
Multiplicative Toeplitz matrices and the 
Riemann zeta function 

Book or Report Section 

Accepted Version 

Hilberdink, T. (2015) Multiplicative Toeplitz matrices and the 
Riemann zeta function. In: Bringmann, K., Bugeaud, Y., 
Hilberdink, T. and Sander, J. (eds.) Four faces of number 
theory. European Mathematical Society, Zurich, pp. 77-122. 
ISBN 9783037191422 doi: https://doi.org/10.4171/142 
Available at http://centaur.reading.ac.uk/50981/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.4171/142 

Publisher: European Mathematical Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://www.reading.ac.uk/centaur


Chapter 3

Multiplicative Toeplitz matrices

and the Riemann zeta function

Titus Hilberdink
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Introduction

In this short course, we aim to highlight connections between a certain class of ma-

trices and Dirichlet series, in particular the Riemann zeta function. The matrices we

study are of the form

0

B

B

B

B

B

B

@

f .1/ f . 1
2
/ f . 1

3
/ f . 1

4
/ 	 	 	

f .2/ f .1/ f . 2
3
/ f . 1

2
/ 	 	 	

f .3/ f . 3
2
/ f .1/ f . 3

4
/ 	 	 	

f .4/ f .2/ f . 4
3
/ f .1/ 	 	 	

:::
:::

:::
:::

: : :

1

C

C

C

C

C

C

A

; (�)

i.e., with entries aij D f .i=j / for some function f WQC ! C. They are a multiplica-

tive version of Toeplitz matrices which have entries of the form aij D ai�j . For this

reason we call them Multiplicative Toeplitz Matrices.
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Toeplitz matrices (and operators) have been studied in great detail by many au-

thors. They are most naturally studied by associating with them a function (or ‘sym-

bol’) whose Fourier coefficients make up the matrix. With aij D ai�j , this ‘symbol’

is

a.t/ D
1
X

nD�1
antn: t 2 T

Then properties of the matrix (or rather the operator induced by the matrix) imply

properties of the symbol and vice versa. For example, the boundedness of the opera-

tor is essentially related to the boundedness of the symbol, while invertibility of the

operator is closely related to a.t/ not vanishing on the unit circle.

For matrices of the form (�) we associate, by analogy, the (formal) series

X

q2QC

f .q/qi t ;

where q ranges over the positive rationals. Note, in particular, that if f is supported

on the natural numbers, this becomes the Dirichlet series

X

n2N
f .n/ni t :

In the special case where f .n/ D n�˛, the symbol becomes �.˛ � i t/. It is quite

natural then to ask to what extent properties of these Multiplicative Toeplitz Matrices

are related to properties of the associated symbol. Rather surprisingly perhaps, these

type of matrices do not appear to have been studied much at all – at least not in this

respect. Finite truncations of them have appeared on occasions, notably Redheffer’s

matrix [27], the determinant of which is related to the Riemann Hypothesis. Denoting

by An.f / the n � n matrix with entries f .i=j / if j ji and zero otherwise, it is easy to

see that

An.f /An.g/ D An.f � g/; where f � g is Dirichlet convolution;

since the ij th entry on the left product is

n
X

rD1

An.f /irAn.g/rj D
X

j jrji
f
� i

r

�

g
� r

j

�

D
X

d ji=j
f
� i= i TS3

d

�

g.d/

if j ji by putting r D jd , and zero otherwise. With 1 and � denoting the constant

1 and the Möbius functions, respectively, it follows that An.1/An.�/ D In – the

identity matrix. Note also that det An.1/ D det An.�/ D 1. Redheffer’s matrix is

Rn D An.1/ C

0

B

@

0 1 1 	 	 	 1
0 0 0 	 	 	 0

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
0 0 0 	 	 	 0

1

C

A
D An.1/ C En;

TS3 Is this intended to be i=j ?
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say, where the matrix En has only 1s on the topmost row from the 2nd column on-

wards. Then, with M.n/ D
Pn

rD1 �.r/,

RnAn.�/ D In C

0

B

@

M.n/ � 1 � 	 	 	 �
0 0 	 	 	 0

	 	 	 	 	 	 	 	 	 	 	 	
0 0 	 	 	 0

1

C

A
D

0

B

B

@

M.n/ � 	 	 	 �
0 1 	 	 	 0

	 	 	 	 	 	 : : : 	 	 	
0 0 	 	 	 1

1

C

C

A

;

so that det Rn D M.n/. The well-known connection between the Riemann Hypothe-

sis (RH) and M.n/ therefore implies that RH holds if and only if det Rn D O.n
1
2

C"/
for every " > 0. (See also [18] for estimates of the largest eigenvalue of Rn).

Briefly then, the course is designed as follows: In ÷1, we recall some basic aspects

of the theory of Toeplitz operators, in particular their boundedness and invertibility. In

÷2, we study bounded multiplicative Toeplitz operators. This is partly based on some

of Toeplitz’s own work [32], [33] and recent results from [15] and [16], but we also

present new results, mainly in ÷2. Thus Theorem 2.1 is new, generalising Theorem

1.1 of [16], which in turn is now contained in Corollary 2.2. Also Subsection 2.2 and

parts of 2.3 are new.

Preliminaries and Notation

(a) The sequence spaces lp .1 � p < 1) consist of sequences .an/ for which
P1

nD1 janjp converges. They are Banach spaces with the norm

k.an/kp D
� 1
X

nD1

janjp
�1=p

:

The space l1 is the space of all bounded sequences, equipped with the norm

k.an/k1 D supn2N janj. We shall also use lp.QC/, which is the space of se-

quences aq where q ranges over the positive rationals such that
P

q jaqjp < 1,

with analogous norms and also for p D 1.

l2 and l2.QC/ are Hilbert spaces with the inner products

ha; bi D
1
X

nD1

anbn and ha; bi D
X

q2QC

aqbq;

respectively.

(b) Let T D fz 2 C W jzj D 1g – the unit circle. We denote by L2.T/ the space of

square-integrable functions on T. L2.T/ is a Hilbert space with the inner product

and corresponding norm given by

hf; gi D
Z

T

f g D 1

2�

Z 2�

0

f .ei� /g.ei�/ d�; kf k D
s

Z

T

jf j2:
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The space L1.T/ consists of the essentially bounded functions on T with norm

kf k1 denoting the essential supremum of f . (Strictly speaking, L2 and L1

consist of equivalence classes of functions satisfying the appropriate conditions,

with two functions belonging to the same class if they differ on a set of measure

zero.)

Let �n.t/ D tn for n 2 Z. Then .�n/n2Z is an orthonormal basis in L2.T/
and L2.T/ is isometrically isomorphic to l2.Z/ via the mapping f 7! .fn/n2Z,

where fn are the Fourier coefficients of f , i.e.,

fn D hf; �ni D
Z

T

f �n:

(c) A linear operator ' on a Banach space X is bounded if k'xk � C kxk for all

x 2 X . In this case the operator norm of ' is defined to be

k'k D sup
x2X;x¤0

k'xk
kxk D sup

kxkD1

k'xk:

The algebra of bounded linear operators on X is denoted by B.X/.

(d) An infinite matrix A D .aij / induces a bounded operator on a Hilbert space H if

there exists ' 2 B.H/ such that

aij D h'ej ; ei i;

where .ei / is an orthonormal basis of H . Note that not every infinite matrix

induces a bounded operator, and it may be difficult to tell when it does.

(e) For the later sections we require the usual O; o; �; � notation. Given f; g de-

fined on neighbourhods of 1 with g eventually positive, we write f .x/ D
o.g.x// (or simply f D o.g/) to mean limx!1 f .x/=g.x/ D 0, f .x/ D
O.g.x// to mean jf .x/j � Ag.x/ for some constant A and all x sufficiently

large, and f .x/ � g.x/ to mean limx!1 f .x/=g.x/ D 1.

The notation f � g means the same as f D O.g/, while f . g means

f .x/ � .1 C o.1//g.x/.

1 Toeplitz matrices and operators – a brief overview

Toeplitz matrices are matrices of the form

T D

0

B

B

B

B

@

a0 a�1 a�2 a�3 	 	 	
a1 a0 a�1 a�2 	 	 	
a2 a1 a0 a�1 	 	 	
a3 a2 a1 a0 	 	 	
:::

:::
:::

:::
: : :

1

C

C

C

C

A

; (3.1)
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i.e., T D .tij /, where tij D ai�j . They are characterised by being constant on

diagonals.

For a Toeplitz matrix, the question of boundedness of T was solved by Toeplitz.

Theorem 1.1 (Toeplitz [32]). The matrix T induces a bounded operator on l2 if and

only if there exists a 2 L1.T/ whose Fourier coefficients are an .n 2 Z/. If this is

the case, then kT k D kak1.

We refer to the function a as the ‘symbol’ of the matrix T , and we write T .a/.

Sketch of Proof. For a 2 L2.T/, the multiplication operator

M.a/W L2.T/ �! L2.T/; f 7�! af

is bounded if and only if a 2 L1.T/. If bounded, then kM.a/k D kak1. The matrix

representation of M.a/ with respect to .�n/n2Z is given by

hM.a/�j ; �i i D ha�j ; �i i D
Z

T

a�j �i D
Z

T

a�i�j D ai�j ;

i.e., by the so-called Laurent matrix

L.a/ WD

0

B

B

B

B

B

@

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 a0 a�1 a�2 a�3 a�4 	 	 	
	 	 	 a1 a0 a�1 a�2 a�3 	 	 	
	 	 	 a2 a1 a0 a�1 a�2 	 	 	
	 	 	 a3 a2 a1 a0 a�1 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

1

C

C

C

C

C

A

: (3.2)

The matrix for T is just the lower right quarter of L.a/. We can therefore think of T
as the compression PL.a/P , where P is the projection of l2.Z/ onto l2 D l2.N/.
An easy argument shows that T is bounded if and only if a 2 L1, and then kT k D
kL.a/k D kak1. �

Hardy space. Let H 2.T/ denote the subspace of L2.T/ of functions f whose

Fourier coefficients fn vanish for n < 0. Let P be the orthogonal projection of

L2 onto H 2, i.e., P.
P

n2Z fn�n/ D
P

n�0 fn�n. The operator f 7! P.af / has

matrix representation (3.1). For, with j � 0 (so that �j 2 H 2.T/),

hT .a/�j ; �i i D
Z

T

P.a�j /�i D
Z

T

P

�

X

n2Z
an�nCj

�

��i D
X

n�0

an�j

Z

T

�n�i D ai�j

if i � 0, and zero otherwise. Hence, we can equivalently view T .a/ as the operator

T .a/W H 2.T/ �! H 2.T/; f 7�! P.af /:
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1.1 C.T/, W.T/, and winding number Let C.T/ denote the space of con-

tinuous functions on T. For a 2 C.T/ such that a.t/ ¤ 0 for all t 2 T, we de-

note by wind.a; 0/ the winding number of a with respect to zero. More generally,

wind.a; �/ Dwind.a � �; 0/ denotes the winding number with respect � 2 C. For

example, wind.�n; 0/ D n.

