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Summary We consider a finite element approximation of the sixth or-
der nonlinear degenerate parabolic equatipr- V.(b(u) VA%u), where
genericallyb(u) := |ul|” for any giveny € (0, co). In addition to showing
well-posedness of our approximation, we prove convergémspace di-
mensions! < 3. Furthermore an iterative scheme for solving the resulting
nonlinear discrete system is analysed. Finally some nwadegkperiments

in one and two space dimensions are presented.
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1 Introduction

Degenerate diffusion problems of the type= (—1)* V.(|u|” V A¥v), for
given~ € (0, co) and nonnegative integér occur in mathematical models
of many physical processes. The second order dase), leading to the
porous medium equation has been widely studied by analydtsuemerical
analysts. Several mathematical models in fluid dynamicsnaauerial sci-
ence have lead to the fourth order case=(1); e.g. lubrication approxima-
tion for thin viscous films{ = 3), Hele Shaw flow and the Cahn-Hilliard
equation with degenerate mobility & 1). Over the last decade there has
been a huge amount of work among analysts on this fourth catar, see
the survey paper [7]. From the numerical analyst viewpadirgre has been
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very little work on this fourth order problem. A fully pracal finite element
approximation based on a variational inequality formulativas proposed
and analysed in [4]. For extensions of this approach to degéafourth or-
der systems arising in Cahn-Hilliard models of phase s¢iparsee [5,6,
3]. Schemes making use of entropy type estimates have adsodreposed
and analysed for the fourth order problem in [16] and [12}e Eixth order
casek = 2, with v = 3 arises in a mathematical model of the oxidation
of silicon in superconductor devices, see [13]. As statedethwithy = 3
the case: = 2 is in the hierarchy of degenerate nonlinear parabolic equa-
tions describing the motion of thin viscous droplets und#éerent driving
forces: gravity & = 0), surface tensiork{(= 1) and an elastic platé: (= 2).
There are a few papers which include numerical experimemthi® sixth
order case, see for example [11]. This was restricted to paeesdimen-
sion and moreover no attempt was made to analyse their fiiffezeshce
approach. Our goal in this paper is to develop and analyskygpfactical
scheme that works in all space dimensions. Our proposedrecigethe
natural extension of the scheme for the correspondingtiauder problem
in [4].

We consider the initial boundary value problem for the sixttler case,
k = 2: (P) Find a functionu : 2 x [0, 7] — R such that

U = V. (b(u)VA%) in 2p:=02x(0,T), (1.1a)
u(z,0) = u’(x) >0 Vel (1.1b)
Qu — 0du — p(y)22% — () on 902 x (0,T); (1.1c)

where (2 is a bounded domain iR?, d < 3, with a Lipschitz boundary
092, v is normal todf2 andT > 0 is a fixed positive time. To simplify our
presentation we restrict ourselves to the case

b(u) := |ul”, 7€ (0,00), (1.2)

but our results extend to more general mobilities of the féfm) :=
bo(u)|u|” with a positive and sufficiently smootl.

Degenerate parabolic equations of higher order>( 1) exhibit some
new characteristic features which are fundamentally iffeto those for
second order degenerate parabolic equations. The keyipdaifrdt there is
no maximum or comparison principle for parabolic equatiofisigher or-
der. This drastically complicates the analysis since aflesults which are
known for second order equations are proven with the helpofoarison
techniques. Related to this, is the fact that there is siilimiqueness result
known for such problems. Although there is no comparisongipie, one
of the main features of these degenerate equations is ththftmne can
show existence of honnegative solutions if given nonnegatiitial data.
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This is in contrast to linear parabolic equations of highrelea where so-
lutions which are initially positive may become negativeantain regions.
Let us review what is known for problem (P). Existence of ¢f¥lcon-
tinuous nonnegative solutions to (P) in one space dimen(gica 1) has
been established in [8]. They used a very weak solution quneehich
basically says that a functiansolves (P) if for ally € L2(0,T; H(2))

T
/ (Gi:m) dt + / b(u)VA*uVndzdt =0.  (1.3)
0 {lul>0}

They showed that there exists a nonnegative solution
1 11
we L0, T; HA(Q) NCy7 (Pr) with u, € C22 (2r).  (1.4)
As stated above, there is no uniqueness result for (P) aralr as fwe are
aware there are no other theoretical results on problemrm(fPkiliterature.
In the casey = 1, (P) has a source type similarity solution

u(z,t) = —— [wQ — Lr (1.5)

T 5040(t4+0)7 (t+9)7 14 '
whered andw are arbitrary positive constants, see [15]. Therefore) &gt
expected with such degenerate diffusion problems, these ‘strong” so-
lutions which have a finite speed of propagation propertjs Trhplies that
the boundaries of whereis positive can be viewed as moving free bound-
aries. Hence, we require our numerical algorithm to be ablefftciently
resolve such free boundaries.

In order to formulate a fully practical finite element apgroation of
problem (P), we extend the approach in [4] for the fourth orchse by
introducing potential® andw. We then write the sixth order parabolic
equation as the system of equations

% = v(b(u)vw)a w = _AU, v=—Au in QT-

On the discrete level, the nonnegativity of the approxiorato v is not
guaranteed when we discretise the above system in a naivé/Vesthere-
fore impose the nonnegativity of the discrete solution agrestraint. Using
a semi-implicit time discretisation we solve a discretéatéwnal inequality
at each time step.

The layout of this paper is as follows. §& we formulate our finite ele-
ment approximation to (P) and prove its well-posednessgaride stability
bounds. The above results are direct analogues of thoddisk&a for the
corresponding fourth order problem in [4]. §8 we establish convergence
of our approximation. Unlike the numerical approximatiafiglegenerate
fourth order problems, see [4,5,12,6, 3], where convergénonly estab-
lished in one space dimension; we are able, by exploitindatiethat the
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operator is of higher order, to show convergence in all spiicensions
(1 < d < 3) to a solutionu satisfying the solution concept (1.3) of [8].
This, in particular, extends the existence and regulaésylts of [8] from
one space dimension to higher space dimensions.

In §4 we introduce an algorithm, based on the general splittigg-a
rithm of [14], to solve the discrete variational inequaktyeach time level.
Moreover, we prove convergence of this algorithm. Finail§s we present
some numerical computations in one and two space dimensions

Notation and Auxiliary Results

We have adopted the standard notation for Sobolev spacestinig the
norm of W™4(G) (m € N, ¢ € [1,00] andG a bounded domain iR?
with a Lipschitz boundary) by - ||,,.4,¢ @and the semi-norm by- |,,, 4 -
Forq = 2, W™2(G) will be denoted byH™(G) with the associated norm
and semi-norm written, as respectivelly, ||,,.c and| - |, ¢. For ease of
notation, in the common case whéh = (2 the subscript 2" will be
dropped on the above norms and semi-norms. Throughoytdenotes
the standard.? inner product over? and(-, -) denotes the duality pairing

between(H' (12))" and H'(12). In addition we definef- n := (1, 1)

for all n € L*(£2), wherem(£2) denotes the measure 8f We require also
the standard Holder spac&”*(12) and the Holder space’y’ (27) for
a, B € (0,1}, which denotes those functions whose time(spatial) deriva
tive(s) is(are) Holder continuous ove¥r with exponent3(a).

For later purposes, we recall the following well-known Skavdnter-
polation results, e.g. see [1]: Let € [1,00] andm > 1, then for all
z € W™4(£2) the inequality

[q, o0] ifm—§>0,

|20, < C\z\éEGHszn’q holds forr € < [g, o0) ) if m— é =0,
[, —=(@g] I m—5 <0

(1.6)

whereo = 4 G — %) andC is a constant depending only @ ¢, r and

m.
It is convenient to introduce the “inverse Laplacian” operg : F —
Z such that
(VGz,Vn) = (z,n) VneH (), (1.7)
where F := {2 c (HY () : (z,1) = 0} andZ = {z ¢ HY(%) :
(z,1) = 0}. The well-posedness ¢f follows from the Lax-Milgram theo-
rem and the Poincaré inequality

Mlog < Cnlig+1(n,1)]) ¥YneW(2) and ge[l,0q]. (1.8)
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ThroughoutC' denotes a generic constant independerit ahdr, the
mesh and temporal discretisation parameters. In additien, - - -, a;) de-
notes a constant depending on the argumémgs_, .

