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Article 20 

Symbiotic soil organisms such as ectomycorrhizal fungi (EMF) were long thought of as an 21 

inscrutable “black-box”, yet the advent of molecular technologies has driven rapid advances in 22 

identification and enumeration of their diversity (Horton & Bruns, 2001; Buée et al., 2009). 23 

For instance, one 20 cm soil core can impressively yield 100’s of fungal OTUs (Taylor et al., 24 

2013). Importantly root symbionts play functional roles in sequestration or breakdown of soil 25 

carbon pools (Trumbore & Czimczik, 2008; Harrison et al., 2011a,b; Clemmensen et al., 2013; 26 

Kramer et al., 2013), nutrient and water cycling (Virginia et al., 1986; Read & Perez-Moreno, 27 

2003), alteration of soil porosity (Perry et al., 1990), and provision of sustenance for different 28 

trophic levels (Coleman & Whitman, 2005).  29 

  Yet root symbionts occur and contribute to function far deeper in the soil than is usually 30 

sampled (Jenkins et al., 1988; Dalpé et al., 2000; Bornyasz et al., 2005).  Soil properties vary 31 

considerably among ecosystems (Schenk, 2005; Dickie et al., 2013), hence so too does rooting 32 

depth (see below) – even within a single species (Stone & Kalisz, 1991; Canadell et al., 1996).  33 

However, in practice, we are (understandably) encouraged to employ uniform sampling 34 

strategies, even if these are known to only scratch the surface of potential symbiont habitat in 35 

some ecosystems (see below).  Although the issue of limited-depth sampling has been raised 36 

before (Taylor, 2002), we are unaware of any efforts to quantify how much of the "black box" 37 

typically remains out of reach of standard sampling techniques.  Such information would be 38 

extremely timely, due to the growing interest in accurately characterizing global patterns of 39 

EMF diversity and distribution (Dickie & Moyerson 2008; Vellinga et al., 2009; Tedersoo et 40 

al., 2012). 41 

To begin addressing this question, we gathered sampling depth data from recent field studies 42 

of EMF, and analysed these in relation to published data compiled by ecosystem ecologists 43 

regarding (i) maximum rooting depths of trees and shrubs, including 137 EMF host species 44 

distributed among 29 host genera, and (ii) estimates for 8 ecosystems of the mean depth above 45 

Page 3 of 14 New Phytologist



Pickles & Pither 2013 

 4

which 95% of all roots are located.  Rooting depth data were derived from the following 46 

sources: (i) EMF host species/genera from Stone & Kalisz (1991) and Canadell et al. (1996), 47 

(ii) ecosystem data from Schenk & Jackson (2002).  Sampling depth data were obtained from 48 

EMF studies published in the last 5 years of New Phytologist (Table S1).   While the concepts 49 

discussed here are equally applicable to all soil-borne root symbionts, for the sake of brevity 50 

we focus our attention specifically on EMF and their hosts.   51 

Based on 27 articles that reported sampling depth, the average was 13.4 cm (± 1.59 s.e.m.), 52 

with a median value of 10 cm.  This sampling depth was approximately doubled in boreal and 53 

semi-arid ecosystems, and halved in semi-arid and tropical evergreen ecosystems. In 54 

comparison, none of the 29 ectomycorrhizal host genera for which data was available exhibited 55 

maximum rooting depths shallower than 50 cm (Fig. 1a), and on average maximum rooting 56 

depth among the 137 host species is 530 cm (± 44 cm s.e.m.) (Fig. 1b).  Correspondingly, the 57 

average proportion of maximum rooting depth assessed is estimated to be 0.068 (+ 0.0071 58 

s.e.m.) across all host genera.  If we consider maximum rooting depth as a proxy for the 59 

amount of habitat available to symbionts, then an enormous amount of potential habitat 60 

remains under-sampled, even within the Pinaceae (Fig. 1), which, according to a 2008 61 