The Wiener Algebra is the set of absolutely convergent Fourier series:

W.T/ D
( 1
X

�1
an�n W

1
X

�1
janj < 1

)

:

Some properties:

(i) W.T/ forms a Banach algebra under pointwise multiplication, with norm

kakW WD
1
X

�1
janj:

(ii) (Wiener’s Theorem) If a 2 W and a.t/ ¤ 0 for all t 2 T, then a�1 2 W .

(iii) If a 2 W.T/ has no zeros and wind.a; 0/ D 0, then a D eb for some b 2 W.T/.

We have

W.T/ � C.T/ � L1.T/ � L2.T/:

1.2 Invertibility and fredholmness Let A be a bounded operator on a Banach

space X . TS2

(i) A is invertible if there exists a bounded operator B on X such that AB D BA D
I . As such, B is the unique inverse of A, and we write B D A�1. The spectrum

of A is the set

�.A/ D f� 2 C W �I � A is not invertible in Xg:
The kernel and image of A are defined by

Ker A D fx 2 X W Ax D 0g; Im A D fAx W x 2 Xg:

(ii) The operator A is Fredholm if ImA is a closed subspace of X and both KerA
and X=ImA are finite-dimensional. As such, the index of A is defined to be

Ind A D dim Ker A � dim .X=Im A/:

For example, T .�n/ is Fredholm with Ind T .�n/ D �n.

Equivalently, A is Fredholm if it is invertible modulo compact operators; that

is, there exists bounded operator B on X such that AB �I and BA�I are both

compact.

The essential spectrum of A is the set

�ess.A/ D f� 2 C W �I � A is not Fredholm in Xg:
Clearly �ess.A/ � �.A/. Note that A invertible implies A is Fredholm of index

zero. For Toeplitz operators, the converse actually holds (see [3], p. 12).

TS2 Please check the range of the following enumeration.
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1.3 Hankel matrices These are matrices of the form

H D

0

B

B

B

B

@

a1 a2 a3 a4 	 	 	
a2 a3 a4 a5 	 	 	
a3 a4 a5 a6 	 	 	
a4 a5 a6 a7 	 	 	
:::

:::
:::

:::
: : :

1

C

C

C

C

A

; (3.3)

i.e., H D .hij /, where hij D aiCj �1. They are characterised by being constant on

cross diagonals. The boundedness of H was solved by Nehari, and the compactness

of H by Hartman.

Theorem 1.2 ([26], [12]). The matrix H generates a bounded operator on l2 if and

only if there exists b 2 L1.T/ .with Fourier coefficients bn/ such that bn D an for

n � 1. Furthermore, the operator H is compact if and only if b 2 C.T/.

We refer to the function a as the ‘symbol’ of the matrix H , and we write H.a/.
Given a function a defined on T, let Qa be the function

Qa.t/ D a.1=t/ .t 2 T/:

Proposition 1.3. For a; b 2 L1.T/,

T .ab/ D T .a/T .b/ C H.a/H. Qb/

H.ab/ D H.a/T . Qb/ C T .a/H.b/:

Proof. The matrix L.a/ in (3.2) is of the form

L.a/ D
�

T .a/ H. Qa/

H.a/ T .a/

�

:

Since L.ab/ D L.a/L.b/, the result follows by multiplying the 2 � 2 matrices. �

As a special case, we see that T .abc/ D T .a/T .b/T .c/ for a 2 H 1; b 2
L1; c 2 H 1. The space H 1 is defined analogously to L1. (T .a/ is upper-

triangular and T .c/ is lower-triangular.)

By Theorem 1.2, if a; b 2 C.T/, then H.a/H. Qb/ is compact, so that T .ab/ �
T .a/T .b/ is compact. In particular, if a has no zeros on T, we can take b D a�1 2
C.T/. Then T .ab/ D T .1/ D I , so T .a/ is invertible modulo compact operators

(i.e., Fredholm) with ‘inverse’ T .a�1/. This type of reasoning leads to:

Theorem 1.4 (Gohberg [7]). Let a 2 C.T/. Then T .a/ is Fredholm if and only if a
has no zeros on T, in which case

Ind T .a/ D �wind.a; 0/:
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Hence T .a/ is invertible if and only if a has no zeros on T and wind.a; 0/ D 0.

Equivalently, since T .� � a/ D �I � T .a/ for � 2 C, we have

�ess.T .a// D a.T/;

�.T .a// D a.T/ [ f� 2 C n a.T/ W wind.a; �/ ¤ 0g:

Sketch of Proof. We have seen that a ¤ 0 on T implies T .a/ is Fredholm. In this

case, let wind.a; 0/ D k. Then a is homotopic to �k , and (since the index varies

continuously)

Ind T .a/ D Ind T .�k/ D �k D �wind .a; 0/:

For the converse, suppose T .a/ is Fredholm with index k, but a has zeros on T.

Then a can be slightly perturbed to produce two functions b; c 2 W.T/ without zeros

such that ka � bk1 and ka � ck1 are as small as we please, but wind.b; 0/ and

wind.c; 0/ differ by one. As the index is stable under small perturbations, T .b/ and

T .c/ are Fredholm with equal index. But Ind T .b/ D �wind.b; 0/ and Ind T .c/ D
�wind.c; 0/ (by above), so wind.b; 0/ � wind.c; 0/ D 0 — a contradiction. �

1.4 Wiener–Hopf factorization Since W.T/ � C.T/, Theorem 1.4 applies

to W.T/. However, for Wiener symbols we can obtain a quite explicit form for the

inverse when it exists. This is because Wiener functions can be factorized.

Denote by WC and W� the subspaces of W consisting of functions

1
X

nD0

antn and

1
X

nD0

ant�n t 2 T

respectively, where
P

janj < 1.

Theorem 1.5 (Wiener–Hopf factorization). Let a 2 W.T/ such that a has no zeros,

and let wind.a; 0/ D k. Then there exist a� 2 W� and aC 2 WC such that

a D �ka�aC:

Proof. We have wind.a��k; 0/ D 0. So a��k D eb for some b 2 W . But b D
b� C bC, where b� 2 W� and bC 2 WC. Hence, writing a� D eb� and aC D ebC

gives

a��k D eb� ebC D a�aC: �

Theorem 1.6 (Krein [21]). Let a 2 W.T/. Then T .a/ is Fredholm if and only if a
has no zeros on T, in which case

Ind T .a/ D �wind.a; 0/:

In particular, T .a/ is invertible if and only if a has no zeros on T and wind.a; 0/ D 0.

In this case

T .a/�1 D T .a�1
C /T .a�1

� /;

where a D aCa� is the Wiener–Hopf factorization of a.
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Proof of second part. Note that if a 2 W�, then H.a/ D 0, while if a 2 WC, then

H. Qa/ D 0. Suppose a has no zeros on T and wind.a; 0/ D 0. Then a factorizes as

a D a�aC with a˙ 2 W˙. Applying Proposition 1.3 with a� and aC in turn gives

T .a�1
� /T .a�/ D T .a�1

� a�/ D I D T .a�a�1
� / D T .a�/T .a�1

� /;

T .a�1
C /T .aC/ D T .a�1

C aC/ D I D T .aCa�1
C / D T .aC/T .a�1

C /;

so that T .a˙/ are invertible with T .a˙/�1 D T .a�1
˙ /. But also T .a/ D T .a�aC/ D

T .a�/T .aC/ (by Proposition 1.3). Hence T .a/�1 D T .aC/�1T .a�/�1 D
T .a�1

C /T .a�1
� /. �

2 Bounded multiplicative Toeplitz matrices and

Operators

2.1 Criterion for boundedness on l2 Now we consider the linear operators

induced by matrices of the form .�/, regarding them as operators on sequence spaces,

in particular l2.

For a function f WQC ! C on the positive rationals, we define

X

q2QC

f .q/ D lim
N !1

X

m; n � N

.m; n/ D 1

f
�m

n

�

; whenever this limit exists:

We shall sometimes abbreviate the left-hand sum by
P

q f .q/. We say that f 2
l1.QC/ if

X

q2QC

jf .q/j

converges. In this case, the function

F.t/ D
X

q2QC

f .q/qi t t 2 R

exists and is uniformly continuous on R. Note that, for � > 0, TS3

lim
T !1

1

2T

Z T

�T

F.t/��i t dt D
�

f .q/; if � D q 2 QC;
0; otherwise.

(3.4)

Theorem 2.1. Let f 2 l1.QC/ and let 'f denote the mapping .an/ 7! .bn/ where

bn D
1
X

mD1

f
� n

m

�

am:

TS3 Please check: due to reasons of a coherent design of all papers, we had to add the commas

here as well as in similar formulas.
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Then 'f is bounded on l2 with operator norm

k'f k D sup
t2R

ˇ

ˇ

ˇ

ˇ

X

q2QC

f .q/qi t

ˇ

ˇ

ˇ

ˇ

D kF k1:

Proof. We shall first prove that 'f is bounded on l2, showing k'f k � kF k1 in the

process, and then show that kF k1 is also a lower bound.

