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Chapter 3
Multiplicative Toeplitz matrices
and the Riemann zeta function

Titus Hilberdink
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Introduction

In this short course, we aim to highlight connections between a certain class of ma-
trices and Dirichlet series, in particular the Riemann zeta function. The matrices we
study are of the form

. f@ 3 f@)
@ 0 3 f&)
6 fQ fa fQ |, (%)
@ f@ f3 fO

i.e., with entries @;; = f(i/j) for some function f:Q* — C. They are a multiplica-
tive version of Toeplitz matrices which have entries of the form a;; = a;_ ;. For this
reason we call them Multiplicative Toeplitz Matrices.
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Toeplitz matrices (and operators) have been studied in great detail by many au-
thors. They are most naturally studied by associating with them a function (or ‘sym-
bol’) whose Fourier coefficients make up the matrix. With a;; = a;_j, this ‘symbol’
is

o
a(ty= Y apn". t€T
n=—oo
Then properties of the matrix (or rather the operator induced by the matrix) imply
properties of the symbol and vice versa. For example, the boundedness of the opera-
tor is essentially related to the boundedness of the symbol, while invertibility of the
operator is closely related to a(¢) not vanishing on the unit circle.
For matrices of the form (x) we associate, by analogy, the (formal) series

> fl@d",

qeQt

where g ranges over the positive rationals. Note, in particular, that if f is supported
on the natural numbers, this becomes the Dirichlet series

> fyn'.

neN

In the special case where f(n) = n~%, the symbol becomes {(o — it). It is quite
natural then to ask to what extent properties of these Multiplicative Toeplitz Matrices
are related to properties of the associated symbol. Rather surprisingly perhaps, these
type of matrices do not appear to have been studied much at all — at least not in this
respect. Finite truncations of them have appeared on occasions, notably Redheffer’s
matrix [27], the determinant of which is related to the Riemann Hypothesis. Denoting
by A, (f) the n X n matrix with entries f(i/j) if j|i and zero otherwise, it is easy to
see that

An(f)An(g) = An(f * g), where f * g is Dirichlet convolution,
since the ij M entry on the left product is

S Aty = 3 (De(2) = X (L))

r=1 Jlrli J dli/j

if j|i by putting r = jd, and zero otherwise. With 1 and u denoting the constant
1 and the Mobius functions, respectively, it follows that A,(1)A,(n) = I, — the
identity matrix. Note also that det A, (1) = det A,,(n) = 1. Redheffer’s matrix is

0 1 1 - 1
0 0 0 - 0

Ro=4+ . 0 0 . | FAD)+E,,
0 0 0 - 0

Is this intended to be i /j ?




3 Multiplicative Toeplitz Matrices and the Riemann zeta function 79

say, where the matrix £, has only 1s on the topmost row from the 2nd column on-
wards. Then, with M(n) = >, u(r),

M@m)—1 % - = M) e
0 o 0 0 1 - 0

RpAn(p) = In + RO - :
0 0 -~ 0 0 0 - 1

so that det R, = M(n). The well-known connection between the Riemann Hypothe-
sis (RH) and M (n) therefore implies that RH holds if and only if det R,, = O(H%J“s)
for every ¢ > 0. (See also [18] for estimates of the largest eigenvalue of R,,).

Briefly then, the course is designed as follows: In §1, we recall some basic aspects
of the theory of Toeplitz operators, in particular their boundedness and invertibility. In
§2, we study bounded multiplicative Toeplitz operators. This is partly based on some
of Toeplitz’s own work [32], [33] and recent results from [15] and [16], but we also
present new results, mainly in §2. Thus Theorem 2.1 is new, generalising Theorem
1.1 of [16], which in turn is now contained in Corollary 2.2. Also Subsection 2.2 and
parts of 2.3 are new.

Preliminaries and Notation

(a) The sequence spaces [? (1 < p < oo) consist of sequences (a,) for which
>0 | lan|? converges. They are Banach spaces with the norm

0 1/p
Il = (X |an|f’) .

n=1

The space [*° is the space of all bounded sequences, equipped with the norm
(@n)llooc = Sup,ey lan|. We shall also use /7 (Q™"), which is the space of se-
quences a,; where ¢ ranges over the positive rationals such that ) q lag|? < oo,
with analogous norms and also for p = oco.

[? and [?(Q™) are Hilbert spaces with the inner products

[e.e]
(a,b) = ZanE and (a,b) = Z aqz,
n=1 qu+
respectively.

(b) Let T = {z € C : |z| = 1} — the unit circle. We denote by L?(T) the space of
square-integrable functions on T. L?(T) is a Hilbert space with the inner product
and corresponding norm given by

2m
e = [ re=5- [ res@an. uri=\[ [ 17
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(d)

(e
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The space L% (T) consists of the essentially bounded functions on T with norm
| f lloo denoting the essential supremum of f. (Strictly speaking, L? and L
consist of equivalence classes of functions satisfying the appropriate conditions,
with two functions belonging to the same class if they differ on a set of measure
Z€ero.)

Let y,(t) = t" forn € Z. Then (xn)nez is an orthonormal basis in L?(T)
and L2(T) is isometrically isomorphic to /?(Z) via the mapping f — (fu)nez,
where f, are the Fourier coefficients of f,1i.e.,

fo= ) = [ 17

A linear operator ¢ on a Banach space X is bounded if ||px| < C| x| for all
x € X. In this case the operator norm of ¢ is defined to be

lox|l
——— = sup |[lox].

loll = =
xexxzo Xl jxp=1

The algebra of bounded linear operators on X is denoted by B(X).

An infinite matrix A = (a;;) induces a bounded operator on a Hilbert space H if
there exists ¢ € B(H ) such that

aij = (pej, ei),
where (e;) is an orthonormal basis of H. Note that not every infinite matrix
induces a bounded operator, and it may be difficult to tell when it does.
For the later sections we require the usual O, o, ~, < notation. Given f, g de-

fined on neighbourhods of co with g eventually positive, we write f(x) =

0(g(x)) (or simply f = o(g)) to mean limyoo f(x)/g(x) = 0, f(x) =
O(g(x)) to mean | f(x)| < Ag(x) for some constant A and all x sufficiently

large, and f(x) ~ g(x) to mean limy—o f(x)/g(x) = 1.
The notation f <« g means the same as f = O(g), while f < g means

f(x) = (@ +o(1)g(x).

1 Toeplitz matrices and operators — a brief overview

Toeplitz matrices are matrices of the form

do d—1 d— d-—3
aq ao a—1 d-—p

T=|9% 4 do d-p - 3.1)
as an aq ao
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ie., T = (tj), where t;; = a;—j. They are characterised by being constant on
diagonals.
For a Toeplitz matrix, the question of boundedness of 7" was solved by Toeplitz.

Theorem 1.1 (Toeplitz [32]). The matrix T induces a bounded operator on [? if and
only if there exists a € L°°(T) whose Fourier coefficients are a, (n € 7). If this is
the case, then |T || = ||a||co-

We refer to the function a as the ‘symbol’ of the matrix T, and we write T (a).
Sketch of Proof. For a € L?(T), the multiplication operator
M(a): LX(T) — L*(T), f > af

is bounded if and only if a € L°°(T). If bounded, then | M (a)| = ||@||co. The matrix
representation of M (a) with respect to (), )nez is given by

(M(a)xj, xi) = {ayx;, xi) = /Tahﬁ: [Ta)(i—j = aj—j,

i.e., by the so-called Laurent matrix

adp d—1 |d—p a—-3 d—4
ay ao a1 d— da-—3
an ai ao a-1 d-—p
as an ai ao a—1

L(a) := (3.2)

The matrix for T is just the lower right quarter of L(a). We can therefore think of T’
as the compression PL(a)P, where P is the projection of /?(Z) onto [? = [?(N).
An easy argument shows that 7" is bounded if and only if @ € L°, and then || T|| =
IL(@)]l = lla]lco-

Hardy space. Let H2(T) denote the subspace of L?(T) of functions f whose
Fourier coefficients f,, vanish for n < 0. Let P be the orthogonal projection of

L? onto H?, i.e., P(Y,cz faXn) = Y_nso JuXn. The operator f +— P(af) has
matrix representation (3.1). For, with j > 0 (so that y; € H?(T)),

@0 = [ Parzi= [ P(Santees )= Xan [ i =aic
T T nez n>0 T
if i > 0, and zero otherwise. Hence, we can equivalently view 7 (a) as the operator

T(a): HX(T) — H*(T), f > P(af).
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1.1 C(T), W(T), and winding number Let C(T) denote the space of con-
tinuous functions on T. For a € C(T) such that a(¢) # 0 for all € T, we de-
note by wind(a, 0) the winding number of a with respect to zero. More generally,
wind(a, A) =wind(a — A, 0) denotes the winding number with respect A € C. For
example, wind(y,,0) = n.

The Wiener Algebra is the set of absolutely convergent Fourier series:

00 oo
W(T) = Zan)(n : Z|an| <00
—00 —00

Some properties:
(i) W(T) forms a Banach algebra under pointwise multiplication, with norm

o0
lallw =3 lan.
—0o0

(i) (Wiener’s Theorem) Ifa € W and a(t) # Oforallt € T, thena™' € W.
(iii) Ifa € W(T) has no zeros and wind(a, 0) = 0, then a = e® for some b € W(T).
We have
W(T) c C(T) € L®(T) c L*(T).

