soil rooting zone (𝜓soil) and crop canopy (𝜓crop) and water movement between rooting 

zone (Rsoil) and canopy (Rcrop) (Qi et al., 2005). The values of Rsoil  and Rcrop are calculated 

based on rooting depth (D), soil parameter (b) which can be changed according to soil 

type, available water at rooting zone in a given day (Q) and available water at field 

capacity (Qfc) (Jaggard and Werker, 1999). 
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5.2.2 Crop and environment data: 

The model was applied separately for each studied field (White Patch and T32 in 2012 and 

WO3 in 2013) based on spatially-variable environmental data collected from different 

locations within the field. The information about the studied fields, method of sampling 

and collection of crop and environmental data is described in detail in chapter two and 

Figures 2.4, 2.5 and 2.6 and summarized as follows: 

1. The latitude, longitude and mean altitude above sea level were 52.25°N, 0.57°W 

and 68 m respectively for White Patch, 52.18°N, 0.10 °W and 15 m for T32, and 

52.16°N, 0.14°W and 35 m for WO3, 

2. The model was applied for 91, 90 and 114 different locations in White Patch, T32 

and WO3 fields respectively, 

3. The soil texture, crop biomass and sugar yield were identified at each of these 

locations, 

4. Air temperature was recorded every 30 minutes at 45 locations in White Patch and 

T32 fields and at 90 locations in WO3. The value of air temperature for other plots, 

where there were no loggers was calculated by averaging the data of the 

neighbouring plots located within a 25 m radius, 

5. Daily data for rainfall, incident solar radiation, relative humidity and wind speed 

were obtained from the Broom’s Barn weather station for White Patch in 2012 and 

from the Botanic Garden near Cambridge (52.19°N, 0.126°W) for T32 in 2012 and 

WO3 in 2013. The data for rainfall, relative humidity and wind speed were 

assumed to be the same for all plots across each field, 
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6. The incident radiation was calculated for each location within field from the slope 

and aspect of each location following the equation developed by Kumar et al. 

(1997) as follows: 

                 𝑺𝐩 = 𝑺𝐬 𝐜𝐨𝐬 𝒊   Equation 5- 1 

 

Where Sp is the shortwave solar radiation, which is visible and contains a high amount of 

energy received by a skewed surface, Ss is the shortwave solar radiation falling on a 

surface normal to the sun's rays and 𝑖 is the angle between the normal to the surface and 

the direction to the Sun calculated as follows: 

 

𝐜𝐨𝐬 𝒊 = 𝐬𝐢𝐧𝜴𝒔(𝐬𝐢𝐧 𝑳𝐜𝐨𝐬ϐ − 𝐜𝐨𝐬 𝑳 𝐬𝐢𝐧 ϐ) 

+𝐜𝐨𝐬𝜴𝒔𝐜𝐨𝐬𝒉𝒔(𝐜𝐨𝐬 𝑳 𝐜𝐨𝐬 + 𝐬𝐢𝐧 𝑳 𝐬𝐢𝐧 ϐ 𝐜𝐨𝐬 𝒂𝒘)𝐜𝐨𝐬𝜴𝒔 𝐬𝐢𝐧 ϐ 𝐬𝐢𝐧 𝒂𝒘 𝐬𝐢𝐧 𝒉𝒔 

Equation 5- 2 

Where ϐ and 𝑎𝑤, are respectively the tilt and azimuth angles of the soil surface (slope and 

aspect) for each plot, 𝐿 is the latitude of plot, Ωs is a solar declination and  ℎ𝑠 is the hour 

angle. 

For each field, the hourly observations of incident radiation of which the daily sum is 

based were recorded at a horizontal plane (i.e. ϐ= 0:0). The incident radiation for this 

reference point can be written as follows: 

 

𝑺𝐩,𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 = 𝑺𝐬(𝐜𝐨𝐬 𝒊)𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 𝒄𝒍𝒐𝒖𝒅 𝒄𝒐𝒗𝒆𝒓              Equation 5- 3 
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Since the slope and aspect for each plot within the fields is known, the incident radiation 

for each plot can be written as follow: 

 

𝑺𝐩,𝐩𝐥𝐨𝐭 = 𝑺𝐬(𝐜𝐨𝐬 𝒊)𝐩𝐥𝐨𝐭 𝒄𝒍𝒐𝒖𝒅 𝒄𝒐𝒗𝒆𝒓                            Equation 5- 4 

 

The physical measurement of Sp at the reference point integrates the effect of clouds. 

Hence, using Equation 5.2 to determine (cos 𝑖)plot and (cos 𝑖)reference, and their ratio can 

be used to scale up or down observations of radiation 𝑆p,reference to provide  𝑆p,plot  as 

follows: 

 

𝑺𝐩,𝐩𝐥𝐨𝐭 =
𝑺𝐩,𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞(𝐜𝐨𝐬 𝒊)𝐩𝐥𝐨𝐭

(𝐜𝐨𝐬 𝒊)𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞
   Equation 5- 5 

 

7. Since the incident solar radiation and air temperature could thus be estimated for 

each plot within the field, the potential evapotranspiration for each plot was 

calculated following Allen et al. (1998).  

The model parameters and variables, which varied within each field, were therefore 

soil b parameter and soil available water at field capacity, which relates to soil texture, 

air temperature, solar radiation and potential evapotranspiration (Tables 5.1 and 5.2). 
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5.1.1. Model performance: 

Model performance for each plot in each of the three studied fields was evaluated as 

follows:  

1. The simulated and measured sugar yields at each point were plotted against each 

other. 

2. The goodness of the relationship between the simulated and measured sugar yields 

was determined by estimating the correlation coefficient (r) and the main 

parameters of the linear regression (slope, intercept and their standard errors, 

coefficient of determination (R
2
)) and Residual Mean Square (RMS), which 

estimate the scatter of the data around 1:1 line. These indicators were identified 

using GenStat software (15
th

 edition). 

3. To identify the locations within each field at which the model over or under 

estimated the yield, the relative yield gap (𝑌𝑔 ) between the simulated (ў𝑖 ) and 

measured (𝑦𝑖) sugar yield was calculated for each point as follows, 

      

 𝒀𝒈 = (𝟏 −
𝒚𝒊

ў𝒊
) × 𝟏𝟎𝟎                                                  Equation 5- 6 

 

4. To visualize the model performance spatially within each field, the simulated 

yields were analyzed geostatistically (Appendix 7) and the Kriging maps were 

produced for the simulated and actual sugar yields and the yield gap and compared. 
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5.1.2. Improving model performance: 

Since the simulation model assumes a plant population density of at least 75000/ha, the 

crop is weed free and rapid expansion of the crop canopy, some adjustments were made on 

the model inputs and outputs as follows in order to see if these assumptions affected model 

performance: 

1. To compensate for variability in crop establishment and early canopy expansion 

(Fig 5.2), the sowing date was changed for most of the plots, so that the simulated 

crop canopy cover corresponded to the observed canopy cover on the 1
st
 June 2012 

in White Patch and T32 fields and on the 20
th

June 2013 in WO3 field evidenced by 

the 1:1 relationship (Figure 5.3 D-F). The sowing date was therefore delayed for 

some plots from Julian day 85 up to 117 in White Patch, from 76 to up to 90 days 

for a few plots in T32 and from 64 to up to 130 days in WO3 field in order to 

compensate for much slower early canopy development in the field compared to 

the simulation.  

2. In case the spatial variability in observed sugar yield was affected by weeds and 

plant population, the simulated yield was adjusted based on the following 

regression analysis: 

a) The simulated sugar yield was adjusted for plant population (ў𝑎𝑑𝑗𝑝) for each field 

using the equation of linear regression analysis between observed sugar yield and 

plant population density (Fig 5.4 A-C) as follows: 

 

ў𝒂𝒅𝒋𝒑 =  ў − {𝐌𝐩 × (𝟕𝟓𝟎𝟎𝟎 − 𝐏𝐨𝐛𝐬)}  Equation 5- 7 
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Where 75000 is minimum plant population/ha assumed by the model. Therefore this 

adjustment was only applied for the plots where the plant population <75000 plants/ha and 

Pobs is the observed plant population density in each plot. 

 

a) The simulated sugar yield was also adjusted for weed density (ў𝑎𝑑𝑗𝑤) for each field 

based on the equation of linear regression analysis between observed sugar yield 

and weed density (Fig 5.4 D-F) as follows: 

 

ў𝒂𝒅𝒋𝒘 =  ў − (𝐌𝐰 × √𝐏𝐰)    Equation 5- 8 

 

Where √Pw is the square root of the observed weed density in each plot, since the data of 

weeds was highly skewed (Chapter 4, Tables 4.1-4.3), the root square of the data was 

taken (see Table 5.2 for meanings of the symbols and their values).   

     The significance of the differences between the different adjustments was tested by 

calculating the p values for the differences between the correlation coefficients using a tool 

provided by Soper (2015), which is based on the method of Fisher (1921). 
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Figure 5.2: Images of the minimum (A, D, G), mean (B, E, H) and maximum (C, F, I) canopy cover in 

White Patch (A, B and C) and T32 (D, E and F) fields assessed on 1
st
 of June 2012, and in WO3 (G, H 

and I) field assessed on 20
th

 of June 2013. The canopy cover was lower than predicted by the model 

and also more variable. 
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Figure 5.3: The relationships between observed and simulated crop canopy covers in June before (A-

C) and after (D-F) adjusting the sowing date at White Patch (A, D), T32 (B, E) and WO3 (C-F). The 

one-to-one relationships were obtained by manually adjusting the sowing date for most plots, so that 

the simulated canopy in June was as close to the observed canopy as possible. In A-C the solid line is 

the regression line and the dashed line is the 1:1 relationship. In D-F the regression and 1:1 line are 

coincident. 
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Figure 5.4: The relationships between observed sugar yield and plant population (A-C) and weed 

density (D-F) in White Patch (A, D), T32 (B, E) and WO3 (C, F). These relationships were used to 

adjust the simulated sugar yield in order to account for the effect of weeds and sub-optimal plant 

population. 

 

 

O
b

se
rv

ed
 s

u
g

a
r 

y
ie

ld
, 

t/
h

a
 

Plant population plants/ha Square root of weeds/m
2
 



 

202 

 

5.3 Results: 

In general, the unadjusted Broom’s Barn sugar beet growth simulation model did not 

perform well to predict the sugar yield on a spatially variable basis within any field (Figs 

5.5-5.7 A). In all three fields, the model overestimated the sugar yield in low yielding parts 

and, in White Patch and T32, underestimated it in high yielding parts. The relationship 

between simulated and observed sugar yields were therefore far from the one-to-one 

relationship, especially in WO3 field. The observed sugar yield ranged from 6.3 to 16.6, 

10.4 to 16.8 and 1.4 to 18.9 t/h in White Patch, T32 and WO3 fields respectively, while the 

simulated sugar yields were much less variable ranging from 12.1 to 14.7, 13.1 to 15.8 and 

15 to 21.1 t/ha respectively (Table 5.3). Therefore, the observed spatial variation was much 

higher than the simulations in all three fields, and the observed yields had higher CV 

values ranging from 10.5 to 31.8% compared to 4.3 to 5.3% for the simulations.  

Although, the model over or under estimated sugar yield, some of the spatial variability in 

the observed yield was accounted by the simulated yield (Figs 5.5-5.7 A) and the maps of 

the simulated yield had some similar patterns of spatial variability as that for the observed 

sugar yields (Figs. 5.8-5.9 A and B), as some of low yielding areas had relatively low 

simulated yields and some high yielding areas were associated with higher simulated yield. 

The correlation coefficients between the simulated and observed sugar yield also 

significantly differed from 0 (P<0.001: Table 5.5) in all three fields. However, the 

performance of the model for spatial simulation differed from one field to another. Its 

performance was better in T32 field compared to the other fields, since the simulated yield 

accounted for 45% of the spatial variability in observed sugar yield with a lower Residual 

Mean Square (RMS) of 1.2 and a correlation coefficient (r) of 0.67 compared to other two 

fields (Table 5.4). 
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Table 5.3: Summary statistics of observed and simulated sugar yields t/ha and the relative 

yield gap between observed and simulated sugar yield. 

 Mean Min Max SD CV 

White Patch      

Observed sugar yield t/ha 10.3 6.3 16.6 2.2 21.1 

Simulated sugar yield t/ha (Unadjusted) 13.3 12.1 14.7 0.6 4.3 

Simulated sugar yield (t/ha)adjusted for      

Canopy  in June 11.4 9.98 13.6 0.7 6.1 

Weed density in July 12.6 9.64 14.7 0.91 7.3 

Plant population 13.2 11.4 14.7 0.67 5.1 

Canopy and weeds 10.3 6.8 14.3 1.3 12.7 

Canopy and plant population 11.4 9.3 14.2 0.94 8.2 

%Relative yield gap based on      

Original sowing date 22.6 -13 50.7 14.9 66 

Adjusted for canopy in June 9.93 -22 39.6 14.8 149 

For weeds 12.8 -13.1 42.9 12.2 95.9 

For plant population 21.9 -13.1 47.7 14.3 65.2 

For canopy and weeds 0.05 -17.9 28.2 11.4 23224 

For canopy and plant population 10.5 -17.0 38.1 13.2 125.5 

T32      

Observed sugar yield t/ha 13.8 10.4 16.8 1.4 10.5 

Simulated sugar yield t/ha (Unadjusted) 14.3 13.1 15.8 0.7 4.6 

Simulated sugar yield (t/ha)adjusted for      

Canopy  in June 14.1 11.8 16.2 1.0 7.1 

Weed density in July 13.0 10.1 15.6 1.2 8.9 

Plant population 14.3 13.0 15.8 0.68 4.7 

Canopy and weeds 12.7 9.1 16.2 1.5 11.8 

Canopy and plant population 14.0 11.6 16.2 1.0 7.3 

%Relative yield gap based on      

Original sowing date 3.9 -15.4 23.8 7.9 201 

Adjusted sowing date 2.1 -7.1 19.5 5.6 260 

For weeds 3.7 -15.4 23.8 7.7 208 

For plant population -6.2 -24.8 8.3 7.2 116 

For canopy and weeds 1.9 -7.1 18.4 5.4 283 

For canopy and plant population -8.7 -26.6 6.3 6.5 75 

WO3      

Observed sugar yield t/ha 11.1 1.4 18.9 3.5 31.8 

Simulated sugar yield t/ha (Unadjusted) 19.2 15 21.1 1.0 5.3 

Simulated sugar yield (t/ha)adjusted for      

Canopy  in June 16.4 12.7 19.5 1.2 7.6 

Weed density in July 18.1 13.2 21 1.5 8.4 

Plant population 14.4 6 21 2.6 18.1 

Canopy and weeds 15.3 9.9 19.5 1.8 11.7 

Canopy and plant population 11.5 4.0 19.5 3.1 26.6 

%Relative yield gap based on      

 Original sowing date 42.9 10.0 90.7 17.3 40 

Adjusted sowing date 33.6 3.1 89.3 18.2 54 

For weeds 39.6 3.4 90.2 17.7 45 

For plant population 24.6 -3.5 76.7 17.8 72 

For canopy and weeds 28.9 -5.1 87.6 18.6 65 

For canopy and plant population 5.1 -32.2 65.2 18.9 378 



 

204 

 

Table 5.4: Correlation coefficients and the parameters of linear regression between observed 

and simulated sugar yield t/ha, and adjusted simulated yield. 

 

 

In WO3, the simulated yield accounted for 34% of the variation in the observed yield, 

which was higher than 24% in White Patch, but the relationship was closer to 1:1 in White 

Patch (Table 5.4). However, the correlation coefficient between the observed and 

simulated yield in T32 does not significantly differ from those in White Patch and WO3 

(P= 0.08 and 0.3, respectively).  