For q 2 QC and N 2 N let

b.N /
q D

N
X

mD1

f
� q

m

�

am and bq D
1
X

mD1

f
� q

m

�

am:

Note that b
.N /
q ! bq as N ! 1 for every q 2 QC, whenever an is bounded. We

have the following formulae:

lim
T !1

1

2T

Z T

�T

F.t/

ˇ

ˇ

ˇ

ˇ

N
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt D
N
X

nD1

anb.N /
n (3.5)

lim
T !1

1

2T

Z T

�T

ˇ

ˇ

ˇ

ˇ

F.t/

N
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt D
X

q2QC

jb.N /
q j2: (3.6)

(These hold for an bounded.) To prove these expand the integrand in a Dirichlet

series. For the first formula we have

1

2T

Z T

�T

F.t/

ˇ

ˇ

ˇ

ˇ

N
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt D
X

m;n�N

aman

1

2T

Z T

�T

F.t/
� n

m

��i t

dt

�!
X

m;n�N

amanf
� n

m

�

D
N
X

nD1

anb.N /
n

as T ! 1. For the second formula, note first that

F.t/

N
X

nD1

anni t D
X

q2QC;n�N

f .q/an.qn/i t

D
X

r2QC

�

X

n�N

f
� r

n

�

an

�

r i t D
X

r2QC

b.N /
r r i t ;

the series converging absolutely. Thus

1

2T

Z T

�T

ˇ

ˇ

ˇ

ˇ

F.t/

N
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt D
X

q1;q22QC

b.N /
q1

b
.N /
q2

1

2T

Z T

�T

�q1

q2

�i t

dt �!
X

q2QC

jb.N /
q j2

as T ! 1.
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Since jF.t/j � kF k1, we have

X

q2QC

jb.N /
q j2 � kF k2

1 lim
T !1

1

2T

Z T

�T

ˇ

ˇ

ˇ

ˇ

N
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt D kF k2
1

N
X

nD1

janj2:

Thus if a D .an/ 2 l2, we have
P1

nD1 jb.N /
n j2 � kF k2

1kak2 for every N . Letting

N ! 1 shows that .bn/ 2 l2 too (indeed .bq/ 2 l2.QC/), and so 'f is bounded on

l2, with

k'f k � kF k1:

Now we need a lower bound. By Cauchy–Schwarz,
ˇ

ˇ

ˇ

ˇ

1
X

nD1

anbn

ˇ

ˇ

ˇ

ˇ

2

�
1
X

nD1

janj2 	
1
X

nD1

jbnj2:

Thus k'f k � j
P1

nD1 anbnj for every a D .an/ 2 l2 with kak D 1. Choose an as

follows: let N 2 N (to be determined later) and put

an D n�i t

p

d.N /
for njN , and zero otherwise.

Here d.N / is the number of divisors of N . Thus .an/ 2 l2 and kak D 1. With this

choice,

bn D 1
p

d.N /

X

mjN
f
� n

m

�

m�i t .D b.N /
n /

and so
1
X

nD1

anbn D 1

d.N /

X

njN
ni t

X

mjN
f
� n

m

�

m�i t D 1

d.N /

X

m;njN
f
� n

m

�� n

m

�i t

D 1

d.N /

X

q2QC

f .q/qi tSq.N /;

where

Sq.N / D
X

m; njN
n
m D q

1:

Put q D k
l

, where .k; l/ D 1. Then n
m

D k
l

if and only if ln D km. Since .k; l/ D 1,

this forces kjn and l jm. So, for a contribution to the sum, we need k; l jN , i.e., kl jN .

Suppose therefore that kl jN . Then

Sq.N / D
X

m; njN

ln D km

1 D
X

rk;rljN
1 m D rl; n D rk TS4 with r 2 N

D
X

rj N
kl

1 D d
�N

kl

�

:

TS4 Please check if the replacement of m D rk; n D rl with m D rl; n D rk is correct.
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Writing jqj D kl whenever q D k
l

in its lowest terms, gives

1
X

nD1

anbn D
X

q 2 QC

jqjjN

f .q/qi t d.N=jqj/
d.N /

: (3.7)

The idea is now to choose N in such a way that it has all ‘small’ divisors while
d.N=jqj/

d.N /
is close to 1 for all such small divisors jqj. Take N of the form

N D
Y

p�P

p˛p ; where ˛p D
h

log P
log p

i

.

Thus every natural number up to P is a divisor of N . Every q such that jqjjN is of

the form jqj D
Q

p�P pˇp (0 � ˇp � ˛p), so that

d.N=jqj/
d.N /

D
Y

p�P

�

1 � ˇp

˛p C 1

�

:

If we take jqj �
p

log P , then pˇp �
p

log P for every prime divisor p of jqj.
Hence, for such p, ˇp � log log P

2 log p
and ˇp D 0 if p >

p

log P . Thus

d.N=jqj/
d.N /

D
Y

p�p
log P

�

1 � ˇp

˛p C 1

�

�
Y

p�p
log P

�

1 � log log P

2 log P

�

D
�

1 � log log P

2 log P

��.
p

log P /

;

where �.x/ is the number of primes up to x. Since �.x/ D O. x
log x

/, it follows that

for all P sufficiently large, the RHS above is at least

1 � A
p

log P

for some constant A.

Let " > 0. Then there exists n0 such that
P

jqj>n0
jf .q/j < ". Choose P � en2

0

so that
p

log P � n0. Then the modulus of the sum in (3.7) can be made as close to

kF k1 as we please by increasing P , for it is at least
ˇ

ˇ

ˇ

ˇ

X

jqj�p
log P

f .q/qi t

ˇ

ˇ

ˇ

ˇ

� A
p

log P

X

jqj�p
log P

jf .q/j �
X

jqj>p
log P

jf .q/j

�
ˇ

ˇ

ˇ

ˇ

X

q2QC

f .q/qi t

ˇ

ˇ

ˇ

ˇ

� A
p

log P

X

q2QC

jf .q/j � 2
X

jqj>
p

log P

jf .q/j

> jF.t/j � A0
p

log P
� 2";



3 Multiplicative Toeplitz Matrices and the Riemann zeta function 89

where " can be made as small as we please by making P large. Since this holds for

any t , we can choose t to make F.t/ as close as we like to kF k1. Hence k'f k �
kF k1 and so we must have equality. �

In the special case where f � 0, the supremum of jF.t/j is attained when t D 0,

in which case kF k1 D F.0/ D kf k1;QC . Thus:

Corollary 2.2. Let f WQC ! C such that f � 0. Then 'f is bounded on l2 if and

only if f 2 l1.QC/, in which case k'f k D kf k1;QC .

Examples. Take f .n/ D n�˛ for n 2 N, and zero otherwise. Then F.t/ D �.˛�i t/.
We shall denote 'f by '˛ in this case. Applying Corollary 2.2, we see that '˛ is

bounded on l2 if and only if ˛ > 1, and the norm is �.˛/.

2.2 Viewing 'f as an operator on function spaces; the Besicovitch
space We can view 'f as an operator on functions rather than sequences. For this

we need to construct the appropriate spaces.

Let A denote the set of trigonometric polynomials; i.e., the elements of A are all

finite sums of the form
n
X

kD1

akei�k t ;

where ak 2 C and �k 2 R. The space A has an inner product and a norm given by

hf; gi D lim
T !1

1

2T

Z T

�T

f g and kf k D
p

hf; f i D

s

lim
T !1

1

2T

Z T

�T

jf j2:

Now let B2 (Besicovitch space) denote the closure of A with respect to this inner

product; i.e., f 2 B2 if kf �fnk ! 0 as n ! 1 for some fn 2 A. We turn B2 into

a Hilbert space by identifying f and g whenever kf � gk D 0. (See [2], Chapter II.)

Now write ��.t/ D �i t (� > 0; t 2 R) and let Of .�/ denote the Fourier coefficient

Of .�/ D lim
T !1

1

2T

Z T

�T

f �� D lim
T !1

1

2T

Z T

�T

f .t/��i t dt where it exists:

Denote by F the space of locally integrable f WR ! C such that Of .�/ exists for all

� > 0.

(a) Fourier coefficients and series For f 2 B2, the Fourier coefficients Of .�/ ex-

ist and Of .�/ is non-zero on at most a countable set, say f�ngn2N. The function

f has the .formal/ Fourier series
P

n�1
Of .�n/ei�nt .

(b) Uniqueness f; g 2 B2 have the same Fourier series if and only if kf �gk D 0.
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(c) Parseval For f 2 B2,

kf k D lim
T !1

s

1

2T

Z T

�T

jf j2 D
s

X

�

j Of .�/j2; (3.8)

and, more generally, for f; g 2 B2,

hf; gi D lim
T !1

1

2T

Z T

�T

f g D
X

�

Of .�/ Og.�/:

(d) Riesz–Fischer Theorem Given �n 2 R and an 2 l2, there exists f 2 B2

such that f .t/ �
P

n�1 anei�nt .

(e) Criterion for membership in B2: With F as before, if f 2 F and Parseval’s

identity (3.8) holds, then f 2 B2.

Indeed, the set of � for which Of .�/ ¤ 0 is necessarily countable and we may

write this as f�1; �2; : : :g with
P1

kD1 j Of .�k/j2 D kf k2 TS5 . Let fn.t/ D
P

k�n
Of .�k/ei�k t . Then

kf � fnk2 D kf k2 � kfnk2 D
X

k>n

j Of .�/j2 ! 0 as n ! 1.

The analogues of the Hardy and Wiener spaces: B2
QC

, B2
N

, WQC , WN.

(a) Let B2
QC denote the subspace of B2 of functions with exponents � D log q

for some q 2 QC. Alternatively, start with the subset of A consisting of finite

trigonometric polynomials of the form
P

aq�q , where q ranges over a finite

subset of QC, and take its closure.

(b) Let B2
N denote the subspace of B2 of functions with exponents � D log n for

some n 2 N. This is the analogue of the Hardy space.

(c) Let WQC denote the set of all absolutely convergent Fourier series in B2
QC ; i.e.

WQC D
n

X

q2QC

c.q/�q W
X

q2QC

jc.q/j < 1
o

:

This is the analogue of the Wiener algebra. As we saw earlier, if TS6

f D
X

q2QC

c.q/�q 2 WQC ;

then Of .q/ D c.q/. With pointwise addition and multiplication, WQC becomes

an algebra. Further, WQC becomes a Banach algebra with respect to the norm

kf kW D
X

q2QC

j Of .q/j:

Analogously, let WN denote the set of absolutely convergent series
P1

nD1 anni t .

TS5 Please check if the replacement of kf k2
B

with kf k2 is correct.

TS6 The following formula had to be detached from the text because of typesetting reasons.