1.2 Invertibility and fredholmness Let 4 be a bounded operator on a Banach
space X I A
(i) Aisinvertible if there exists a bounded operator B on X suchthat AB = BA =
I. As such, B is the unique inverse of A, and we write B = A~1. The spectrum
of A is the set

0(A) ={A € C: Al — Ais not invertible in X }.
The kernel and image of A are defined by
Kerd ={x € X : Ax = 0}, ImA = {Ax :x € X}.
(i) The operator A is Fredholm if ImA is a closed subspace of X and both KerA4
and X/ImA are finite-dimensional. As such, the index of A is defined to be
Ind A = dimKer A — dim (X /Im A4).

For example, T'(),) is Fredholm with Ind T (y,) = —n.

Equivalently, A is Fredholm if it is invertible modulo compact operators; that
is, there exists bounded operator B on X such that AB — I and BA — I are both
compact.

The essential spectrum of A is the set
Oess(A) = {A € C: Al — A is not Fredholm in X}.

Clearly 0¢ss(A) C 0(A). Note that A invertible implies A is Fredholm of index
zero. For Toeplitz operators, the converse actually holds (see [3], p. 12).

Please check the range of the following enumeration.
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1.3 Hankel matrices These are matrices of the form
ay dp ds3 dg
ay d3 d4 ds

H=| 93 a4 ds ds - | (3.3)
ag ds de d7 -

i.e., H = (hj;), where h;; = a;4;j—1. They are characterised by being constant on
cross diagonals. The boundedness of H was solved by Nehari, and the compactness
of H by Hartman.

Theorem 1.2 ([26], [12]). The matrix H generates a bounded operator on [? if and
only if there exists b € L*(T) (with Fourier coefficients by,) such that b, = ay for
n > 1. Furthermore, the operator H is compact if and only if b € C(T).

We refer to the function a as the ‘symbol’ of the matrix H, and we write H(a).
Given a function a defined on T, let a be the function

ait)y=a(l/t) (teT).
Proposition 1.3. Fora,b € L°°(T),

T(ab) = T(a)T(b) + H(a)H(b)
H(ab) = H(a)T(b) + T(a)H (D).

Proof. The matrix L(a) in (3.2) is of the form

T(a) | H@)
v = (it )

Since L(ab) = L(a)L(b), the result follows by multiplying the 2 x 2 matrices. [

As a special case, we see that T(abc) = T(a)T(b)T(c) fora € H®,b €
L*® ¢ € H®. The space H* is defined analogously to L*°. (7T (a) is upper-
triangular and 7'(c) is lower-triangular.)

By Theorem 1.2, if a,b € C(T), then H(a)H(l;) is compact, so that T'(ab) —
T(a)T(b) is compact. In particular, if @ has no zeros on T, we can take b = a~! €
C(T). Then T(ab) = T(1) = I, so T(a) is invertible modulo compact operators
(i.e., Fredholm) with ‘inverse’ 7' (a~!). This type of reasoning leads to:

Theorem 1.4 (Gohberg [7]). Let a € C(T). Then T (a) is Fredholm if and only if a
has no zeros on T, in which case

Ind T'(a) = —wind(a, 0).
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Hence T (a) is invertible if and only if a has no zeros on T and wind(a,0) = 0.
Equivalently, since T(A —a) = Al — T (a) for A € C, we have

Uess(T(a)) = a(T)7
o(T(a)) =a(T)U{A € C\ a(T) : wind(a, A) # 0}.

Sketch of Proof. We have seen that a # 0 on T implies 7'(a) is Fredholm. In this
case, let wind(a,0) = k. Then a is homotopic to yx, and (since the index varies
continuously)
Ind T(a) = Ind T (xx) = —k = —wind (a, 0).

For the converse, suppose T (a) is Fredholm with index k, but a has zeros on T.
Then a can be slightly perturbed to produce two functions b, ¢ € W(T) without zeros
such that ||a — b|eo and |l@ — ¢| oo are as small as we please, but wind(b, 0) and
wind(c, 0) differ by one. As the index is stable under small perturbations, 7'(b) and
T (c) are Fredholm with equal index. But Ind T(b) = —wind(b,0) and Ind T'(¢) =
—wind(c, 0) (by above), so wind(b, 0) — wind(c, 0) = 0 — a contradiction. O

1.4 Wiener-Hopf factorization Since W(T) C C(T), Theorem 1.4 applies
to W(T). However, for Wiener symbols we can obtain a quite explicit form for the
inverse when it exists. This is because Wiener functions can be factorized.

Denote by W, and W_ the subspaces of W consisting of functions

o0 o0
Zant” and Zant_" teT

respectively, where ) |a,| < oo.

Theorem 1.5 (Wiener—Hopf factorization). Let a € W(T) such that a has no zeros,
and let wind(a, 0) = k. Then there exist a— € W_ and a4 € W4 such that

a= yxa—day.

Proof. We have wind(ay—x,0) = 0. So ay_; = e forsomeb € W. Butb =
b_ + by, where b_ € W_ and by € W,. Hence, writing a_ = e~ and a, = e?+
gives

ay—x = eb-eP+ = a_a,. O

Theorem 1.6 (Krein [21]). Let a € W(T). Then T (a) is Fredholm if and only if a
has no zeros on T, in which case

Ind T(a) = —wind(a, 0).

In particular, T (a) is invertible if and only if a has no zeros on T and wind(a, 0) = 0.
In this case

T(a)™' = T(@HT(aZh),

where a = aya_ is the Wiener—Hopf factorization of a.
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Proof of second part. Note that if a € W_, then H(a) = 0, while if a € W4, then
H(a) = 0. Suppose a has no zeros on T and wind(a,0) = 0. Then a factorizes as
a = a_a4 with ax € W4. Applying Proposition 1.3 with a_ and a4 in turn gives

T@-HYT(a-) =T@ 'a_) =1 = T(a—a=') = T(a_)T(a=").
T(a{"T(ay) =T(a'ay) =1 = T(ayai") = T(ay)T(al").

so that T'(a+) are invertible with T'(a+) ™' = T'(aZ'). Butalso T'(a) = T(a—ay) =
T(a_)T(as) (by Proposition 1.3). Hence T(a)™! = T(ay) 'T(a-)"' =
T(az)T(@=h. O

2 Bounded multiplicative Toeplitz matrices and
Operators

2.1 Criterion for boundedness on /2 Now we consider the linear operators
induced by matrices of the form (), regarding them as operators on sequence spaces,
in particular /2.

For a function f: Q™ — C on the positive rationals, we define

> flg) = Jim Yo f (Z> whenever this limit exists.

qu-I— m,n<N

We shall sometimes abbreviate the left-hand sum by Zq f(q). We say that f €

1N@Q™*) if
> /@)
qeQt

converges. In this case, the function

F)= ) fl@q" teR

qeQt

exists and is uniformly continuous on R. Note that, for A > 0,58

1 T . £ — +
lim — [ Foatar=] /@ ifA=q€Q7, (3.4)
T—o0 2T J_7p 0, otherwise.

Theorem 2.1. Let f € ['(Q%) and let ¢ y denote the mapping (ay) v+ (by) where

b= 5 1 (Lo

Please check: due to reasons of a coherent design of all papers, we had to add the commas
here as well as in similar formulas.
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Then ¢ is bounded on 12 with operator norm

> fl@q'| =

qeQt

lorll = sup = [ Floo-

Proof. We shall first prove that ¢ s is bounded on /2, showing ||¢ s || < || F|oo in the
process, and then show that || F'|| o is also a lower bound.
Forg € Q" and N € N let

b = Zf( Jam and bq_Zf( )am.

Note that b,gN) — by as N — oo for every ¢ € Q*, whenever a, is bounded. We
have the following formulae:

N 2 N
Jim — | F() Zann dt =Y @bV (3.5)
n=1
Jim — | F(I)Zan = > VP (3.6)
qeQt

(These hold for a, bounded.) To prove these expand the integrand in a Dirichlet
series. For the first formula we have

1 1T ny\
= F(t) Za,, m,nXS:Namanﬁ‘/_T F(z)(E)
N
— X ananf () = i
m,n<N m n=1

as T — oo. For the second formula, note first that

N
FOY am™ = Y f@an(gn)"
n=1

qeQt . n<N
= X () = e
reQt ‘n<N reQt

the series converging absolutely. Thus

T i
F(t)Zan' > bg,fpb,g;W;T/ (L) dr — Y peop

q2
q1,42€Qt qeQt
as T — oo.