literature survey (Dickie & Moyerson, 2008), represented the focal family in 62% of all EMF 62 

studies.   63 

Although maximum rooting depth is a crucial variable in research examining ecosystem 64 

function (Canadell et al., 1996; Jackson et al., 1996; Schenk, 2005), it could be argued that for 65 

our purposes it provides an overly pessimistic outlook on the completeness of current sampling 66 

efforts.  We therefore also considered the EMF sampling depth data in relation to estimates of 67 

ecosystem-specific mean rooting depths calculated using 16 to 59 observations per ecosystem 68 

type, spanning all tree and shrub species for which rooting depth data existed (Schenk & 69 

Jackson, 2002).  Using an average sampling depth of 13.4 cm, the proportion of the mean 70 

ecosystem rooting depth sampled varied from a high of 0.47 for tundra, to a low of 0.08 for 71 
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Mediterranean ecosystems (Fig. 2a), with a mean of 0.178 (+ 0.0442 s.e.m.).  Thus, even in 72 

tundra ecosystems where rooting depths are comparatively shallow (Fig. 2b), typical sampling 73 

methods are likely to access less than 50% of the mean depth of host roots.  74 

Although striking, our findings do not necessarily mean that standard sampling methods are 75 

always doomed to miss an important or sizeable component of the symbiont assemblage 76 

associated with any given host.  Indeed, it is likely that some studies - especially those 77 

occurring in shallow rooting regions (e.g. tundra ecosystems) - could yield reasonable 78 

estimates of the actual number of symbiont species associated with the host (using appropriate 79 

analytical techniques; cf. Gotelli & Colwell, 2001).  Nevertheless, it has long been 80 

acknowledged that important characteristics of EMF communities vary with depth, but only in 81 

recent years have studies begun to clarify these details.  For example, fungal hyphae show 82 

vertical niche differentiation (Dickie et al., 2002), EMF community composition changes 83 

between soil horizons (Rosling et al., 2003), ECM root tips and EMF extramatrical mycelium 84 

differ in their vertical structure (Genney et al., 2006), and other depth-associated patterns 85 

continue to emerge (e.g. Egerton-Warburton et al., 2003; Landeweert et al., 2003; Baier et al., 86 

2006; Lindahl et al., 2007; Courty et al., 2008; Scattolin et al., 2008; Beiler et al., 2010; 87 

Clemmensen et al., 2013; Taylor et al,. 2013).  These observations, combined with our 88 

findings, substantiate earlier statements that current sampling methods provide a limited view 89 

of EMF assemblages (Taylor, 2002).  Until more effort is spent sampling and characterising 90 

symbiont diversity and function at depth, we cannot know the true extent of these limitations.   91 

Since deep roots are features of most ecosystems worldwide (Schenk & Jackson, 2005), the 92 

discoveries that could come with deeper sampling have the potential to profoundly change our 93 

outlook on patterns of EMF diversity and function.  To illustrate, consider a recent and 94 

enlightening global-extent meta-analysis of local EMF diversity (Tedersoo et al., 2012).  Based 95 

on data from 55 published studies, total species richness (representing site-level species 96 

richness) was significantly associated with a number of climate-based predictor variables (e.g. 97 
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mean annual temperature, mean annual precipitation), and not surprisingly, number of samples 98 

and total sample volume.  However, the meta-analysis included data gathered from a variety of 99 

host genera and ecosystem types, meaning that the rooting depths of hosts also varied 100 

substantially (see above).  It would be interesting to determine if and how their findings would 101 

change if sampling was deeper, or was adjusted to account for site-specific rooting depths.  102 

Because different communities arise with increasing depth, we predict that deeper sampling 103 

will increase estimates of total richness and reveal significant changes in community 104 

composition.  Perhaps every additional 50 cm of depth explored could provide as much 105 

richness again as that found in the organic horizon (as per Rosling et al., 2003 & Landeweert et 106 

al., 2003)?  Based upon our findings, we speculate that the magnitude of this total increase will 107 

vary significantly with ecosystem type due to the differences in host rooting depth and density.   108 