 Intercept Slope Sec Sea r R
2
 RMS 

White patch        

Simulated sugar yield t/ha (unadjusted) -14.7 1.9 4.7 0.35 0.50 23 3.6 

Simulated sugar yield (t/ha)adjusted for        

Canopy  in June -18.7 2.6 2.2 0.19 0.81 66 1.6 

Weed density in July -12.1 1.8 2.1 0.17 0.75 56 2.1 

Plant population -16.6 2.0 3.6 0.27 0.63 39 2.9 

Canopy and weeds -5.1 1.5 0.8 0.08 0.90 81 0.9 

Canopy and plant population -12.2 2.0 1.5 0.13 0.85 72 1.3 

T32        

Simulated sugar yield t/ha (unadjusted) -7.6 1.5 2.5 0.18 0.67 45 1.2 

Simulated sugar yield (t/ha)adjusted for        

Canopy  in June -3.7 1.2 1.1 0.08 0.86 75 0.5 

Weed density in July 1.2 0.97 1.1 0.08 0.77 59 0.8 

Plant population -8 1.5 2.3 0.16 0.70 48 1.1 

Canopy and weeds 3.1 0.84 0.6 0.05 0.87 75 0.5 

Canopy and plant population -3.5 1.2 1 0.07 0.87 76 0.5 

WO3        

Simulated sugar yield t/ha (unadjusted) -28 2 5.1 0.27 0.58 34 8.2 

Simulated sugar yield (t/ha)adjusted for        

Canopy  in June -29.6 2.5 2.1 0.13 0.87 77 2.9 

Weed density in July -14 1.4 3.2 0.17 0.61 36 7.9 

Plant population -4.8 1.1 1.1 0.07 0.81 66 4.2 

Canopy and weeds -13 1.6 1.7 0.1 0.81 65 4.2 

Canopy and plant population -0.3 0.98 0.67 0.06 0.86 73 3.3 

c: intercept, a: slope, Sec and Sea: standard error for the intercept and slope, r: correlation coefficient, 

R
2
:determination coefficient and RMS: residual mean square. 
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The difference between the observed and simulated yields throughout each field is 

expressed by the relative yield gap, which also indicates the model performance in 

different parts of field (Figs 5.8-5.10 D). The mean relative yield gap was higher 42.9% in 

WO3 and ranged from 10-90.7%, while it was lower and ranged from -13 to 50.7 % in 

White Patch and lowest in T32, where it ranged from -15.4 to 23.8 %. This means that the 

model overestimated the yield throughout WO3, but it was overestimated in some parts 

and underestimated in other parts in White Patch and T32 fields (Table 5.3). These results 

suggest that although the model was not efficient enough for spatial simulation within-

field, its efficiency was less in the case of high spatial variability, as it performed better in 

T32 field, which had lower spatial variability compared to the other fields.  Furthermore, 

the amount of spatial variation in observed sugar yield accounted for by the model might 

reflect the effect of spatial variation in some inputs driving sugar beet growth and yield 

such as air temperature, solar radiation, potential evapotranspiration and soil texture. 

 

 

5.3.1 Where the simulation was poor and why? 

In all three fields, the relative yield gap between observed and simulated sugar yield was 

higher in the low yielding parts of the field. Although the simulated yield did not match the 

observed yield in most parts of the field, the differences were much higher in low yielding 

parts, since the yield was highly overestimated in these parts (Figs 5.8-5.10 C). This could 

be because the model simulates the spatial variability in sugar beet growth and yield as a 

function of temperature, solar radiation, evapotranspiration and soil type, which was not 

sufficient to account for the majority of the variability in observed sugar yield. A higher 

simulated sugar yield in low yielding parts of the field, is because the model  assumes a 

favorable growth condition and it takes no account of other factors that might cause 
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significant losses in yield. These factors could be a biotic stress such as diseases, pests and 

weeds, inadequate crop nutrients or sup-optimal crop density. For example, most of the 

higher positive yield gaps occurred in the areas where there was a higher weed density and 

lower soil organic matter content in White Patch and T32 fields (Figs 5.8 and 5.9 D), 

which means that some of the differences between observed and simulated sugar yield was 

caused by weeds and low organic matter. In WO3 field however, the higher yield gaps 

occurred mainly in the areas where there was poor plant establishment and soil available 

magnesium. The model assumes a plant population of >75000 plants/ha, but the observed 

plant population in WO3 field ranged from 22000 to 67000 plants/ha for the majority of 

plots. Therefore the yield gap was in general positive and high in WO3 field, especially in 

the southeast part of the field which had the lowest plant population.  In addition, the 

model assume a rapids expansion in crop canopy cover immediately after 50% of crop 

emergence as a result of accumulated air temperature, which means an increase in 

radiation use efficiency and accumulation of dry matter and consequently the sugar yield. 

However, the observed canopy cover measured in June spatially varied throughout each 

field and was generally much lower than the simulated canopy cover on the same day. The 

differences between the observed and simulated canopy covers are evident in Figure 5.2.  

A reason for poor simulation for crop canopy development could be that the model 

accounts for the variability in soil types in relation to soil available water only, but it does 

not consider the variability in crop development caused by the variability in soil types (Qi 

et al., 2005), and the effect of soil type on crop emergence which might cause variability in 

crop density and consequently crop cover. Therefore the crop cover was over estimated in 

most cases and the crop behaves as though as it was sown later than the actual sowing date 

in most of the plots in each field. 
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Table 5.5: The significance (P values) of the correlation coefficients between observed and 

simulated sugar yield (adjusted and unadjusted) against 0 and against unadjusted simulated 

sugar yield and adjusted for canopy cover in June: 

 
Zero 

Simulated yield 

(unadjusted) 
 Simulated yield adjusted 

for Canopy in June 

White patch       

Simulated sugar yield (unadjusted) <0.001 - 
 

Simulated sugar yield  adjusted for 
   

Canopy  in June  <0.001 <.001 - 

Weed density in July  <0.001 <.005 N 

Plant population  <0.001 0.20 N 

Canopy and weeds  <0.001 <.001 0.02 

Canopy and plant population  <0.001 <.001 N 

T32 
   

Simulated sugar yield (unadjusted) <0.001 - 
 

Simulated sugar yield  adjusted for 
   

Canopy  in June  <0.001 0.0014 - 

Weed density in July  <0.001 0.16 N 

Plant population  <0.001 0.71 N 

Canopy and weeds  <0.001 <0.001 0.79 

Canopy and plant population  <0.001 <0.001 0.79 

WO3 
   

Simulated sugar yield (unadjusted) <0.001 - 
 

Simulated sugar yield  adjusted for 
   

Canopy  in June  <0.001 <0.001 - 

Weed density in July  <0.001 0.73 N 

Plant population  <0.001 <0.001 N 

Canopy and weeds  <0.001 <0.001 N 

Canopy and plant population  <0.001 <0.001 N 

*N: means the test is not performed, since the correlation is less than the previous one. 
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5.3.2 Adjustments made to model inputs and simulated yield: 

The initial use of the model based on the actual sowing dates resulted in a poor simulation 

of sugar yield, which is mainly associated with poor simulation of crop canopy 

development. To improve the simulation of sugar yield, the crop canopy was corrected by 

adjusting the sowing date for each plot in order to obtain a 1:1 relationship between the 

observed and simulated canopy covers in June (Fig 5.2 and 5.3).  

After adjusting the sowing dates for June canopy cover, the simulation of sugar yield 

significantly improved (P< 0.001) in all three fields (Figs 5.5-5.7, B). The percentage of 

spatial variability in observed sugar yield accounted for by the simulated yields was 

increased by adjusting the sowing date from 23, 45 and 34% respectively in White Patch, 

T32 and WO3 to 66, 75 and 77% respectively (Table 5.4). The CVs of simulated yields 

were, however, still lower than for the observed yields (Table 5.3), the patterns of spatial 

variability in simulated sugar yield were similar to that for observed sugar yield, since 

most of high yielding areas were associated with high values of simulated yield and the 

same is true for low yielding areas (Figs 5.8-5.10, C). The mean relative yield gap between 

the observed and simulated sugar yield was decreased (Table 5.3). However, the relation 

between observed and simulated yield was improved in terms of spatial variability only, 

and the yield gap was still high, especially in low yielding areas (Figs 5.8-5.10, E). Despite 

these improvements, it was still far from a one-to-one relationship, since the simulated 

yields were not matching the observed yields in White Patch and WO3 (Figs 5.5 and 5.7 

B), although it was much better for T32 (Fig 5.6 B) with an RMS of 0.5 (Table 5.4). This 

suggests that further adjustments are needed. Therefore, the simulated sugar yield based on 

original and adjusted sowing date was further adjusted based on the relationship between 

the observed sugar yield and plant population and weeds.  
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Figure 5.5: The linear relationships between observed and simulated sugar yield (A) unadjusted, (B) 

adjusted for canopy cover in June, (C) adjusted for weeds, (D) adjusted for canopy cover and weeds, 

(E) adjusted for plant population and (F) adjusted for canopy cover and plant population in White 

Patch field in 2012. The solid line is the regression line and the dashed line is the one-to-one 

relationship. 
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Figure 5.6: The linear relationships between observed and simulated sugar yield (A) unadjusted, (B) 

adjusted for canopy cover in June, (C) adjusted for weeds, (D) adjusted for canopy cover and weeds, 

(E) adjusted for plant population and (F) adjusted for canopy cover and plant population in T32 field 

in 2012.The solid line is the regression line and the dashed line is the one-to-one relationship. 
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Figure 5.7: The linear relationships between observed and simulated sugar yield (A) unadjusted, (B) 

adjusted for canopy cover in June, (C) adjusted for weeds, (D) adjusted for canopy cover and weeds, 

(E) adjusted for plant population and (F) adjusted for canopy cover and plant population in WO3 field 

in 2013.The solid line is the regression line and the dashed line is the one-to-one relationship. 
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The relationship between observed and simulated yield based on original sowing date was 

improved when the effects of weeds and plant density were both considered in all three 

fields (Figs 5.5-5.7, C and E). The patterns of the spatial variability became more similar 

to that for observed yield compared to unadjusted simulated sugar yield and reduced the 

yield gap in the areas where some of the yield losses due to weeds or sub-optimal plant 

population density (Appendices 8), but the improvements were smaller than by adjusting 

the sowing date. Adjusting the simulated yield based on weeds improved the correlation 

between the observed and adjusted simulated yield in all three fields (Table 5.4), but the 

improvement was statistically significant only in White Patch field (P<0.005: Table 5.5) 

(Fig. 5.5 C). 

On the other hand, the correlation coefficient was significantly improved only in WO3 

(P<0.001: Table 5.5) and the differences between observed and simulated sugar yield 

significantly decreased when the simulated yield was adjusted for plant population (Table 

5.3 and 5.4), which makes the relationship closer to 1:1 (Fig 5.7E). 

In T32, the relationship between observed and simulated yields was improved when the 

simulated yield based on corrected canopy cover was adjusted for plant population or 

weeds (Fig 5.6 E and F), compared to unadjusted simulated yield, but the improvements 

were not significantly different (Table 5.5) from that obtained by adjusting for canopy 

cover only (Table 5.4). Therefore, adjusting the sowing date for corrected crop canopy 

cover can be considered as the best adjustment that can be made to obtain the simulation 

by the model.  

In White Patch field, the simulated yield based on corrected canopy cover was further 

improved when adjusted based on weeds (Fig. 5.5 D). It accounted for 81% of the 

variation in observed yield with the lowest RMS of 0.9. The correlation coefficient 
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between observed and simulated yield was also improved and reached 0.90, which was 

statistically higher (P<0.02: Table 5.5) than the 0.81 (Table 5.4), which was obtained by 

adjusting sowing date only. Therefore, this can be considered as a best relationship, since it 

also reduced the yield gap between simulated and observed yield (Table 5.3) (Appendix 

8.1).  

In WO3, the best relationship between observed and simulated yields was obtained when 

the simulated yield based on corrected canopy cover was adjusted for plant population (Fig 

5.7 F), although the correlation was not statistically different (Table 5.5) from that 

obtained by adjusting for canopy cover only (Table 5.4), but the relationship became very 

close to 1:1 when adjusted for plant population and the patterns of variation became more 

similar to that for the observed yield (Appendix 8.3), suggesting that most of the 

variability in sugar yield in this field was due to the variability in plant population density. 

The relationship between simulated and observed sugar yield was also tested by combining 

all three adjustments (canopy cover, weeds and plant population) to simulated yield. The 

relationships was not significantly different than those obtained based on one or two 

adjustments in all three fields, therefore it was not included in the results and the figures 

were not presented.   

 

 

 

 

 

 

 



 

214 

 

 

Figure 5.8: The interpolation maps for the observed and simulated sugar yield t/ha and the relative 

yield gap based on adjusted and unadjusted sowing dates in White Patch field in 2012. Variograms 

and model parameters are in Appendix 7.1 and 7.2. 
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Figure 5.9: The interpolation maps for the observed and simulated sugar yield t/ha and the relative 

yield gap based on adjusted and unadjusted sowing dates in T32 field in 2012. Variograms and model 

parameters are in Appendix 7.1 and 7.2. 
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Figure 5.10: interpolation maps for the observed and simulated sugar yield t/ha and the relative yield 

gap based on adjusted and unadjusted sowing dates in WO3 field in 2013. Variograms and model 

parameters are in Appendix 7.1 and 7.2. 
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5.4 Discussion: 

Using the Broom’s Barn sugar beet growth simulation model, with its initial parameters on 

a spatially variable basis, the sugar yield was overestimated in some parts and 

underestimated in others. The spatial variability was much lower in simulated yield than in 

observed sugar yield. However, the model was able to account for some of the spatial 

variability in sugar yield and the simulated yield had some similar patterns of spatial 

variability as that for the observed yield. Although the percentage of variation accounted 

by the model was not as high as that obtained when applying the model on a regional basis 

(Qi et al., 2005, Jaggard et al., 2007), a stronger relationship might not be expected, since 

it reflects only the effect of variability in weather variables and soil types. In addition the 

performance of the model for spatial simulation of sugar yield differed from one field to 

another, which had different soil types and weather conditions. It performed better in T32 

field in 2012, which had lower spatial variability compared to other fields and it highly 

overestimated the sugar yield in WO3, which had a higher spatial variability. This suggests 

that the model was less efficient to simulate the sugar yield in case of higher spatial 

variability than low spatial variability, especially when the crop is rain-fed, since it reflects 

the variability in rainfall and evapotranspiration in addition to temperature, radiation and 

soil types (Jaggard et al., 2007). Hakojärvi et al. (2013) used another model to simulate the 

yield of cereal on a spatially variable basis, and they also found that the model performed 

better in the case of lower spatial variability. The low performance of the Broom’s Barn 

model in this study might be due to some other factors such as weeds and diseases, since 

the model ignores the yield losses due to these causes. Secondly, nutrient status, the model 

assumes adequate availability of all soil nutrients, whereas in fact the distribution of soil 

nutrients might spatially vary and could be inadequate in some parts of the field. Finally, 
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sub-optimal crop density, since the model assumes a plant population of >75000, while in 

some plots it might be much less than this, and this was evident in WO3 field. Therefore, 

the relative yield gap was higher in low yielding areas which had a higher weed density 

and low organic matter in White Patch and T32 fields and poor plant establishment in 

WO3, while the simulated yield did not match observed yield in high yielding parts, which 

might have had better growth conditions. 

Most of unresolved variation could be explained by a poor simulation of early crop canopy 

development by the model, since the model takes into account the effect of different soil 

types in relation to available water, but it does not account for the variability in soil types 

in relation to canopy development (Qi et al., 2005) and its effect on availability of 

nutrients. Adjusting the sowing date to make the simulated canopy cover match the 

observed canopy cover on a specific day early in the growing season with one-to-one 

relationship significantly improved the simulation in all three fields. The patterns of spatial 

variability in the simulated and observed sugar yield became more alike when the 

simulated crop canopy was corrected. Therefore, the availability of measurement of early 

crop canopy cover is important to obtain a better simulation of within-field variability in 

sugar yield. The relationship between observed and simulated sugar yield after correcting 

the canopy cover was further improved in White Patch when the effect of weeds was 

considered, while in WO3 the differences between simulated and observed yield was 

decreased and became very close to 1:1 relationship with considering the variability in 

plant population, but it did not improved the correlation, since most of the variability in 

plant population was already reflected by the crop canopy cover, therefore, adjusting the 

sowing date for correcting crop canopy cover an adequate adjustment to improve the 

simulation of sugar yield early in the growing season. In a study conducted by (Jégo et al., 
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2012) on modelling the growth of some crops (soybean, corn and spring wheat) over ten 

years, they found a significant improvement in the performance of the models when they 

re-initialized some input parameters based on the data of LAI provided by remote sensing. 

They found a great improvement in the simulated yield and biomass when they re-

initialized the sowing date to correct the simulated LAI based on actual LAI provided by 

the remote sensing. 

The initial use of model without any adjustments cannot therefore provide a reliable 

simulation of sugar yield within-field, but rather it can be useful to isolate the effects of 

weather conditions and soil type from the effects of abiotic factors and other soil 

properties. For reliable spatial simulation, an assessment of crop biomass is required, so 

that the simulated biomass can be adjusted accordingly or it needs further development to 

take into account the potential effect of other variables, which may significantly improve 

the efficiency of the model to simulate sugar yield under variable growth condition.  