2T
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Since | F(t)| < || F||co, We have

ZwWPwWhm—/

geQt

2 N
2 2
di = |[F||2, Y lanl*.
n=1

E:an it

Thus if a = (a,) € 2, we have Y50 [bS")|2 < || F||2, |la||? for every N. Letting
N — oo shows that (b,) € I? too (indeed (by) € [2(Q™)), and so ¢ ¢ is bounded on
12, with

lerll < I1F lloo-
Now we need a lower bound. By Cauchy—Schwarz,

2 o] o)
<Y lanl*- ) 1ol
n=1 n=1

Thus [|¢f|| > | Y eey @nby| for every a = (an) € I with [la|| = 1. Choose a, as
follows: let N € N (to be determined later) and put
nit

M=

Here d(N) is the number of divisors of N. Thus (a,) € [? and |ja| = 1. With this

ab,

for n|N, and zero otherwise.

choice,
—it _ 5, (N)
m\mﬁzd) (= b5
and so
00 L 1 . n i 1 n n\it
;anbn=mzn Zf(g)m —mmZnI:Nf(E)(E)
> F@)q"Sy(N).
d(N) geQt '
where

SgN)y= > L

m,n|N
o
m =4

Putg = %, where (k,[) = 1. Then ;- = ]T‘ifand only if In = km. Since (k,l) =1,
this forces k|n and [ |m. So, for a contribution to the sum, we need k, [| N, i.e., k| N.
Suppose therefore that k/|N. Then

SgNy=> 1= Y1 m=rln=rkB@withr € N

m.n|N rk,rl|N
In=km
= 1= ()
= = ﬁ .
'"|;1<V—1

I Please check if the replacement of m = rk,n = rl withm = rl,n = rk is correct.
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Writing |g| = kI whenever ¢ = % in its lowest terms, gives
o0
_ d(N/Iq))
_ t
Gnbn = Y f@)q’ AWN) (3.7
n=1 geqt
lalIv

The idea is now to choose N in such a way that it has all ‘small’ divisors while
% is close to 1 for all such small divisors |g|. Take N of the form

_ ap _ | logP
N = 1_[ p*”, wherea, = [logp]'
p<P

Thus every natural number up to P is a divisor of N. Every ¢ such that |g||N is of
the form |g| =[] ,<p pPr (0 < B, < ap), so that

d(N/lql) B
d(N) pll(l a, i 1)'

If we take |g| < /log P, then pP» < \/log P for every prime divisor p of |g|.
Hence, for such p, B, < 222 404 8, = 0if p > \/log P. Thus

2logp
d(N/lql) B loglog P
d(N) - 1_[ (1 apj—1>> 1_[ (1_ 210gP)
p<+log P p</log P
_ (i loglog P\ #(v/log P)
_( B 210gP> ’

where 7 (x) is the number of primes up to x. Since 7(x) = ), it follows that

for all P sufficiently large, the RHS above is at least
A

v/log P
for some constant A.

Let ¢ > 0. Then there exists 1 such that Z|q|>n0 | f(g)| < e. Choose P > e

so that /log P > ng. Then the modulus of the sum in (3.7) can be made as close to
| Flloo as we please by increasing P, for it is at least

> flodt| - J_ o f@l- ) 1f@)

(l ogx

1—

lg|<+/Tog P lg|<+/Tog P lg|>+/Tog P
> fl@q| - > 1@
qeQt lg|>+/log P

A/
> |F(1)] — —— — 2,

y/log P
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where ¢ can be made as small as we please by making P large. Since this holds for
any ¢, we can choose ¢ to make F'(¢) as close as we like to || F'||«. Hence [¢r| >
|| F'|| oo and so we must have equality. O

In the special case where f > 0, the supremum of | F(¢)| is attained when ¢t = 0,
in which case || Flloo = F(0) = || f[l; o+ Thus:

Corollary 2.2. Let f:Q" — C such that f > 0. Then ¢ s is bounded on I? if and
only if f € IY(QV), in which case |los| = || f 1.0+

Examples. Take f(n) = n~* forn € N, and zero otherwise. Then F(t) = {(x—it).
We shall denote ¢ s by ¢, in this case. Applying Corollary 2.2, we see that ¢ is
bounded on /2 if and only if @ > 1, and the norm is ¢ ().

2.2 Viewing ¢ s as an operator on function spaces; the Besicovitch
space We can view ¢ as an operator on functions rather than sequences. For this
we need to construct the appropriate spaces.
Let A denote the set of trigonometric polynomials; i.e., the elements of A are all
finite sums of the form .
Z ax ei/lkt ,
k=1

where a; € C and A; € R. The space A4 has an inner product and a norm given by

T—o0 2T

T
(fg—hm—/ fgand  fll=V(fS) = \/11 = [ 1P

Now let B? (Besicovitch space) denote the closure of A with respect to this inner
product;i.e., f € B?if || f — fn|| = 0asn — oo for some f, € A. We turn B? into
a Hilbert space by identifying f and g whenever || f gll = 0. (See [2], Chapter II.)

Now write y(t) = A" (A > 0,7 € R) and let f (A) denote the Fourier coefficient

T—oo 2T

f(A) = lim —/ far = hm —/ FOA " dr where it exists.

Denote by F the space of locally integrable f:R — C such that f (A) exists for all
A > 0.

(a) Fourier coefficients and series For f € B2, the Fourier coefficients f (A) ex-
ist and f (1) is non-zero on at most a countable set, say {1, }nen. The function
f has the (formal) Fourier series ), -, f(Ap)etPnt,

(b) Uniqueness f,g € B? have the same Fourier series if and only if || f —g|| = 0.
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(c) Parseval For f € B?,

. 1 (7 N
171 = fim oz | 1= /;u(w, (3.8)

and, more generally, for f, g € B2,
(f8) = Jim = / 12 =Y fodth.

(d) Riesz-Fischer Theorem Given A, € R and a, € [ 2 there exists [ € B?
such that f(t) ~ Y-, ane'*n’.

(e) Criterion for membership in B2: With F as before, if f € F and Parseval’s
identity (3.8) holds, then f € B2.
Indeed, the set of A for which f (A) # 0 is necessarily countable and we may
write this as {11, A2,...} with Y50, |f(Ae)? = [|fIPBH. Let f,(t) =
Yk<n f F(Ax)ei*x! . Then

1f = /P =1/ = 1417 =D 1/ AP >0 asn — oo,

k>n

The analogues of the Hardy and Wiener spaces: B é + Bé, Wo+, Wa.
(a) Let Bé . denote the subspace of B? of functions with exponents A = logg

for some g € QF. Alternatively, start with the subset of A consisting of finite
trigonometric polynomials of the form ) a4 x4, where g ranges over a finite
subset of Q1 and take its closure.

(b) Let BRZI denote the subspace of B2 of functions with exponents A = logn for
some n € N. This is the analogue of the Hardy space.

(c) Let W+ denote the set of all absolutely convergent Fourier series in B2 ot

Wor ={ Y c@ra: Y le(@)] < oo

qeQt qeQt
This is the analogue of the Wiener algebra. As we saw earlier, {58
f=Y" c@rqg € Wy,
geQt

then f (¢) = c(g). With pointwise addition and multiplication, W+ becomes
an algebra. Further, W+ becomes a Banach algebra with respect to the norm

I lw = > 1£ @l
qeQt

Analogously, let Wiy denote the set of absolutely convergent series Y oo | a,n'’.
IS Please check if the replacement of || f ||% with || f||? is correct.

The following formula had to be detached from the text because of typesetting reasons.
Please check.
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Bé + has (xg)4eq+ as an orthonormal basis while B2 has ()n)nen as an orthonor-

mal basis. The spaces Bé . and B? are isometrically isomorphic to /2(Q*) and /2,
respectively, via the mappings

f o {f (@)} geqr and £+ {f (0)}nz1.

The operator M(f). Let P be the projection from Bé + to BZ; that is,

P( Z c(q)qi’) = Zc(n)n”.

qu+ neN

For f € Wg+, we define the operator M( f): B% — B2 by g — P(fg).
The matrix representation of M(f) w.r.t. { XAn }neN is the multiplicative Toeplitz

matrix (f(l/])), j>1. Indeed, if f = Zq f(q))(q , then

P(f1) = P(X F@rars) = PO F@rar)
q q

= P(XF@lire) = F /i
q

8

Hence

o0

3200 = P20 = 3 Sl 1) = 1(%)

In terms of the operator ¢,
M(f)=7""g .

Interlude on {(s). Since this work concerns connections to Dirichlet series and the
Riemann zeta function in particular, we recall a few relevant facts regarding ¢ (s).
The Riemann zeta function is defined for Rs > 1 by the Dirichlet series

21
{(s) = -

In this half-plane ¢(s) is holomorphic and there is an analytic continuation to the
whole of C except for a simple pole at s = 1 with residue 1. Furthermore, {(s)
satisfies the functional equation

§(s) = x(s)¢(1 —s)
where
s—— F(z _)

x(s) = 257710 (1 — 5) sin(?) =7 F( )
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The connection to prime numbers comes from Euler’s remarkable product formula

1
() =] =~ Rs > 1

p
The order of ¢(s). Considering {(o + it) as a function of the real variable ¢ for
fixed (but arbitrary) o, it is known that for |¢| large

def

o (1) =
The infimum of such A is the order of { and is called the Lindeldf function; i.e.,

p(o) =inf{d : t(o +it) = O(|t|*)}.

to +it) = 0(t]Y) for some A.

From the general theory of functions it is known that the Lindelof function is convex
and decreasing. Since {, is bounded for o > 1, but {; 4 0, it follows that u(o) = 0
for 0 > 1. By the functional equation and continuity of ; we then have

0, ifo > 1,
—o, ifo<0.

pu() =1 1 (<)
2

For 0 < o < 1, the value of u(o) is not known, but it is conjectured that the two
line segments in (<) above extend to o0 = % This is the Lindelof Hypothesis. 1t is
equivalent to the statement that

g(% +it) = 0(t%) for every € > 0.

The Lindelof Hypothesis is a major open problemi®& and is a consequence of the

Riemann Hypothesis, which states that {(s) # 0 for o > %

Upper and lower bounds for {,. Let

Zs(T) = max [{(o +it)|.
1<|¢|]<T

(The restriction |¢| > 1 is only added to avoid problems for the case 0 = 1.) The
following results hold for large 7T'.

(@) Zs(T) > ¢(o) foro > 1.

(b) For ¢ = 1, unconditionally it is known that Z;(7T) = O((log T)%), while on
RH
Z1(T) < 2e” loglogT.