Please check.
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B2
QC has .�q/q2QC as an orthonormal basis while B2

N
has .�n/n2N as an orthonor-

mal basis. The spaces B2
QC and B2

N are isometrically isomorphic to l2.QC/ and l2,

respectively, via the mappings

f
�7�! f Of .q/gq2QC and f

�7�! f Of .n/gn�1:

The operator M.f /. Let P be the projection from B2
QC to B2

N; that is,

P
�

X

q2QC

c.q/qi t
�

D
X

n2N
c.n/ni t :

For f 2 WQC , we define the operator M.f /W B2
N ! B2

N by g 7! P.fg/.
The matrix representation of M.f / w.r.t. f�ngn2N is the multiplicative Toeplitz

matrix . Of .i=j //i;j �1. Indeed, if f D
P

q
Of .q/�q , then

P.f�j / D P
�

X

q

Of .q/�q�j

�

D P
�

X

q

Of .q/�qj

�

D P
�

X

q

Of .q=j /�q

�

D
1
X

nD1

Of .n=j /�n:

Hence

hM.f /�j ; �i i D hP.f�j /; �ii D
1
X

nD1

Of .n=j /h�n; �i i D Of
� i

j

�

:

In terms of the operator ',

M.f / D ��1' Of
�:

Interlude on �.s/. Since this work concerns connections to Dirichlet series and the

Riemann zeta function in particular, we recall a few relevant facts regarding �.s/.
The Riemann zeta function is defined for <s > 1 by the Dirichlet series

�.s/ D
1
X

nD1

1

ns
:

In this half-plane �.s/ is holomorphic and there is an analytic continuation to the

whole of C except for a simple pole at s D 1 with residue 1. Furthermore, �.s/
satisfies the functional equation

�.s/ D �.s/�.1 � s/

where

�.s/ D 2s�s�1�.1 � s/ sin
��s

2

�

D �s� 1
2

�. 1
2

� s
2
/

�. s
2
/

:
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The connection to prime numbers comes from Euler’s remarkable product formula

�.s/ D
Y

p

1

1 � p�s
<s > 1

The order of �.s/. Considering �.� C i t/ as a function of the real variable t for

fixed (but arbitrary) � , it is known that for jt j large

�� .t/
defD �.� C i t/ D O.jt jA/ for some A:

The infimum of such A is the order of � and is called the Lindelöf function; i.e.,

�.�/ D inffA W �.� C i t/ D O.jt jA/g:

From the general theory of functions it is known that the Lindelöf function is convex

and decreasing. Since �� is bounded for � > 1, but �� 6! 0, it follows that �.�/ D 0
for � � 1. By the functional equation and continuity of � we then have

�.�/ D
�

0; if � � 1;
1
2

� �; if � � 0.
(Þ)

For 0 < � < 1, the value of �.�/ is not known, but it is conjectured that the two

line segments in (Þ) above extend to � D 1
2

. This is the Lindelöf Hypothesis. It is

equivalent to the statement that

�. 1
2

C i t/ D O.t"/ for every " > 0:

The Lindelöf Hypothesis is a major open problem TS7 and is a consequence of the

Riemann Hypothesis, which states that �.s/ ¤ 0 for � > 1
2

.

Upper and lower bounds for �� . Let

Z� .T / D max
1�jt j�T

j�.� C i t/j:

(The restriction jt j � 1 is only added to avoid problems for the case � D 1.) The

following results hold for large T .

(a) Z� .T / ! �.�/ for � > 1.

(b) For � D 1, unconditionally it is known that Z1.T / D O..log T /
2
3 /, while on

RH

Z1.T / . 2e
 log log T:

On the other hand, Granville and Soundararajan [11] proved that

Z1.T / � e
 .log log T C log log log T � log log log log T /;

for some arbitrarily large T . They further conjectured that it equals the above

with an O.1/ term instead of the quadruple log-term.

TS7 Note from publisher: Paper by Albeverio and Cheng (proof of the Lindelf Hypothesis)?
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(c) For 1
2

< � < 1, unconditionally one has Z� .T / D O.T a/ for various a > 0,

while on RH

log Z� .T / � A
.log T /2�2�

.1 � �/ log log T

for some constant A. Montgomery [25] showed that

log Z� .T / �
p

� � 1=2

20

.log T /1��

.log log T /�

and, using a heuristic argument, he conjectured that this is (apart from the con-

stant) the correct order of log Z� .T /. In a recent paper (see [22]), Lamzouri

suggests that

log Z� .T / � C.�/
.log T /1��

.log log T /�

with C.�/ D G1.�/���2�.1 � �/��1, where

G1.x/ D
Z 1

0

log

 1
X

nD0

.u=2/2n

.nŠ/2

!

du

u1C1=x
:

(d) For � D 1
2

unconditionally one has Z 1
2
.T / D O.T

32
205 .log T /c/ D O.T 0:156::/

(see [17]), while on RH

log Z 1
2
.T / � A

log T

log log T

for some constant A. On the other hand, it is known that

log Z 1
2
.T / � c

s

log T

log log T

(see [1], [29]). Using a heuristic argument, Farmer et al. ([6]) conjectured that

log Z 1
2
.T / �

r

1

2
log T log log T :

(e) For � < 1
2

, the functional equation for �.s/ reduces the problem to the case

� > 1
2

. So, for example,

Z� .T / � �.1 � �/
� T

2�

�
1
2 ��

for � < 0.
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Mean values. For � 2 . 1
2
; 1/, the mean-value formula

lim
T !1

1

2T

Z T

�T

j�.� � i t/j2 dt D
1
X

nD1

1

n2�
D �.2�/;

is well-known (see [31]). Furthermore,

lim
T !1

1

2T

Z T

�T

j�.� � i t/j4 dt D
1
X

nD1

d.n/2

n2�
D �.2�/4

�.4�/
:

For higher powers, however, present knowledge is very patchy. It is expected that the

above formulas extend to all higher moments, i.e.,

lim
T !1

1

2T

Z T

�T

j�.� � i t/j2k dt D
1
X

nD1

dk.n/2

n2�
:

This is equivalent to the Lindelöf Hypothesis.

Examples.

(a) The mean values for �� and �2
� imply that �� ; �2

� 2 B2
N for � 2 . 1

2
; 1/. Note that

this also implies j�� j2 2 B2
QC .

For higher powers, however, only partial results are known. For example, it is

known that �k
� 2 B2

N if � 2 .1 � 1
k

; 1/. Slightly better bounds are available,

especially for particular values of k, but it is expected that much more holds,

namely: �k
� 2 B2

N for every k 2 N and all � 2 . 1
2
; 1/. This is (equivalent to) the

Lindelöf Hypothesis.

(b) Let g.s/ D
P1

nD1
an

ns and h.s/ D
P1

nD1
bn

ns be two Dirichlet series which con-

verge absolutely for <s > �0 and <s > �1, respectively. Let ˛ > �0 and ˇ > �1

and put f .t/ D g.˛ � i t/h.ˇ C i t/. Then f 2 WQC with

Of .q/ D 1

m˛nˇ

1
X

dD1

amd bnd

d˛Cˇ
for q D m

n
with .m; n/ D 1.

We can prove this by multiplying out the series for g.˛ � i t/ and h.ˇ C i t/. We

have

f .t/ D
1
X

mD1

am

m˛�i t

1
X

nD1

bn

nˇCi t
D

X

m;n�1

ambn

m˛nˇ

�m

n

�i t

D
1
X

dD1

X

m; n � 1

.m; n/ D d

ambn

m˛nˇ

�m

n

�i t

D
1
X

dD1

1

d˛Cˇ

X

m; n � 1

.m; n/ D 1

amd bnd

m˛nˇ

�m

n

�i t

D
X

m; n � 1

.m; n/ D 1

1

m˛nˇ

�

1
X

dD1

amd bnd

d˛Cˇ

��m

n

�i t

:
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Further Properties of WQC and WN. Notation. For a unital Banach algebra A,

denote by GA the group of invertible elements of A, and by G0A, the connected

component of GA which contains the identity. If A is commutative, then

a 2 G0A ” a D eb for some b 2 A.

(a) Wiener’s Theorem for WQC and WN (see [13], Theorems 1 and 2):

Let f 2 WQC . Then 1=f 2 WQC if and only if infR jf j > 0; i.e., GWQC D
ff 2 WQC W infR jf j > 0g:
Let f .t/ D

P1
nD1 anni t 2 WN and put F.s/ D

P1
nD1

an

ns for <s � 0. Then

1=f 2 WN if and only if there exists ı > 0 such that jF.s/j � ı for all <s � 0.

The example f .t/ D 2i t shows that the condition jf .t/j � ı > 0 for all t 2 R is

not sufficient for 1=f 2 WN.

(b) Let f 2 GWQC . Then the average winding number1 w.f /, defined by

w.f / D lim
T !1

arg f .T / � arg f .�T /

2T

exists, and w.f / D log q for some q 2 QC (see [19], Theorem 27).

It is easy to see that (i) w.fg/ D w.f / C w.g/, and (ii) w.�q/ D log q.

(c) G0WN D GWN; i.e. for f 2 WN, we have 1=f 2 WN if and only if f D eg for

some g 2 WN

2.3 Factorization and invertibility of multiplicative Toeplitz operators
The analogue of the factorization T .abc/ D T .a/T .b/T .c/ for a 2 H 1; b 2
L1; c 2 H 1 for Toeplitz matrices holds for Multiplicative Toeplitz matrices.

Theorem 2.3. Let f 2 WN, g 2 WQC , and h 2 WN. Then

M.fgh/ D M.f /M.g/M.h/:

Proof. We show the matrix entries agree. By Proposition 2.1, fgh 2 WQC and

�

M.f /M.g/M.h/
�

ij
D

X

k;l�1

M.f /ikM.g/klM.h/lj

D
X

k; l � 1

ijk and j jl

Of
� i

k

�

Og
�k

l

�

Oh
� l

j

�

D
X

m;n�1

Of
� 1

m

�

Og
�mi

nj

�

Oh
�n

1

�

:

1Also known as mean motion.
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On the other hand, since all QC-series converge absolutely we have

f .t/g.t/h.t/ D
X

q1;q2;q32QC

Of .q1/ Og.q2/ Oh.q3/.q1q2q3/i t

D
X

q2QC

�

X

q1;q3

Of .q1/ Og
� q

q1q3

�

Oh.q3/

�

qi t

D
X

q2QC

bfgh.q/qi t :

Hence

M.fgh/ij D bfgh
� i

j

�

D
X

q1;q3

Of .q1/ Og
� i

jq1q3

�

Oh.q3/ D
�

M.f /M.g/M.h/
�

ij
;

since 1=q1 and q3 must range over N. �

In view of Theorem 2.3, it is of interest to know when a given f 2 WQC factorises

as f D gh with g 2 WN and h 2 WN. For then M.f / D M.g/M.h/ and the

invertibility of M.f / follows from knowing when M.g/ and M.h/ are invertible.

Thus, if h is invertible in WN, then

M.h/M.h�1/ D M.hh�1/ D M.1/ D I D M.1/ D M.h�1h/ D M.h�1/M.h/;

so that M.h/�1 D M.h�1/. Similarly, if g is invertible in WN, then M.g/�1 D
M.g�1/. It follows then that M.f /�1 D M.h/�1M.g/�1.