 

 

5.5 Conclusion: 

Applying the Broom’s Barn sugar beet growth model based on spatially variable inputs of 

weather and soil type, the simulated yield accounted for 23, 45 and 34% of the variability 

in observed sugar yield. This means that the model can predict the variability in sugar 

yield to some extent that is related to some of the inputs driving the crop growth and yield 

such as temperature, solar radiation, potential evapotranspiration and soil type. However, 

the simulated yield was much higher than the observed yield and much less variable, since 

the model takes no account of some other factors than can significantly reduce the yield 

such as weeds, diseases and nutrient status. The simulation was significantly improved 
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when the sowing date was adjusted to correct the crop canopy cover. After correcting the 

canopy cover the simulated yield accounted for 66, 75 and 77% of the variation in 

observed yield. The simulation was further improved and the yield gap was decreased 

when the effect of weeds and plant population were considered, especially in White Patch 

and T32 fields. Therefore, to use the model on a spatially variable basis, an assessment of 

crop canopy should be available and the simulated crop canopy cover can then be 

calibrated accordingly. In addition, the model needs to be further developed to include the 

effect of some other factors such as weeds, diseases, nutrient availability and plant 

population, and to allow it to be linked to LAI data obtained by remote sensing early in the 

growing season.   
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6. Chapter Six: General Discussion and Conclusions. 

Within-field variability in sugar beet yield is still unknown and the uniform management 

of agronomic inputs is still the common approach in most commercial sugar beet fields in 

the UK. A uniform application of agronomic inputs might increase the yield, but it can also 

be associated with an increase in the costs of production and may adversely affect the 

environment, which are other growing concerns nowadays. Therefore, a precise 

investigation of within-field variability in crop growth conditions such as soil properties, 

field topography and canopy temperature and how they relate to each other was undertaken 

to understand the nature of each field (Chapter three). 

It was also important to investigate the within-field variability in sugar beet growth, yield 

and quality and link it to the variability in environmental variables, so that the main 

associated environmental variables, which are likely to be the main driving variables can 

be addressed. The spatial variability in sugar beet fields was also investigated in some 

other studies, but most of these studies considered only a single environmental variable 

such as soil organic matter (Karaman et al., 2009a), soil nutrients (Franzen, 2004, 

Karaman et al., 2009b), soil moisture content (Zhang et al., 2007, Zhang et al., 2011a), or 

diseases and nematodes (Reynolds, 2010, Hbirkou et al., 2011). Most importantly and 

surprisingly, the spatial relationship between the studied environmental variable and sugar 

beet growth or yield was not examined, and thus it is not known if the studied variable was 

actually limiting the yield. Nevertheless, detecting the spatial variability in sugar beet yield 

in relation to the independent and combined effects of different environmental variables is 

highly desirable and is likely to be important to achieve optimal sugar beet growth and 

yield. In addition, an early prediction of the spatial variability in crop yield could add great 

value to the implementation of precision agriculture as it will inform management 
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practices, which can be carried out on a spatially-variable basis early in the growing 

season. Therefore, the within-field variability in sugar beet growth was monitered early in 

the growing season and the relationship between the spatial variability in sugar beet yield 

and the yield of the previous crop was also examined (Chapter four). 

Since the sugar beet crop growth simulation model simulates the sugar yield as a function 

of some environmental factors such as air temperature, solar radiation and soil type in 

relation to soil available water, all of which might spatially vary within-field, the potential 

of simulating the sugar yield on a spatially variable basis using the Broom’s Barn sugar 

beet growth model was also investigated (Chapter five). This new application of the model 

was used to simulate the potential yield in different parts of the field, which, in conjunction 

with the prediction and relationships identified in chapter four can help to determine 

whether any site-specific interventions would be useful or not. 

To achieve these objectives, two commercial sugar beet fields (White Patch and T32) in 

2012 and one (WO3) in 2013 were selected based on known intra-field variability and 

sampled using an irregular grid with some nested samples. The sugar beet growth and 

yield and associated environmental variables were measured at each plot and the data were 

analysed statistically and geostatistically. 

 

6.1 Was there any spatial variability? 

The distribution of most environmental variables was found to be variable and appeared as 

patches with high and low values throughout each field. Most of the growth parameters 

also varied spatially at different growth stages. Consequently, the yield value of sugar beet, 

which is the ultimate interest of the farmer, also spatially varied throughout each field. A 
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significant spatial variability in sugar beet growth, yield and some associated 

environmental variables in all three fields was confirmed by the experimental variograms 

and high CV values, the latter referring to the degree of spatial variability in the field 

rather than the accuracy as in conventional statistics. The variability in final yield within 

each field was related to the spatial distribution of environmental variables. Some variables 

such as weed density and available soil nutrients had the highest spatial variability, while 

some others such as soil pH and percentage of sugar had the lowest. A high spatial 

variability in available soil nutrients was also found in some other studies and they indicate 

the importance of site specific fertilizer application for crop management (Wortmann et 

al., 2009, Montanari et al., 2012). 

The maps produced by ordinary punctual Kriging clearly identified the high and low 

yielding areas of each field.  Although, ordinary block Kriging is recommended for 

precision agriculture, since the agricultural machinery cannot vary inputs on a continual 

basis (Heege, 2013, Oliver and Webster, 2014), the main aim of using Kriging maps in this 

study is to understand the spatial variability in crop growth and yield in relation to some 

environmental variables rather than for managing the field. Therefore, it was important to 

look at the spatial variability at points rather than within large management blocks. 

Despite the uniform management across each field with the farmer being responsible for 

all operations, the observed spatial variability in the final economic yield was significant 

within each field and some parts of each field looked as though as they were not 

responding to the treatments. Therefore, a uniform management of sugar beet fields is no 

longer recommended; it would be better to increase the inputs in some parts of the field 

and decrease them in others (Bouma, 1997, Pati et al., 2011, Oliver et al., 2013). 

Optimizing sugar beet yield with possibility of reducing the amount of the inputs can 
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significantly increase the gross margin of the farmer, especially, if this variability is linked 

to identifiable variables, which can be managed, as the map of sugar beet growth and yield 

does not represent the actual stress, but rather the crop’s response to stress (Jones and 

Schofield, 2008). 

 

6.2 Was the sampling scheme efficient? 

The observed variation was almost isotropic in all three fields and mostly spatially 

dependent, which means the variation was similar in all directions and a function of the 

separation distances between sampling points (Piccini et al., 2014). Therefore the irregular 

grid sampling scheme followed in each field was efficient, since it accounted for the 

majority of the spatial variation which occurred in each field. Grid sampling was found to 

be an efficient sampling design to detect the within-field variability in environmental 

variables and to develop a map for variable rate applications (Kerry et al., 2010, Franzen, 

2011). It is also considered as the most appropriate design for geostatistical applications, 

since it provides an even distribution of the spatial data for Kriging interpolation (Webster 

and Lark, 2012, Webster and Oliver, 2007), especially the irregular grid, as the shapes of 

many agricultural fields are irregular (Webster and Oliver, 2007). Locating some nested 

samples purposively in this study based on the previous yield map in WO3 and soil map in 

White Patch, improved the prediction and represented the scale of the variation (Pereira et 

al., 2013), by reducing the prediction error and the nugget variance. However, the nugget 

variance was high for some variables in T32 field, which could be the unresolved variation 

due to the larger sampling intervals than in the other two fields or measurement error 

(Webster and Oliver, 2007, Oliver, 2010), which suggests that the minimum sampling 

intervals for detecting within-field variability, should not be as much as 20 m as it was in 
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T32 field. The nugget variances for root yield and yield value were also high in WO3, 

which could be due to high spatial variability in plant population density, which caused 

erratic variation over short distances. 

In general, the variograms for almost all variables reached the sill in all fields, which 

means the maximum variance was covered by the sampling scheme. In addition, the 

degree of spatial dependency was strong to moderate for most of the studied variables in 

all three fields, indicating that the distribution of the samples and their separation distances 

were optimum.  However, a reliable variogram requires at least 100 samples (Webster and 

Oliver, 2007, Oliver and Webster, 2014) and this may not be affordable by sugar beet 

farmers. Therefore, attempts should be made to predict the final root yield from the spatial 

variability in crop growth parameters such as canopy cover and LAI (Jayanthi, 2003, 

Zhang, 2011, Cao et al., 2012, Jégo et al., 2012). In addition, a reliable map of soil 

attributes can be achieved from remote sensing by calibrating the data with some ground 

truth measurements (Debaene et al., 2014), but this study needs to be repeated for different 

soil types and different weather conditions to identify the optimum number of calibration 

points. 

 

6.3 The main associated environmental variables (Objective one): 

Determining the main environmental variables associated with the variability in sugar beet 

yield and quality is the key for site specific management, since some of the associated 

variables are likely to be the main factors driving growth and development of sugar beet. 

Although, the spatial variability in sugar yield was not highly related to any one 

environmental factor, such a relationship is not expected under field conditions, since 
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within field variation can be due to the combined influence of different biotic and abiotic 

variables (Griffin, 2010, Zhang et al., 2011b, Hakojärvi et al., 2013, Oliver et al., 2013). It 

would therefore be quite surprising to be able to attribute the within field variability to a 

single environmental variable. Indeed, although some environmental variables showed 

some spatial association with the maps of sugar yield, they also had distinct patterns of 

spatial variability, which suggests that the limiting factors in some parts of the field could 

differ from other parts. 

Different methods have been examined to identify the spatial association between 

environmental variables and crop yield such as a regression Kriging which is based on the 

regression analysis between the variable of interest and related auxiliary variables (Hengl, 

2007, Piccini et al., 2014), functional soil map by overlaying different soil properties in 

one map to identify the variables associated with the yield of corn and soybean (Zhu et al., 

2013), factorial Kriging with step-wise multiple regression analyses to detect the 

association of different soil attributes at different spatial scales (Liu et al., 2013) and using 

classification methods with a regression tree to identify the underlying cause of the spatial 

variability in rice yield within a field (Roel and Plant, 2004, Simmonds et al., 2013).  

However, regression kriging depends on auxiliary data which is usually dense and 

provided by remote sensing and the factorial kriging needs sampling at different scales. 

Therefore, Redundancy Analysis has been used here, for the first time as far as is known, 

to identify the key environmental variables, which was also confirmed by the visual 

assessment of Kriging maps and correlation coefficients. Soil organic matter, soil moisture 

content, weeds and canopy temperature were the most important variables associated with 

spatial variability in sugar beet yield. Some variables became less significant when 

combined in the redundancy analysis, since they could be explaining the same variability 

explained by other variables. This has been considered as one drawback of any analysis 
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based on stepwise selection, since it depends on which factor is first selected or deleted 

from the model (Lark et al., 2007), especially when the two variables are highly correlated 

with each other (Derksen and Keselman, 1992). Rodriguez-Moreno et al. (2014) stated that 

if two variables are strongly related to the yield, they are also expected to be strongly 

related to each other such as the relationship between soil type, soil moisture content and 

elevation. Therefore, a further investigation of the reliability of Redundancy Analysis in 

precision agriculture is required.  

Large spatial variability was observed in soil moisture content (SMC) measured in June, 

July and August in all three fields and it was highly related to the variability in final 

economic yield of sugar, which  was also documented in some other studies (Zhang et al., 

2007, Zhang et al., 2011a, Zhu et al., 2013). A strong association was also observed 

between the spatial variability in SMC and  sugar beet canopy cover in June suggesting the 

necessity of early monitoring of the water status in sugar beet fields, which might relate to 

site-specific variation in water holding capacity and hydraulic conductivity (Hakojärvi et 

al., 2013). Thus site-specific irrigation of sugar beet field early in the growing season can 

enhance the canopy cover and reduce the yield losses due to water stress. Monti et al. 

(2006) found that exposing sugar beet to water stress even for a short time can 

significantly reduce the sugar yield. 

Soil organic matter (SOM) is another important variable identified in all three fields. The 

spatial variation in SOM and its relation to sugar beet yield is well documented in some 

other studies (Karaman et al., 2009a, Amado and Santi, 2011, Debaene et al., 2014). Such 

a relationship is not surprising, as SOM can affect physical, chemical and biological soil 

quality attributes, which makes it an important variable positively associated with the crop 

yield (D’Hose et al., 2014), and one which can be used as a good indicator for within-field 
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variation in yield and quality of crops (Moghadam, 2002) and to identify and manage the 

degraded parts of field. However, managing SOM site-specifically by adding compost or 

farm yard manure to the degraded parts may take a few seasons. However, the low 

yielding areas of the previous crop in this study occurred in the areas of low SOM 

identified in the following year, which suggests that adding more farm yard manure before 

sowing sugar beet could be useful. Since the canopy cover in June is positively related to 

SOM, it is also suggested to increase nitrogen fertilizer in the areas of low SOM, which 

had also low canopy cover early in the season, as the sugar beet crop can respond better to 

the nitrogen fertilizer in the soils with low SOM (< 2%) early in the growing season, 

because it can be absorbed easily and may accelerate the canopy growth (Malnou et al., 

2006). 

Soil texture also had a great spatial variability throughout each field, but its relation to the 

sugar beet was not consistent in the three fields. In White Patch field the high yielding 

areas had a higher soil clay content (maximum value of 40% clay (Table 3.1)), while in 

T32, the high yielding areas might not be associated with higher clay content, but the low 

yielding areas had a higher percentage of sand (maximum value of 80% sand (Table 3.4)). 

In WO3, the lowest yields occurred in the most clayey areas (maximum value of 52% clay 

(Table 3.7)), due to lower plant population density in these areas. Therefore, it might be 

difficult to anticipate the spatial variability in sugar yield from the soil type, since the 

impact of soil type might differ under different weather conditions, which might in turn 

affect the water holding capacity, nutrient availability and consequently the yield (Horta 

and Thomas, 2013). In England, the yield of cereals was found to be related to soil type 

only in dry years through which it was related to soil available water (Taylor et al., 2003). 

Clearly, managing the spatial variability in soil texture is not feasible (Draycott and 
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Christenson, 2003), but it still important for precision agriculture, since it can be used to 

understand the spatial variability in some other environmental variables, which are related 

to soil texture such as porosity, water holding capacity and nutrient availability (Safari et 

al., 2013, Shahbazi et al., 2013, Zhu et al., 2013). 

Soil available nutrients also varied within each field, but they were not strongly related to 

the sugar beet yield in any field, except soil available nitrate in T32 and soil available 

magnesium in WO3. This  could  be  because  the yield  was  limited  by  factors  other  

than  nutrient  availability or due to the negative effect of a supra-optimal concentration of 

some nutrients, a problem which can be exacerbated by uniform fertilizer applications 

(Griffin, 2010). In addition the soil samples were collected in July, and the crop in high 

yielding areas might have absorbed a higher amount of nutrient before collecting the 

samples. The observed spatial variability in root content of amino acids and potassium 

confirms the spatial variability in nutrient uptakes by sugar beet plant. Moghadam (2002) 

observed spatial variability in soil available nutrients, but it was also not related to spatial 

variability in grain yield of cereals in the UK, while Rodriguez-Moreno et al. (2014) found 

it to be related to the yield variability of winter wheat only in one field in Czech  Republic 

and not in three other fields. Therefore, it is recommended for future study on the spatial 

relationship between the yield of sugar beet and soil available nutrient, to collect the soil 

samples before the emergence of the crop and application of fertilizers with measuring the 

concentration of these nutrients in both shoot and root of sugar beet crop. 

Weeds were distributed as patches and since the sugar beet crop is highly sensitive to weed 

infestation at early growth stages (Draycott, 2008), the patches with high weed densities 

were less productive than others. The uniform application of herbicides is therefore 

important early in the growing season, but any appearance of weeds late in the season 
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could be treated site-specifically if a reliable map of weed distribution obtained. Different 

techniques have been examined for weed mapping in agriculture fields (Jafari et al., 2006, 

Nieuwenhuizen et al., 2007, Slaughter et al., 2008, Rasmussen et al., 2013), but 

distinguishing the weeds from the crop and the costs were still the major challenges facing 

the adoption of these techniques. Therefore, it is suggested to develop and commercialize a 

cost-effective technique that can clearly identify the weeds from sugar beet plants and 

treated site-specifically. Since the patches of low canopy cover in June had a high weed 

density in July, improving the canopy cover early in the growing season or perhaps 

increasing the seed rate might limit the occurrence of weeds. The losses in sugar yield due 

to weed infestation can be significantly reduced, if the crop was kept weed-free for at least 

one month after crop emergence (Kropff and van Laar, 1993).  