On the other hand, Granville and Soundararajan [11] proved that
Z1(T) = e¥(loglog T + logloglog T — loglogloglog T),

for some arbitrarily large 7. They further conjectured that it equals the above
with an O(1) term instead of the quadruple log-term.

Note from publisher: Paper by Albeverio and Cheng (proof of the Lindelf Hypothesis)?
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(c) For % < ¢ < 1, unconditionally one has Z,(T) = O(T?) for various a > 0,

while on RH
(log T)2—20

(1—o0)loglogT
for some constant A. Montgomery [25] showed that

Vo —1/2 (logT)'=°

20 (loglogT)°

log Zo(T) < A

log Z5(T) >

and, using a heuristic argument, he conjectured that this is (apart from the con-
stant) the correct order of log Z,(T'). In a recent paper (see [22]), Lamzouri
suggests that

(log T)' 7

(loglog T)°

with C(0) = G1(0)°0729(1 —0)°~ !, where

o0 2 (u/2)*"\ du
G1(x)=[0 log< BATE )u1+1/x.

(d) Foro = % unconditionally one has Z%(T) = O(T%(log T)¢) = O(T%156)

(see [17]), while on RH

log Z5(T) ~ C(0)

log Z 1 (T) < A—2&T
o —_—
844 — loglogT

for some constant A. On the other hand, it is known that

log T
log Zy(T) 2 ¢\ ———
2 loglog T

(see [1], [29]). Using a heuristic argument, Farmer et al. ([6]) conjectured that

1
log Z%(T) ~ \/5 log T loglog T.

(e) For o < %, the functional equation for {(s) reduces the problem to the case

o> % So, for example,

1

ZU(T)NZ(I—U)(%)z ’ foro <0.
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Mean values. Foro € (%, 1), the mean-value formula

o0

e - 1
Th_I)nooﬁ _T|§(0—”)| dt:’;ﬁ:;‘@o),

is well-known (see [31]). Furthermore,

1T . o d(n)?  £(20)*
lim — [ |t —inftdi=> = te)”

T—o0o 2T -T

n=1

For higher powers, however, present knowledge is very patchy. It is expected that the
above formulas extend to all higher moments, i.e.,

T o di(n)?

1
lim — —it)**dt =
Jim o7 | @ —inl >

n=1

This is equivalent to the Lindelof Hypothesis.

Examples.
(a) The mean values for {, and {2 imply that {5, {2 € BZ foro € (. 1). Note that
this also implies |¢,|? € BéJr.

For higher powers, however, only partial results are known. For example, it is
known that §§ € Biifo € (1 — % 1). Slightly better bounds are available,
especially for particular values of k, but it is expected that much more holds,
namely: é‘é‘ € BZ foreveryk € Nandall o € (%, 1). This is (equivalent to) the
Lindelof Hypothesis.

(b) Let g(s) = 3.2, % and h(s) = 3.2, 2 be two Dirichlet series which con-

n=1 ns n=1 ns
verge absolutely for s > o¢ and Ns > o1, respectively. Let @ > 0¢ and 8 > 03

and put f(1) = g(a —it)h(B +it). Then f € Wy+ with

; 1 N dmabna .
flg)=— 5 E ;,naJrZ for g = % with (m,n) = 1.
menb

We can prove this by multiplying out the series for g(o —iz) and (B + it). We

have
o0 o0 .
am by, Amby (m\it
fO =3 Y = o ()
m=1 n=1 m,n>1
Yy Y dlmmytoy Ly ey
B menB n) - de+B menB n)
a=1 (::'::)Z:ld d=1 (Z':)Z:ll

o0

C Y (E )




3 Multiplicative Toeplitz Matrices and the Riemann zeta function 95

Further Properties of W+ and Wy. Notation. For a unital Banach algebra A,
denote by G.A the group of invertible elements of A, and by Gy.A, the connected
component of G.A which contains the identity. If A is commutative, then

b

a€Gy A<= a=c¢e for some b € A.

(a) Wiener’s Theorem for W+ and Wy (see [13], Theorems 1 and 2):
Let f € Wgy+. Then 1/f € W+ if and only if infg | f| > 0; ie, GWp+ =
{f € Wy+ tinfg | f| > 0}.

Let f(t) = Y.0°  axn' € Wi and put F(s) = Y oo, 2% for s > 0. Then
1/f € Wy if and only if there exists § > 0 such that | F(s)| > & for all is > 0.

The example f(¢) = 2'* shows that the condition | f(¢)| > § > O forall € R is
not sufficient for 1/ f € Wy.

(b) Let f € GWy+. Then the average winding number' w( f), defined by

arg f(T) —arg f(=T)
2T

o) = fim,

exists, and w( f) = log g for some ¢ € Q7 (see [19], Theorem 27).

It is easy to see that (i) w(fg) = w(f) + w(g), and (i) w(y4) = logq.
(¢c) GoWn = GWy; ie. for f € Wy, we have 1/f € Wy if and only if f = e® for
some g € Wy

2.3 Factorization and invertibility of multiplicative Toeplitz operators
The analogue of the factorization T'(abc) = T(a)T(b)T(c) fora € H®,b €
L%°, ¢ € H® for Toeplitz matrices holds for Multiplicative Toeplitz matrices.

Theorem 2.3. Let f € Wy, g € W+, and h € Wy. Then
M(fgh) = M(f)M(g)M(h).

Proof. We show the matrix entries agree. By Proposition 2.1, fgh € W+ and

(M(NHMEMI)) = 3 MM (g MR

ij

k,l>1

- 5 i)
A 1N min A

SNGECLO]

! Also known as mean motion.
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On the other hand, since all Q*-series converge absolutely we have

fOgOhO = Y flg1)8@2)h(g3)(q19293)"

q1,42,93€QT

> (X Fane(zL )h(q3>)

qeQt "41.93

= > fehg)q™.

qeQt

Hence

Mgy = Feh(%) = Y Flang(——)itan) = (MHM@Mm)

91,43
since 1/¢q; and g3 must range over N. O

In view of Theorem 2.3, it is of interest to know when a given [ € W+ factorises
as f = gh with g € Wiy and h € Wy. For then M(f) = M(g)M(h) and the
invertibility of M( f) follows from knowing when M (g) and M (h) are invertible.
Thus, if 4 is invertible in Wy, then

MMWMMB™Y = Mhh™Y) =M0)=1=M(1)=MMhh) =Mh HM®h),

so that M(h)~! = M(h™'). Similarly, if g is invertible in Wi, then M(g)~! =
M(g™"). It follows then that M( f)~! = M(h)"'M(g)~ L.
Let W@+ denote the set of functions in W@+ which factorise as

f = ~Xxaf+ (3.9)

where f_ € GWr, fr € GWy,and g € Qt.
Note that with f as above, then 1/f = f='yq/q f£' 50 1/f € FWy+. In
particular, F W+ C GWy+. Note that M(y,) is invertible if and only if ¢ = 1.

Theorem 2.4. Let f € FWqy+. Then M(f) is invertible if and only if w(f) = 0. If
this is the case, then M(f)™! = M(f_:l)M(f__l) with fy as in (3.9).

Proof. Write f = f_y4 f+ asin (3.9). Then M(f) = M(f~)M(xq)M(f+). Now
M(f-) and M( fy) are invertible, with inverses M ( f~!) and M( f+_1), respectively.
Thus M(f) is invertible if and only if M () is invertible. But this happens if and
onlyifg = 1.

Since w(f) = w(f-) + w(xq) + w(fy) = w(xg) = logg, we see that M(f)
is invertible if and only if w( f) = 0.

Now suppose w( f) = 0. Then the above gives

M) = (MUOMD) = MO MG = MUTYMGT. D
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Multiplicative coefficients and Euler products.

Definition.
(a) A function a: Q1 — C is multiplicative if a(1) = 1 and

ai

a(pi' - p*) = a(py")---a(pe*),

for all distinct primes p; and all a; € Z. We say a is completely multiplicative if,
in addition to the above,

a(p)=a(p)* and a(p™) =a(p",
for all primes p and k € N.

(b) For a subset S of F, let MF denote the set of f € S for which f (+) is multi-
plicative.

(c) Let f € F and p prime. Suppose that ) ;o | f (p*)| converges. Then define

fo = F ).

kez

Note that f}, is periodic with period %. Define f; 5: T — Cby

3@ = f,(0/1ogp) =D f(ph)ek?  for0 <6 <2m.
keZ

Further, denote by W+ , the set of those f € W+ whose QT -coefficients are
supported on {p¥: k € Z}. (Thus fp € Wgy+ p, by definition.)

Note that, for fixed p, there is a one-to-one correspondence between W+ , and
W(T) via the mapping ¥.

In [14], the Euler product formulas

=Y f@xg=[]rfr and M) =][]M).
4

qeQt p

were shown to hold whenever f € MWQ+.
The analogue of the Wiener—Hopf factorization holds for M WQ+ -functions with-
out zeros.

Theorem 2.5. Let f € MWy+ suchthat f has no zeros. Then f € FWgy+.