2 Finite Element Approximation

We consider the finite element approximation of (P), firsilyder the fol-
lowing assumptions on the mesh:

(A1) Let {2 be apolyhedral domain. L& be a regular partitioning a? into
disjoint open simplices with h,; := diam(x) andh := max, 7 hs,
so that? = U, ..

Associated with” is the finite element space

S§hi={xeC): x| islineary x € T"} c H'(£2).
We introduce also the closed convex sets
Kh:={xeSh:x>0inn}cK:={ne HY(N):n>0a.e.in2}.

LetJ be the set of nodes Gf* and{p;} jc; the coordinates of these nodes.
Let {x;};es be the standard basis functions ft; thatisx,; € K" and
x;(pi) = & forall i, j € J. We introducer” : C(£2) — S*, the inter-
polation operator, such thét"n)(p;) = n(p;) for all j € J. A discrete

semi-inner product ot’({2) is then defined by

(m,m2)" == (T mma), 1) = ey w0y mpg) m2(pg),  (2.2)
wherew; := (1, x;). The induced semi-norm is then|, := [(n,n)h]%,
wheren € C(12).

Let0 = ¢ < &1 < ... < ty_1 < ty = T be a partitioning

of [0, 7] into variable time steps,, := ¢, — t,—1,n = 1 — N. Let

T := max,—1_N Tn. We then consider the following fully practical finite
element approximation of (P):

(PP Forn > 1, find {U™, V™, W"} € K" x [S"]? such that for all
x € 8" and for allp” € K"

(L )+ (B VI v =0, (2.2a)
(VU™ Vx) = (V" x)", (2.2b)
(Vv V@t —Um) = (W g = U™ (2.2¢)

whereU? € K" is an approximation of?, e.g. U° = 7"u?.
(P»7) is the natural extension of the finite element approxinmatitthe
corresponding fourth order nonlinear degenerate pam@bqliation, which
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was proposed and analysed in [4]. The only minor differendhits exten-
sion is thatr"[b(U™1)] is used instead df(U™~!) in (2.2a) to be more
practical.

Introducing the “discrete Laplacian” operatdf : S*» — Z" such that

(Ar ) = —(V2",Vx) VxeSsh (2.3)

whereZ" := {z" € Sh . (2" 1) = 0} c Z; (2.2b,c) can be rewritten as
Vv = —APU™ with

(AU, AP = UM = (W x U™ Vxe K" (2.4)

Below we recall some well-known results concernifgand the above
operators. For any € 7" and form = 0 or 1, we have that

| [ (T =) (2" x dx! < P2 mslIxlle ¥ 2", x € ™5 (2.5)
fxda:<f 2lde < (d+2) [ x*dz Vx e S (2.6)
lim ‘( - )77\0,00 =0 Vn € C(“Q)v (2'7)
h—0

(I = 7"V < ChoImlaye ¥ € H2(k), (2.8)

provided eithetr :=2—m—4 > 0if r = cooro := 2—m—d(
if r € [2,00).
Similarly to (1.7), we introduce the operai@t : 7 — Z" such that

1-H>o0

(VG"2,VX) = (z,x) VxeS" (2.9)
In addition to (2.9) we introducg” : 7" — Z" ¢ F" such that
(VG"2,Vx) = (z,0)" VxeSh (2.10)

whereF" := {z € C(R2) : (z,1)" = 0}. A Young’s inequality yields for
all z € F", forall x € S" and for alla > 0

(20" = (VG"2, V) <[G"21 [xh < 551G 213 + §IxF. (2.10)
Finally, it follows from (2.3) and (2.11) that for ail* € Z"

= 2a

o~ 1 1
|23 = — (", AP < | | AR <G E 2M | AR
o~ 2 4
<GP AR (2.12)

We now adapt the approach taken in [4] to establish the existef a
solution{U™, V"™, W"}N_, to (P*"). Firstly, we need to introduce some
notation. In particular we define se#(U™~1) in which we seek the up-
dateU™ — U™ L. Giveng" ¢ K", we setJy(¢") C J such that

j € Jo(q") <= (="b(¢")], x;) = 0. (2.13)
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All other nodes we call active nodes and they can be uniquetitiopned so
thatJ, (¢") := J\ Jo(¢") = UY_, In(¢"), M > 1; wherel,,,(¢"), m =
1 — M, are mutually disjoint and maximally connected in the falilog
sensel,,(¢") is said to be connected if for ajl k € I,,(¢"), there exist
{ke}L_, € T", notnecessarily distinct, such that

(a) pj €F1, pr€FL () ReNFea#0 £=1—L—1,
(¢) ¢"#0onk, £=1— L. (2.14)

L. (q") is said to be maximally connected if there is no other coretkct
subset of/, (¢"), which containd,,,(¢"). We then set

ZMg") = {2 e shhpy) =0 Ve dd)
and(z", Z,.(¢"))"=0, m=1—- M}, (2.15)

where=,,(¢") = Y e, (g Xj»m =1 = M.
For later reference we state that arffye S* can be written as

b b o~ P En@)
2=zZ"+ Z 2" (pj) x5 + Z = =m(d"), (2.16a)
j€Jo(q") it (1 Em(@)

where

M

h = h\\h
= > {zh@j)—w]m € 2"(q") (2.16b)

1. =, (g"
m=1 jeI,n(q") (1, Em(4"))

is the projection with respect to tie -)* scalar product of” onto Z" (¢").
In order to expres¥™ andW” in terms ofU™ andU™~! we introduce for
all ¢" € K" the discrete anisotropic Green’s operagljﬁ; : ZMM) —
Z"(g") such that

(7"[b(g"IVGh", V) = (" )" Yxesh (2.17)

The well-posedness q{fgh follows immediately from (2.13) and (2.15),

see [4,82] for details in the case wher*[b(¢")] in (2.17) is replaced by
b(g"). Finally, note that for alf” € K", Z"(¢") C Z" and in addition that
Z"(¢") defined in (2.15) is equal t8" if ¢" is strictly positive.

Theorem 2.1Let the assumptions (A1) hold abd € K”. Then for allh
and all time partitions{7,,}¥_, , there exists a solutiofU™, V", W}V,

n=1?

to (P™7). Moreover{U", V"}N_, are unique and/" — U° € Z" n =
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1 — N. In additionW"(p;) is unique if(="[b(U™1)], x;) > 0; for all
j € J,n=1— N.Furthermore, the following stability bounds hold

maX HUnH1+ max ‘VnO"i_Z o) [’(]"7(]”1”2_’_‘\/”7\:”1‘0}

n=1

T Zm (| U1 EV W+ o |G S

< C{VE+[@©°D]*},  (218)

whereb™ ! := |b(U"1)]g00 andV? := —A"U0; and C is independent
of T', as well as the mesh parameters.