Let FWQC denote the set of functions in WQC which factorise as

f D f��qfC (3.9)

where f� 2 GWN, fC 2 GWN, and q 2 QC.

Note that with f as above, then 1=f D f �1
� �.1=q/f

�1
C , so 1=f 2 FWQC . In

particular, FWQC � GWQC . Note that M.�q/ is invertible if and only if q D 1.

Theorem 2.4. Let f 2 FWQC . Then M.f / is invertible if and only if w.f / D 0. If

this is the case, then M.f /�1 D M.f �1
C /M.f �1

� /, with f˙ as in (3.9).

Proof. Write f D f��qfC as in (3.9). Then M.f / D M.f�/M.�q/M.fC/. Now

M.f�/ and M.fC/ are invertible, with inverses M.f �1
� / and M.f �1

C /, respectively.

Thus M.f / is invertible if and only if M.�q/ is invertible. But this happens if and

only if q D 1.

Since w.f / D w.f�/ C w.�q/ C w.fC/ D w.�q/ D log q, we see that M.f /
is invertible if and only if w.f / D 0.

Now suppose w.f / D 0. Then the above gives

M.f /�1 D
�

M.f�/M.fC/
��1

D M.fC/�1M.f�/�1 D M.f �1
C /M.f �1

� /: �
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Multiplicative coefficients and Euler products.

Definition.

(a) A function aWQC ! C is multiplicative if a.1/ D 1 and

a.p
a1

1 	 	 	 pak

k
/ D a.p

a1

1 / 	 	 	 a.p
ak

k
/;

for all distinct primes pi and all ai 2 Z. We say a is completely multiplicative if,

in addition to the above,

a.pk/ D a.p/k and a.p�k/ D a.p�1/k;

for all primes p and k 2 N.

(b) For a subset S of F , let MF denote the set of f 2 S for which Of .	/ is multi-

plicative.

(c) Let f 2 F and p prime. Suppose that
P

k2Z j Of .pk/j converges. Then define

fp D
X

k2Z

Of .pk/�pk :

Note that fp is periodic with period 2�
log p

. Define f
]

p WT ! C by

f ]
p .ei� / D fp.�= log p/ D

X

k2Z

Of .pk/eki� for 0 � � < 2� .

Further, denote by WQC;p the set of those f 2 WQC whose QC-coefficients are

supported on fpk W k 2 Zg. (Thus fp 2 WQC;p by definition.)

Note that, for fixed p, there is a one-to-one correspondence between WQC;p and

W.T/ via the mapping ].

In [14], the Euler product formulas

f D
X

q2QC

Of .q/�q D
Y

p

fp and M.f / D
Y

p

M.fp/;

were shown to hold whenever f 2 MWQC .

The analogue of the Wiener–Hopf factorization holds for MWQC -functions with-

out zeros.

Theorem 2.5. Let f 2 MWQC such that f has no zeros. Then f 2 FWQC .

Proof. We have f D
Q

p fp , where fp 2 WQC;p and each is non-zero. Hence

f
]

p 2 W.T/ and has no zeros. Let kp D wind .f
]

p ; 0/. Note that kp D 0 for all
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sufficiently large p, since

jf ]
p .t/ � 1j �

X

m¤0

j Of .pm/j �
X

jqj�p

j Of .q/j �! 0 as p ! 1.

Let q D
Q

p pkp (a finite product).

By 1.1(iii) TS8 , we have

f ]
p D �

]

pkp
eg

]
p ;

for some g
]
p 2 W.T/. Hence

fp D �pkp egp ;

with gp 2 WQC;p. Thus for P so large that kp D 0 for p > P , we have

Y

p�P

fp D �q exp

�

X

p�P

gp

�

:

Now fp.t/ ! 1 as p ! 1 uniformly in t , so can choose gp so that gp.t/ ! 0 as

p ! 1 (uniformly in t). Hence, for all sufficiently large p (and all t), jfp � 1j D
jegp � 1j � 1

2
jgpj, so that

jgpj � 2jfp � 1j � 2
X

m¤0

j Of .pm/j:

Let g.n/ D
P

p�n gp. Then fg.n/g is a Cauchy sequence in WQC : for n > m

jg.n/ � g.m/j �
X

m<p�n

jgpj � 2
X

m<p�n

X

m¤0

j Of .pm/j � 2
X

r>m

j Of .k/j �! 0

as m ! 1. Thus g.n/ ! g 2 WQC . But each g.n/ is of the form hn C kn with

hn 2 WN and kn 2 WN (since gp 2 WQC;p). Thus g D h C k with h 2 WN, k 2 WN.

It follows that f D �qehek , which is of the required form. �

Note that, as such,

w.f / D
X

p

w.�
kp
p / D

X

p

kpw.�p/ D
X

p

wind.f ]
p ; 0/ log p;

where the sum is finite.

Corollary 2.6. Let f 2 MWQC such that f has no zeros and w.f / D 0. Then

M.f / is invertible.

Example. M.�˛/ is invertible for ˛ > 1 with M.�˛/�1 D M.1=�˛/.

TS8 What does 1.1 refer to? Theorem 1.1 does not include an enumeration. Is it meant to be

Subsection 1.1?
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3 Unbounded multiplicative Toeplitz operators and

matrices

The last section has, in various ways, been a relatively straightforward extension of

the theory of bounded Toeplitz operators to the multiplicative setting. The theory of

unbounded Toeplitz operators is rather less satisfactory and not easy to generalise.

Our particular concern is in fact the operator M.�˛/ for ˛ � 1, since we expect

a connection with the Riemann zeta function. The hope is that if a satisfactory theory

is developed for this case, it can be generalised to other symbols.

In this section, we shall therefore concentrate on the particular case when f .n/ D
n�˛, when the symbol is �.˛ � i t/. Throughout we write '˛ (equivalently, M.�˛/)
for 'f .

From ÷2 we see that for ˛ � 1, '˛ is unbounded. It is interesting to see to

what extent properties of '˛ are related to properties of �˛. The above theory is only

valid for absolutely convergent Dirichlet series, when the symbols are bounded. But

�.˛ � i t/ is unbounded for ˛ � 1.

How to measure unboundedness? We shall investigate two different measures.

The first case can be considered as restricting the range, while in the second case we

shall restrict the domain.

3.1 First measure – the function ˆ˛.N/ With bn defined by a D .an/
'˛7!

.bn/, i.e., bn D
P

d jn d�˛an=d , let

ˆ˛.N / D sup
kakD1

� N
X

nD1

jbnj2
�1=2

:

Theorem 3.1. We have the following asymptotic formulae for large N :

ˆ1.N / D e
 log log N C O.1/ .˛ D 1/

log ˆ˛.N / � .log N /1�˛

log log N

�

1

2
< ˛ < 1

�

log ˆ 1
2
.N / �

� log N

log log N

�
1
2

:

�

˛ D 1

2

�

Sketch of proof. .For the proof see [15]/. We start with upper bounds.

First we note that for any positive arithmetical function g.n/,

ˆ˛.N /2 �
�

X

n�N

g.n/

n˛

�

	
�

max
n�N

X

d jn

1

g.d/d˛

�

: (3.10)

This is because

jbnj2 D
ˇ

ˇ

ˇ

ˇ

X

d jn

1
p

g.d/d
˛
2

	
p

g.d/an=d

d
˛
2

ˇ

ˇ

ˇ

ˇ

2

�
�

X

d jn

1

g.d/d˛

�

	
�

X

d jn

g.d/jan=d j2
d˛

�

;
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by Cauchy–Schwarz. Writing G.n/ D
P

d jn g.d/�1d�˛ , we have

X

n�N

jbnj2 �
X

n�N

G.n/
X

d jn

g.d/jan=d j2
d˛

� max
n�N

G.n/
X

d�N

g.d/

d˛

X

n�N=d

janj2:

Taking kak2 D 1 yields (3.10). The idea is to choose g appropriately, so that the

RHS of (3.10) is as small as possible.

For 1
2

< ˛ � 1, choose g.n/ to be the following multiplicative function: for

a prime power pk let

g.pk/ D
(

1; if pk � M;

. M

pk /ˇ ; if pk > M .

Here M D .2˛ � 1/ log N and ˇ is a constant satisfying 1 � ˛ < ˇ < ˛. Note that

g.pk/ � g.p/ for every k 2 N and p prime.

We estimate the expressions in (3.10) separately. First

X

n�N

g.n/

n˛
�
Y

p

�

1 C
1
X

kD1

g.pk/

pk˛

�

�
Y

p

�

1 C g.p/

p˛ � 1

�

� exp
n

X

p

g.p/

p˛ � 1

o

(3.11)

and, after some manipulations using the Prime Number Theorem, one finds for the

case ˛ < 1

log
X

n�N

g.n/

n˛
.

ˇM 1�˛

.1 � ˛/.˛ C ˇ � 1/ log M
: (3.12)

Now consider G.n/, which is multiplicative because g.n/ is. At the prime powers we

have

G.pk/ D
k
X

rD0

1

p˛rg.pr /
D

X

r � 0

pr � M

1

p˛r
C 1

M ˇ

X

r � k

pr > M

1

p.˛�ˇ/r

� 1 C 1

p˛ � 1
C 1

M ˛.1 � pˇ�˛/
:

(Here we require ˇ < ˛.) Note that this is independent of k. It follows that

G.n/ � exp

�

X

pjn

1

p˛ � 1
C 1

M ˛

X

pjn

1

1 � pˇ�˛

�

:

The right-hand side is maximised when n is as large as possible (i.e. N ) and N is of

the form N D 2:3 : : : P . For such a choice, log N D �.P / � P , so that (using the

prime number theorem)

log max
n�N

G.n/ .
X

p�P

1

p˛ � 1
C 1

M ˛

X

p�P

1 � .log N /1�˛

.1 � ˛/ log log N
C log N

M ˛ log log N
:

(3.13)
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From (3.12) and (3.13) it follows that M should be of order log N for optimality. So

taking M D � log N (with � > 0), (3.10), (3.12) and (3.13) then imply

log ˆ˛.N / .

�

ˇ�1�˛

2.1 � ˛/.˛ C ˇ � 1/
C 1

2.1 � ˛/
C 1

2�˛

�

.log N /1�˛

log log N

for every ˇ 2 .1 � ˛; ˛/ and � > 0. Since ˇ
˛Cˇ�1

decreases with ˇ, the optimal

choice is to take ˇ arbitrarily close to ˛. Hence we require inf�>0 h.�/, where

h.�/ D ˛�1�˛

.1 � ˛/.2˛ � 1/
C 1

.1 � ˛/
C 1

�˛
:

Since h0.�/ D ˛

�˛C1 . �
2˛�1

� 1/, we see that the optimal choice is indeed � D 2˛ � 1.