Proof. We have [ = ]_[p fp» where f, € Wg+ , and each is non-zero. Hence
f,? € W(T) and has no zeros. Let k, = wind (fpﬂ, 0). Note that k, = 0 for all
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sufficiently large p, since

5O -1= 317 e™I = Y 1f@—0 asp— .

m#0 lg|=p

Letg =[], p¥» (afinite product).
By 1.1(1ii)B8, we have

4
f,ii = Xikpegpv

for some gg, € W(T). Hence
fP = kapegl)’

with g, € W+ ,. Thus for P so large that k, = 0 for p > P, we have
1_[ I = Xa exp{ Z gp}-
p=P P=P

Now f,(t) — 1 as p — oo uniformly in #, so can choose g, so that g,(¢) — 0 as
p — oo (uniformly in #). Hence, for all sufficiently large p (and all ¢), | f, — 1| =
ler — 1| < %|gl,|, so that

gpl =2|fp—11 =2 Z | (P™)I.
m#0
Let g™ = ZPS” gp- Then {g™} is a Cauchy sequence in Wo+: forn > m

8™ —g™ < > qgl=2 > S IFeMI=2) If k)] —0

m<p<n Mm<p=<n m=#0 r>m

as m — oo. Thus g™ — g € Wg+. But each g™ is of the form h, + k, with
h, € Wy and k,, € Wy (since gp € W+ p)- Thus g = h+k withh € Wy, k € Wh.
It follows that f = )(qehek , which is of the required form. O

Note that, as such,

w(f) =D wry) =D kpw(xy) =Y wind(f£.0)log p.
p p

p

where the sum is finite.

Corollary 2.6. Let f € MWgy+ such that f has no zeros and w(f) = 0. Then
M(f) is invertible.

Example. M (L) is invertible for a > 1 with M ()™ = M(1/&y).

I What does 1.1 refer to? Theorem 1.1 does not include an enumeration. Is it meant to be
Subsection 1.1?
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3 Unbounded multiplicative Toeplitz operators and
matrices

The last section has, in various ways, been a relatively straightforward extension of
the theory of bounded Toeplitz operators to the multiplicative setting. The theory of
unbounded Toeplitz operators is rather less satisfactory and not easy to generalise.
Our particular concern is in fact the operator M({y) for ¢ < 1, since we expect
a connection with the Riemann zeta function. The hope is that if a satisfactory theory
is developed for this case, it can be generalised to other symbols.

In this section, we shall therefore concentrate on the particular case when f(n) =

@, when the symbol is { (o — it). Throughout we write ¢, (equivalently, M({y))
foroy.

From §2 we see that for « < 1, ¢, is unbounded. It is interesting to see to
what extent properties of ¢, are related to properties of ¢y. The above theory is only
valid for absolutely convergent Dirichlet series, when the symbols are bounded. But
{(a —it) is unbounded for o < 1.

How to measure unboundedness? We shall investigate two different measures.
The first case can be considered as restricting the range, while in the second case we
shall restrict the domain.

3.1 First measure — the function ®,(/N) With b, defined by a = (a,) il
(bn), i.e., bn = Zdln d_aan/d, let

1/2
®o(N) = sup (Z by |2) .
lall=1

Theorem 3.1. We have the following asymptotic formulae for large N :
®(N) =e"loglog N + O(1) (x=1)

log N)!— 1
logCIDa(N)x% (§<(x<l)

loglog N

logN \3 1
log ® ~(———)". = _
og &4 (N) (10g10gN) (O‘ 2)

Sketch of proof. (For the proof see [15]). We start with upper bounds.
First we note that for any positive arithmetical function g (n),

Dy (N)? ( g(”)).( ;) 3.10
NP =2 7a Elgaz’v‘% g(d)d® (3.10)

n<N

This is because

Z V&(d)ana 2
PR (d ds d%

|bn|? =

1 . g(d)|an/d|2)
f(ggg(d)da) (; a )
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by Cauchy—Schwarz. Writing G(n) = de g(d)~'d~*, we have

n<N n<N dln d<N n<N/d

Taking ||a|l2 = 1 yields (3.10). The idea is to choose g appropriately, so that the
RHS of (3.10) is as small as possible.
For % < a < 1, choose g(n) to be the following multiplicative function: for

a prime power pk let

e ok
g(p*) = Ml’ﬂ Lo =
(p_k) , ifp*>M.

Here M = (2o — 1) log N and 8 is a constant satisfying 1 —a < B8 < «. Note that
g(p*) < g(p) for every k € N and p prime.
We estimate the expressions in (3.10) separately. First

Z g(n) <1—[(1+§:g(€k)) fn(1+ g(p) )Sexp{z i(p) }
n<N P k=1 pa 14 p o V4 p _13
3.11)

and, after some manipulations using the Prime Number Theorem, one finds for the
case o < 1

log Z g( ) < pM (3.12)

oy (1 —a)@+B—1)logM"

Now consider G (n), which is multiplicative because g(n) is. At the prime powers we
have

k
1 1 1 1
kN _
G =) Semon = 2 wtuE X pahr
r=0 o o 2
1 1
<1+

P =1 M= ppa)
(Here we require 8 < «.) Note that this is independent of k. It follows that

1 1 1
G(n)Sexp{Zp 1+ e 2. —pﬂ a}

pln

The right-hand side is maximised when 7 is as large as possible (i.e. N) and N is of
the form N = 2.3 ... P. For such a choice, log N = (P) ~ P, so that (using the
prime number theorem)

1 1 log N)1—@ log N
logmaxG(n)SZ > 1+M°‘ 1~ l(ogl)l N+M“10g1 N
n<N for® oy (1 — o) loglog oglog
(3.13)
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From (3.12) and (3.13) it follows that M should be of order log N for optimality. So
taking M = Alog N (with A > 0), (3.10), (3.12) and (3.13) then imply

pAl— 1 1\ (log N)I—®
21—a)a+ B —1) M) W) loglog N
i

for every B € (1 —a,a) and A > 0. Since a7p— decreases with B, the optimal

choice is to take B arbitrarily close to «. Hence we require infy~o #(1), where

log ®a(N) < (

ol 1 1
I—oa—D (-a 2=

h(}) =

Since h'(A) = #(20}_—1 — 1), we see that the optimal choice is indeed A = 2o — 1.
Substituting this value of A gives
(1+ 2a—1)"%) (logN)'

2(1 —a) loglog N

log @4 (N) <

For @ = 1, we use the same function g(n) as before (though with possibly differ-
ent values of M and ). From (3.11) it follows that

g _ (1) ( M
2 =1 G==) 11 )

n<N D<M p

By Mertens’ Theorem, the first productis e” log M +O(1), while M# Zp>M p 1P =
O(1/log M), and so

2 @ = (ey log M + 0(1)) exp{O(1/log M)} = e” log M + O(1). (3.14)
n<N

For the G(n) term we have, as for the @ < 1 case,

1 1
G(pv*) < )
(r*) = 1—%+M(1—pﬂ—1)

Thus, with N =2.3... P,

1 -1/
G(N) < [1] (1 - %)(1 =T _pf_l))

p=P

= (ey log P + 0(1)>(1 + 0(#&))

Taking M = log N and noting that P ~ log N, the right-hand side is e? loglog N +
O(1). Combining with (3.14) shows that

®1(N) <e’loglogN + O(1).
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The case o = % The function g as chosen for o € (%, 1] is not suitable for
an upper bound as we would require % < B < %! Instead we take g to be the

multiplicative function following: for a prime power p¥, let
M 3
k .
by = minf1. (),
p*(log p)?

Here M > 0 is independent of p and k and will be determined later. Thus g( pk ) =1
if and only if p¥(log p)? < M. Note that g(p¥) < g(p) < 1 forall k > 1 and all
primes p. Thus (3.11) holds with a = % and (using the prime number theorem)

g(n) 1 1 v M
log ==5 Y ——+vM > ~ . (3.15)
= Jn [ Jr—1 _=, plogp logM

(log M)2 PR g )2

(The first sum is of order ~/M /(log M)? and the main contribution comes from the
second term.)
Regarding G(n), this time we have?

k k
Gm =[] 60 =[] (1 +Z# - \/%Zlogp),
r=1 r=1

prin pkln
so that
logG(n)fz;-l—LZklogpflogn+2 ! .
pln VPl mpklln VM pln vr-l

The right-hand side above is maximal whenn = N = 2.3... P, hence

log N " 1 logN  2,/logN
M = JP M loglogN’

Combining with (3.15), (3.10) then gives
VM " log N " V9og N
2logM 2 /M loglogN '’

The optimal choice for M is easily seen to be M = log N loglog N, and this gives
the upper bound in (iii).

Now we proceed to give lower bounds.

For a fixedn € N, let

logmax G(n) <
n<N

log @1 (N) <

ag = if d|n, and zero otherwise.

1
Vd(n)

2Here as usual, pX ||n means p¥|n but p¥T1 fn.
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Then ||a||> = 1, while for d |n

1 1 _a(d
by - 1 _old)

V() 47 ¢ - Jdn)

Hence for N > n,

S P = Y03 = %n) 3 0—ald)? = na(n).

k<N din dln

With this notation ®,(N) > max,<y /1«(n), and the lower bounds follow from
the maximal order of 7y (7). For % < a < 1 this can be found easily. Since 14 (p) =
1+ p7*+ %p‘z"‘ for p prime, we find forn = 2.3... P (so that logn ~ P) that

i [0+ 20(5) -l o 22

p=<P PP

— ex %U + 0(1))1’1_“} — ex {(1 + 0(1))(10g”)1_a}
- (1—a)logP | P (1 —a)loglogn |

Now, if # is the k™ number of the form 2.3--- P (i.e., tx = p1--- pr), thenlogty ~
klogk ~logtyyq. Hence forty < N < tyy1,log N ~ klogk. It follows that

[~ (1+o(1)(log#)'™) _ (1+o(1))(log N)'—*
Pa(N) 2 Vila(li) = exp{ 2(1 — o) loglog#x } B exp{ 2(1 —a)loglog N } )

For o = 1, we have to be a little subtler to obtain max, <y +/71(n) = e loglog N +
O(1). We omit the details, which can be found in [15].