Proof It follows from (2.2a) and (2.17) that for > 1, givenU™* € K",
we seek/™ ¢ KMU™ 1), where

(Un 1) KhﬂZh(Un 1)
and ZMU" V) :={xeSt:x—U"tezZNU" )} (2.19)

In addition a solutiod?/™ to (2.2a) can be expressed in termslf, on
noting (2.17) and (2.16a,b), as

w" = _gUn 1 U” Un 1 Z /,LJ XJ+Z)\ E Un 1 (220)
]EJ()(U” 1)

where{p } ey, n-1) and{\"}M_. are arbitrary constants. Hence on not-
ing (2.20) and (2.4), (’PT ) can be restated as:

Forn > 1, find U" ¢ IN(h(U” 1y and constant Lagrange multipliers
{17} jegown—1y, {Am}AL, such that for ally € K

ama (U x=U") > (> i XJ+Z>‘ En(U™ ), x = UM,
JEJO(U” 1) m=1
_(2.21)
whereagn-1(-,-) : Z"(U™ 1) x $* — Ris defined for alk” € Z" (U™ 1)
andy € S” by

aU”_l(ZhaX) = (Ahzha AhX) (gUn 1[ U” ]aX)h'

It follows from (2.21), (2.19) and (2.15) that* € f?h(Un—l) is such that

agn (U™ —U™) >0 V3" e KMU™ M. (2.22)
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There existd/” € K"(U™!) satisfying (2.22), since this is the Euler-
Lagrange variational inequality of the minimization preivl

. AhZh2 o L (rh n—1\1\ 1w h sh _pn—121
Lo {144 ) EVGL. L (- Ui

Following an identical argument to that in [§2], (2.22) yields existence
of a solution to (2.21) with

n _ aUn—l(Unﬂ)(]') (AhUnaAhX]')h
Hj (Lx;) (1x5)

n _ ayno1UMTMUT S (URT1)])
and A} = -V Tm.En 1))k

Vie (U

m=1— M.

Hence, on noting (2.4), (2.21) and (2.20), we have existefeesolution
{ur,vr, wriN_ to (PPT)withU™ —U% € Zh,n=1— N.

For fixedn > 1, if (2.21) has two solution$ U™, {1} je jo -1y,
{AmM_ A i = 1, 2; then it follows from (2.22) and (2.17) that" :=
unl —un? ¢ zMUnh) c z" satisfies

1
2

|AMT" 7 4+ L] (7" (U ))) 2 V(G T < 0. (2.23)
Therefore the uniqueness B = —APU™ follows directly from (2.23).
Uniqueness ot/™ then follows from (2.2b) and (1.8). For anye (0,1),
choosingy = U™ 4+ 7 [U™ Z,,(U™ V)] = 7" (1 £ 6 Z,,(U™ 1)) U]
in (2.21), form = 1 — M, yields uniqueness of the Lagrange multipliers
{An M Hence the desired uniqueness resultioh follows from noting
(2.20) and (2.13).

We now prove the stability bound (2.18). For fixed> 1 choosing
x = Wmin(2.2a),y = U™ ! in (2.2c) and combining yields that

(VV", V(U™ - U™ 1Y) + 7, (2" [p(U™ 1] VW™, VIV™) < 0.
Noting (2.2b), forn = 0 as well as fom > 1, and using the identity
2s(s—r) =8 -1 +(s—r)> VrscR; (2.24)
we have that
SV 5V =V (e (U VW, W) < 3V
Summing this froom = 1 — m, form = 1 — N, and noting (2.1)

and (2.6) yields the bounds involvidg® andW™ in (2.18). The first two
bounds involvind/™ in (2.18) then follow from those involving ™, (2.2b),
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(2.1), (2.6) and (1.8). Finally choosing = gAh(U"_TiZ"_l) in (2.2a) and
noting (2.10) yields for > 1 that
GM TR = (o v, VG )
<" (U)W, (2.25)

Summing (2.25) fromm = 1 — N and noting the bound involving/™ in
(2.18) yields the desired final bound in (2.18)1

3 Convergence

In this section we adapt and extend the techniques in [4] @htb[prove
convergence of our finite element approximatiof TP The main differ-
ence is that for the above fourth order degenerate systeeestablished
convergence only in one space dimensfdn= 1). For the present sixth
order problem one can establish convergence in one, twotaed space
dimensiongd < 3). In order to achieve this, as in the references above, we
need further restrictions on the mesh.

(A2) In addition to the assumptions (Al), we assume tds convex and
that 7" is a quasi-uniform partitioning a® into regular simplices.
As {2 is convex, we have the following well-known results far= 0 or 1
1Gz]l2 < C|zlo VzeL2(N)NF, (3.1)
(G —GMz]m < CR*™2lg  VYze L2(2)NF. (3.2)

The above quasi-uniformity condition of” yields, for anyx € 7", the
inverse inequality fol < r; <7y < oo andform =0or1

d(r1—ro)

Xlmaw < Ch™ 2 |X|mwe ¥ x €S™. (3.3)

A simple consequence of (2.5), (2.8) and (3.3) is that for @l C' (%) and
foralln € H?(k)

[a=aen da

/ [(I—a")((x"2) (x"n) ) + (x"n) (I = 7")z + 2 (I = 7")n] da

< C 1= 7" 2lo + 2o, | Il (3.4)
It follows from (2.1), (2.6), (2.3) and (3.3) that
| AT G < |ARME = (V2R v(Ar)) < 2P| at2"),
< Ch7 Y2t | ARy < Oh72 202 < Oht 2" 3. (3.5)
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Lemma 3.1Let the assumptions (A2) hold. Then we have foralE S"
that

d d
(I~ f)z"loe < Oy 11 AR5, (3.6)
r=o0 if d=1,
12"1, < ClAP o, where {r<ocoif d=2, (3.7)
r=6 if d=3.

Proof It follows from (2.3), (2.10) and (2.9) that for alf* € S”
(I = )" = —Gharzt) = —ghe, (3.8)
where¢" € Z" is such that
(" x) = (A" )" vxed” (3.9)
From (3.9), (2.1) and (2.6) we have that
[€"]0 < 1AM, < €A o < CI€Mo. (3.10)
It follows from (3.8), (1.6), (2.8), (3.3), (3.2), (3.1),.(N) and (3.5) that
(I = £)2"0,00 < 1GE 0,00 + |(T = 7")GE 0,00 + ("G — G")E"0,00
< CIGEN, T IgEN IS + R DIGEM, + Ch | (mhG — GMeMl,
< ClMy * IgeM 13 + on0-Digeh,
< It At + o0 Djary < ol E Ak S,

Hence the desired result (3.6).
With » > 2 as defined in (3.7), we have from (3.8), (1.6), (2.8), (3.3),
(3.2), (3.1) and (3.10) that
‘Zh‘l,r < ‘gih‘l,r + (I — Wh)géh‘l,r + ‘(Whg - gh)ih‘l,r
d(2—r)
< C|IGe" |2+ Ch™ = |(n"G — GM)E"

d(2—r)+2r
<C(1+h 2 )[GE" 2 < ClA"",.

Hence the desired result (3.7)0

Lemma 3.2Letu’ € H2(2)NK with 22 = 0 onds2. Let the assumptions
(A2) hold. IfU° = 740 € K", then it follows that

AU+ [ (U0 ) P < C (3.11a)
and  |u® =T, [u®-U % 0—0 ash—0. (3.11b)
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Proof It follows from (3.10), (2.3), (2.8) and (3.3) that
ClaMr")f < [AM (@ uO) [} = —(V(x"u®), V(AM ("))
—(Vu?, V(A" (")) + (V(I = w")u’, V(A" ("u?)))
< 1AW0o | AP (7)o + ChluC]o| V(A" (7 "u®))]o < Cuf)3 < C.