The canopy temperature was less variable during the growing season, but it was negatively 

related to the spatial variability in sugar beet yield, especially in July and August. The 

higher air temperature in July and August was also found by Kenter et al. (2006) to have a 

negative influence on sugar beet growth and yield. The negative relationship between 

canopy temperature and root yield could be due to the effect of air temperature on the 

evapotranspiration rate and consequently the root content of water. The relation between 

air temperature and sugar beet yield was reported in many previous studies (Werker and 

Jaggard, 1997, Freckleton et al., 1999, Qi et al., 2005, Kenter et al., 2006, Jaggard et al., 

2007, Draycott, 2008, Jaggard et al., 2009), but the within-field variability in canopy 

temperature and its relation to the yield and quality of sugar beet is shown for the first time 

in this study. Although, managing the canopy temperature may not be possible, it is still 

important to understand how it can affect the growth, yield and quality of sugar beet on a 

spatially variable basis. In addition, the negative correlation between canopy temperature 
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and soil moisture content may suggest irrigating the areas of higher canopy temperature to 

compensate for the amount of water evaporated or/and increase the amount of nitrogen 

fertilizer to accelerate the canopy cover. 

The above mentioned variables acted together and accounted for the majority of the spatial 

variability in sugar beet yield. Some of the variability can also be related to some other 

variables not assessed in this study such as the diffusion of soil water and nutrients (Lark, 

2012), and management operations, as Taylor et al. (2003) found 50% of the spatial 

variation in three cereal fields occurred between the tramlines and they attributed it to the 

management practices rather than environmental variables. Identifying the limiting factors 

under field conditions is quite challenging and need to be supported by the results of 

experiments under glass house conditions. Since some associated variables differed from 

one field to another, the relationship between the spatial variability in sugar beet yield and 

environmental variables should be examined in some other sugar beet fields with different 

soil types and field topography, and under different weather conditions. In addition for 

future research, it is also suggested to detect some other variables and their association 

with sugar beet, which were not included in this study such as the availability of soil boron 

and some other micro-nutrients, soil infiltration, and diseases, which might also vary 

within the field.  
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6.4 An early prediction of within-field variability in sugar beet yield based on 

early assessment of crop growth (Objective two): 

In this study, the Kriging maps, correlation coefficients and ordination analysis confirmed 

a strong association between the spatial variability in crop canopy cover, intercepted solar 

radiation and LAI measured in June, July and August and the spatial variability in final 

economic yield. Perhaps the most important was the crop canopy cover assessed on 1
st
 of 

June 2012 in White Patch and T3 and 20
th

 of June 2013 in WO3, which was more variable 

and related to the same variables as those related to root yield. 

Treating the stress in sugar beet fields when the damage has already happened might not 

compensate the yield losses, as the sugar beet crop starts to accumulate dry matter early in 

the growing season (Draycott, 2008). Therefore, this relationship may be of great value in 

precision agriculture, as it can be used to predict the spatial variability in final economic 

yield and manage it early in the growing season if the underlying causes of the variation 

were identified. 

However, the environmental variables correlated with the spatial variability in crop canopy 

might differ from one season to another or from one field to another due to the variability 

in weather condition, soil types and field topography. Rodriguez-Moreno et al. (2014) 

assessed the spatial variability in some growth parameters of winter wheat (plant height 

and leaf chlorophyll content) using (Yara N-Tester). They found the patterns of the spatial 

variability in these parameters were consistent with final yield, but the related 

environmental variables differed from one to another. They also suggested that the 

observed spatial variability in crop growth parameters in relation to environmental 

variables can be useful to create the interpolation map for variable rate application with 

minimum sampling efforts. The feasibility of managing the spatial variability in sugar beet 
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field based the spatial variability in some growth parameters such as LAI and NDVI 

provided by satellite images was documented in some other studies (Franzen, 2004, Zhang 

et al., 2010a), but the main purpose was to develop a map of management zones for 

variable rate nitrogen fertilization according to the differences in canopy colour without 

identifying the main causes, while in fact, different kinds of stress might have similar 

symptoms, and the relationship between the observed spatial variability in growth 

parameters and final yield was not examined. 

Based on the relationships observed in this study between canopy cover in June, root yield 

at final harvest and some environmental variables, it is recommended to assess the spatial 

variability in some growth parameters early in the growing season such as crop canopy 

cover, intercepted solar radiation and LAI that can be measured easily and cheaply using 

ground based sensors (Cao et al., 2012) or remote sensing (Jayanthi, 2003, Silva et al., 

2007). In addition, attempts should be made to improve the crop canopy cover by site-

specific irrigation or fertilizer application as soon as the main associated variables are 

identified, since a good yield of sugar beet at final harvest highly depends on a good 

development of crop canopy cover early in the growing season (Scott and Jaggard, 1993), 

which in turn increases the intercepted solar radiation and accumulation of dry matter 

(Jaggard et al., 2009).  The maximum intercepted daily radiation by the sugar beet canopy 

can reach 15-25 MJ/m
2
 and this is usually in June (Watson, 1952), but most commercial 

sugar beet crops in the UK might not have enough canopy cover before late July or the 

beginning of August for full interception of the radiation (Draycott, 2008), which was also 

observed in most areas of each field in this study. To advance the canopy cover early in 

summer, the farmer might sow the crop early, as the developing of bolting-resistant 

varieties and the recent increases in air temperature may allow that (Jaggard et al., 2007). 
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However an early sowing might not always be successful, especially if the crop 

experienced cold weather during seed germination, which was evident in WO3 in 2013 

season in this study and resulted in very poor plant establishment and low yields in some 

parts of the field.  The rapid expansion in crop canopy cover early in summer was found to 

be related to nitrogen uptake by sugar beet crop and it requires 120 Kg N/ha
-1

 to reach the 

maximum canopy cover by late May or early June (Scott and Jaggard, 1993, Malnou et al., 

2006). In another study Malnou et al. (2008) stated that the nitrogen fertilizer is more 

important to accelerate the canopy development early in summer than to maintain it to late 

summer, especially in areas with low organic matter (Malnou et al., 2006), as the lower 

canopy cover mostly occurred in this study in the areas of low soil organic matter.  

Therefore it is necessary to make sure that the areas with lower canopy cover receive a 

sufficient amount of nitrogen fertilizer early in the growing season, which can also 

increase the ability of sugar beet for absorbing water and cover most of the ground to limit 

weed occurrence. 

 

 

6.5 Predicting the spatial variability in sugar beet yield based on the spatial 

variability in the previous crop (Objective three). 

It has been expected that some patterns of spatial variability in crop yield might be 

temporally consistent, due to the assumption that the behaviour of different soil attributes 

can be temporally stable over years (Blackmore et al., 2003). Therefore, the relationship 

between the yield maps of sugar beet and previous crop was examined, which indicated the 

possibility of predicting some of the spatial variability in sugar beet yield from the 

variability in the yield of previous crop. The extent of this prediction is dependent on the 
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season, however, and for example, in 2012, the sugar yield in T32 and the wheat yield in 

WO3 were less variable, which could be due to the high rainfall in that season, since the 

available water in dry season is related to the ability of soil to retain water (Taylor et al., 

2003, Hakojärvi et al., 2013), which might in turn vary within each field. The prediction 

based on previous year’s crop must therefore be treated with caution.  The possibility of 

using the historical yield maps for predicting and managing the following crops has been 

examined in previous studies, but none of these studies included the sugar beet crop in the 

rotation and indeed yield maps are not available for sugar beet in the literature. Some of 

these studies found the patterns of spatial variability were temporally instable (Blackmore, 

2000, Blackmore, 2003, Blackmore et al., 2003, Kleinjan et al., 2007) and managing the 

fields based on historical data was therefore rejected in these studies. Nevertheless, the 

results of this study indicate the possibility of using the yield map of the previous crop to 

predict some of the spatial variability in sugar beet yield, especially in the low yielding 

areas, which appeared to be temporally consistent. 

Most interestingly, a lower canopy cover of sugar beet occurred in the low yielding areas 

of previous crop; therefore, the yield data of previous crop combined with early 

measurements of the current sugar beet crop can significantly improve the prediction of 

final sugar yield. Thus, by identifying the main associated environmental variables, the 

spatial variability can be managed early in the growing season with more confidence. A 

temporally stable pattern of  spatial variability in some rice fields was found by Simmonds 

et al. (2013) and it was attributed to the variability in soil organic matter and soil nitrogen, 

and also found by Amado and Santi (2011) in a field involving different crops (soybean, 

maize and wheat) and attributed to soil infiltration. In addition, the historical yield maps 

can also be used to determine the areas, which are consistently low yielding, due to soil 
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organic matter, soil texture and field topography and undertake a long-term management 

plan to improve soil quality. The management plan might involve adding the farm compost 

repeatedly or applying conservation agriculture for other crops in the rotation and reduce 

soil management practices, since the high yielding areas of sugar beet were found to be 

highly related to soil structure, which in turn is related to soil management practices 

(Hanse et al., 2011b). 

To manage the current sugar beet crop based on the previous yield map, it is recommended 

to irrigate these potentially low yielding areas if an irrigation source and system are 

available, as the low yielding areas of previous crop and areas with a low canopy cover of 

sugar beet had lower soil moisture content. In addition, adding extra nitrogen fertilizer to 

the low yielding areas early in the growing season can improve the sugar beet canopy 

cover, especially in the areas of low organic matter (Malnou et al., 2006), which might 

increase the amount of intercepted radiation and radiation use efficiency. Since most of the 

low yielding areas in WO3 field had low plant population, and were also the most clayey 

parts, it is also recommended to increase the seed rate in the areas expected to have a lower 

plant establishment. 

However, the yield map of only two crops was available in T32 and three crops in WO3, 

which might not be sufficient to constitute reliable recommendations. Therefore, these 

recommendations need to be investigated in other sugar beet fields using the yield maps of 

several years, where farmers have had access to the yield mapping technology. For future 

research it is also suggested to involve some management experiments, such as assessing 

the spatial response of sugar beet to fertilizer application in different parts of some fields 

based on the historical yield map, and to see how it can improve the canopy cover of sugar 

beet. Commercial sugar beet harvesters cannot currently monitor and map the yield during 
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harvest, which makes it difficult to get the yield map of sugar beet. The farmers who 

monitor their crop yields over years will therefore have a gap of one year when they 

include the sugar beet in the rotation. Therefore, a further development of the sugar beet 

harvester to monitor the yield of sugar beet site-specifically is also suggested. 

 

 

6.6 Simulating the yield of sugar beet using Broom’s Barn sugar beet growth 

simulation model on a spatially variable basis (Objective four): 

The sugar beet growth simulation model developed at Broom’s Barn was able to account 

for some of the spatial variability in the observed sugar yield across each field. The model 

has been widely used to simulate sugar beet yield on regional basis in previous studies 

(Freckleton et al., 1999, Pidgeon et al., 2001, Richter et al., 2001, Kenter et al., 2006, 

Richter et al., 2006, Jaggard et al., 2007, Jaggard et al., 2009), while the main objective of 

using the model in this study is to examine the utility of the model for simulating the 

within-field variability in sugar yield, and to find the potential yield and the yield gap 

between the simulated and observed sugar yield throughout each field. This could help 

sugar beet farmers to make a decision whether to exclude some parts of the field from 

sowing or to explore whether there is a potential to improve the productivity in these parts. 

Since the model is mainly weather and soil driven (Qi et al., 2005), the observed spatial 

variability in sugar yield might reflect the variability in weather conditions and soil type. 

Although, the model accounted for some of the variability in observed sugar yield within 

each field, the variability was much lower in the simulated sugar yield and the yield gap 

was high in most parts of each field, especially where they were consistently low yielding 

(Fig. 6.1). This suggests that the weather condition and soil type were optimum throughout 
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each field to obtain better sugar yield than observed in low yielding areas, and most of the 

yield losses in these areas is perhaps, due to some agronomic variables not considered by 

the model such soil fertility, weeds, diseases and sub-optimal plant population density. 

This has become more evident when the sowing date was adjusted to correct the crop 

canopy cover in June or the simulated yield was adjusted for weeds and plant population, 

as these adjustments significantly improved the relationship between the observed and 

simulated yields. Although the simulated yield was much higher than the observed yield in 

WO3, the low air temperature during seed germination resulted in a poor plant 

establishment, especially in the most clayey parts of the field, which had a very high yield 

gap up to 91% (Table 5.3: Fig. 6.1 D). The model did not consider the effect of air 

temperature on seed germination and the most clayey parts of the field were accounted by 

the model to have more available soil water. To avoid sub-optimum plant population, the 

farmer might need to avoid an early sowing or increase the seed rate in the areas where a 

low plant population might be expected based on soil type. Contrary to weather variables, 

the agronomic variables can be managed to some extent by the farmer to improve the yield 

in low yielding areas. For example the farmer cannot manage the incident solar radiation, 

but it can be possible to increase radiation use efficiency by improving the canopy cover 

early in the summer and its ability to compete with weeds by site-specific irrigation, 

fertilization and perhaps herbicide application.   

The input parameters of the Broom’s Barn sugar beet growth model were not enough for 

efficient simulation of sugar beet yield on a spatially variable basis. Another model was 

used by Hakojärvi et al. (2013) to simulate the spatial variability in cereal yields, but they 

also found that the selected input parameters (radiation and water) were not enough to 

predict the yield of cereal crops on a spatially variable basis. Therefore, to simulate the 
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spatial variability in crop yield, the model should consider the effect of some other soil and 

biotic variables potentially causing yield losses. Since the model was developed by Richter 

et al. (2001) to account for the effect of water stress, and it was improved recently by Qi et 

al. (2013) to match the growth and yield of new varieties, it is also important for it to be 

developed further to account for the yield losses caused by biotic constraints. 

Therefore, a further development of the model is now needed to allow modelling the sugar 

beet yield on a spatially variable basis. This development could include the potential yield 

losses due to the weeds and diseases based on the research results of for example (Kropff 

and van Laar, 1993), which showed a good agreement between the observed and simulated 

losses in sugar yield due to weed competition. The crop growth rate from sowing to June 

can be adjusted based on soil properties. Further research is also needed to explore the 

plant population response to different soil types and weather conditions and how it can 

affect the simulation of sugar yield on a spatially variable basis. For example, the model 

assumes a consistent plant population of at least 75000 plants/ha, while Jaggard et al. 

(2011) recently found 100000 plants/ha as the best plant population density for maximum 

root yield and 80000 plants/ha for maximum economic return, any plot with plant 

population density out of this range should be assumed by the model to have negative 

influence on simulated yield.  
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Figure 6.1: The Kriging maps of relative yield of (A) sugar beet with previous winter wheat crop in 

T32, and (C) sugar beet with previous winter wheat and oilseed rape in WO3 (see chapter two, 

equation 2.6 for calculation), and the Kriged map of yield gap between the simulated and observed 

sugar yield (B) in T32 and (D) in WO3 (see chapter 5, equation 5.6 for the calculation).  
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6.7 Summary of the findings and conclusions from the whole thesis: 

1. Irregular grid sampling with some nested samples located purposively based on the 

expected spatial variability in soil type and the yield of the previous crop followed in 

this study was sufficient to reveal the majority of the spatial variability in three sugar 

beet fields, which represented the scale of the variation. 

2. Given the uniform application of agronomic inputs, the observed spatial variability in 

the final economic yield of sugar was significant and varied by £1870, 1450 and 2900 

per hectare in White Patch, T32 and WO3, respectively. In some areas, the predicted 

sugar yield according to the Broom’s Barn Simulation Model was lower or close to the 

observed yield, which suggests the growth conditions were optimum, while in low 

yielding areas, the potential yield was much higher, which means these areas need 

extra care to optimize the growth condition; therefore the uniform management of 

sugar beet fields is not recommended. 

3. The Redundancy Analysis (RDA), which is a kind of multiple linear regression 

analysis, proved to be a powerful method to identify the main environmental variables 

associated with variability in sugar beet root yield. 

4. Most of the studied environmental variables were related to the spatial variability in 

sugar beet growth and yield, but the key environmental variables were soil type, soil 

organic matter, soil moisture content, weed density and canopy temperature, since they 

were related to the spatial variability in sugar beet yield in all three fields. The relation 

of sugar beet yield with soil type, soil available nutrient, soil EC, soil pH, field aspect 

and elevation differed from one field to another. 

5. The spatial variation in sugar beet growth occurred early in the growing season and 

was reflected in final yields, since the variability in canopy cover in June was strongly 
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related to the final root yield, and also related to the same environmental variables as 

those related to root yield. This observation could be of great value to predict and 

manage the spatial variability in sugar beet early in the growing season to avoid or 

mitigate the yield losses. 

6. Using the yield map of the previous crop did not appear to be reliable enough for 

managing the spatial variability in the following sugar beet crop, but it can be more 

reliable if it is combined with some early measurements of the current crop. It was also 

useful to identify the areas of the field which were consistently low yielding, especially 

where low yield was related to soil type and field topography, which might require 

long term management. 

7. Using the Broom’s Barn sugar beet growth simulation model on a spatially variable 

basis, it was possible to simulate some of the spatial variability in sugar yield, 

especially when related to weather conditions and soil types in relation to soil available 

water. This was useful to find the potential yield in different parts of each field and 

whether making any intervention (fertilization, irrigation, herbicide application, seed 

rates) might optimize the final yield. 