For the case o = % the above choice doesn’t give the correct order and we lose
a power of loglog N . Instead, we follow an idea of Soundararajan [29]. Let f be the
multiplicative function supported on the squarefree numbers whose values at primes

pis

(%)1/210;11, for M < p <R,

0, otherwise.

f(p) = {

Here M = log N(loglog N) as before and log R = (log M )?.
Now take a, = f(n)F(N)~'/2, where F(N) = D n<N f(n)? so that
don <N a2 =1. Then by Holder’s inequality

) ey RSO
(222) = S anhn = gy 2o Y VAT @)

_ L 3 f(:? Y f@> (3.16)
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Now using ‘Rankin’s trick’? we have, for any 8 > 0

f@) fn)
anfz > f(d)zzznlj’z( o @y, f(d)z)

n<N d=<N/n n<N d=>1 d>N/n
(n,d)y=1 (n.d)y=1 (n,d)=1
B
= > (1 s02) + o () TL(+ 2 r02) ) )
n=<N ptn ptn

(3.17)

The O-term in (3.17) is at most a constant times

<5 X St T (148 £07) = 55 TT(14 28 12+ 0272 1),
D

n<N pin

while the main term in (3.17) is (using Rankin’s trick again)

[1(+ 702+ Z8) + o35 T1(1+ 102+ #720) )
D p

NB

Hence (3.16) implies
0\ 1 £(p)
(,;b’%) = V) (l:[(l I )

+0(# ]_[(1 + 0P f(p) + pﬂ_”zf(p))))-

p

The ratio of the O-term to the main term on the right is less than

exp{—ﬁlogN+ > 0 -n(rwr 573)},

M=<p<R

which equals

1/2
—Blog N ‘3—1( M M )}
eXp{ plog =+ MSszsR(p ) plogp)® | pliog p)

Take B = (log M)~3. The term involving M /2 is at most (log N)!/2*¢ for every
¢ > 0, while the remaining terms in the exponent are (by the prime number theorem

3fcy > 0, thenforany B > 0,3, v cn <x B3 02 nbey.
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in the form 7(x) = li(x) + O(x(log x)~4) for all A)

R /(B
P —1 log N
—BlogN + M dt o ——
plogN + LMWP'+QmmmJ

Blogn + v [ —9 1o ,BZM/R d

= — (0] _—

g u t(logi)? M tlogt
log N logloglog N

loglog N

after some calculations.
Finally, since F(N) < ]_[p(l + f(p)?), this implies

1 S/ (p)
@y/2(N) > - 1+ .
1 2 N,QSR( p2(1+ f(p)z))

for all N sufficiently large. Hence

log ®1/(N) 2 M2 >
M<p<R

1 ( log N )1/2
p(logp)  \loglog N

as required. O

Remark. The result for % <a<lis

log N)1— 1+ Qa—1)"%) (logN)'™«
(02 M)~ | oy < (L e = D7) (og Ny =
2(1 —a)loglog N 2(1 — @) loglog N

It would be nice to obtain an asymptotic formula for log @, (N). Indeed, it is possible
to improve the lower bound at the cost of more work by using the method for the case
o= %, but we have not been able to obtain the same upper and lower limits.

Connections between ®,(/N) and the order of |{(x + it)|. The lower bounds

obtained for ®, (N) for % < a < 1 can be used to obtain information regarding the

maximum order of {(s) on the line Ns = «.
Proposition 3.2. With b, = Zdln d~%a, q we have, for any a,

_ Amtn (m, n)>* n)3«
DIl = ) T ka

n<N mn<N k<[m ]

Proof. We have

— 1 1 _
(bal? = baby = —= ) c*d%acig = —- ) c*dacay,
cln,dln [c,d]|n
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since c|n, d|n if and only if [c, d]|n. Hence

1 c*d%acag
2 _ o g, = _ ¢ & telq
2 InP= D) tdtadi ) m= ) g 2 o
n<N c,d<N n<N,[c,d]|n c,d<N _[L d]

by writing n = [c, d]k. Since (¢, d)[c, d] = cd, the result follows. O
It follows that if @, > 0 for all n and « > 1, then

S b <ty Y dnn I

o
n<N m,n<N (mn)

20
) (3.18)

Theorem 3.3. Let% <o < landleta € I? with |a||l, = 1. Let An(t) =
Zf:;l apn'. Let N < T*, where 0 < A < %(ot — %) Then for some n > 0,

2a
—[ e+ inPlax P di = ta) 0 DT 4 o). (19

m,n<N

Proof. We shall assume % < o < 1, adjusting the proof for the case « = 1 after-

wards. For @ # 1, we can integrate from O to T since the error involved is at most
O(N/T) =0(T™"). ‘
Starting from the approximation {(a +it) =, _, n~*t 4+ 0@™Y), we have

1
) B

n<t

2

S +in)|* = + 0@,

Let k,/ € Nsuch that (k,/) = 1. Let M = max{k,/} < T. The above gives

T ) kit T 1
[0 G +inP(T) dr=f0 ‘Z+

The integral on the right is

2 ) = % G L ()

ax{m,n}

2(%)” dt + O(T>2),

The terms with km = [n (which implies m = rl,n = rk with r integral) contribute

1 Z T—rM §(2a)T+O(M2°‘_1T2_2“>

(ki) S, 7® (k)™ (ki)®
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The remaining terms contribute at most

v EE DD —
mneT (mn)“|10gl | - (kmln)“|logﬁ|
km;é_ln km;é_ln

1

SIEIED> .
- mi

my < KT <IT (miny)*|log 7 |

my #n
1

<Y
— o m

miome g (in)*[log

my # n

= O(M*(MT)*>**log(MT))
= O(M*T* 2 10gT),

using Lemma 7.2 from [31]. Hence

T ) kit {(2a) 2
/0 |§(a+lt)|2(7> dt = (kl)aT+0(M2T2 2 100 T).

It follows that for any positive integers m,n < T,

T o
/ |C(x + it)|2( ) dt = MT + O(max{m,n}>T> **logT).
0 n (mn)«

Thus, with Ay (¢) = Z;Izv=1 ayn't,

T
/0 2 + iDPlAN O di

> an [ttt inP(2) a

m,n<N

={@a)T )

mn<N

+O(T2_2°‘10gT Z max{m,n}2|aman|).

mn<N

AmTn (m,n)>*

(mn)*

The sum in the O-term is at most N2(3_,, -y lan|)> < N3, using Cauchy-Schwarz.
Hence B

Aman(m,n)>* N3logT
(mn)a + 0( T2e—1 )

—/ G+ inPlANOPdr = 2a) Y

m,n<N

Since N3 < T3* and 31 < 2« — 1, the error term is O(T ") for some 7 > 0.
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If « = 1 we integrate from 1 to T instead and the O-term above will contain an
extra log T factor, but this is still O(T~7"). O

We note that with more care the N3 could be turned into an N2, so that we can

take A < o — % in the theorem. This is however not too important for us.

Corollary 3.4. Let % < a < 1. Then for every ¢ > 0 and N sufficiently large,
max £ (e + )] 2 Do (N3@=2)=8) 4 O(N ™) (3.20)
1<

for some n > 0.

Proof. Leta, > 0be such that ||a|, = 1, and take N = T* with A < %(a — %) By

(3.18) and (3.19),

T
> Il < 7 [+ inPlAN O ar -+ 0T
n<N

< / 21 r A 2d T_n
_Itnﬁaygﬁ(otﬁ-zt)l T/o Ay @©)|>dt + O(T™")
= max ¢ (e + it)|2n;v lan>(1 + O(N/T)) + O(T™™)

using the Montgomery and Vaughan mean value theorem. The implied constants in
the O-terms depend only on T and not on the sequence {a, }. Taking the supremum
over all such a, this gives

2 _ 2 2 -
Dy (N) sup Z|bn| 51}15a%(|§'(a+1t)| + O(T™),

lallz=1, 2
for some 1 > 0, and (3.20) follows. O

In particular, this gives the (known) lower bounds

c(logT)'~@ }

] >
Itnﬁaygk(a +inl = exp{ loglog T

for 1 <a < land max;<7 [{(1+it)| > e” loglog T + O(1) (obtained by Levinson
in [23]).

Morever, we can say more about how often |{(« + i¢)| is as large as this. For
AeRandc > 0, let

Fq(T) = {t €[1,T]:1¢(1 +it)] > e loglog T —A}. (3.21)
3 - . c(log 7)™ :
Fae(T) = {z €[0.7): [¢(@+in)] = exp{w}}. (3.21)
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We outline the argument in the case % < a < 1. We have

1
Sml=(f . (T))|z<a+n)|2|AN<z>|2dz+0(T—">.

n<N
(3.22)
The second integral on the right is at most

2c(log Y=y 1 [T 2¢(log )1
CXP{M}._/ Ay di = 0 exp{M} ,
loglog T T Jo loglog T

while, by choosing a, = d(N)~!/2 for n|N and zero otherwise, the LHS of (3.22) is
at least 74 (N). Every interval [T*/3, T*] contains an N of the form 2.3.5... P. As

such, ne(N) > exp{M

!/ /
loglog T } for some ¢’ > 0. Hence, for 2¢ < ¢/,

7l iR o R = el

¢'(log T)l_“}
T JFuetr '

2loglog T

We have [¢(a + it)| = O(T") for some v and |[Ay (¢)|?> < d(N) = O(T?), so

1
7 e o S +it) P AN ()P di < TP 71 (Fy o (T)).