Hence the first bound in (3.11a). The remaining results ihl@b) follow
directly from (2.8). O

Given{x"}\_,, x" € S", we introduce fon > 1

X(ot) o= Elmlyn () 4 o=ty =1 () € [ty ta]  (3.12)

Tn

and xT(, 1) :=x"(), X () =x"""() tE (ta-1,tn]. (3.12b)
We note for future reference that
X—xT=0t—tH%  te(thi,t,) n>1, (3.13)

wheret)! := t, andt,, := t,_1. We introduce also
T(t) =Ty te (th—1,tn) n>1. (3.14)
Using the above notation, (2.2a—c) can be restated as:
Find{U, V, W} € H'(0,T; S") x [L?(0, T; S™)]? such that/ (-, t) € K"
and for ally € L2(0, T; S?), n"* € L?(0,T; K*)
au . \h + _
[(a )"+ VW, Vx dt—O, (3.15a)

T _
/ [ (VU*, V) — (V)| dt =0, (3.15h)
O B

/T[(VW V" -Ut) - Wty —U+) dt >0. (3.15¢)
0 ]

Lemma 3.3Let u° satisfy the assumptions of Lemma 3.2. In addition to
the assumptions (A2), we assume that= 7"«° andr — 0 ash — 0.
Adopting the notation (3.12a,b), there exists a subsequef{d/, V'},, and

a function

a=13=1 ifd=1

ueLO"(O,T;K)ﬂCﬁ’f(ﬁT), where ¢ a < 1, B:% if d=2,
a=1p="1if d=3

(3.16)

with £ u(-,t) = £ «° forall t € [0, T] and a function
v e L®(0,T; L*(0)) (3.17)
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such thatas — 0
U, U* =« uniformlyon2y, weaksxin L>(0,T; H(12)); (3.18)
V, VE v weaks in L0, T; L*(R2)). (3.19)

Proof Noting the definitions (3.12a,b), (3.14), (2.18), (3.1l 1.8) we
have that

1

HUH%°°(O,T~H1(Q +”VH%°°(OT~L2(Q "‘HTQ%_?Hia(O’T;Hl(Q))
1

+ 172 571122 gy + I E DUV |2,

+ 116" 513 0 1112y < €+ (3:20)

Furthermore, we deduce from (3.13) and (3.20) that

U = US| 20,100y + 1V = VEllT2(ay)

< |7 % < Cr. (3.21)

”L2(0TH1(Q +1I7 %% ”L2(Q

The next step is to show that the discrete solutibhare uniformly
Holder continuous. Firstly we note from (3.20), (3.13&)= — AU, (3.6),

(3.7) and the imbedding resalt 1 (2) ¢ C%'=%(2), r > d, that

1Ullcqo,m,0003)) < CllUleqo,m,wir o) < C, (3.22)
wherer anda are as in (3.7) and (3 16), respectively, @&d independent
of T. Secondly it follows from2Y ¢ Z", (3.6), (2.1), (2.6), (2.11), (2.12),
V = —AMU and (3.20) that

ty
ﬁ o (. 1) dt

ty
U t) - Uleta) = [ %—af(a:,t)dtl <

0,00
<of [“weow| |2 [[" wena]|
¢ ot \ N , ot \ 0
w | [ o 30-9) wl " ou 30-9)
<CF;LL m@oa]l A[Alﬁuoa”h

gl ar)" " (2] av0] )
ot |y Loo(0,T3L2(£2))

" d th | __ 2 %(1_%)
< Clty —tq)s " </t gh%_[t]‘l dt)

< Oty —t,)? Vi, >t, >0, Vze, (3.23)

whereg is defined as in (3.16) and is independent df".
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An immediate consequence of (3.23) is that
|U = UF || 0y) < Crii-9, (3.24)

(3.22) and (3.23) imply that thé‘jf(ﬁT) norm of U is bounded inde-
pendently ofh, 7 andT. Hence, under the stated assumptions pevery
sequencg U}, is uniformly bounded and equicontinuous @4, for any
T > 0. Therefore by the Arzela-Ascoli theorem there exists asegbence
and au > 0, asU(-,t) € K", such that

U—ueCf(2r)  uniformly on27 ash — 0. (3.25)

Combining (3.25) and (3.24) yields the Holder continuiggult in (3.16)
and the uniform convergence result in (3.18). (-, t) — 7"u0(-), 1) =

0 for all ¢ € [0,7], it follows from (3.25) and (3.11b) thatu(-,¢) —
u0(-),1) = 0 for all t € [0, 7). Finally, (3.20) and (3.21) imply that a
further subsequendé/, '}, can be extracted such that the weagenver-
gence result in (3.18), and (3.19) hold. Hence the first sioluin (3.16),
on recalling that: > 0, and (3.17) hold. O

From (3.20), (3.18) and (2.8) we see that we can only contial
on those sets where > 0. Therefore in order to construct the appropriate
limits ash — 0, we introduce the following open subsets®»and2r. For
anys > 0, we set

Bs :={(z,t) € Q7 : u(x,t) > 6} and Bs(t) := {z € 2 : u(x,t) > §}.
(3.26)
From (3.16), we have that there exist positive constaptandC’; such that
forall y1,y0, 2 € 2
lu(y2, t) — u(yr, t)| < Cyly2 — y1|® Vtel0,T]; (3.27a)
lu(z, ty) — u(z, ta)| < Ct |ty — to|® Via, ty €[0,T]. (3.27b)
As f u(-,t) = £ u > 0forallt € [0, T), it follows that there exists & <
(0, £ u®) such thatBs, (t) # 0 for all t € [0, T]. It immediately follows
from (3.26) and (3.27a,b) for anty, ¢, € [0, 7] and for anyd;, d2 € (0, do)
with §; > J, that
y1 € Bs, (t,) andys € 0Bs,(tp) Withyy & 02 —
Culy2 — 11|* + Ct [to — tal® > u(y1, ta) — ulyn, to) > 61 — 52, (3.28)
wheredB;s(t) is the boundary of35(t). Therefore (3.28) implies that for

anyd € (0, dp), there exists ahy(d) such that for alkh < hy(9) there exist
collections of simplice§*(t) C T" such that

Bs(t) € BMt) == Uerhnern® C Bs(t)  Vte[0,T].  (3.29)
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Similarly it follows from (3.28) that for any € (0, &), there exists & (0)
such that for allr < 74(9)

B(g(t) C Bé(tn) C Bg(t) Vite (tn_l,tn], n=1— N. (330)
2 1

Clearly, we have from (3.29) and (3.30) that < d; < Jp implies that
ho(d2) < ho(d1) andry(d2) < 19(d1). For a fixedd € (0, do), it follows
from (3.26), (3.18) and our assumption oin Lemma 3.3 that there exists
anhg(8) < ho(8) such that for < ho(6)

0<U*(x,t) <25 V(z,t) &€ Bs,

%5 < Ui(.T,t) v (.T,t) € Bs and T < T()(é). (331)

In order to prove convergence of our approximatiof (P we make a
final restriction on the mesh.

(A3) In addition to the assumptions (A2), we assume thatis a quasi-
uniform partitioning off2 into generic right-angled simplices (fdr= 3
this means that all tetrahedra have two vertices at whicheges in-
tersect at right angles, see below for more details).

We note that a cube is easily partitioned into such tetrahedr
Let {e;}%_, be the orthonormal vectors &, such that thg*® compo-

nent ofe; is d;5, 4, j = 1 — d. Given non-zero constan,b:; 1=1—d;let

({pz}z 1) bea reference simplex iR? with vertices{p;}¢_,, Whereﬁo is
the origin andﬁz = Di_1 + pi€i, i = 1 — d. Given ax € T" with ver-
tices{p;, 34, such thap;, is not a right-angled vertex, then there exists a
rotation/reflection matrix?,. and non-zero constanfg;}¢_, such that the
mappingR,. : z € R? — Dj, + RiZ € R? maps the vertexp; to pj,,
i=0— d,and henc& = &({p;}%,) to k. Forallx € T" andn € C(R),
we set

(@) =n(R@) and (7"7)(@) = (x"n)(RZ) VZer (3.32)

As RT = R', we have for any” € S" andx € T" that

V" = R, V", (3.33)
wherez = (21, 2)", V = (557, 55;) 1+ & = (@1, 8a)" and
V= (6%1, . %)T From (3.32) and (3.33), it follows for alt € 7",

n; € C(R) andi = 1 — d that
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Therefore (3.34) yields for alt € 7" andn; € C(r) that
V(@ )) = Ds(7"7)V(7") + D) V(@");  (3.35)

where for anyz" € S" andk € T", D,(z") is thed x d diagonal matrix
with diagonal entries