8. The performance of the model was significantly improved if the simulated canopy 

cover in June was corrected and if the effects of weeds and sub-optimal plant 

population were considered, which was confirmed that the weather condition was 

optimum and the final sugar yield can be improved by agronomic interventions. 
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6.8 Possible recommendations: 

The finding of this study may provide the sugar beet farmer with some helpful 

recommendations, which were stated as follows: 

1. For applying precision agriculture in sugar beet field, it is always recommended to 

have an early assessment of crop growth such as LAI, which could be provided by 

remote sensing. This will provide an initial picture about the expected spatial 

variability in the final yield, and by knowing the potential cause of the variation from 

the farmer’s experience about the field or from the soil map; it might be possible to 

maximize the economic returns by site-specific application of fertilizer or irrigation. 

Further research is needed to validate this recommendation. 

2. For the farmers who have access to yield mapping techniques, it is recommended to 

use the yield map of previous crops to determine the areas, which are consistently low 

yielding and to manage them accordingly. Since this is usually related to soil quality, 

the management might be adding the farm compost and/or reducing soil disturbance as 

far as applicable. 

3. If the low yielding areas also have low potential yield and cannot be improved, it is 

recommended to exclude from cropping or at least to reduce inputs in such areas. 

4. An early sowing of sugar beet might result in a sub-optimal plant population, therefore 

it is recommended to avoid sowing in suboptimal conditions (seed bed too cold and/or 

wet) and to increase the seed rates in the areas of heavy soil texture. 

5.  A site-specific irrigation of the areas of low soil moisture content, low canopy cover 

or expected to be low yielding based on previous yield map is recommended if a 

source of water is available with considering the soil type and soil moisture content. 
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6. Increase the nitrogen doses up to 120 Kg/ha in the areas of low canopy cover or 

expected to be low canopy cover by applying 30-40% just after sowing and the 

remainder after full emergence to accelerate the canopy expansion and increase 

radiation use efficiency. 

7. Since the weeds mostly occurred in the areas of low crop canopy cover, improving the 

canopy development early in summer might reduce weed occurrence, but if it still 

occurred, the areas with high weed density should be identified as soon as they appear 

and extra herbicidal treatments applied to these areas only. This could significantly 

improve the yield and reduce the costs and the adverse environmental impact. 

 

6.9 Suggested work for future research: 

1. The study needs to be repeated in several sugar beet fields using grid sampling with 

different intervals and to identify the number of samples required for calibration 

and validating the maps of sugar beet growth parameters such as LAI that could be 

provided by remote sensing early in the growing season. 

2. Detecting the spatial variability early in the growing season may need new 

techniques such as developing a package to provide a map of crop foliage cover 

from images provided by a handheld camera or an automated system.    

3. Collecting and analysing the soil samples before the emergence of sugar beet 

seedlings, so that it can be linked to any spatial variability observed early in the 

growing season and undertake a management experiment accordingly, and the 

relationship between the concentration of nutrients in sugar beet crop and soil 

should also be examined on spatially variable basis. 



 

245 

 

4. The main associated environmental variables were identified in this study under 

field conditions and it was therefore impossible to state definitely that they were 

limiting or not, therefore, their independent and combined effects on sugar beet 

need to examined under controlled conditions such as an experiment in pots or a 

glass house.  

5. The effect of some other variables, which were not included in this study such as 

soil micro-nutrients, soil infiltration and pests and diseases on sugar beet crop also 

need to be investigated on a spatially variable basis.  

6. The reliability of Redundancy Analysis to link between the spatial data of crop and 

environmental variables needs to be examined further and compared to the results 

of other methods such as factorial and regression Kriging. 

7. The relationship between an early development of crop canopy and the occurrence 

of weeds later in the season needs to be further investigated on a spatially variable 

basis. 

8. The relationships between the yield maps of sugar beet and the previous crops need 

to be investigated in some other sugar beet fields and for several years, and the 

sugar beet harvester also need to be developed to monitor the yield of sugar beet 

site-specifically.  

9. Some experiments need to be conducted about the spatial response of sugar beet to 

fertilizer application based on the historical yield map. 

10. The Broom’s Barn sugar beet simulation model needs further development to 

account for the effects of some other variables potentially causing yield losses such 

as soil fertility, weeds and sub-optimal plant population. 
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Appendixes: 

Appendix 1: The maps of some soil properties of the fields: 

Appendix 1.1: The map of main soil types at White Patch field in 2012 created by 

(Draycott and Evans, 2012) based 49 samples (40X40 m grid with five samples per 

hectare) and the locations of plots where the measurements of sugar beet have been taken 

in this study. 
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Appendix 1.2: The map of main soil nutrients and pH at T32 field in 2011 crated based on 

12 samples (one sample per hectare) as provided by Trumpington farm company: 
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Appendix 1.3: The map of main soil nutrients and pH at WO3 field in 2013 crated based 

on 30 samples (one sample per hectare): 
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Appendix 2: The maps of crops preceding sugar beet crop provided by the combine 

harvester: 

Appendix 2.1: The yield map of winter wheat in T32 in 2011 preceding sugar beet crop: 
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Appendix 2.2: The yield map of winter wheat in WO3 in 2012 preceding sugar beet crop, 

the dished black line shows the identified for the study which is approximately 12 ha and it 

appears more variable than the other parts of the field therefore it was selected: 
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Appendix 3: Conversion of actual beet tonnage into adjusted beet tonnage by 

reference to actual sugar content: 
 

Column 1 is the actual sugar content and column 2 is the adjusted factor identified for each 

sugar percentage to adjust tonnage based on the factor in column 2 (British Sugar). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Actual sugar content (1) Factor (2) Actual sugar content (1) Factor (2) 

13 0.715 16.6 1.064 

13.1 0.725 16.7 1.073 

13.2 0.735 16.8 1.082 

13.3 0.745 16.9 1.091 

13.4 0.755 17 1.1 

13.5 0.765 17.1 1.108 

13.6 0.775 17.2 1.116 

13.7 0.785 17.3 1.124 

13.8 0.795 17.4 1.132 

13.9 0.805 17.5 1.14 

14 0.815 17.6 1.148 

14.1 0.825 17.7 1.156 

14.2 0.835 17.8 1.164 

14.3 0.845 17.9 1.172 

14.4 0.855 18 1.18 

14.5 0.865 18.1 1.187 

14.6 0.875 18.2 1.194 

14.7 0.885 18.3 1.201 

14.8 0.895 18.4 1.208 

14.9 0.905 18.5 1.215 

15 0.915 18.6 1.222 

15.1 0.925 18.7 1.229 

15.2 0.935 18.8 1.236 

15.3 0.945 18.9 1.243 

15.4 0.955 19 1.25 

15.5 0.965 19.1 1.257 

15.6 0.974 19.2 1.264 

15.7 0.983 19.3 1.271 

15.8 0.992 19.4 1.278 

15.9 1.001 19.5 1.285 

16 1.01 19.6 1.292 

16.1 1.019 19.7 1.299 

16.2 1.028 19.8 1.306 

16.3 1.037 19.9 1.313 

16.4 1.046 20 1.32 

16.5 1.055     
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Appendix 4: Identifying the yield (t/ha) of previous crop (winter wheat) in the 

plots where the sugar beet measurements were taken in T32 field: 
The value of wheat yield (t/h) where identified in the plots at which all the sugar beet 

measurements were taken (   ) by averaging the value at the nearest 4 points at which the 

wheat yield was measured (    ) by the combine harvester and identified by the blue square 

(    ). 
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Appendix 5: The histograms of original and transformed data: 
Appendix 5.1:  The histograms of original (A) and transformed data (B) for some variables 

in White Patch field, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Log-available nitrate Available nitrate 

Available phosphate Log-available phosphate 

Available magnesium Log-available magnesium 

Canopy growth rate Log-canopy growth rate 

Log-amino acid Amino acid 
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Appendix 5.2: The histograms of original (A) and transformed data (B) for some variables 

in T32 field, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Log-potassium Potassium  

Available phosphate Log-available phosphate 

%Silt SQR-%Silt 

Log-magnesium Magnesium 

Log-canopy growth rate Canopy growth rate 



 

275 

 

 

Appendix 5.3: The histograms of original (A) and transformed data (B) for some variables 

in WO3 field, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnesium Log-magnesium 

Canopy growth rate Log-canopy growth rate 
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Appendix 6: The experimental variogram fitted with different models: 
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Appendix 7: The model parameters and the excremental variograms for the 

simulated yields in all three fields. 

Appendix 7.1: The model parameters for the variograms of simulated yields in the three 

fields: 

 

 

 

 

 

 

 Model Range, m 

(a) 

Sill 

(C1) 

Nugget 

(C0) 

C0/(C0+C1) 

White patch      

Simulated sugar yield t/ha (unadjusted) Spherical 52 0.30 0.05 0.14 

Simulated sugar yield (t/ha)adjusted for      

Canopy cover  in June Spherical 70 0.50 0 0 

Weed density in July Circular 84 1.9 0.04 2 

Plant population Exponential 98 0.33 0.1 23 

Canopy and weeds Circular 81 1.7 0 0 

Canopy and plant population Spherical 85 0.73 0.03 4 

T32      

Simulated sugar yield t/ha (unadjusted) Circular 92 0.13 0.29 69 

Simulated sugar yield (t/ha)adjusted for      

Canopy cover  in June Pentaspherical 158 0.69 0.30 30 

Weed density in July Circular 112 0.69 0.62 47 

Plant population Circular 92 0.15 0.30 67 

Canopy and weeds Circular 120 1.3 0.83 39 

Canopy and plant population Pentaspherical 180 0.68 0.37 35 

WO3      

Simulated sugar yield t/ha (unadjusted) Circular 140 0.78 0.25 24 

Simulated sugar yield (t/ha)adjusted for      

Canopy cover  in June Circular 112 1.1 0.22 17 

Weed density in July Circular 129 1.3 1.03 44 

Plant population Spherical 134 4.4 1.2 21 

Canopy and weeds Circular 114 1.7 1.2 41 

Canopy and plant population Spherical 105 6.04 0.88 12 
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Appendix 7.2: The experimental variograms of simulated yields White patch field, (A) 

simulated yield (unadjusted), and adjusted for (B) canopy cover in June, (C) weeds, (D) 

plant population, (E) canopy cover and weeds and (F) canopy cover and plant population. 
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Appendix 7.3: The experimental variograms of simulated yields T32 field, (A) simulated 

yield (unadjusted), and adjusted for (B) canopy cover in June, (C) weeds, (D) plant 

population, (E) canopy cover and weeds and (F) canopy cover and plant population. 
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Appendix 7.4: The experimental variograms of simulated yields WO3 field, (A) simulated 

yield (unadjusted), and adjusted for (B) canopy cover in June, (C) weeds, (D) plant 

population, (E) canopy cover and weeds and (F) canopy cover and plant population. 
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Appendix 8: The interpolation maps for the adjusted simulated yields and 

yield gaps: 
Appendix 8.1: The interpolation maps for the adjusted simulated yields (A-E) and yield 

gaps (F-I) in White Patch in 2012. The relevant variograms are in appendix 7.2. 
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Appendix 8.2: The interpolation maps for the adjusted simulated yields (A-E) and yield 

gaps (F-I) in T32 in 2012. The relevant variograms are in appendix 7.3. 
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Appendix 8.3: The interpolation maps for the adjusted simulated yields (A-E) and yield 

gaps (F-I) in WO3 in 2013. The relevant variograms are in appendix 7.4. 
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Appendix 9: The correlation coefficients and their significance against zero for the studied variables.  
 

Appendix 9.1: Correlation coefficients between the studied variables in White Patch. 

 
%Clay %Sand %Silt %SOM pH EC Nitrate Phosphate K Mg SMC-May SMC-June SMC-July SMC-August 

%Sand -0.96  - 

            %Silt 0.48 -0.71  - 

           %OM 0.36 -0.28 -0.01  - 

           pH 0.33 -0.35 0.28 -0.12  - 

         EC 0.39 -0.42 0.33 0.03 0.33  - 

        Nitrate -0.12 0.12 -0.09 -0.04 -0.16 0.05  - 

       Phosphate -0.30 0.30 -0.15 -0.01 -0.06 -0.28 0.02  - 

      K 0.05 -0.07 0.12 -0.04 0.24 0.25 -0.34 0.09  - 

     Mg 0.15 -0.16 0.11 0.19 0.09 0.16 0.12 0.03 0.15  - 

    SM-May 0.45 -0.36 0.03 0.44 0.02 0.23 0.04 0.00 0.07 0.26  - 

   SM-June 0.23 -0.16 -0.08 0.52 -0.08 0.04 -0.08 0.08 -0.03 0.19 0.34  - 

  SM-July 0.52 -0.43 0.08 0.44 0.31 0.08 -0.14 -0.27 0.01 0.09 0.38 0.40  - 

 SM-August 0.41 -0.36 0.11 0.40 0.11 0.11 -0.22 -0.14 0.18 0.20 0.51 0.46 0.58  - 

AVT-June -0.10 0.03 0.14 -0.21 -0.01 0.03 0.01 -0.24 -0.01 -0.12 -0.22 -0.17 -0.28 -0.16 

AVT-July -0.07 0.02 0.08 -0.18 -0.10 -0.01 0.08 -0.12 -0.15 -0.09 -0.17 -0.19 -0.32 -0.22 

AVT-Aug. 0.04 -0.07 0.12 -0.21 0.07 0.07 0.06 -0.06 -0.11 -0.06 -0.16 -0.20 -0.23 -0.29 

AVT-Sept. 0.01 -0.03 0.09 -0.22 0.10 0.07 0.04 0.04 -0.08 -0.05 -0.17 -0.23 -0.25 -0.35 

AVT-Season -0.03 -0.02 0.11 -0.22 0.01 0.04 0.06 -0.10 -0.10 -0.08 -0.19 -0.21 -0.29 -0.27 

MIT -0.23 0.25 -0.17 -0.03 -0.19 -0.12 -0.18 0.22 0.19 -0.04 0.01 0.09 -0.09 0.03 

MXT -0.04 -0.01 0.08 -0.35 0.05 0.09 0.25 -0.10 -0.07 0.01 -0.29 -0.27 -0.28 -0.41 
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  %Clay %Sand %Silt %SOM PH EC Nitrate Phosphate K Mg SMC-May SMC-June SMC-July SMC-August 

Weeds -0.34 0.34 -0.21 -0.13 0.12 -0.14 0.11 0.16 0.04 -0.01 -0.24 -0.09 -0.31 -0.40 

Plant population -0.07 0.10 -0.11 0.18 -0.02 0.02 0.08 0.15 -0.19 -0.06 0.30 0.04 0.10 0.13 

Crop cover-June 0.24 -0.14 -0.14 0.46 0.00 0.04 -0.08 0.03 -0.16 -0.03 0.48 0.45 0.44 0.35 

Crop cover-July 0.20 -0.19 0.06 0.31 -0.12 -0.20 -0.25 -0.07 -0.05 -0.02 0.10 0.30 0.40 0.47 

Crop cover-August 0.45 -0.42 0.19 0.21 0.04 0.06 -0.16 -0.18 -0.17 0.07 0.39 0.25 0.49 0.48 

SRI-June -0.08 0.17 -0.29 0.36 -0.17 -0.17 -0.02 0.10 -0.21 -0.13 0.31 0.39 0.29 0.27 

SRI-July 0.17 -0.10 -0.11 0.37 -0.15 -0.18 -0.27 0.12 -0.04 0.10 0.23 0.43 0.38 0.54 

LAI-June -0.10 0.19 -0.33 0.32 -0.09 -0.15 -0.01 0.20 -0.19 -0.06 0.33 0.35 0.27 0.17 

LAI-July 0.16 -0.10 -0.08 0.31 -0.09 -0.13 -0.30 0.12 -0.02 0.05 0.14 0.36 0.38 0.47 

Canopy growth rate -0.07 -0.03 0.25 -0.40 0.02 -0.01 0.01 -0.14 0.13 -0.02 -0.47 -0.43 -0.27 -0.28 

Roots yield 0.36 -0.27 -0.04 0.51 -0.01 0.06 -0.12 -0.03 -0.13 0.04 0.51 0.47 0.45 0.53 

%Sugar -0.01 0.01 0.00 0.12 -0.21 -0.09 -0.27 0.14 0.15 0.03 0.02 0.15 0.07 0.25 

Sugar yield 0.36 -0.28 -0.03 0.52 -0.04 0.04 -0.14 -0.03 -0.12 0.05 0.50 0.48 0.47 0.55 

Yield value 0.36 -0.27 -0.04 0.51 -0.04 0.04 -0.15 -0.01 -0.11 0.04 0.51 0.48 0.45 0.54 

Amino in beet -0.06 0.05 -0.02 0.00 -0.19 -0.14 -0.06 0.12 0.05 -0.10 -0.23 -0.11 -0.09 -0.06 

Potassium in beet 0.19 -0.21 0.15 0.08 -0.09 -0.08 -0.21 0.09 0.13 0.10 0.19 0.16 0.25 0.36 

  
Weeds 

Plant 

pop. 