Substituting this value of � gives

log ˆ˛.N / .
.1 C .2˛ � 1/�˛/

2.1 � ˛/

.log N /1�˛

log log N
:

For ˛ D 1, we use the same function g.n/ as before (though with possibly differ-

ent values of M and ˇ). From (3.11) it follows that

X

n�N

g.n/

n
�
Y

p�M

�

1

1 � 1
p

�

	
Y

p>M

�

1 C M ˇ

pˇ .p � 1/

�

:

By Mertens’ Theorem, the firstproduct ise
 log MCO.1/, whileM ˇ
P

p>M p�1�ˇ D
O.1= log M/, and so

X

n�N

g.n/

n
�
�

e
 log M C O.1/
�

expfO.1= log M/g D e
 log M C O.1/: (3.14)

For the G.n/ term we have, as for the ˛ < 1 case,

G.pk/ � 1

1 � 1
p

C 1

M.1 � pˇ�1/
:

Thus, with N D 2:3 : : : P ,

G.N / �
Y

p�P

�

1

1 � 1
p

��

1 C 1 � 1=p

M.1 � pˇ�1/

�

D
�

e
 log P C O.1/
��

1 C O
� P

M log P

��

:

Taking M D log N and noting that P � log N , the right-hand side is e
 log log N C
O.1/. Combining with (3.14) shows that

ˆ1.N / � e
 log log N C O.1/:
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The case ˛ D 1
2

. The function g as chosen for ˛ 2 . 1
2
; 1� is not suitable for

an upper bound as we would require 1
2

< ˇ < 1
2

! Instead we take g to be the

multiplicative function following: for a prime power pk , let

g.pk/ D min
n

1;
� M

pk.log p/2

�
1
2
o

:

Here M > 0 is independent of p and k and will be determined later. Thus g.pk/ D 1
if and only if pk.log p/2 � M . Note that g.pk/ � g.p/ � 1 for all k � 1 and all

primes p. Thus (3.11) holds with ˛ D 1
2

and (using the prime number theorem)

log
X

n�N

g.n/p
n

.
X

p. M

.log M /2

1
p

p � 1
C

p
M

X

p& M

.log M /2

1

p log p
�

p
M

log M
: (3.15)

(The first sum is of order
p

M=.log M/2 and the main contribution comes from the

second term.)

Regarding G.n/, this time we have2

G.n/ D
Y

pkkn

G.pk/ �
Y

pkkn

�

1 C
k
X

rD1

1

pr=2
C 1p

M

k
X

rD1

log p

�

;

so that

log G.n/ �
X

pjn

1
p

p � 1
C 1p

M

X

pkkn

k log p � log np
M

C
X

pjn

1
p

p � 1
:

The right-hand side above is maximal when n D N D 2:3 : : :P , hence

log max
n�N

G.n/ .
log Np

M
C
X

p�P

1
p

p
� log Np

M
C 2

p

log N

log log N
:

Combining with (3.15), (3.10) then gives

log ˆ 1
2
.N / .

p
M

2 log M
C log N

2
p

M
C

p

log N

log log N
:

The optimal choice for M is easily seen to be M D log N log log N , and this gives

the upper bound in (iii).

Now we proceed to give lower bounds.

For a fixed n 2 N, let

ad D 1
p

d.n/
if d jn, and zero otherwise.

2Here as usual, pk jjn means pk jn but pkC1 6 jn.
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Then kak2 D 1, while for d jn

bd D 1
p

d.n/

X

cjd

1

c˛
D ��˛.d/
p

d.n/
:

Hence for N � n,

X

k�N

jbkj2 �
X

d jn
b2

d D 1

d.n/

X

d jn
��˛.d/2 DW �˛.n/:

With this notation ˆ˛.N / � maxn�N

p

�˛.n/, and the lower bounds follow from

the maximal order of �˛.n/. For 1
2

< ˛ < 1 this can be found easily. Since �˛.p/ D
1 C p�˛ C 1

2
p�2˛ for p prime, we find for n D 2:3 : : :P (so that log n � P ) that

�˛.n/ D
Y

p�P

�

1 C 1

p˛
C O

� 1

p2˛

��

D exp

�

.1 C o.1//
X

p�P

1

p˛

�

D exp

�

.1 C o.1//P 1�˛

.1 � ˛/ log P

�

D exp

�

.1 C o.1//.logn/1�˛

.1 � ˛/ log log n

�

:

Now, if tk is the kth number of the form 2:3 	 	 	 P (i.e., tk D p1 	 	 	 pk), then log tk �
k log k � log tkC1. Hence for tk � N < tkC1, log N � k log k. It follows that

ˆ˛.N / �
p

�˛.tk/ � exp

�

.1Co.1//.log tk/1�̨

2.1 � ˛/ log log tk

�

D exp

�

.1Co.1//.logN /1�˛

2.1 � ˛/ log log N

�

:

For ˛ D 1, we have to be a little subtler to obtain maxn�N

p

�1.n/ D e
 log log N C
O.1/. We omit the details, which can be found in [15].

For the case ˛ D 1
2

, the above choice doesn’t give the correct order and we lose

a power of log log N . Instead, we follow an idea of Soundararajan [29]. Let f be the

multiplicative function supported on the squarefree numbers whose values at primes

p is

f .p/ D
�

. M
p

/1=2 1
log p

; for M � p � R;

0; otherwise.

Here M D log N.log log N / as before and log R D .log M/2.

Now take an D f .n/F.N /�1=2, where F.N / D
P

n�N f .n/2 so that
P

n�N a2
n D1. Then by Hölder’s inequality

� N
X

nD1

b2
n

�1=2

�
N
X

nD1

anbn D 1

F.N /

N
X

nD1

f .n/p
n

X

d jn

p
df .d/

D 1

F.N /

X

n�N

f .n/p
n

X

d � N=n

.n; d/ D 1

f .d/2: (3.16)
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Now using ‘Rankin’s trick’3 we have, for any ˇ > 0

X

n�N

f .n/

n1=2

X

d � N=n

.n; d/ D 1

f .d/2 D
X

n�N

f .n/

n1=2

�

X

d � 1

.n; d/ D 1

f .d/2 �
X

d > N=n

.n; d/ D 1

f .d/2

�

D
X

n�N

f .n/

n1=2

�

Y

p− n

�

1 C f .p/2
�

C O

�

� n

N

�ˇ Y

p − n

�

1 C pˇ f .p/2
�

��

:

(3.17)

The O-term in (3.17) is at most a constant times

1

N ˇ

X

n�N

f .n/nˇ�1=2
Y

p− n

�

1Cpˇ f .p/2
�

� 1

N ˇ

Y

p

�

1Cpˇ f .p/2Cpˇ�1=2f .p/
�

;

while the main term in (3.17) is (using Rankin’s trick again)

Y

p

�

1 C f .p/2 C f .p/

p1=2

�

C O

�

1

N ˇ

Y

p

�

1 C f .p/2 C pˇ�1=2f .p/
�

�

:

Hence (3.16) implies

� N
X

nD1

b2
n

�1=2

� 1

F.N /

�

Y

p

�

1 C f .p/2 C f .p/

p1=2

�

CO

�

1

N ˇ

Y

p

�

1 C pˇ f .p/2 C pˇ�1=2f .p/
�

��

:

The ratio of the O-term to the main term on the right is less than

exp

�

�ˇ log N C
X

M �p�R

.pˇ � 1/
�

f .p/2 C f .p/

p1=2

�

�

;

which equals

exp

�

�ˇ log N C
X

M �p�R

.pˇ � 1/

�

M

p.log p/2
C M 1=2

p.log p/

��

:

Take ˇ D .log M/�3. The term involving M 1=2 is at most .log N /1=2C" for every

" > 0, while the remaining terms in the exponent are (by the prime number theorem

3If cn > 0, then for any ˇ > 0,
P

n>x cn � x�ˇ
P1

nD1 nˇcn.
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in the form �.x/ D li.x/ C O.x.log x/�A/ for all A)

�ˇ log N C M

Z R

M

tˇ � 1

t.log t/3
dt C O

�

log N

.log log N /A

�

D � ˇ log N C ˇM

Z R

M

dt

t.log t/2
C O

�

ˇ2M

Z R

M

dt

t log t

�

� � ˇ
log N log log log N

log log N
;

after some calculations.

Finally, since F.N / �
Q

p.1 C f .p/2/, this implies

ˆ1=2.N / � 1

2

Y

M �p�R

�

1 C f .p/

p1=2.1 C f .p/2/

�

;

for all N sufficiently large. Hence

log ˆ1=2.N / & M 1=2
X

M �p�R

1

p.log p/
�
� log N

log log N

�1=2

;

as required. �

Remark. The result for 1
2

< ˛ < 1 is

.log N /1�˛

2.1 � ˛/ log log N
. log ˆ˛.N / .

.1 C .2˛ � 1/�˛/

2.1 � ˛/

.log N /1�˛

log log N
:

It would be nice to obtain an asymptotic formula for log ˆ˛.N /. Indeed, it is possible

to improve the lower bound at the cost of more work by using the method for the case

˛ D 1
2

, but we have not been able to obtain the same upper and lower limits.

Connections between ˆ˛.N/ and the order of j�.˛ C it/j. The lower bounds

obtained for ˆ˛.N / for 1
2

< ˛ � 1 can be used to obtain information regarding the

maximum order of �.s/ on the line <s D ˛.