Do) =3 [F*Bi) +2"(B)]  i=1—d  (336)
On combining (3.32), (3.33) and (3.35), we have forgle C(£2) that
V(7" [mn2]) = Ds(x"m) V(7" n2) + Ds(" 1)V (x"m);  (3.37)
where for any:" € S*,

Dy(2") = R. DsGMRY  vikeT" (3.38)

K

Similarly to (3.35), we have for al}; € C({2) that
V([ n2]) = Dp(x"[0]) V (7"112) + 2 Dy(w" [ 12]) V ("1 ); (3.39)
where for any:” € K" andx € T",
Dy(2") |wi= Ry, Dyp(Z")RY (3.40)
andD,(z") is thed x d diagonal matrix with diagonal entries
(D3] == [B"(Bio1) 2"(B0)]2 < [Ds(E")]s i=1—d. (3.41)

We note for later purposes that the symmetric matrieg&:) and D,(21)
are such that

Dy(2M)Dy(2) = Ds(22)Dy(27) V2l e S (3.42a)
Dy(2)Dy(25) = Dy(a" (1 24]) = Dyp(25)Dy(2h) v 2 € K™, (3.42b)
It is the results (3.37) and (3.39) that require the rightlamgnstraint on

the partitioning7™ in (A3).
We now derive bounds fd’* andV * locally on the se{u > 0}. For

anyd € (0, dp), we introduce cut-off functiondy € C>(f2),n =1 — N,
such that

07 =1 onBs(t,), 0<6} <1 onB;(ty)\ Bs(tn),
2
07 =0 onf2\B;(t,) and |V} <Cs 2 (3.43)
2
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It follows from (3.28) that this last property can be achigkvEhen for any

§ € (0,%5), we have from (3.43), (2.1), (3.29), (2.6), (3.30), (3.3t} a
(3.12b) that for all, < ho(20)

N
Zm oz S A
1 za(tn)
$>Z7-n/ Ix"? dz

.
25(tn Bj;s(tn)

Tn/ \X”\deZ/ \X+\2dxdt, (3.44)
Bas(tn) Bys

M=M= ]

A\

1

n

and similarly

ZTn s( M)V, VXT) > / |Vx % dz dt. (3.45)
Bys

Lemma 3.4Let «°, U° and 7 satisfy the assumptions of Lemma 3.3.
addition let the assumptions (A3) hold. Then we have fordary2é, and
forall h < hg(:f—z) that, for all x € L2(0, T'; S") with supp(x) C B ,

16

/T [(VV+, Vx)— (WT,x)"| dzdt = 0; (3.46)
0

and / [VW*t2dzdt < C67, (3.47a)
B

I
8

/ [\VVﬂQ + \WﬂQ] dezdt <C(571). (3.47b)
Bs

ProoAf It follows from (3.20), (3.12b), (3.31), (3.29) and (3.3@pat for all
h < ho(s3)

cz/ (U] |[VW 2 dz dt = ZTn/ b(U™H] VW2 da
Q7
> cmzm/ VW™ 2dz > C187 | |[VWT|?dzdt. (3.48)
5 (tn) B

This yields the desired result (3.47a).
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From (3.31) we have for all < ﬁo(f—z) and forn = 1 — N thaty :=
U”:tés—4 nh/thHLoo(Q) ¢ K" foranyn” ¢ S" with supp(n®) B%(tn).
Choosing sucly in (2.2c) yields for allh < ho(?f—Q) that

(Vv V) = (W, pMh vl e $h with supp(n?) c BS% (tn).

(3.49)
The desired result (3.46) follows from (3. 49) (3.30), @.and (3. 12b)

Noting (3.43) and (3.29) and ds < ho( 5), We can choosg”
7[(6%)2 V"] in (3.49) to obtain for alk; > 0, on recalling (3.37) and

(3.425), that
(Ds(wh[(ﬁg)Q])VV”, vvT)
= ((eg)QW” Vvmh —2(D, (when) vV, Dy(V") V(wheg;))
S€154\(6’”) W +ete 4\V”\h+2\D( ’é)VV”\Q

+2|Ds (V™) V(") % (3.50)

It follows from (3.38), (3.36),8(3.43), (2.1), (2.6) andZ8) that
\DS(WhH”) vV"? < (D, (wh[(en)Q])vvn vvm), (3.51a)
[Ds(V") V(r"03)[* < C 07 \V"P <Cos (3.51b)

Combining (3.50) and (3.51a,b) yields far< ﬁo(f—z) and for alle; > 0
that

(Ds(x"[(03)°)VV™, VV") < 2164 [(05)* W[ + C(L+e71) 5%
8 8

(3.52)
Choosingn = #"[(67)* W] in (3.49) yields on noting (3.39), (3.37),
8

(3.42a,b) (3.43), (3.40), (3.41), (3.38) and (3.51a,bj thah < lAzO(:f—Q)
and for alleg > 0

(B2 WP = (VY Dy [(03)4) V™)
- 4(D. (VY. D (B PW) T (0))
< (D" (B3 2)VV™, V™) + (Dy(a (603 VW™, TI™)
+452\D8(7rh[(0’§)2W”]) V(o) ? +52_1\D8(7rh02;)VV”\2

2
3
8
(

<4Cer 5 (032 W[f + (1+31) (Du(n"[(03)°) VY™, VV™)
8 8

+C VW2 d. (3.53)
B’ (tn)
16
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On choosinge; = § C;1 6% in (3.53), then multiplying byr,, summing
fromn = 1 — N and noting (3.48) we have that

N
Zm\(é’g)QW”\%
2(1+8C, 674 ZTn S(T(I?)VV, VV™) + C 6. (3.54)
8

Multiplying (3.52) by 7,,, summing fromn = 1 — N, noting (3.54) and
choosings; = (8% + 64 C,)~!, we obtain that

§ :Tn ST ) VYV, VYT +§ :Tn IN2W"2 < (6.
8 n—1 8
(3.55)

The desired results (3.47a,b) then follow from (3.55) oringp(3.44) and
(3.45). O

Theorem 3.1Let the assumptions of Lemma 3.4 hold. Then there exists
a subsequence dfU, V, W}, and functions{u, v, w} satisfying (3.16),
(3.17) and

u € L®(0,T; H*(2)) N HY(0,T; (H(2))), (3.56)
Vo, w, Vw € L2, ({u > 0}), (3.57)

where{u > 0} := {(z,t) € 27 : u(z,t) > 0}; such that ash — 0
(3.18), (3.19) hold and

VVT = Vo, WT = w, VIWT = Vw weakly inL2 . ({u > 0}).
(3.58)
Furthermoreu, v andw fulfil u(-,0) = «°(-) and are such that for all
n,z € L?(0,T; H(£2)), withsupp(z) C {u > 0},

T
/ (9u,n) dt +/ b(u)VwVndzdt = 0, (3.59a)
0 {u>0}
/ [VuVn —vn] dzdt =0, (3.59b)
Q7
/ [VoVz—wz] dedt =0. (3.59c)
{u>0}

Proof For anyn € L?(0,T; H?(§2)), we choose = 75 in (3.15b). From
(2.8), (3.18), (2.1), (3.4) and (3.19) we have forgle L2(0,T; H%(£2))
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that
T T
/ (YU, V(x"n))dt — / (Vu, Vi) dt, (3.60a)
0 0
T T
/(V+,7rhn)hdt—>/ (v,n)dt  ash — 0. (3.60b)
0 0

Combining (3.60a,b) yields (3.59b) by a density argumest(2As convex
polyhedral, see (A2), (3.17), (3.59b) and elliptic regifjagive rise to the
first regularity resultin (3.56).