Crop 

cover-June 

Crop cover-

July 

Crop cover-

August 

LAI-

June 

LAI-

July 

SRI-

June 

SRI-

July 

Canopy 

growth rate 

Roots 

yield %Sugar 

Sugar 

yield 

Yield 

value 

Amino acid in 

beet 

Potassium in 

beet 

T-June 0.14 -0.28 -0.33 -0.20 -0.27 -0.41 -0.27 -0.35 -0.27 0.30 -0.24 -0.16 -0.26 -0.26 -0.09 -0.17 

T-July 0.18 -0.21 -0.32 -0.26 -0.27 -0.39 -0.27 -0.29 -0.29 0.26 -0.25 -0.12 -0.27 -0.27 -0.10 -0.14 

T-Aug. 0.26 -0.23 -0.34 -0.36 -0.27 -0.45 -0.36 -0.29 -0.34 0.28 -0.33 -0.10 -0.35 -0.34 -0.20 -0.15 

T-Sept. 0.25 -0.25 -0.41 -0.42 -0.30 -0.46 -0.40 -0.29 -0.36 0.34 -0.41 -0.02 -0.41 -0.40 -0.19 -0.12 

T-Season 0.22 -0.25 -0.36 -0.33 -0.30 -0.45 -0.34 -0.32 -0.33 0.31 -0.32 -0.11 -0.34 -0.33 -0.15 -0.16 

Tmax -0.09 0.02 0.12 0.06 -0.14 0.20 0.14 0.17 0.19 -0.13 0.09 0.28 0.13 0.12 -0.03 0.13 

Tmax 0.23 -0.40 -0.54 -0.36 -0.25 -0.58 -0.60 -0.47 -0.56 0.46 -0.56 -0.23 -0.58 -0.58 -0.14 -0.01 



 

286 

 

 

  

 

 

  Weeds 
Plant 

population 

Crop cover-

June 

Crop cover-

July 

Crop cover-

Aug. 

SRI-

June 

SRI-

July 

LAI-

June 

LAI-

July 

Canopy growth 

rate 

Root 

yield %sugar 

Plant population -0.06  -           

Crop cover-June -0.15 0.53  - 

         Crop cover-July -0.53 0.16 0.48  - 

        Crop cover-

August -0.55 0.24 0.40 0.48  - 

       SRI-June -0.13 0.52 0.71 0.46 0.26  - 

      SRI-July -0.32 0.23 0.56 0.66 0.39 0.52  - 

     LAI-June 0.01 0.52 0.74 0.34 0.16 0.83 0.43  - 

    LAI-July -0.31 0.15 0.51 0.67 0.36 0.48 0.90 0.42  - 

   Canopy growth 

rate -0.05 -0.51 -0.85 -0.21 -0.21 -0.62 -0.43 -0.72 -0.34  - 

  Root yield -0.40 0.51 0.81 0.60 0.58 0.60 0.67 0.46 0.55 -0.60  - 

 %Sugar -0.06 -0.06 -0.01 0.18 -0.01 0.09 0.34 0.09 0.33 -0.08 0.03  - 

Sugar yield -0.42 0.49 0.80 0.63 0.58 0.61 0.71 0.46 0.59 -0.59 0.99 0.14 

Yield value -0.41 0.50 0.80 0.61 0.57 0.61 0.71 0.47 0.59 -0.61 0.99 0.15 

Amino in beet -0.28 -0.25 -0.16 0.34 0.03 -0.04 0.26 -0.06 0.36 0.27 -0.02 0.06 

Potassium in beet -0.32 -0.26 -0.07 0.23 0.21 0.00 0.20 -0.04 0.19 0.06 0.03 0.31 
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Appendix 9.2:  Test the significance of the correlations against zero in White Patch 

 
%Clay %Sand %Silt %SOM PH EC Nitrate Phosphate K Mg SMC-May SMC-June SMC-July SMC-August 

%Sand <0.001  - 

            %Silt <0.001 <0.001  - 

           %OM <0.001 0.007 0.9558  - 

          Soil pH 0.0017 <0.001 0.0083 0.2714  - 

         EC <0.001 <0.001 0.0014 0.7962 0.0018  - 

        Nitrate 0.259 0.2508 0.4172 0.6887 0.1367 0.6656  - 

       Phosphate 0.004 0.0048 0.1547 0.9188 0.5478 0.0074 0.8333  - 

      K 0.6428 0.4929 0.2786 0.6955 0.0217 0.017 <0.001 0.3882  - 

     Mg 0.1671 0.1289 0.2966 0.0714 0.393 0.1408 0.2829 0.7959 0.1718  - 

    SM-May <0.001 <0.001 0.7464 <0.001 0.8539 0.0327 0.7358 0.9762 0.4955 0.0122  - 

   SM-June 0.0304 0.1397 0.4428 <0.001 0.4603 0.7421 0.483 0.4694 0.7881 0.0755 0.0013  - 

  SM-July <0.001 <0.001 0.458 <0.001 0.0028 0.4811 0.1793 0.0099 0.924 0.3958 <0.001 <0.001  - 

 SM-August <0.001 <0.001 0.3012 <0.001 0.3255 0.2854 0.0355 0.2019 0.0846 0.0575 <0.001 <0.001 <0.001  - 

AVT-June 0.3487 0.8062 0.1808 0.0464 0.9163 0.7851 0.9581 0.025 0.8951 0.2634 0.0411 0.1203 0.0073 0.1294 

AVT-July 0.5384 0.8632 0.4843 0.0897 0.3534 0.9317 0.4453 0.2687 0.164 0.4257 0.1216 0.0824 0.0021 0.0349 

AVT-Aug. 0.7176 0.4897 0.2639 0.0454 0.4969 0.4988 0.5457 0.6021 0.3028 0.5673 0.1351 0.058 0.0287 0.0054 

AVT-Sept. 0.9617 0.7472 0.4034 0.0396 0.3636 0.5269 0.6782 0.7216 0.4309 0.6361 0.1191 0.0288 0.02 <0.001 

AVT-Season 0.7736 0.8676 0.2986 0.0414 0.9422 0.7106 0.5952 0.3511 0.3364 0.435 0.0817 0.0512 0.0059 0.0101 

MIT-Season 0.0289 0.019 0.1102 0.7602 0.0762 0.2716 0.101 0.038 0.0707 0.7253 0.9023 0.418 0.4286 0.8096 

MXT-Season 0.7163 0.9366 0.446 <0.001 0.6394 0.3849 0.0203 0.3359 0.5187 0.9082 0.0061 0.0109 0.009 <0.001 
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%Clay %Sand %Silt %SOM PH EC Nitrate Phosphate K Mg SMC-May SMC-June SMC-July SMC-August 

Weeds <0.001 <0.001 0.0523 0.2307 0.2529 0.1916 0.301 0.126 0.7162 0.9374 0.0213 0.4164 0.0036 <0.001 

Plant population 0.5312 0.3346 0.2853 0.0944 0.8471 0.8672 0.4353 0.1537 0.0726 0.6084 0.0041 0.7224 0.3668 0.2103 

Crop cover-June 0.0259 0.1935 0.1917 <0.001 0.9729 0.731 0.4672 0.8131 0.1414 0.7558 <0.001 <0.001 <0.001 <0.001 

Crop cover-July 0.0547 0.0824 0.598 0.0032 0.283 0.0565 0.0188 0.5069 0.6152 0.8821 0.359 0.0047 <0.001 <0.001 

Crop cover-August <0.001 <0.001 0.0819 0.0533 0.7097 0.5534 0.1241 0.0989 0.1144 0.5096 <0.001 0.0191 <0.001 <0.001 

SRI-June 0.4563 0.1113 0.0056 <0.001 0.1014 0.117 0.8474 0.3511 0.054 0.2415 0.0027 <0.001 0.0053 0.0099 

SRI-July 0.105 0.342 0.3152 <0.001 0.1655 0.0927 0.0119 0.2797 0.7355 0.3578 0.0309 <0.001 <0.001 <0.001 

LAI-June 0.3564 0.0679 0.0015 0.0026 0.3963 0.156 0.8974 0.0668 0.0812 0.5893 0.0019 <0.001 0.0119 0.1063 

LAI-July 0.138 0.3579 0.4715 0.0029 0.3859 0.2302 0.0044 0.2662 0.8277 0.6755 0.1851 <0.001 <0.001 <0.001 

Canopy growth rate 0.5352 0.7599 0.0165 <0.001 0.8677 0.9157 0.8949 0.2031 0.2123 0.8771 <0.001 <0.001 0.0096 0.0084 

Roots yield <0.001 0.0094 0.6973 <0.001 0.9033 0.6068 0.2771 0.8069 0.2317 0.7208 <0.001 <0.001 <0.001 <0.001 

%Sugar 0.9588 0.9075 0.9765 0.2463 0.047 0.3829 0.011 0.1878 0.1592 0.795 0.8878 0.1746 0.5025 0.0174 

Sugar yield <0.001 0.0088 0.7518 <0.001 0.6942 0.7014 0.1781 0.805 0.2603 0.6526 <0.001 <0.001 <0.001 <0.001 

Yield value <0.001 0.0099 0.6959 <0.001 0.7245 0.6893 0.1633 0.9619 0.2874 0.6764 <0.001 <0.001 <0.001 <0.001 

Amino in beet 0.5778 0.66 0.829 0.9646 0.0703 0.2067 0.5759 0.2723 0.6543 0.3723 0.034 0.2863 0.4083 0.6007 

Potassium in beet 0.0691 0.0533 0.1588 0.4289 0.4267 0.4615 0.0537 0.4084 0.2378 0.3336 0.0705 0.1312 0.0203 <0.001 

  Weeds 

Plant 

pop. 

Crop cover-

June 

Crop cover-

July 

Crop cover-

August 

LAI-

June 

LAI-

July 

SRI-

June 

SRI-

July 

Canopy 

growth rate 

Roots 

yield %Sugar 

Sugar 

yield 

Yield 

value 

Amino acid in 

beet 

Potassium in 

beet 

T-June 0.1848 0.0073 0.0017 0.0647 0.0118 <0.001 0.0094 <0.001 0.0092 0.0037 0.0252 0.1382 0.0156 0.0134 0.4205 0.1034 

T-July 0.0863 0.0519 0.0025 0.0127 0.0097 <0.001 0.0106 0.0067 0.0067 0.013 0.0171 0.2557 0.0097 0.0101 0.3427 0.1765 

T-Aug. 0.0154 0.0319 0.0011 <0.001 0.0098 <0.001 <0.001 0.0054 <0.001 0.0083 0.0017 0.3564 <0.001 0.0011 0.0627 0.1713 

T-Sept. 0.0174 0.0203 <0.001 <0.001 0.0037 <0.001 <0.001 0.0061 <0.001 0.0013 <0.001 0.8808 <0.001 <0.001 0.0688 0.2585 

T-Season 0.0366 0.0177 <0.001 0.0018 0.005 <0.001 0.001 0.0022 0.0014 0.0033 0.0022 0.3132 0.0012 0.0013 0.1512 0.1455 

Tmax 0.4039 0.8403 0.2651 0.5735 0.184 0.0582 0.1953 0.1033 0.0805 0.217 0.3892 0.0089 0.2406 0.2608 0.7703 0.2298 

Tmax 0.0338 <0.001 <0.001 <0.001 0.0185 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.0322 <0.001 <0.001 0.2064 0.9165 
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Weeds 

Plant 

pop. 

Crop cover-

June 

Crop cover-

July 

Crop cover-

Aug. SRI-June SRI-July LAI-June LAI-July 

Canopy growth 

rate 

Root 

yield 

%suga

r 

Crop cover-June 0.56  - 

          Crop cover-July 0.16 <0.001  - 

         Crop cover-

August <0.001 0.1307 <0.001  - 

        SRI-June <0.001 0.0263 <0.001 <0.001  - 

       SRI-July 0.2228 <0.001 <0.001 <0.001 0.0145  - 

      LAI-June 0.0024 0.0328 <0.001 <0.001 <0.001 <0.001  - 

     LAI-July 0.9543 <0.001 <0.001 0.0013 0.1464 <0.001 <0.001  - 

    Canopy growth 

rate 0.0033 0.1722 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

   Root yield 0.6721 <0.001 <0.001 0.0535 0.0482 <0.001 <0.001 <0.001 <0.001  - 

  %Sugar <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

 Sugar yield 0.5853 0.5993 0.9326 0.0867 0.9011 0.4251 0.0013 0.4257 0.0013 0.4719 0.8053  - 

Yield value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.1933 

Amino in beet <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.1712 

Potassium in beet 0.0086 0.019 0.1429 0.0013 0.7575 0.7292 0.0128 0.5981 <0.001 0.0117 0.8481 0.591 
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Appendix 9.3: Correlation coefficients between the studied variables in T32. 

 
%Clay %Sand %Silt %SOM pH EC Nitrate Phosphate K Mg SMC-June SMC-July SMC-August 

%Sand -0.56  - 

           %Silt -0.29 -0.63  - 

          %OM -0.03 -0.26 0.33  - 

          pH 0.30 -0.17 -0.08 0.26  - 

        EC 0.25 -0.49 0.34 0.32 0.43  - 

       Nitrate -0.06 0.02 0.04 0.27 0.12 0.30  - 

      Phosphate -0.30 0.29 -0.05 -0.21 -0.45 -0.51 -0.27  - 

     K 0.09 -0.12 0.06 0.03 0.04 0.37 0.06 -0.18  - 

    Mg -0.08 0.12 -0.06 -0.13 -0.29 -0.27 -0.19 0.04 -0.07  - 

   SM-June 0.38 -0.38 0.08 0.25 0.36 0.29 0.12 -0.40 -0.02 0.01  - 

  SM-July -0.04 -0.12 0.18 0.43 0.36 0.12 0.22 -0.20 -0.21 -0.16 0.37  - 

 SM-August 0.37 -0.41 0.12 0.34 0.54 0.49 0.34 -0.58 0.11 -0.25 0.61 0.44  - 

AVT-June 0.01 -0.11 0.12 0.03 -0.17 -0.05 0.02 0.05 0.01 -0.11 0.06 -0.06 -0.06 

AVT-July -0.09 -0.06 0.15 -0.01 -0.30 -0.17 -0.04 0.14 -0.02 0.00 -0.08 -0.18 -0.24 

AVT-Aug. -0.12 0.08 0.01 -0.10 -0.40 -0.24 -0.14 0.24 -0.02 -0.02 -0.22 -0.25 -0.40 

AVT-Sept. -0.22 0.18 0.00 -0.22 -0.26 -0.31 -0.26 0.30 -0.05 0.11 -0.27 -0.25 -0.41 

AVT-Season -0.10 0.01 0.09 -0.05 -0.37 -0.20 -0.09 0.21 -0.02 -0.03 -0.14 -0.23 -0.34 

MIT -0.17 0.18 -0.05 -0.21 -0.39 -0.24 -0.22 0.41 0.06 0.11 -0.44 -0.32 -0.48 

MXT -0.18 0.15 -0.01 -0.16 -0.41 -0.28 -0.25 0.09 -0.05 0.20 -0.16 -0.30 -0.46 
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Weeds 

Plant 

pop. 