Proposition 3.2. With bn D
P

d jn d�˛an=d we have, for any ˛,

X

n�N

jbnj2 D
X

m;n�N

aman.m; n/2˛

m˛n˛

X

k� N
Œm;n�

1

k2˛
:

Proof. We have

jbnj2 D bnbn D 1

n2˛

X

cjn;d jn
c˛d˛acad D 1

n2˛

X

Œc;d�jn
c˛d˛acad ;
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since cjn; d jn if and only if Œc; d �jn. Hence

X

n�N

jbnj2 D
X

c;d�N

c˛d˛acad

X

n�N;Œc;d�jn

1

n2˛
D

X

c;d�N

c˛d˛acad

Œc; d �2˛

X

k� N
Œc;d�

1

k2˛
;

by writing n D Œc; d �k. Since .c; d/Œc; d � D cd , the result follows. �

It follows that if an � 0 for all n and ˛ > 1
2

, then

X

n�N

jbnj2 � �.2˛/
X

m;n�N

aman.m; n/2˛

.mn/˛
: (3.18)

Theorem 3.3. Let 1
2

< ˛ � 1 and let a 2 l2 with kak2 D 1. Let AN .t/ D
PN

nD1 anni t . Let N � T �, where 0 < � < 2
3
.˛ � 1

2
/. Then for some � > 0,

1

T

Z T

1

j�.˛ C i t/j2jAN .t/j2 dt D �.2˛/
X

m;n�N

aman.m; n/2˛

.mn/˛
C O.T ��/: (3.19)

Proof. We shall assume 1
2

< ˛ < 1, adjusting the proof for the case ˛ D 1 after-

wards. For ˛ ¤ 1, we can integrate from 0 to T since the error involved is at most

O.N=T / D O.T ��/.
Starting from the approximation �.˛ C i t/ D

P

n�t n�˛�i t C O.t�˛/, we have

j�.˛ C i t/j2 D
ˇ

ˇ

ˇ

ˇ

X

n�t

1

n˛Ci t

ˇ

ˇ

ˇ

ˇ

2

C O.t1�2˛/:

Let k; l 2 N such that .k; l/ D 1. Let M D maxfk; lg < T . The above gives

Z T

0

j�.˛ C i t/j2
�k

l

�i t

dt D
Z T

0

ˇ

ˇ

ˇ

ˇ

X

n�t

1

n˛Ci t

ˇ

ˇ

ˇ

ˇ

2
�k

l

�i t

dt C O.T 2�2˛/:

The integral on the right is

Z T

0

X

m;n�t

1

.mn/˛

�km

ln

�i t

dt D
X

m;n�T

1

.mn/˛

Z T

maxfm;ng

�km

ln

�i t

dt:

The terms with km D ln (which implies m D rl; n D rk with r integral) contribute

1

.kl/˛

X

r�T=M

T � rM

r2˛
D �.2˛/

.kl/˛
T C O

�M 2˛�1T 2�2˛

.kl/˛

�

:
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The remaining terms contribute at most

2
X

m; n � T
km ¤ ln

1

.mn/˛j log km
ln

j
� 2M 2˛

X

m; n � T
km ¤ ln

1

.kmln/˛j log km
ln

j

� 2M 2˛
X

m1 � kT; n1 � lT
m1 ¤ n1

1

.m1n1/˛j log
m1

n1
j

� 2M 2˛
X

m1; n1 � MT
m1 ¤ n1

1

.m1n1/˛j log
m1

n1
j

D O.M 2˛.MT /2�2˛ log.MT //

D O.M 2T 2�2˛ log T /;

using Lemma 7.2 from [31]. Hence

Z T

0

j�.˛ C i t/j2
�k

l

�i t

dt D �.2˛/

.kl/˛
T C O.M 2T 2�2˛ log T /:

It follows that for any positive integers m; n < T ,

Z T

0

j�.˛ C i t/j2
�m

n

�i t

dt D �.2˛/.m; n/2˛

.mn/˛
T C O.maxfm; ng2T 2�2˛ log T /:

Thus, with AN .t/ D
PN

nD1 anni t ,

Z T

0

j�.˛ C i t/j2jAN .t/j2 dt D
X

m;n�N

aman

Z T

0

j�.˛ C i t/j2
�m

n

�i t

dt

D �.2˛/T
X

m;n�N

aman.m; n/2˛

.mn/˛

C O

�

T 2�2˛ log T
X

m;n�N

maxfm; ng2jamanj
�

:

The sum in the O-term is at most N 2.
P

n�N janj/2 � N 3, using Cauchy–Schwarz.

Hence

1

T

Z T

0

j�.˛ C i t/j2jAN .t/j2 dt D �.2˛/
X

m;n�N

aman.m; n/2˛

.mn/˛
C O

�N 3 log T

T 2˛�1

�

:

Since N 3 � T 3� and 3� < 2˛ � 1, the error term is O.T ��/ for some � > 0.
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If ˛ D 1 we integrate from 1 to T instead and the O-term above will contain an

extra log T factor, but this is still O.T ��/. �

We note that with more care the N 3 could be turned into an N 2, so that we can

take � < ˛ � 1
2

in the theorem. This is however not too important for us.

Corollary 3.4. Let 1
2

< ˛ � 1. Then for every " > 0 and N sufficiently large,

max
t�N

j�.˛ C i t/j � ˆ˛.N
2
3

.˛� 1
2

/�"/ C O.N ��/ (3.20)

for some � > 0.

Proof. Let an � 0 be such that kak2 D 1, and take N D T � with � < 2
3
.˛ � 1

2
/. By

(3.18) and (3.19),

X

n�N

jbnj2 � 1

T

Z T

0

j�.˛ C i t/j2jAN .t/j2 dt C O.T ��/

� max
t�T

j�.˛ C i t/j2 1

T

Z T

0

jAN .t/j2 dt C O.T ��/

D max
t�T

j�.˛ C i t/j2
X

n�N

janj2.1 C O.N=T // C O.T ��/

using the Montgomery and Vaughan mean value theorem. The implied constants in

the O-terms depend only on T and not on the sequence fang. Taking the supremum

over all such a, this gives

ˆ˛.N /2 D sup
kak2D1

X

n�N

jbnj2 � max
t�T

j�.˛ C i t/j2 C O.T ��/;

for some � > 0, and (3.20) follows. �

In particular, this gives the (known) lower bounds

max
t�T

j�.˛ C i t/j � exp
nc.log T /1�˛

log log T

o

for 1
2

< ˛ < 1 and maxt�T j�.1 C i t/j � e
 log log T C O.1/ (obtained by Levinson

in [23]).

Morever, we can say more about how often j�.˛ C i t/j is as large as this. For

A 2 R and c > 0, let

FA.T / D
�

t 2 Œ1; T � W j�.1 C i t/j � e
 log log T � A

�

: (3.21)

F˛;c.T / D
�

t 2 Œ0; T � W j�.˛ C i t/j � exp
nc.log T /1�˛

log log T

o

�

: (3.210)
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We outline the argument in the case 1
2

< ˛ < 1. We have

X

n�N

jbnj2 � 1

T

�Z

F˛;c.T /

C
Z

Œ0;T �nF˛;c.T /

�

j�.˛ C i t/j2jAN .t/j2 dt C O.T ��/:

(3.22)

The second integral on the right is at most

exp
n2c.log T /1�˛

log log T

o

	 1

T

Z T

0

jAN .t/j2 dt D O

�

exp
n2c.log T /1�˛

log log T

o

�

;

while, by choosing an D d.N /�1=2 for njN and zero otherwise, the LHS of (3.22) is

at least �˛.N /. Every interval ŒT �=3; T �� contains an N of the form 2:3:5 : : :P . As

such, �˛.N / � exp
n

c0.log T /1�˛

log log T

o

for some c0 > 0. Hence, for 2c < c0,

1

T

Z

F˛;c.T /

j�.˛ C i t/j2jAN .t/j2 dt � exp
nc0.log T /1�˛

2 log log T

o

:

We have j�.˛ C i t/j D O.T �/ for some � and jAN .t/j2 � d.N / D O.T "/, so

1

T

Z

F˛;c.T /

j�.˛ C i t/j2jAN .t/j2 dt � T 2��1C"�.F˛;c.T //:

Thus �.F˛;c.T // � T 1�2��" for all c sufficiently small.

In particular, since � < 1�˛
3

, we have:

Theorem 3.5. For all A sufficiently large .and positive/,

�.FA.T // � T exp

�

�a
log T

log log T

�

for some a > 0, and for all c sufficiently small, �.F˛;c.T // � T .1C2˛/=3 for all

sufficiently large T . Furthermore, under the Lindelöf Hypothesis, the exponent can

be replaced by 1 � ".

3.2 Second measure – '˛ on M2 and the function M˛.T / For ˛ � 1,

'˛ is unbounded on l2 and so '˛.l2/ 6� l2 (by the closed graph theorem4 – see [30],

p. 183). However, if we restrict the domain to M2, the set of multiplicative elements

of l2, we find that '.M2/ � l2. More generally, if f is multiplicative then, as we

shall see, 'f .M2/ � l2 in many cases (and hence 'f .M2/ � M2).

4Being a ‘matrix’ mapping, '˛ is necessarily a closed operator, and so '˛.l2/ � l2 implies '˛ is bounded.
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Notation. Let M2 and M2
c denote the subsets of l2 of multiplicative and completely

multiplicative functions, respectively. Further, write M2C for the non-negative mem-

bers of M2, and similarly for M2
c C.

Let M2
0 denote the set of M2 functions f for which f � g 2 M2 whenever

g 2 M2; that is,

M
2
0 D ff 2 M

2W g 2 M
2 H) f � g 2 M

2g:

Thus for f 2 M2
0, 'f .M2/ � M2.

It was shown in [16] that M2 is not closed under Dirichlet convolution, so M2
0 ¤

M2. A criterion for f 2 M2 to be in M2
0 was given, namely:

Proposition 3.6. Let f 2 M2 be such that
P1

kD1 jf .pk/j converges for every prime

p and that
P1

kD1 jf .pk/j � A for some constant A independent of p. Then f 2 M2
0.

On the other hand, if f 2 M2 with f � 0 and for some prime p0, f .pk
0 /

decreases with k and
P1

kD1 f .pk
0 / diverges, then f 62 M2

0.

The proof is based on the following necessary and sufficient condition: Let f; g 2
M2 be non-negative. Then f � g 2 M2 if and only if

X

p

X

m;n�1

1
X

kD0

f .pm/g.pn/f .pmCk/g.pnCk/ converges:

This can be proven in a direct manner.

Thus, in particular, M2
c � M2

0. For f 2 M2
c if and only if jf .p/j < 1 for all

primes p and
P

p jf .p/j2 < 1. Thus

1
X

kD1

jf .pk/j D jf .p/j
1 � jf .p/j � A;

independent of p.

For example, .n�˛/ 2 M2
0 for ˛ > 1

2
.

The “quasi-norm” Mf .T /. Let f 2 M2
0. The discussion above shows that

'f .M2/ � M2 but, typically, 'f is not ‘bounded’ on M2 (if f 62 l1) in the sense

that5 k'f ak=kak is not bounded by a constant for all a 2 M2. A natural question

is: how large can k'f ak become as a function of kak? It therefore makes sense to

define, for T � 1,

Mf .T / D sup
a 2 M2

kak D T

k'f ak
kak :

We shall consider only the case f .n/ D n�˛, although the result below can be ex-

tended without any significant changes to f completely multiplicative and such that

5Here, and throughout this section k � k D k � k2 is the l2-norm.
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f jP is regularly varying of index �˛ with ˛ > 1=2 in the sense that there exists

a regularly varying function Qf (of index �˛) with Qf .p/ D f .p/ for every prime p.