For anyn € H'(0,T; H?(£2)) we choosey = 7"7 in (3.15a) and now
analyse the subsequent terms. Firstly, we have that

LUk Ty o))" ho
| ar=— [ (0252) der D), 20 D)

—(U(,0), Whn(" 0))h'

We conclude from (2.1), (3.4) and (3.18) forale H'(0,T; H?(£2)) that
ash — 0

[ )t [ 8 a4 0,1 0,00, 0

(3.61)
In view of (1.2), (3.12a,b), (3.20) and (3.6), andiass —A"U we deduce
that

/ T B(U VWY — 7M)nde dt ‘

Q7

< ”U_”%oo(QT) ”(Wh[b(U_)])va+|’L2(QT) (I — 7Th)n”1;2(0,T;Hl((2))
< C (= 7"l 20,1511 (2))- (3.62)

We now consider a fixed € (0, %50). On noting (3.29), (3.31) and
(3.20) we have for alk < ho(28) andn € L2(0, T; H'(£2)) that

/ (U 7)) VW TV dz dt
£27\Bs

<|="bU )]I!Loo(QT\Bh 1@ BN YW N L2 10l 220,731 (12))

< C”b(U_)|’[2,OO(QT\B26) 101l 220,711 (02))
< C0% ||n|l 20,1319, (3.63)
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whereB} := {(z,t) € 27 : = € B(t)}. On noting (3.48), (1.2), (2.7)
and (3.18), we conclude that for glle L2(0, T; H'(£2))

/ (T [B(UT)] = b(uw)) VW TV dz dt

< [[b(w) — 7" BT ) zoo(2g) IVW | z2(85) [0l z20,7:51(2))

< CE I = a)b(u) + 7o) = 6(U )] ()| Inll 20 a1
(3.64)

will converge to0 ash — 0. Combining (3.20) and (3.47a,b), and noting
(3.12a,b) we have for all < ho(3;) that

IVl 20,50 + W 20, m B, (9y) < C(67).  (3.65)
2 2

The bounds (3.65) imply the existence of a subsequend@&/oV, W},
of the subsequencgl, V'};, satisfying (3.18) and (3.19), and a function
w € L2(0,T; HY(B;s(t))) such thatag — 0

2

VVT = Vo, W5 = w, VW' = Vw weaklyinL?(B;). (3.66)
2
It follows from (3.66), (1.2) and (3.16) that for ajlc L2(0,T; H'(§2))

/ b(u)VWTVndrdt — b(u)VwVndz dt ash — 0. (3.67)
Bs Bs

Combining (3.62), (3.64) and (3.67), and noting (1.2), 2aAd (3.18)
yields for alln € L?(0, T; H*(02)) thatash — 0

/ U)WV (xy)dedt — [ b(u)VwVndzdt. (3.68)
Bs Bs

We now consider the inequality (3.15c) of P. For anyn €
L%(0, T; H*(£2)), with supg{n) C Ds, we choose)” = 5 in (3.15c).
It follows immediately from (3.29) that for aly € L2(0,T; H?(£2)) and
forall h < hg(9)

supp(n) C Bs = supp(n"n) C Bl ¢ B%. (3.69)

We now analyse the subsequent terms in (3.15c). From (33), (3.69)
and (3.65) we deduce for all < ho(Z) andn € L%(0,T; H*(£2)) with
supp(n) C Bs that

[ Lo mtmy = ]

0

<Ch |’W+”L2(O,T;H1(B%(t))) ”77”L2(0,T;H2(Q))
< 0(5_1) h ”77”L2(0,T;H2(Q))- (3.70)
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It follows from (3.70) and (3.66) that for al} € L2(0,T; H?(§2)) with
supp(n) C Bs

T T
/ (W+,7rhn)hdt—>/ (w,n)dtz/ wndzdt ash — 0. (3.71)
0 0 Bs

Similarly to (3.70) and (3.71), we deduce from (3.69), (2@)65) and
(3.66) that for ally € L?(0, T'; H*(£2)) with supp(n) C Bs

T T
/(VV+,V(7rhn))dt—>/ (Vu,Vn)dt ash — 0. (3.72)
0 0

Combining (3.72) and (3.71), noting (3.46) and (3.69), amalying a den-
sity argument yields that for all € L?(0, T'; H'(£2)) with supp(n) C Bs

/ [VoVn —wn] dedt =0. (3.73)
Bs

Repeating (3.63)—(3.68) for all> 0, and noting (3.62) and (2.8) yields
the desired results (3.57), (3.58) and formle L2(0,T; H%(2)) that as
h—0

/ U)WV (ay)dedt — [ bu)VwVndedt. (3.74)
QT By

Combining (3.61), (3.74) and (3.15a) we have fomall H*(0,T; H?(2))
that

T
| w52 at= [ )V dt = (ule, T).n( )=, 0). (- 0).
’ (3.75)
As {rh[b(U~)]VW*}y, is uniformly bounded i (£2r), see (3.20), (1.2)
and (3.22), it follows thab(u)Vw € L?(By). Therefore from (3.75) we
conclude the second regularity result in (3.56) and, onnigoti density
argument, that

T
/ %ﬂﬁdt—i-/ b(u)VwVndzdt =0 Vne L*(0,T; H(2))
0 By

and hence the desired result (3.59a). Finally repeati®®)3(3.73) for all
d > OyieldsthathO[VvVn —wn]dxdt = 0forally € L2(0, T; H'(£2))
with supp(n) C By, and hence the desired result (3.59c)

Remark 3.IThe identity (3.59¢) and (3.57) imply that = — Av in a weak
sense locally o{u > 0}. Asv = —Au, see (3.59b), (3.56) and (3.17),
we deduce thay = A%« in a weak sense locally ofu > 0}. Hence we
conclude from (3.59a—c) that (1.3) holds withx| > 0} replaced by{u >
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0}. This is the weak formulation of (1.1a) introduced by [8] ineospace
dimension. A weak formulation of the boundary conditiﬂin)ag% =0
is also incorporated in (1.3). We note that (3.59b) implm%(a:, t)=0
for (z,t) € 02 x (0,T), whereas (3.59c) implies th%%“(a:,t) = 0 for

1
(z,t) € 002 x(0,T) whenevem(z, t) > 0. In additionu € Ci:;*(QT), see
1
(3.16) whend = 1, improves onu € Ci:f (£27), see (1.4), as proved §¥
of [8]. Moreover, the above extends their existence andaegy results to
higher space dimensions.

4 Solution of the Discrete System

We now consider an algorithm for solving the discrete sysdepach time
level in (P>7). This is based on the general splitting algorithm of [14k s
also [10, 2,5] where this algorithm has been adapted to sofviar varia-
tional inequality problems arising from Cahn-Hilliard ssns. We remark
that the alternative algorithm 8 of [4] can also be adapted to the present
problem.

Forn fixed, multiplying (2.2c) by, > 0, adding(U™, x — U™)" to both
sides and rearranging on noting (2.2a) it follows th&t*, V", W"} <
K" x [Sh)? satisfy for allp® € K", x € S"

h
<U”, - U”) > (Y™, gt — U™, (4.1a)

(L= ) b Y (YW, Vx) = (b = 7 (U Y)] [V W™, V),
(4.1b)

whereY” € S" is such that
X", )" = U )" = C[(VV™, Vx) — (W™, x)"] ¥V x € S", (4.1c)

Vn = —AM™ andb™ ! = [b(U™1)]o,00- We introduce alsaX™ ¢ S”
such that

(X" )" = (U™, )"+ ¢ [(VV™, Vx) — (W™, )] ¥V x e S" (4.1d)

and note thal\™ = 2U™ — Y. We use this as a basis for constructing our
iterative procedure:

Forn > 1set{U™? V0 Wm0} = {yn—1 yr-l wrn—1} ¢ K x[Sh]?,
whereV?, W0 e Sh are arbitrary ifn = 1. Fork > 0 we definey™* ¢ S
such that for ally € S*