Thus p(Fy.c(T)) > T172"7¢ for all ¢ sufficiently small.
In particular, since v < 1%“, we have:

Theorem 3.5. For all A sufficiently large (and positive),

logT
H(F4(T)) = T expl—a—o—
loglog T
for some a > 0, and for all ¢ sufficiently small, W(Fyc(T)) > TA+20/3 for all
sufficiently large T. Furthermore, under the Lindelof Hypothesis, the exponent can
be replaced by 1 — e¢.

3.2 Second measure — ¢, on M? and the function M, (T) Fora < 1,
@4 is unbounded on /2 and so ¢y (/%) ¢ 1? (by the closed graph theorem* — see [30],
p. 183). However, if we restrict the domain to M2, the set of multiplicative elements
of 12, we find that 9(M?) C [2. More generally, if f is multiplicative then, as we
shall see, ¢ s (M?) C I? in many cases (and hence ¢ r (M?) C M?).

4Being a ‘matrix’ mapping, @ is necessarily a closed operator, and so @ (I2) C 12 implies @4 is bounded.
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Notation. Let M? and M? denote the subsets of /? of multiplicative and completely
multiplicative functions, respectively. Further, write M2+ for the non-negative mem-
bers of M?, and similarly for M2+

Let M3 denote the set of M? functions f for which f * g € M? whenever
g € M?; that is,

M2={feM’geM?> = fxge M?.

Thus for f € M3, ¢ (M?) C M2
It was shown in [16] that M? is not closed under Dirichlet convolution, so M% #*
M?2. A criterion for f € M? to be in M3 was given, namely:

Proposition 3.6. Let f € M? be suchthaty e, | f( P*)| converges for every prime
pandthat 3 32, | f(p¥)| < Afor some constant A independent of p. Then f € M2,

On the other hand, if f € M? with f > 0 and for some prime p, f(pg)
decreases with k and > p—, f(pg) diverges, then f ¢ M3.

The proof is based on the following necessary and sufficient condition: Let f, g €
M? be non-negative. Then f * g € M? if and only if

DT DT ™M) f(p" ) (p"TF)  converges.

P mn>1k=0

This can be proven in a direct manner.
Thus, in particular, M2 C M2. For f € M2 if and only if | f(p)| < 1 for all
primes p and Y | f(p)|> < oo. Thus

k |f(P)|
Z|f( =T = A

independent of p.
For example, (n™%) € M3 fora > %

The “quasi-norm” M (T). Let f € M3. The discussion above shows that
@ r(M?) C M? but, typically, ¢ 7 is not ‘bounded’ on M2 (if f & I') in the sense
that’ ||¢ rall/[la| is not bounded by a constant for all @ € M?. A natural question
is: how large can ||¢ ra| become as a function of ||a||? It therefore makes sense to
define, for T > 1,

M¢(T) = sup ||(pfa||.
cvelal

We shall consider only the case f(n) = n~%, although the result below can be ex-
tended without any significant changes to f completely multiplicative and such that

5Here, and throughout this section || - || = || - || is the /2-norm.
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Sl is regularly varying of index —« with @ > 1/2 in the sense that there exists
a regularly varying function f (of index —«) with f(p) = f(p) for every prime p.
We shall write M s (T') = My (T) in this case.

Theorem 3.7. As T — o0
M (T) = e¥(loglog T + logloglog T + 2log2 — 1 + o(1)), (3.23)
whilefor% <o <l,

(log T)'

B(i’ 1 - i)a
(loglog T)*"

o (3.24)

log M, (T) = ( + o(l))
Sketch of proof for the case % < o < 1 (for the full proof see [16]). We consider first
upper bounds. The supremum occurs for ¢ > 0, which we now assume. Write

a = (an), paa = b = (b,). Define o), and B, for prime p by

[e.e] [e.e]
2 2
Olp:Zapk and ,Bp:szk-
k=1 k=1

By the multiplicativity of a and b, T> = |la||> = [],(1 + a,) and [|b|> = [],(1 +
Bp). Thus

lowell _ pp [L+6s

llal] l+a,

P
Now fork > 1
k
bpk = Zp_mapk—r =au +p bk,
r=0

whence

bik = aik + 2p_aapkbpk—1 + p_zabik_l .

Summing from k = 1 to co and adding 1 to both sides gives
o
L4 Bp =140, +2p > auby—1 + p2*(1+ Bp). (3.25)

By Cauchy—Schwarz,

S0, on rearranging,

1+ Bp) —

2p7 % Jap (1 + Bp) - 1 +ap
1= p—2«

p T l—p2
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Completing the square we obtain

—o 2
/—1+ﬁp_p /0 p - I +oap '
1— p—Zoz - (1 _ p—2a)2

The term on the left inside the square is non-negative for every p since 1 + 8, >

1+a,
1_[,—2(1 ’

—2a
which is greater than ﬁ for o > % Rearranging gives

1-|—/3pE 1 (1+L % )
l+a, ~ 1—p2@ PEV 1 +a,

Lety, = ljl_—gp Taking the product over all primes p gives
lesal Y Y
”2” < {(2a) ]‘[(1 + p—z) < ¢(2a) exp{z p—g} (3.26)
p b4

Note that 0 < y, < 1 and ]_[p # = T2, The idea is to show now that the main
~—Vp

contribution to the above sum comes from the range p < log T loglog T'.

Let e > 0 and put P = log T loglog T. We split up the sum on the right-hand
side of (3.26)into p <aP,aP < p < AP,and p > AP (for a small and A large).
First,

al—ozpl—ot (log T)l—oz

Do v Y P~ <e , (3.27)
p=aP p<aP (1—-oa)logP (loglog T)“

for a sufficiently small. Next, using the fact that log 72> = log[], ﬁ >, Vhs

we have
1/2 1—2a p1—2a 1/2
_ _ 2A P logT
S (LY i) 2 (Ym )
p>AP p>AP p>AP (2 — 1) log

(log T)'~*(loglog T)™“ - (log T)1—@
412 Ja—1/2 “loglog T)®

for A sufficiently large. This leaves the range aP < p < AP and the problem
therefore reduces to maximising
S

a
aP<p<AP p

(3.28)

subject to 0 < y, < 1 and [] 71 lyz = T2. The maximum clearly occurs for y,
—/p

decreasing (if y,» > y, for primes p < p’, then the sum increases in value if we
swap y, and y,/). Thus we may assume that y,, is decreasing.
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By interpolation we may write y, = g(%), where g:(0,00) — (0, 1) is con-

tinuously differentiable and decreasing. Of course, g will depend on P. Let h =
log 1_1?, which is also decreasing. Note that

- ra
210g T = Zh(P) >
p
for P sufficiently large, for some constant ¢ > 0. Thus h(a) < C, (independently of
7).

Now, for F:(0,00) — [0,00) decreasing, it follows from the Prime Number
Theorem in the form 7 (x) = li(x) + O(W) that

b
X xF(a
> F(f) o x/ F+ 0((10 (x))z)’ (3.29)
ax<p<bx g a g
where the implied constant is independent of F' (and x). Thus

p P A A
2log T > Z h<F)N10gP/a hwlogT/ h.

aP<p<AP a

14 :
] h<F) > h(a)w(aP) > cah(a)logT,

p=a

Since a and A are arbitrary, fooo h must exist and is at most 2. Also, by (3.29),

—a —a pA
Y Lok Y w58 g [

p*
aP<p<AP aP<p<AP

As a, A are arbitrary, it follows from above and (3.26), (3.27), (3.28) that

o0
log ”*ﬁf ﬁ’” < ( / 80 4 o(l))f(longoglog T)logT.
a 0 u

Thus we need to maximise fooo g(u)u=*du subject to fooo h < 2 over all decreasing
g:(0,00) — (0, 1). Since 4 is decreasing, one finds that xs(x) — 0 as x — oo and
asx — 0%,

For the supremum, we can consider only those g (and /) which are continuously
differentiable and strictly decreasing, since we can approximate arbitrarily closely by
such functions. On writing g = s o h, where s(x) = +/1 — e™*, we have

/Ooo 800 4y — [g(u)ul_a]oo 1 ia /Ooo g '~ du

u® 1—a Jo

1 o0

-T2 s"(h(u))h (u)u'~% du
1 h(1)

=1 s' () (X)) % dx,
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where [ = h™1, since \J/ug(u) — 0 as u — oo. The final integral is, by Holder’s

inequality, at most
h(ot) . a h(ot) -«
([ s’ /"‘) (/ 1) . (3.30)
0 0

But [7C) [ = — [yl (w)du = [ h < 2,50

/°° g(u) Iy < 21—« /°°S,1/a *
0 uv T 1—-« 0 ’

A direct calculation shows that® fooo (sHVe = 271/ "‘B(é, 1 - ﬁ) This gives the
upper bound.