Crop cover-

June 

Crop 

cover-July 

Crop cover-

August 

LAI-

June 

LAI-

July 

SRI-

June 

SRI-

July 

Canopy 

growth rate 

Roots 

yield %Sugar 

Sugar 

yield 

Yield 

value 

Amino acid 

in beet 

Potassium 

in beet 

T-June -0.10 -0.13 -0.14 0.03 0.15 -0.01 -0.07 -0.07 0.01 0.12 -0.05 0.16 -0.03 -0.02 -0.08 -0.09 

T-July 0.07 -0.07 -0.27 -0.20 0.08 -0.22 -0.23 -0.25 -0.20 0.21 -0.10 0.11 -0.10 -0.07 -0.25 -0.12 

T-Aug. 0.13 -0.22 -0.28 -0.25 -0.03 -0.31 -0.29 -0.30 -0.26 0.21 -0.21 0.06 -0.21 -0.19 -0.27 -0.02 

T-Sept. 0.14 -0.06 -0.15 -0.15 -0.05 -0.13 -0.10 -0.10 -0.14 0.07 -0.06 -0.20 -0.11 -0.09 -0.07 0.15 

T-Season 0.07 -0.17 -0.26 -0.19 0.04 -0.24 -0.24 -0.25 -0.20 0.20 -0.16 0.10 -0.15 -0.13 -0.24 -0.05 

Tmax 0.30 -0.39 -0.14 -0.23 -0.03 -0.25 -0.25 -0.25 -0.09 0.06 -0.22 0.16 -0.18 -0.20 -0.37 0.13 

Tmax 0.25 -0.04 -0.42 -0.27 -0.10 -0.38 -0.35 -0.34 -0.35 0.35 -0.25 -0.03 -0.29 -0.23 -0.18 0.07 

 

 

 

  %Clay %Sand %Silt %SOM PH EC Nitrate Phosphate K Mg SMC-June SMC-July SMC-August 

Weeds -0.22 0.27 -0.11 -0.23 -0.32 -0.35 -0.32 0.27 -0.07 0.34 -0.27 -0.28 -0.47 

Plant population 0.08 -0.18 0.13 0.32 0.15 0.13 0.36 -0.18 -0.05 0.15 0.24 0.28 0.23 

Crop cover-June -0.04 0.06 -0.03 0.36 0.17 0.00 0.42 -0.12 -0.19 -0.11 0.22 0.50 0.39 

Crop cover-July 0.19 -0.32 0.19 0.36 0.24 0.25 0.39 -0.39 0.03 -0.05 0.45 0.53 0.49 

Crop cover-August 0.01 -0.11 0.11 0.30 -0.03 0.02 0.27 -0.18 -0.02 0.09 0.30 0.31 0.29 

SRI- July 0.07 -0.14 0.09 0.24 0.27 0.15 0.32 -0.30 -0.09 -0.04 0.24 0.32 0.44 

SRI-August 0.04 -0.20 0.19 0.43 0.34 0.19 0.32 -0.23 -0.14 -0.04 0.26 0.35 0.37 

LAI-July 0.00 -0.13 0.15 0.23 0.22 -0.02 0.17 -0.17 -0.10 -0.03 0.30 0.40 0.39 

LAI-August 0.05 -0.23 0.22 0.34 0.12 0.13 0.26 -0.14 -0.03 0.03 0.27 0.37 0.34 

Canopy growth rate 0.09 -0.14 0.08 -0.27 -0.08 0.12 -0.34 -0.03 0.22 0.05 -0.12 -0.39 -0.25 

Roots yield 0.09 -0.27 0.23 0.35 0.25 0.15 0.36 -0.17 -0.14 -0.19 0.33 0.52 0.47 

%Sugar 0.10 -0.15 0.08 0.01 0.05 0.06 -0.07 0.08 0.14 -0.16 0.06 -0.01 0.08 

Sugar yield 0.10 -0.25 0.18 0.38 0.28 0.17 0.39 -0.17 -0.13 -0.23 0.33 0.53 0.48 

Yield value 0.07 -0.30 0.27 0.35 0.23 0.15 0.34 -0.14 -0.12 -0.20 0.32 0.49 0.47 

Amino in beet 0.19 -0.22 0.08 0.09 0.24 0.16 0.08 -0.29 0.19 -0.03 0.27 0.18 0.34 

Potassium in beet 0.21 -0.02 -0.17 -0.54 -0.15 -0.04 -0.19 0.03 0.09 0.06 -0.02 -0.24 -0.12 
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  Weeds 
Plant 

pop. 

Crop cover-

June 

Crop cover-

July 

Crop cover-

Aug. 

SRI-

June 

SRI-

July 

LAI-

June 

LAI-

July 

Canopy growth 

rate 

Root 

yield %sugar 

Plant population -0.24  -           

Crop cover-June -0.40 0.43  - 

         Crop cover-July -0.48 0.45 0.61  - 

        Crop cover-

August -0.20 0.44 0.45 0.65  - 

       SRI-June -0.33 0.49 0.64 0.59 0.47  - 

      SRI-July -0.28 0.43 0.52 0.52 0.50 0.70  - 

     LAI-June -0.23 0.38 0.57 0.61 0.44 0.82 0.68  - 

    LAI-July -0.22 0.44 0.57 0.57 0.54 0.70 0.84 0.73  - 

   Canopy growth 

rate 0.34 -0.39 -0.95 -0.49 -0.42 -0.58 -0.43 -0.51 -0.51  - 

  Root yield -0.50 0.51 0.66 0.66 0.54 0.63 0.50 0.60 0.54 -0.61  - 

 %Sugar 0.11 -0.06 -0.11 -0.03 0.13 -0.09 0.02 -0.10 0.05 0.15 -0.11  - 

Sugar yield -0.51 0.49 0.70 0.67 0.59 0.62 0.51 0.58 0.54 -0.64 0.98 0.02 

Yield value -0.46 0.51 0.63 0.64 0.58 0.61 0.50 0.57 0.55 -0.57 0.98 0.04 

Amino in beet -0.39 0.38 0.23 0.46 0.17 0.45 0.39 0.53 0.38 -0.18 0.36 -0.32 

Potassium in beet 0.03 -0.31 -0.21 -0.13 -0.31 -0.11 -0.26 -0.07 -0.18 0.17 -0.18 -0.16 
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Appendix 9.4: Test the significance of the correlations against zero in T32. 

 
%Clay %Sand %Silt %SOM pH EC Nitrate Phosphate K Mg SMC-June SMC-July SMC-August 

%Sand <0.001  - 

           %Silt 0.0055 <0.001  - 

          %OM 0.78 0.013 0.0016  - 

          pH 0.005 0.1069 0.4533 0.0144 

         EC 0.019 <0.001 0.0013 0.0019 <0.001  - 

       Nitrate 0.57 0.8627 0.7419 0.0095 0.2641 0.0041  - 

      Phosphate 0.004 0.006 0.6405 0.0532 <0.001 <0.001 0.0116  - 

     K 0.39 0.2481 0.6086 0.7601 0.6805 <0.001 0.5959 0.0874  - 

    Mg 0.45 0.2807 0.6033 0.2424 0.0055 0.0101 0.0722 0.7172 0.4896  - 

   SM-June <0.001 <0.001 0.4792 0.0161 <0.001 0.0056 0.2716 <0.001 0.8761 0.899  - 

  SM-July 0.6925 0.2705 0.1002 <0.001 <0.001 0.2597 0.0345 0.0632 0.0438 0.1439 <0.001  - 

 SM-August <0.001 <0.001 0.2669 <0.001 <0.001 <0.001 0.0012 <0.001 0.2996 0.0193 <0.001 <0.001  - 

AVT-June 0.9322 0.293 0.2516 0.7475 0.1119 0.6672 0.8418 0.6624 0.9184 0.2834 0.5837 0.5844 0.58 

AVT-July 0.4178 0.5878 0.1613 0.9406 0.0047 0.1084 0.6839 0.2038 0.8568 0.9839 0.4602 0.0875 0.023 

AVT-Aug. 0.2806 0.4391 0.8955 0.3512 <0.001 0.0255 0.1852 0.0226 0.821 0.8365 0.0398 0.0176 <0.001 

AVT-Sept. 0.0369 0.0999 0.9671 0.0341 0.0129 0.0034 0.0143 0.0046 0.656 0.2932 0.0096 0.0189 <0.001 

AVT-Season 0.3393 0.9377 0.4128 0.6159 <0.001 0.0545 0.4158 0.0437 0.8676 0.7633 0.1844 0.0273 0.001 

MIT-Season 0.1222 0.0939 0.6469 0.0508 <0.001 0.0256 0.0386 <0.001 0.5544 0.305 <0.001 0.0025 <0.001 

MXT-Season 0.093 0.1543 0.9406 0.1459 <0.001 0.007 0.0202 0.411 0.6305 0.0664 0.1311 0.004 <0.001 
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  %Clay %Sand %Silt %SOM PH EC Nitrate Phosphate K Mg SMC-June SMC-July SMC-August 

Weeds 0.041 0.0098 0.3143 0.0283 0.0026 <0.001 0.0026 0.0111 0.5022 <0.001 0.0094 0.0078 <0.001 

Plant population 0.4603 0.0949 0.2274 0.002 0.1672 0.2101 <0.001 0.0839 0.63 0.1522 0.0216 0.0069 0.034 

Crop cover-June 0.6856 0.5462 0.7463 <0.001 0.1146 0.9755 <0.001 0.2791 0.0673 0.2996 0.0372 <0.001 <0.001 

Crop cover-July 0.0746 0.0025 0.0785 <0.001 0.0251 0.0198 <0.001 <0.001 0.7828 0.6177 <0.001 <0.001 <0.001 

Crop cover-August 0.9224 0.3087 0.2904 0.0037 0.7976 0.8268 0.0116 0.0923 0.8201 0.3947 0.0039 0.0027 0.0064 

SRI- July 0.4893 0.1949 0.3994 0.0222 0.0114 0.1512 0.0024 0.0044 0.377 0.6918 0.0227 0.0024 <0.001 

SRI-August 0.7143 0.0631 0.0735 <0.001 0.0011 0.0704 0.0021 0.0286 0.1983 0.6912 0.015 <0.001 <0.001 

LAI-July 0.9793 0.2255 0.1512 0.0295 0.0408 0.8587 0.122 0.116 0.3314 0.7607 0.0041 <0.001 <0.001 

LAI-August 0.6254 0.0284 0.0393 0.0011 0.258 0.208 0.0157 0.1831 0.7535 0.7861 0.0092 <0.001 0.0012 

Canopy growth rate 0.3929 0.1802 0.4553 0.0102 0.4725 0.2797 0.0013 0.813 0.0421 0.6455 0.2628 <0.001 0.0171 

Roots yield 0.4187 0.0109 0.0329 <0.001 0.0182 0.1494 <0.001 0.1033 0.2052 0.0739 0.0015 <0.001 <0.001 

%Sugar 0.3573 0.1528 0.4302 0.9283 0.6217 0.5886 0.5248 0.4609 0.192 0.1256 0.5755 0.9383 0.4624 

Sugar yield 0.329 0.0194 0.0832 <0.001 0.0091 0.1127 <0.001 0.1114 0.2392 0.0288 0.0016 <0.001 <0.001 

Yield value 0.4923 0.0049 0.0105 <0.001 0.0274 0.159 0.0012 0.1849 0.2584 0.0635 0.0019 <0.001 <0.001 

Amino in beet 0.0825 0.0366 0.4453 0.4261 0.024 0.1348 0.4362 0.0055 0.0817 0.7581 0.0094 0.0892 0.0013 

Potassium in beet 0.049 0.8344 0.1131 <0.001 0.1676 0.6827 0.0768 0.7798 0.3862 0.5894 0.8804 0.0256 0.2527 

  
Weeds Plant 

pop. 

Crop 

cover-

June 

Crop cover-

July 

Crop cover-

August 

LAI-

June 

LAI-

July 

SRI-

June 

SRI-

July 

Canopy 

growth rate 

Roots 

yield %Sugar 

Sugar 

yield 

Yield 

value 

Amino acid in 

beet 

Potassium in 

beet 

T-June 0.3757 0.2273 0.1866 0.7771 0.1568 0.9016 0.515 0.5086 0.9127 0.2695 0.6625 0.1421 0.7661 0.8892 0.4384 0.381 

T-July 0.505 0.5254 0.0115 0.0627 0.4826 0.0354 0.028 0.0183 0.0575 0.0504 0.3563 0.3255 0.3709 0.49 0.0185 0.271 

T-Aug. 0.2302 0.0422 0.0069 0.0194 0.7976 0.0031 0.0068 0.0045 0.0142 0.0499 0.0434 0.5608 0.0513 0.0718 0.01 0.8622 

T-Sept. 0.1836 0.5456 0.1567 0.1539 0.613 0.228 0.3278 0.3709 0.1961 0.5301 0.5654 0.060 0.3108 0.4177 0.4962 0.1728 

T-Season 0.5168 0.1131 0.0123 0.075 0.6957 0.0248 0.0254 0.0163 0.061 0.0634 0.1381 0.336 0.1595 0.2254 0.0261 0.6214 

Tmax 0.0049 <0.001 0.1807 0.033 0.812 0.0182 0.0179 0.0181 0.3943 0.5768 0.0408 0.1439 0.0854 0.0666 <0.001 0.2315 

Tmax 0.0205 0.7228 <0.001 0.0115 0.3756 <0.001 <0.001 0.0013 <0.001 <0.001 0.0167 0.816 0.0066 0.0311 0.101 0.5296 
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  Weeds 
Plant 

pop. 

Crop cover-

June 

Crop cover-

July 

Crop cover-

Aug. 

SRI-

June 

SRI-

July 

LAI-

June 

LAI-

July 

Canopy growth 

rate 

Root 

yield %sugar 

Plant population 0.0241  -           

Crop cover-June <0.001 <0.001  - 
         

Crop cover-July <0.001 <0.001 <0.001  - 
        

Crop cover-

August 
0.0541 <0.001 <0.001 <0.001  - 

       
SRI-June 0.0015 <0.001 <0.001 <0.001 <0.001  - 

      
SRI-July 0.0073 <0.001 <0.001 <0.001 <0.001 <0.001  - 

     
LAI-June 0.0304 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

    
LAI-July 0.0396 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

   
Canopy growth 

rate 
0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

  
Root yield <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

 
%Sugar 0.2857 0.5613 0.2885 0.7683 0.2081 0.4119 0.8857 0.3444 0.6261 0.1727 0.3103  - 

Sugar yield <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.8772 

Yield value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.6949 

Amino in beet <0.001 <0.001 0.031 <0.001 0.1055 <0.001 <0.001 <0.001 <0.001 0.0918 <0.001 0.0023 

Potassium in beet 0.7591 0.0032 0.0508 0.2229 0.0028 0.3055 0.0128 0.4933 0.0912 0.1196 0.0855 0.1323 
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Appendix 9.5: Correlation coefficients between the studied variables in WO3 

 
%Clay %Sand %Silt %SOM pH EC Phosphate K Mg SMC-June SMC-July SMC-August 

%Sand -0.87  -           

%Silt 0.05 -0.54  -          

%OM -0.14 0.16 -0.08  -         

 pH 0.10 -0.07 -0.03 -0.04  -        

EC 0.34 -0.31 0.05 0.02 -0.27  -       

Phosphate 0.01 -0.01 -0.01 -0.03 0.13 0.11  -      

K -0.22 0.10 0.18 -0.05 -0.19 -0.03 -0.05  -     

Mg -0.13 0.17 -0.12 0.10 -0.21 0.00 -0.05 0.07  -    

SM-June -0.27 0.28 -0.11 0.32 0.15 -0.21 0.00 0.11 0.35  -   

SM-July -0.33 0.33 -0.11 0.19 0.10 -0.40 -0.10 0.00 0.12 0.36  -  

SM-September -0.04 -0.05 0.16 0.07 0.08 0.07 0.08 -0.05 0.12 0.24 -0.05  - 

AVT-June -0.10 0.15 -0.13 0.20 0.13 -0.06 -0.12 0.13 0.11 0.36 0.31 0.16 

AVT-July 0.43 -0.40 0.07 -0.13 0.09 0.19 -0.10 -0.10 -0.12 -0.20 -0.21 0.00 

AVT-Aug. 0.44 -0.41 0.07 -0.14 0.06 0.16 -0.09 -0.08 -0.18 -0.44 -0.27 0.02 

AVT-Sept. 0.35 -0.31 0.04 -0.10 0.02 0.12 -0.12 -0.06 -0.15 -0.30 -0.09 0.01 

AVT-Oct. 0.13 -0.12 0.03 0.02 0.04 0.08 -0.15 0.00 -0.13 -0.06 0.12 0.01 

AVT-Nov. -0.08 0.07 0.00 0.05 0.02 0.00 -0.07 0.10 -0.04 0.17 0.17 -0.05 

AVT-Season 0.32 -0.28 0.02 -0.05 0.09 0.13 -0.14 -0.02 -0.12 -0.17 -0.05 0.05 

MIT-Season 0.10 -0.16 0.15 0.00 0.01 0.04 -0.15 -0.05 -0.11 -0.04 -0.10 0.25 

MXT-Season 0.36 -0.37 0.13 -0.10 0.03 0.07 0.02 0.03 -0.19 -0.26 -0.21 -0.11 
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Weeds 

Plant 

population 

Crop 

cover-

June 

Crop 

cover-

July 

Crop 

cover-

August 

Crop 

cover-

August 

LAI-

July 
LAI-

Augu. 

LAI-

Sept. 

SRI-

July 

SRI-

Aug. 

SRI-

Sept. 