(YR ) = (U™, )" = C[(VV™F, Vx) = (W™F )] (4.2a)
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Then seU™* 3 = gh[ymk] | € K and find{Umk+1, yrk+l jymk+l)
c [Sh)3 such that for ally € S*
(U”M:U”—1 ’ X)h + bn—l(vwn,k—i—l’ V)
= (" = 7" U TH VW™, Vy), (4.2b)
(UML) + CLVVMEL Vx) = (W )] = (X, x()h; |
4.2¢c

Wherevn,k—l—l — _AhUn,k—l—l anan,k-f—l a— 2Un,k+% _ Yn,k_
In order to establish the well-posedness of (4.2b,c)Rlet ¢ Z" be
such that

(B™ )" = (@ U HVW™, Vx) v x € 5"
It then follows from (4.2b), (2.10) and (4.2c) with= 1 that
Wn,k+1 — (I _ J‘: )Wn,k _ [bn—l]—lé\h(Un,k-o—l_Un—l I Rn’k)
4 % J‘: (Un,k—I—l o Xn,k—f—l)'

Therefore (4.2b,c) may be written equivalently as fiAgt**! ¢ S" .=
{x € S": f x = f U°} such that for ally € S"

(Un,k-—i—l’ (I— JC )X)h

hymk+1l Ahoh no1y_14n U™ — Ut
+ [ (AU AN 4 (PTG [

———1.0"]
= (XL W Y IGRRM), (- f )" (49

Existence and uniqueness pir™F+l ymk+l gkl o gh oy [gh)2
then follows as (4.3) is the Euler-Lagrange equation of thetly convex
minimisation problem

: 2 h|2 1 Ch(~ _ TTN—1Y|2
)?elglgn{\x\h—i-C [\A xXlp + 5 VG (x = U )‘0}
_9 (Xn’k—H + C(Wn,k o [bn—l]—lé\hRn,k)’ X)h}

Hence the iterative procedure (4.2a—c) is well-defined.
Theorem 4.1For all ¢ € RT and {U™°%, V™0 Wm0} < [S")? the se-
quence{U™k vk Wk, o generated by the algorithm (4.2a—c) satis-
fies ask — oo
Uk s un, vk 5 vt oand / bUH| VW™ — W) 2 dz — 0.
(0]
(4.4)
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Proof It follows from (4.1c,d), (4.2a,c) and the definition &f™*+1 that
fork >0

U = 5(XT4Y™), UMF = L(XFpymh), Umhts = L(Xmktlpy k),
We now introduce fok > 0 the notation

1
EE =U™ —Un, ELEi=Umhts_pn, BE = vk oy

Efy =W" —W", By i=Y™F Y™, B = XM X (4.5)
and hence we have far> 0 that

k
EFY Z LB L EY), B = L(ENL LB (46)

Adding (4.1d) to (4.2c), and noting (2.3) and thaf™ = —ArERT
yields for ally € S

(B 0" + CLARESH, A" — (B )" = (BX )" (4.7)
It follows from (4.7) and (4.6) that fok > 0

AREETE — (B B = Y(BET - B EEY)
LR IE. 69)

It is easily established from (4.1d)™**+2 = #"[Y™*], and (4.6) that for
k>0

(Ek+ ~ B B Hh<)  — |EEFL2 < |EE2. (4.9)

From (4.2b), (4.1b), (4.5) and (2.24) it follows fbr> 0 that
(Ek“ Ek“) (Ek+1 (Un,k+1 . Un—l) — (U - Un—l))h
= Tl (2" (U Y)))F VL3
+ ([ = U] V(W - k) vk
= 7al(T U HDEVEG + (b7 - 7 @) EV B3
+ Bt = mh UL V(WL - k2
— " = A O BV ER ). (4.10)
Combining (4.8), (4.10) and (4.9) yields fbr> 0 that
| APBES R + 7| (rb(U ) E VERH R
+ Bt = w2 VERT R + gl B
Ll bt — (U] 2V EL 3+ & BRI (4.11)
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We conclude from (4.11) that
|APEETZ 47, (7P B(UP D)) IVEEF2 50 ask — oo, (4.12)

As Eitt = —AMEET and £ BT = 0, the desired results (4.4) follow
from (4.12), (4.5), (2.3) and (1.8).0

Remark 4.We see from (4.2a—c) and (4.3) that at each iteration onesneed
to solve only a fixed linear system with constant coefficie®is a uniform
mesh this can be done efficiently using a discrete cosinsftrem; see [9,
§5], where a similar problem is solved.

5 Numerical Experiments

Firstly, we present numerical experiments in one space mkina on a
uniform partitioning off2 = (0,1) with mesh pointgp; = (j — 1)h,

j =1 — #J, whereh = 1/(#J — 1). In addition, we chose a uni-
form time stepr,, = 7 := T'/N, so thatt,, := n7, n = 0 — N. Similarly
to [4], on recalling that/ € K"(U"1), n = 1 — N, one characteristic
feature of the discretisation{P) is that

U™ Hpj—1) =U"p;) =U" (pj11) =0 = Up;) =0, (5.1)

so that the free boundary advances at most one mesh poitiy ivoen one
time level to the next. To be able to track a free boundary twhoves with
a finite but a-priori unknown speed, one needs to checasedh such that
77 1h — oo. If we choose the time step too largeg. if 7~'h — 0, the
solution we obtain in the limit as, = — 0 would not spread at all. This
gives the existence of non-spreading solutions forya#t (0,00) and all
initial datau® satisfying the assumptions of Lemma 3.2.

For the algorithm (4.2a—c) we cho$® = —APUO, W0 = —ARYO,
¢ « h (from experimental evidence) in order to improve its cogeeice,
and for eachn adopted the stopping criterig/™* — U™F~1|, o, < tol
with tol < 10~8. Similarly to [4], we imposed the additional requirement
that the discrete free boundary had not moved more than osh pwnt
locally, recall (5.1). To ensure this we introduced appntatie analogues of
the setd,, (¢") denoted byl (¢"), which were defined by replacir(g) in
(2.14) by(©) ¢" > toly := 1012 at some pointin;, I = 1 — L. We then

set{U™, v, Wn} = {T"", vk Wkl whereU™" € K" was defined
by

g JIUME)) if G e T = Uy In(UTTY),
U™ (py) == {0 + £ j:(Un—l) = J\ JL (UL,
(5.2)
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In the first set of numerical experiments we set= 1 and consider
the source type similarity solution (1.5). The correspagdbositive free
boundary point iszp(t) = w(t + 19)%. We chosew = 2,9 = 477
and noted the symmetry about= 0. We setU°(z) = (7"u)(z,0) =
167" ([1 — 43:2]3 )/315. We estimated the true free boundary;(t,), at
each time levelt, by xf, using inverse quadratic interpolation through
the last three mesh points whel€ (p;) > toly; that is,Q™(z7) = 0
whereQ™ is the unique quadratic such th@t'(p;) = U™(p;) > tols,
J=Jn—1—= jn+1 andU"(pj,1+2) < tol;. Forn =1 — N, we
computed the quantities

|Thu (e, tn) — U™(-)]0.00 and  zp(t,) —xf;

wherezp(Ty) = 1,ie Ty =w " —9=2"7(1-277) = 7.7515 x 1073,
andN := max{n : n7 < T.,}. In Figure 5.1 we show the graph of the

=0
- - - t=3875x107
=7.75%107 | |
- - LB
— 775310

005F "

001 L L
1 0 1 2

Wi

Fig. 5.1. v = 1, U(z, t) plotted against for varioust (left); |7"u(-, ) — U™ (-)]o,.. and
zr(tn) — % against,, (right), where#J = 65 andr = 6.0546875 x 107°.

computed solution for different times and we plotu(-, ) — U™(*)|0.00
andzp(t,) — zZ againstt,. The computations were performed flor=
276 i.e.#J = 65,andT = 7.75 x 1073 with 7 = T/1280 = 0.05 T h =
6.0546875 x 1076,

We see there that the maximumu(-,¢,) — U"(-)|o.« Occurred for
smallt, ~ 0.0001. This is not surprising, since the true free boundary,
xr(t), moves very fast initially. In addition we see that the nuicarfree
boundary7., always underestimateg(¢,). We repeated the above ex-
periment with a final tim@ = 7.75 x 103 for various choices of with
7 = 4.0x10~*h andr = 0.3968 h?; see Table 5.1, where all values are cor-
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Table 5.1. v = 1, source type solution errors.