The proof of the upper bound leads to the optimal choice for g and the lower
bound. We note that we have equality in (3.30) if //(s")"/® is constant, i.e., [(x) =
s’ (x)"/® for some constant ¢ > 0 — chosen so that fooo [ = 2. This means that we

take
b= (3)) a3+ 3y ()7

from which we can calculate g. In fact, the required lower bound can be found by
taking a, completely multiplicative, with a, for p prime defined by

(P
(lp - gO(P )’
where P = log T loglog T and gy is the function
2

go(x) = |1— :
’ 14+ 1+ (5%

with ¢ = 21+1/“/B($, 1-— ﬁ). As such, by the same methods as before, we have
la|| = T'+°M and

lpaall o (P P17 % go(u)
log ——— = Zp "‘go(F> + 0(1) ~ log P [0 0= du.

o
lal ~ 2 u
. : . B(G,1—55)” :
By the choice of gg, the integral on the right is ﬁ, as required. O
—o

Remark. These asymptotic formulae bear a strong resemblance to the (conjectured)
maximal order of |{(« + i T)|. It is interesting to note that the bounds found here are
just larger than what is known about the lower bounds for Z,(T') (see the interlude
on upper and lower bounds on {(s), especially items (b) and (c)). We note that the
constant appearing in (3.24) is not Lamzouri’s C(«) since, for « near % the former is

roughly \/alil while C(a) ~ ﬁ
-2

®The integral is 271/ [ e™/¥(1 —e™¥)~1/2¢gx = 2= 1/ fol tl/a=1(q —p)—1/2e gy
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Lower bounds for ¢, and some further speculations. We can study lower bounds
of ¢, via the function

my(T) =
«(T) cer  |alf
lal=T

Using very similar techniques, one obtains results analogous to Theorem 3.7:

1 6e?
= L(loglogT + logloglog T 4+ 21log2 — 1 4+ o(1))
mi(T) w2
and 1 1 1
1 B(5,1—5-)%(logT)' ™
log G )" l0g T) for%<a<1.

mq(T) - (1 —a)2%(oglog T)*

We see that mq(T') corresponds closely to the conjectured minimal order of |{ (o +
iT)| (see [11] and [25]).

The above formulae suggest that the supremum (respectively infimum) of
loeall/lla]l with a € M? and ||la|| = T are close to the supremum (resp. infi-
mum) of |{,| on [1,T]. One could therefore speculate further that there is a close
connection between ||pqa||/||a|| (for such a) and |{(x + i T)|.

Heuristically, we could argue as follows. Consider

1 T 00 ) 2
7/ L@ =it ann™| dt. (3.31)
0 n=1

This is less than

2
dt ~ Zo(T)?|al?,

1 (7S :
Zo(T)?- 7/0 Zann”
n=1

by the Montgomery—Vaughan mean value theorem (under appropriate conditions).
On the other hand, (3.31) is expected to be approximately

1 (TS .

it

| b
n=1

Putting these together gives

2 00
2 2
di =Y |bal* = ||gaa|®.
n=1

gl
llall

< Za(T).

The left-hand side, as a function of ||a|, can be made as large as F(]|a||), where

F(x) = exp{cq %}. If the above continues to hold for ||a|| as large as T', then

My(T) < Zy(T) would follow. Even if it holds for ||a| as large as a smaller power
of T, one would recover Montgomery’s 2-result.
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Alternatively, considering (3.31) over [T, 2T,

1 2T
7| e

for some ¢ty € [T,2T] and, using the Montgomery—Vaughan mean value theorem
(assuming it applies), this is approximately

nit

dt (3.32)

1 2T | *©
= [ 2._
tatimPog [ )Y

o0
E(a +it0)> ) lanl* = 1E(a + ito)*]lal.
n=1
On the other hand, formally multiplying out the integrand, by writhing {(a — it) =
Z:il ’% and formally multiplying out the integrand, the left-hand side of (3.32)
becomes (heuristically)

1 /ZT 0
r T n=1

2
annit

[ele)
di ~ Y |bal? = llgaall®
n=1

Equating these gives

lgaal .
2 & [C (i)
]

Clearly there are a number of problems with this. For a start, we need ¢,a €
[2. More importantly, the error term in the Montgomery—Vaughan theorem contains
> o2 i nlan|?, which may diverge. Also, a, and hence ||a|| may depend on 7', and
finally, the series for { (o — it) doesn’t converge for o < 1.

If a, = 0 forn > N, the above argument can be made to work, even for N
a (small) power of T (see for example [15]), but difficulties arise for larger powers
of T.

There seem to be some reasons to believe that the error from the Montgomery—
Vaughan theorem should be much smaller when considering products. These occur
when a, is multiplicative. For example (with Q = [ | p<p Psothatlog Q = 6(P) ~
P by the Prime Number Theorem)

1 T
it
7 ), H(1+p )

The ‘main term’ is d(Q) = 27" while the error is at least . However the left-
hand side is trivially at most 47(¥ ), so the error dominates the other terms if P >
(14 8)logT. If, say, P is of order log T loglog T (which is the range of interest),
then 7(P) = log T, so 27P) is like a power of T, but Q is roughly like 7'°gle 7 _
far too large.

Thus it may be that for a, completely multiplicative, it holds that

2T 1
—/ a=inP|[] 7=
D

p<P

dt

Zdtt

Tlajo

di =Y "1+ 0(%2}1).

d|Q d|Q

2
. 1
di ~ |t(a+in)| ] T
p<P —lap|
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for P up to clog T loglog T'. This suggests the following might be true:
(a) givena € M? with ||a|| = T, there exists t € [T, 2T] such that

a
lall

(b) given T > 1, there exists a € M? with ||a|| = T such that

a
[~
lall
Here, ~ means something like log-asymptotic, ~, or possibly even =. Thus (a)

implies My (T) < Z4(T), while (b) implies the opposite. Together they would imply
we can encode real numbers into M?2-functions with equal /2-norm, such that ¢, has
a similar action as {,.

Closure of MB;I? We finish these speculations with a final plausible conjecture
regarding the closure under multiplication of functions in BRZI with multiplicative co-
efficients. R

Let Mo B% denote the subset M BZ of functions f for which /' € M. Recall
that M2 is the subset of M? for which g € M? = f x g € M?2. This suggests the
following conjecture:

Conjecture. Let f € MB% and g € MoB2. Then fg € MB3Z.
In particular, /\/lBé/\/ch2 = MB§]. Since ¢, € /\/chl%I for > 1, this would

2 b
imply ¢k € MBZ foreveryk € Nanda > % which implies the Lindelof hypothesis.

4 Connections to matrices of the form
.o . . 2

(fG@ /G5 T))ij=n
The asymptotic formulae for ® ¢(N) in Theorem 3.1 can be used to obtain infor-
mation on the largest eigenvalue of certain arithmetical matrices. Various authors
have discussed asymptotic estimates of eigenvalues and determinants of arithmetical

matrices (see for example [4], [5], [24] to name just a few).
Let Ay (f) denote the N x N matrix with ij®-entry £(i/j) if j|i and zero oth-

erwise. (i.e. An(f) = My ( f )). As noted in the introduction, these matrices behave
much like Dirichlet series with coefficients f(n); namely,

An(f)ANn(g) = AN(f * &).
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In particular, Ay (f) is invertible if f has a Dirichlet inverse, i.e., f(1) # 0, in which

case AN (f)~' = An(f7).
Suppose for simplicity that f is a real arithmetical function. (For complex values

we can easily adjust.) Observe that ® s (N )2 is the largest eigenvalue of the matrix

ANNOT AN ().
Indeed, we have (with by, = >, f(d)ansa)

=2 1(5)7(5)aa

i,jln

so that, on noting i, j |n if and only if [Z, j]|n (where [i, j] denotes the lcm of i and

D)
2= sz( )/ (5 )aiei = 3 o aia;.

n=11[i,jlln i,j<N

where (using (i, j)[i, j] = ij)

.
4= 2 (i) ()

[t J1

But bl.(j-v) is also the ij"-entry of Ay (f)T Ax(f), as an easy calculation shows. Thus

Op(N? = sup Y bMaa (3.33)
a?+-+a%, =1 j<N

is the largest eigenvalue of Ay (f)T Ay (f),ie., ® (N) the largest singular value’
of An(f). Thus an equivalent formulation of Corollary 2.2 for f supported on N is:
For f € 1! non-negative, the largest singular value of An (f) tends to || f ||1.

Now if f is completely multiplicative, then

b = 1 (2 )Z f®?2,

—[l /]

which for large N is roughly || f[|3 £ ( G ij)z) for f € [2. This suggests that the matrix

(f((l ])2))l <N has its largest eigenvalue close to ® s (N)?/| f||3. This is indeed
the case.

"The singular values of a matrix A are the square roots of the eigenvalues of AT A (or A*A if A has
complex entries).
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Corollary 4.1. Let f € I? be non- -negative and completely multiplicative. Let An

denote the largest eigenvalue of (f((l ])2))1 <N Then

cI>f(N)2< - s (N3)?
1B =N TN

In particular, for f € 11,

2
lim Ay = ”f”;.
N—oco 17112
Proof. We have
Av= s Z f((l )Z)aia—j (3.34)

a?+-+af =1;;

When f > 0, the supremums in (3.33) and (3.34) are reached for a,, > 0. Thus,
Dr(N)? < | fl3AN

follows immediately.
On the other hand, fori, j < N, [i, j] < N?so

SNz Y f( )a aj Yy S

i,j<N k<N

Taking the supremum over all such a, gives, ®s(N?)> > Ayx Y,y f(k)?, as
required.

Finally, if £ € 1!, then ® ;(N) — || f|}; and so Ay — ”?”1 follows. O
2

The approximate formulae for ®4 (/N ) in Theorem 3.1 lead to:

Corollary 4.2. Let f(n) = n™% and let An(a) denote the largest eigenvalue of
(f((l 1)2))1 ]<N Then

6
An(l) = ;(ey loglog N + 0(1))2,

(log N)' @
loglog N

1 log N
logAN( ) o8
2 loglog N’

log Ay () = ford <a <1,
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