Variation in the rooting depth of a given host species is related to multiple factors including 109 

age, depth to bedrock, mean annual precipitation, mean annual potential evapotranspiration, 110 

and depth to the water table (Schenk 2005), all co-varying with ecosystem type.  Thus, a 111 

Douglas-fir growing in seasonally dry evergreen forest is more likely to develop deep roots 112 

than one growing in a cool-temperate to sub-boreal region (cf. Schenk & Jackson, 2002).  This 113 

has implications for sampling strategies (see below), and suggests that host species distributed 114 

across multiple ecosystem types, like Douglas-fir, may be associated with a much more diverse 115 

pool of EMF symbionts than current estimates indicate.  This combination of varied rooting 116 

depths and soil environments provides a greater diversity of habitat to symbionts than do hosts 117 

whose distributions are predominantly restricted to a single ecosystem type (e.g. black spruce). 118 

Another important finding concerns the thoroughness with which sampling methods are 119 

described in published articles.  Of the 30 EMF studies published in the past 5 years in New 120 

Phytologist, 3 (10%) failed to report details about sampling depth.  More generally, whereas 121 

some authors give detailed descriptions of the soil environment in relation to sampling strategy 122 

(e.g. Smith et al., 2005; Ryberg et al., 2009), depth information occasionally has to be derived 123 
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or is missing entirely.  We suggest that where possible, details about sampling should be 124 

accompanied by estimates of average rooting depths at the site, for the host species of interest, 125 

even if these estimates are speculative.  This would provide for better and more consistent 126 

estimates of realized sampling effort across studies. 127 

Lastly, future research may not only require deeper sampling to minimise bias (depending 128 

upon the research objectives), but may also need to stratify sampling geographically according 129 

to potential rooting depth.  Combining global estimates of soil depth 130 

(http://www.fao.org/nr/land/soils/harmonized-world-soil-database/en/) with global estimates of 131 

deep root distributions (Schenk & Jackson, 2005) and species’ ranges (e.g. 132 

http://esp.cr.usgs.gov/data/little/) could help hone in on potential sampling regions, and ground 133 

penetrating radar technology (Sucre et al., 2011) could be used to identify final sample 134 

locations.  The logistical impediments associated with deep soil sampling (including cost; 135 

Harrison et al., 2011) are daunting, but other research areas point to possible solutions, such as 136 

using drilling equipment to acquire ice or sediment cores (Nogué et al., 2013), or using 137 

excavation machinery such as a backhoe (Bornyasz et al., 2005).  These challenges are worth 138 

tackling given the potentially crucial roles that symbionts at depth may play in ecosystem 139 

function (e.g. Clemmensen et al. 2013; Kramer et al. 2013). 140 

 141 
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Figure legends 252 

Figure 1. a. Proportion of maximum recorded rooting depth examined (± s.e.m.) across genera 253 

using mean sampling depth derived from values reported in the literature (Table S1).  Note 254 

maximum y-axis value is a proportion of 0.15.  b. Maximum rooting depths of selected host 255 

species, with multiple bars (records) per species.  Dashed red line represents average sampling 256 

depth of EMF studies.  In both panels, green bars indicate genera or species in the Pinaceae.   257 

Figure 2. a. Sampled proportion of the mean depth at which 95% of ecosystem roots are 258 

located, calculated using mean of sampling values reported in literature (Table S1).  b. 259 

Estimated mean depth (± s.e.m.) at which 95% of ecosystem roots are located using the 260 

interpolated values of Schenk & Jackson (2002). 261 

 262 

Supporting Information 263 

Table S1. Citation, sample depth and host species for all ectomycorrhizal articles from the last 264 

5 years of New Phytologist in which sampling depth was provided. 265 
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