T=4.0x10"%h #J 65 129 257 513 1025
max |7"u(-,tn) = U"(-)|o,e/107° 1405 7.105 3408 1653 0.7231

n=1—

7 = 0.3968 h2 #J 65 129 257 513 1025

max |7 u(-,tn) — U"()]o.0o/10°° 2146 6123 13.74 3.445 0.7992

n=1—N

rect to four significant figures. We note that the constant@relationship

T = 4 x 10~*h was chosen to be sufficiently small so that the discrete free
boundary could move faster tham(t), i.e. 2’x(t) < 2/7(0) = 8192/7 <

(4.0 x 10~*)~* forall t > 0.

0.0041 #J=65 ||

, - - W=

002l - - - #=l05 ]|

—— =007
:

x10°

Fig. 5.2. v = 1, |7 u(-,tn) — U™(")]o,cc plotted against,, andu(z,T) andU (z, T)
(T =7.75 x 10~3) with #J = 4097 plotted against.

As noted earlier in this section there exist non-spreadihg®ns for all
v € (0, 00) and all initial datau” satisfying the assumptions of Lemma 3.2.
Clearly, the source type similarity solution, (1.5),tat 0 satisfies these
assumptions. Repeating the above numerical experimehtrwit 3.1 x
10‘3h%, we found that the computed solutiéh did not converge to the
source type similarity solution, see Figure 5.2; since istaonverge to a
non-spreading solution das— 0.

Remark 5.1The obstacle formulation for (P) is not crucial in proving
the convergence of the resulting approximatidéno a solutionw, of (P).
Replacing the inequality by an equaliti” by S", b(s) := |s| by [s]7.
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and adapting the proofs §8 one can easily pass to a limitwhich solves
the equation in the sense of (1.3). Using the negative partiod. [u]_, as

a test function in the weak formulation (1.3) one recovensrmagativity of
the solution. The iterative method describe@4rcan also be easily adapted
to this approximation. Similarly to the fourth order proflén [4], although
we found the resulting errors to be comparable with thoseainl€r'5.1,
there were a number of drawbacKs$™(-) was negative (many orders of
magnitude less thantol) in many disconnected regions wherg, t,,) =

0, which made the location of the approximate free boundamerdificult.

In addition the CPU times were increased.

In the second set of experiments we tadKz) = [3 — 2?2, U°
7hu® and#.J = 21 + 1. A simple calculation yields that

1-2R%(1+65%) j=0—1-1,

VO(jh) = =(AMU°)(jh) = § —(1 = h)? i=1
0 j=1+1-2l
24 j=0—1-2,
(23h% —2h —1)/h? j=1—1,
and WO(jh) = —(A"MVO)(jh) ={ (12h —8)/h j=1,
(1 — h)%/h? j=1+1,
0 j=1+2-—2l

It follows that

(" UV, VW) = B (L4 h)* [(2 = 4h)* + (1 = 1))
+ (1 —6h —11h%2 (1 — h)? }. (5.3)
It follows from (2.2a) forn = 1 with y = W' — W9, (2.4) forn = 1 with
x =U° W0 = (AM")?209, (2.3) and (2.24) that
2|AMU = U} +7 (7" UV = WO), V(W' —W?))
< 7 (7" pU VWO, VIWO). (5.4)
Combining (5.3) and (5.4) and noting (2.3), (1.8) aghdU* — U°) =0,
we have fory > 2.5 and anyr > 0thatU! — U° ash — 0. Hence noting
(2.8), we have that for any > 2.5 andr > 0 that||U*(-) —u°(-)||; — O as

h — 0. Similarly to (5.4), it follows from (4.2a—c) with = 1 andk = 0,
WO = (AM)?20U9°, (2.3) and (2.24) that

21AMUN = U7 + 702 (W = WO < 7 (x"[b(U°)] VIO, VIVO).
h 1
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Hence noting (5.3), (2.3), (1.8} (U"! — U°) = 0 and the stopping
criterion we have for anyy > 2.5 and7 > 0 that {U!, V1, W} =
(T VLU WY for b < ho(y, tol), whereT " is defined by (5.2)
above.

As in the fourth order case, see [4], it is possible that (Py imas-
sess at least two solutions for certain valuegyoft is interesting to see
how the numerical approximation tP) behaves in such circumstances.
We performed experiments with € {3.0,2.5,2.0}, T = 7.75 x 1073
andr = 50.7904 h3. For the algorithm (4.2a—c) we choge= 10~% and
tol = 10712, In Figure 5.3 we plot"u®(z) — U (z, T) for #.J = 129, 257
and513. Fory = 3.0 > 2.5, we see that/(z,T) — u(x) ash — 0.
From Figure 5.3, we conclude th&t(x, T') converges ta.°(z) also in the
casey = 2.5. The same experiment for = 2.0 shows that the computed
solution spreads. Finally we remark that computations @sehuniform

x10"
1 T T T T T T T T T 2

" - el )/ - el
o - - #=257 , - = #=257
8r #)=513 | / v #)=513

Ug()-U(x.T)

Ug()-U(x.T)

#J=65

~ L L L L L L L L L
0 01 02 03 04 05 06 07 08 09 1
X

Fig. 5.3. 7"u®(z) — U(z, T) plotted against for v = 3.0, 2.5 and2.0, respectively.
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partitionings fory < 2.5, but close t@®.5, were inconclusive, with it not
being clear whether the computed solution spread or coedeigu’(x).
We remark thaty = 3 is the borderline value for spreading in the fourth
order case, see [4].

Numerical Results fod = 2

Finally, we present numerical experiments in two space dgimas with
2 = (0,1)x(0, 1). We took a uniform mesh of squaresf lengthh = i,
each of which was divided into two triangles by its north ehagonal. We
used the modified discrete semi-inner producti)

(1, m2)% := [ I (i () ma(2)) e (5.5)

Here IT" is the piecewise continuous bilinear interpolant@nwhich on
each squareis bilinear and interpolates at the vertices. Using (5.5)ad
of (2.1) enables us to solve (4.2a—c) efficiently using acdite cosine
transform” approach, see [2]. We note that, similarly t&)2the semi-
inner product (5.5) is equivalent &t to the standard.? inner product. In
place of (2.5), we have fafn = 0 or 1 that

(" 0" = " 0% < CR M ()P [ lmllxlh ¥ 2", x € S

Therefore it is easy to adapt the proofs to show that all tealtg in this
paper remain unchanged with the choice (5.5).

We report on an experiment with similar initial data for (B)iad = 1
for Figure 5.3. In particular, we took®(z) = [(0.6)% — (2} + 423)]%,
U% = 7hu and setr, = 7 = 5x 1078, T = 1.5 x 10~3. For the algorithm
(4.2a—c) we used = 10~ and for eachn adopted the stopping criterion
|Unk k-l o < 1077, The results for different values gfare shown
in Figure 5.4, where we plot tHé(z, t,,) = 2 x 1073 contour lines at times
t, = 0,107%, T. We note that the respective contour lines for much smaller
values thar2 x 10~ become very irregular asapproaches zero flatly; i.e.
a “zero contact angle”. Foy = 1.0, the elliptical support ot/° spreads in
all directions and the support 6" becomes more circular. Fer = 2.0,
there is no spreading in the, major axis, direction; but once again the
support ofU™ becomes more circular. Far = 3.0, there is virtually no
spreading in any direction.
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