Canopy 

growth 

rate 

Roots 

yield 
%Sugar 

Sugar 

yield 

Yield 

value 

Amino 

acid in 

beet 

Potassium 

in beet 

T-June -0.03 0.17 0.28 0.25 0.27 0.18 0.24 0.29 0.28 0.25 0.19 0.18 -0.09 0.29 0.24 0.30 0.30 -0.16 -0.19 

T-July 0.11 -0.38 -0.36 -0.40 -0.30 -0.39 -0.41 -0.42 -0.37 -0.33 -0.40 -0.47 0.01 -0.35 -0.14 -0.34 -0.34 0.08 0.25 

T-Aug. 0.13 -0.40 -0.48 -0.55 -0.43 -0.54 -0.54 -0.56 -0.45 -0.53 -0.52 -0.54 0.04 -0.48 -0.26 -0.48 -0.47 0.14 0.36 

T-Sept. 0.17 -0.36 -0.34 -0.41 -0.37 -0.52 -0.40 -0.50 -0.44 -0.39 -0.45 -0.54 -0.04 -0.39 -0.17 -0.39 -0.38 0.10 0.31 

T-Oct 0.11 -0.22 -0.12 -0.17 -0.19 -0.32 -0.17 -0.22 -0.25 -0.14 -0.22 -0.37 -0.05 -0.17 -0.02 -0.17 -0.15 0.02 0.15 

T-Nov. 0.11 -0.07 0.10 0.06 -0.01 -0.08 0.06 0.04 -0.01 0.11 0.01 -0.12 -0.11 0.06 0.14 0.07 0.07 -0.08 -0.03 

T-Season 0.12 -0.30 -0.26 -0.33 -0.26 -0.40 -0.33 -0.36 -0.31 -0.29 -0.35 -0.43 -0.03 -0.28 -0.09 -0.28 -0.27 0.05 0.22 

Tmax -0.07 -0.29 -0.40 -0.41 -0.13 -0.16 -0.32 -0.24 -0.14 -0.32 -0.25 -0.24 0.08 -0.25 -0.16 -0.26 -0.26 0.10 0.28 

Tmax 0.22 -0.30 -0.22 -0.32 -0.33 -0.44 -0.36 -0.41 -0.37 -0.29 -0.36 -0.40 -0.16 -0.33 -0.20 -0.33 -0.33 0.11 0.34 

 

  %Clay %Sand %Silt %SOM PH EC Phosphate K Mg SMC-June SMC-July SMC-August 

Weeds 0.19 -0.16 0.00 -0.04 0.09 -0.04 0.05 -0.05 -0.14 -0.10 -0.02 -0.20 

Plant population -0.34 0.38 -0.19 0.17 -0.10 0.07 0.10 0.10 0.29 0.40 0.23 0.20 

Crop cover-June -0.39 0.44 -0.22 0.32 -0.12 -0.08 0.06 0.12 0.33 0.54 0.43 0.14 

Crop cover-July -0.40 0.45 -0.23 0.32 -0.14 -0.10 0.05 0.15 0.33 0.60 0.41 0.11 

Crop cover-August -0.19 0.21 -0.10 0.34 0.05 0.01 0.10 0.05 0.24 0.69 0.18 0.43 

Crop cover-September -0.33 0.34 -0.13 0.24 -0.01 -0.01 0.07 0.02 0.28 0.53 0.17 0.31 

SRI- July -0.41 0.48 -0.28 0.24 -0.08 -0.06 0.06 0.20 0.21 0.53 0.37 0.07 

SRI-August -0.50 0.54 -0.24 0.37 0.16 -0.15 0.09 0.05 0.20 0.61 0.39 0.17 

SRI-September -0.37 0.39 -0.15 0.27 0.02 0.00 0.08 0.17 0.28 0.54 0.23 0.29 

LAI-July -0.42 0.48 -0.26 0.26 -0.11 -0.06 0.08 0.20 0.24 0.58 0.33 0.06 

LAI-August -0.38 0.43 -0.21 0.33 0.05 -0.07 0.15 0.11 0.18 0.55 0.29 0.30 

LAI-September -0.36 0.37 -0.14 0.33 -0.03 -0.05 -0.05 0.19 0.32 0.56 0.30 0.25 

Canopy growth rate 0.15 -0.10 -0.07 -0.09 -0.01 0.07 -0.08 -0.06 -0.04 -0.07 -0.13 -0.14 

Roots yield -0.34 0.40 -0.24 0.32 -0.04 -0.03 -0.01 0.05 0.32 0.55 0.37 0.24 

%Sugar -0.26 0.32 -0.20 0.14 -0.07 -0.22 -0.17 0.13 0.15 0.30 0.17 -0.17 

Sugar yield -0.34 0.41 -0.24 0.32 -0.05 -0.04 -0.02 0.06 0.32 0.56 0.38 0.22 

Yield value -0.34 0.41 -0.25 0.32 -0.05 -0.05 -0.02 0.06 0.33 0.56 0.37 0.21 

Amino in beet 0.11 -0.18 0.16 -0.06 -0.20 0.23 -0.09 -0.09 -0.03 -0.37 -0.07 0.13 

Potassium in beet 0.45 -0.44 0.11 -0.06 -0.16 0.15 -0.09 -0.02 -0.09 -0.44 -0.30 -0.08 
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  Weeds 
Plant 

pop. 

Crop 

cover-

June 

Crop 

cover-

July 

Crop 

cover-

Aug. 

Crop 

cover-

Sep 

SRI-

July 

SRI-

Aug. 
SRI-Sept. 

LAI-

July 

LAI-

Aug. 

LAI-

Sept 

Canopy 

growth 

rate 

Root 

yield 
%sugar 

Plant population -0.11  -              

Crop cover-June -0.11 0.71  - 

  
 

  
 

  
 

   Crop cover-July -0.16 0.70 0.92  - 

 
 

  
 

  
 

   Crop cover-

August -0.21 0.62 0.67 0.72  -  

  
 

  
 

   Crop cover-Sep -0.23 0.68 0.61 0.65 0.79  - 

  
 

  
 

   SRI-July -0.29 0.60 0.73 0.80 0.55 0.57  - 

 
 

  
 

   SRI-Aug. -0.18 0.61 0.63 0.69 0.66 0.72 0.65  -  

  
 

   SRI-Sept. -0.16 0.54 0.52 0.53 0.67 0.72 0.51 0.66  - 

  
 

   LAI-July -0.22 0.58 0.72 0.78 0.54 0.54 0.93 0.63 0.51  - 

 
 

   LAI-Aug. -0.23 0.66 0.74 0.78 0.77 0.73 0.62 0.84 0.57 0.58  -  

   LAI-Sept -0.23 0.59 0.64 0.65 0.72 0.78 0.57 0.72 0.89 0.54 0.67  - 

   Canopy growth 

rate -0.07 -0.16 -0.34 -0.06 -0.11 -0.06 -0.03 -0.07 -0.09 -0.05 -0.10 -0.13  - 

  Root yield -0.21 0.72 0.80 0.74 0.72 0.76 0.67 0.69 0.71 0.64 0.70 0.79 -0.28  - 

 %Sugar -0.12 0.23 0.30 0.33 0.19 0.28 0.45 0.38 0.27 0.41 0.29 0.30 -0.02 0.33  - 

Sugar yield -0.21 0.71 0.80 0.74 0.72 0.76 0.69 0.69 0.71 0.65 0.70 0.79 -0.28 1.00 0.39 

Yield value -0.21 0.71 0.80 0.73 0.71 0.75 0.69 0.69 0.70 0.65 0.69 0.78 -0.28 1.00 0.41 

Amino in beet -0.01 -0.18 -0.22 -0.24 -0.36 -0.21 -0.25 -0.31 -0.20 -0.27 -0.29 -0.21 0.15 -0.18 -0.35 

Potassium in beet 0.16 -0.45 -0.47 -0.51 -0.38 -0.44 -0.56 -0.57 -0.43 -0.55 -0.40 -0.41 0.02 -0.50 -0.30 
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Appendix 9.6: Test the significance of the correlations against zero in WO3. 

 
%Clay %Sand %Silt %SOM pH EC Phosphate K Mg SMC-June SMC-July SMC-August 

%Sand <0.001  - 

          %Silt 0.614 <0.001  - 

         %OM 0.169 0.130 0.480  - 

         pH 0.399 0.570 0.768 0.738  - 

       EC <0.001 0.002 0.635 0.829 0.003  - 

      Phosphate 0.939 0.977 0.942 0.747 0.196 0.265  - 

     K 0.012 0.259 0.048 0.642 0.040 0.651 0.559  - 

    Mg 0.160 0.078 0.250 0.335 0.026 0.948 0.617 0.470  - 

   SM-June 0.003 0.002 0.325 <0.001 0.139 0.021 0.992 0.317 <0.001  - 

  SM-July <0.001 <0.001 0.263 0.048 0.298 <0.001 0.300 0.972 0.210 <0.001  - 

 SM-September 0.795 0.569 0.107 0.508 0.386 0.420 0.413 0.678 0.198 0.008 0.616  - 

AVT-June 0.340 0.189 0.306 0.052 0.125 0.604 0.203 0.194 0.322 <0.001 0.001 0.084 

AVT-July <0.001 <0.001 0.441 0.175 0.328 0.045 0.327 0.312 0.210 0.031 0.034 0.991 

AVT-Aug. <0.001 <0.001 0.544 0.148 0.519 0.085 0.359 0.465 0.064 <0.001 0.006 0.864 

AVT-Sept. <0.001 <0.001 0.729 0.328 0.791 0.198 0.217 0.592 0.120 0.002 0.381 0.954 

AVT-Oct. 0.209 0.229 0.775 0.826 0.684 0.412 0.116 0.970 0.175 0.553 0.220 0.936 

AVT-Nov. 0.345 0.411 0.960 0.560 0.931 0.949 0.432 0.324 0.669 0.094 0.075 0.622 

AVT-Season <0.001 0.003 0.799 0.618 0.342 0.183 0.162 0.813 0.219 0.076 0.580 0.645 

MIT-Season 0.225 0.064 0.097 0.962 0.807 0.578 0.138 0.699 0.273 0.754 0.320 0.010 

MXT-Season <0.001 <0.001 0.199 0.338 0.880 0.583 0.845 0.861 0.052 0.006 0.030 0.280 
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  %Clay %Sand %Silt %SOM PH EC Phosphate K Mg SMC-June SMC-July SMC-August 

Weeds 0.055 0.102 0.979 0.699 0.367 0.672 0.586 0.617 0.151 0.302 0.838 0.042 

Plant population <0.001 <0.001 0.049 0.074 0.286 0.482 0.323 0.310 0.003 <0.001 0.017 0.036 

Crop cover-June <0.001 <0.001 0.021 <0.001 0.234 0.403 0.518 0.212 <0.001 <0.001 <0.001 0.141 

Crop cover-July <0.001 <0.001 0.016 <0.001 0.157 0.285 0.611 0.126 <0.001 <0.001 <0.001 0.277 

Crop cover-August 0.055 0.033 0.311 <0.001 0.641 0.956 0.306 0.635 0.013 <0.001 0.063 <0.001 

Crop cover-September <0.001 <0.001 0.185 0.013 0.902 0.956 0.468 0.814 0.003 <0.001 0.088 0.001 

SRI- July <0.001 <0.001 0.004 0.013 0.397 0.531 0.525 0.038 0.031 <0.001 <0.001 0.496 

SRI-August <0.001 <0.001 0.014 <0.001 0.099 0.131 0.339 0.586 0.043 <0.001 <0.001 0.074 

SRI-September <0.001 <0.001 0.117 0.005 0.806 0.984 0.434 0.082 0.003 <0.001 0.019 0.003 

LAI-July <0.001 <0.001 0.008 0.007 0.270 0.534 0.415 0.040 0.013 <0.001 <0.001 0.537 

LAI-August <0.001 <0.001 0.027 <0.001 0.623 0.466 0.114 0.258 0.068 <0.001 0.002 0.002 

LAI-September <0.001 <0.001 0.167 <0.001 0.759 0.622 0.617 0.047 <0.001 <0.001 0.002 0.009 

Canopy growth rate 0.120 0.329 0.494 0.347 0.926 0.459 0.407 0.527 0.672 0.494 0.186 0.165 

Roots yield <0.001 <0.001 0.014 <0.001 0.655 0.751 0.942 0.586 <0.001 <0.001 <0.001 0.015 

%Sugar 0.007 <0.001 0.035 0.148 0.490 0.026 0.084 0.169 0.121 0.002 0.074 0.089 

Sugar yield <0.001 <0.001 0.012 <0.001 0.646 0.648 0.854 0.569 <0.001 <0.001 <0.001 0.026 

Yield value <0.001 <0.001 0.011 <0.001 0.633 0.600 0.818 0.563 <0.001 <0.001 <0.001 0.032 

Amino in beet 0.241 0.070 0.099 0.529 0.041 0.016 0.337 0.346 0.797 <0.001 0.446 0.184 

Potassium in beet <0.001 <0.001 0.268 0.524 0.097 0.113 0.366 0.863 0.347 <0.001 0.002 0.410 
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Weeds 

Plant 

population 

Crop 

cover-

June 

Crop 

cover-

July 

Crop 

cover-

August 

Crop 

cover-

August 

LAI-

July 
LAI-

Aug.. 

LAI-

Sept. 

SRI-

July 

SRI-

Aug. 

SRI-

Sept. 

Canopy 

growth 

rate 

Roots 

yield 
%Sugar 

Sugar 

yield 

Yield 

value 

Amino 

acid in 

beet 

Potassium 

in beet 

T-June 0.777 0.085 0.004 0.010 0.005 0.060 0.013 0.003 0.003 0.010 0.052 0.065 0.374 0.003 0.012 0.002 0.002 0.107 0.055 

T-July 0.263 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.898 <0.001 0.162 <0.001 <0.001 0.419 0.010 

T-Aug. 0.201 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.695 <0.001 0.008 <0.001 <0.001 0.144 <0.001 

T-Sept. 0.076 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.717 <0.001 0.077 <0.001 <0.001 0.325 0.001 

T-Oct 0.253 0.024 0.227 0.078 0.051 <0.001 0.088 0.022 0.009 0.148 0.027 <0.001 0.583 0.083 0.839 0.090 0.116 0.816 0.117 

T-Nov. 0.248 0.461 0.291 0.509 0.938 0.399 0.540 0.719 0.911 0.273 0.880 0.218 0.267 0.550 0.156 0.507 0.462 0.418 0.760 

T-Season 0.206 0.002 0.006 <0.001 0.006 <0.001 <0.001 <0.001 0.001 0.002 <0.001 <0.001 0.773 0.004 0.355 0.004 0.006 0.627 0.022 

Tmax 0.457 0.003 <0.001 <0.001 0.172 0.095 <0.001 0.013 0.143 <0.001 0.009 0.014 0.430 0.009 0.105 0.008 0.008 0.326 0.003 

Tmax 0.024 0.002 0.023 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 0.104 <0.001 0.039 <0.001 <0.001 0.243 <0.001 
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  Weeds 
Plant 

pop 

Crop 

cover-

June 

Crop 

cover-

July 

Crop 

cover-

Aug. 

Crop 

cover-

Sep 

SRI-

July 

SRI-

Aug. 

SRI-

Sept. 

LAI-

July 

LAI-

Aug. 

LAI-

Sept 

Canopy 

growth 

rate 

Root 

yield 
%sugar 

Plant population 0.270  -              

Crop cover-June 0.271 <0.001  - 

  
 

  
 

  
 

   Crop cover-July 0.108 <0.001 <0.001  - 

 
 

  
 

  
 

   Crop cover-August 0.032 <0.001 <0.001 <0.001  -  

  
 

  
 

   Crop cover-Sep 0.019 <0.001 <0.001 <0.001 <0.001  - 

  
 

  
 

   SRI-July 0.003 <0.001 <0.001 <0.001 <0.001 <0.001  - 

 
 

  
 

   SRI-Aug. 0.059 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  -  

  
 

   SRI-Sept. 0.104 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

  
 

   LAI-July 0.026 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

 
 

   LAI-Aug. 0.017 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  -  

   LAI-Sept 0.015 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001  - 

   Canopy growth rate 0.479 0.108 <0.001 0.510 0.256 0.555 0.771 0.472 0.357 0.608 0.303 0.197  - 

  Root yield 0.034 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004  - 

 %Sugar 0.236 0.016 0.002 <0.001 0.057 0.004 <0.001 <0.001 0.005 <0.001 0.003 0.002 0.875 <0.001  - 

Sugar yield 0.032 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 <0.001 <0.001 

Yield value 0.033 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 <0.001 <0.001 

Amino in beet 0.883 0.059 0.024 0.013 <0.001 0.035 0.011 0.001 0.039 0.006 0.003 0.028 0.125 0.068 <0.001 

Potassium in beet 0.110 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.801 <0.001 0.002 
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