We shall write Mf .T / D M˛.T / in this case.

Theorem 3.7. As T ! 1

M1.T / D e
 .log log T C log log log T C 2 log 2 � 1 C o.1//; (3.23)

while for 1
2

< ˛ < 1,

log M˛.T / D
�

B. 1
˛

; 1 � 1
2˛

/˛

.1 � ˛/2˛
C o.1/

�

.log T /1�˛

.log log T /˛
: (3.24)

Sketch of proof for the case 1
2

< ˛ < 1 (for the full proof see [16]). We consider first

upper bounds. The supremum occurs for a � 0, which we now assume. Write

a D .an/, '˛a D b D .bn/. Define ˛p and ˇp for prime p by

˛p D
1
X

kD1

a2
pk and ˇp D

1
X

kD1

b2
pk :

By the multiplicativity of a and b, T 2 D kak2 D
Q

p.1 C ˛p/ and kbk2 D
Q

p.1 C
ˇp/. Thus

k'˛ak
kak D

Y

p

s

1 C ˇp

1 C ˛p

:

Now for k � 1

bpk D
k
X

rD0

p�r˛apk�r D apk C p�˛bpk�1 ;

whence

b2
pk D a2

pk C 2p�˛apk bpk�1 C p�2˛b2
pk�1 :

Summing from k D 1 to 1 and adding 1 to both sides gives

1 C ˇp D 1 C ˛p C 2p�˛

1
X

kD1

apk bpk�1 C p�2˛.1 C ˇp/: (3.25)

By Cauchy–Schwarz,

1
X

kD1

apk bpk�1 �
� 1
X

kD1

a2
pk

1
X

kD1

b2
pk�1

�1=2

D
q

˛p.1 C ˇp/;

so, on rearranging,

.1 C ˇp/ �
2p�˛

p

˛p.1 C ˇp/

1 � p�2˛
� 1 C ˛p

1 � p�2˛
:



112 Titus Hilberdink

Completing the square we obtain

�

q

1 C ˇp �
p�˛p

˛p

1 � p�2˛

�2

� 1 C ˛p

.1 � p�2˛/2
:

The term on the left inside the square is non-negative for every p since 1 C ˇp �
1C˛p

1�p�2˛ , which is greater than
p�2˛˛p

.1�p�2˛/2 for ˛ > 1
2

. Rearranging gives

s

1 C ˇp

1 C ˛p

� 1

1 � p�2˛

�

1 C 1

p˛

r

˛p

1 C ˛p

�

:

Let 
p D
q

˛p

1C˛p
. Taking the product over all primes p gives

k'f ak
kak � �.2˛/

Y

p

�

1 C 
p

p˛

�

� �.2˛/ exp
n

X

p


p

p˛

o

: (3.26)

Note that 0 � 
p < 1 and
Q

p
1

1�
2
p

D T 2. The idea is to show now that the main

contribution to the above sum comes from the range p � log T log log T .

Let " > 0 and put P D log T log log T . We split up the sum on the right-hand

side of (3.26) into p � aP , aP < p � AP , and p > AP (for a small and A large).

First,
X

p�aP

p�˛
p �
X

p�aP

p�˛ � a1�˛P 1�˛

.1 � ˛/ log P
< "

.log T /1�˛

.log log T /˛
; (3.27)

for a sufficiently small. Next, using the fact that log T 2 D log
Q

p
1

1�
2
p

�
P

p 
2
p,

we have

X

p>AP

p�˛
p �
�

X

p>AP

p�2˛
X

p>AP


2
p

�1=2

.

�

2A1�2˛P 1�2˛ log T

.2˛ � 1/ log P

�1=2

� .log T /1�˛.log log T /�˛

A˛�1=2
p

˛ � 1=2
< "

.log T /1�˛

.log log T /˛
(3.28)

for A sufficiently large. This leaves the range aP < p � AP and the problem

therefore reduces to maximising
X

aP <p�AP


p

p˛

subject to 0 � 
p < 1 and
Q

p
1

1�
2
p

D T 2. The maximum clearly occurs for 
p

decreasing (if 
p0 > 
p for primes p < p0, then the sum increases in value if we

swap 
p and 
p0). Thus we may assume that 
p is decreasing.
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By interpolation we may write 
p D g. p
P

/, where gW .0; 1/ ! .0; 1/ is con-

tinuously differentiable and decreasing. Of course, g will depend on P . Let h D
log 1

1�g2 , which is also decreasing. Note that

2 log T D
X

p

h
� p

P

�

�
X

p�aP

h
� p

P

�

� h.a/�.aP / � cah.a/ logT;

for P sufficiently large, for some constant c > 0. Thus h.a/ � Ca (independently of

T ).

Now, for F W .0; 1/ ! Œ0; 1/ decreasing, it follows from the Prime Number

Theorem in the form �.x/ D li.x/ C O. x
.log x/2 / that

X

ax<p�bx

F
�p

x

�

D x

log x

Z b

a

F C O
� xF.a/

.log x/2

�

; (3.29)

where the implied constant is independent of F (and x). Thus

2 log T �
X

aP <p�AP

h
� p

P

�

� P

log P

Z A

a

h � log T

Z A

a

h:

Since a and A are arbitrary,
R1

0 h must exist and is at most 2. Also, by (3.29),

X

aP <p�AP


p

p˛
D 1

P ˛

X

aP <p�AP

g
� p

P

�� p

P

��˛

� P 1�˛

log P

Z A

a

g.u/

u˛
du:

As a; A are arbitrary, it follows from above and (3.26), (3.27), (3.28) that

log
k'f ak

kak �
�Z 1

0

g.u/

u˛
du C o.1/

�

Qf .log T log log T / log T:

Thus we need to maximise
R1

0 g.u/u�˛du subject to
R1

0 h � 2 over all decreasing

gW .0; 1/ ! .0; 1/. Since h is decreasing, one finds that xh.x/ ! 0 as x ! 1 and

as x ! 0C.

For the supremum, we can consider only those g (and h) which are continuously

differentiable and strictly decreasing, since we can approximate arbitrarily closely by

such functions. On writing g D s ı h, where s.x/ D
p

1 � e�x , we have

Z 1

0

g.u/

u˛
du D

hg.u/u1�˛

1 � ˛

i1

0
� 1

1 � ˛

Z 1

0

g0.u/u1�˛ du

D � 1

1 � ˛

Z 1

0

s0.h.u//h0.u/u1�˛ du

D 1

1 � ˛

Z h.0C/

0

s0.x/l.x/1�˛ dx;
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where l D h�1, since
p

ug.u/ ! 0 as u ! 1. The final integral is, by Hölder’s

inequality, at most
�Z h.0C/

0

s01=˛

�˛�Z h.0C/

0

l

�1�˛

: (3.30)

But
R h.0C/

0 l D �
R1

0 uh0.u/du D
R1

0 h � 2, so

Z 1

0

g.u/

u˛
du � 21�˛

1 � ˛

�Z 1

0

s01=˛

�˛

:

A direct calculation shows that6
R1

0 .s0/1=˛ D 2�1=˛B. 1
˛

; 1 � 1
2˛

/. This gives the

upper bound.

The proof of the upper bound leads to the optimal choice for g and the lower

bound. We note that we have equality in (3.30) if l=.s0/1=˛ is constant, i.e., l.x/ D
cs0.x/1=˛ for some constant c > 0 — chosen so that

R1
0

l D 2. This means that we

take

h.x/ D .s0/�1
��x

c

�˛�

D log

�

1

2
C 1

2

r

1 C
� c

x

�2˛
�

;

from which we can calculate g. In fact, the required lower bound can be found by

taking an completely multiplicative, with ap for p prime defined by

ap D g0

� p

P

�

;

where P D log T log log T and g0 is the function

g0.x/ D
v

u

u

t
1 � 2

1 C
q

1 C . c
x

/2˛
;

with c D 21C1=˛=B. 1
˛

; 1 � 1
2˛

/. As such, by the same methods as before, we have

kak D T 1Co.1/ and

log
k'˛ak
kak D

X

p

p�˛g0

� p

P

�

C O.1/ � P 1�˛

log P

Z 1

0

g0.u/

u˛
du:

By the choice of g0, the integral on the right is
B. 1

˛
; 1 � 1

2˛
/˛

.1 � ˛/2˛
, as required. �

Remark. These asymptotic formulae bear a strong resemblance to the (conjectured)

maximal order of j�.˛ C iT /j. It is interesting to note that the bounds found here are

just larger than what is known about the lower bounds for Z˛.T / (see the interlude

on upper and lower bounds on �.s/, especially items (b) and (c)). We note that the

constant appearing in (3.24) is not Lamzouri’s C.˛/ since, for ˛ near 1
2

, the former is

roughly 1
q

˛� 1
2

, while C.˛/ � 1p
2˛�1

.

6The integral is 2�1=˛
R1

0 e�x=˛.1 � e�x/�1=2˛dx D 2�1=˛
R 1

0 t1=˛�1.1 � t /�1=2˛dt .
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Lower bounds for '˛ and some further speculations. We can study lower bounds

of '˛ via the function

m˛.T / D inf
a 2 M2

kak D T

k'˛ak
kak :

Using very similar techniques, one obtains results analogous to Theorem 3.7:

1

m1.T /
D 6e


�2
.log log T C log log log T C 2 log 2 � 1 C o.1//

and

log
1

m˛.T /
�

B. 1
˛

; 1 � 1
2˛

/˛.log T /1�˛

.1 � ˛/2˛.log log T /˛
for 1

2
< ˛ < 1:

We see that m˛.T / corresponds closely to the conjectured minimal order of j�.˛ C
iT /j (see [11] and [25]).

The above formulae suggest that the supremum (respectively infimum) of

k'˛ak=kak with a 2 M2 and kak D T are close to the supremum (resp. infi-

mum) of j�˛j on Œ1; T �. One could therefore speculate further that there is a close

connection between k'˛ak=kak (for such a) and j�.˛ C iT /j.
Heuristically, we could argue as follows. Consider

1

T

Z T

0

j�.˛ � i t/j2
ˇ

ˇ

ˇ

ˇ

1
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt: (3.31)

This is less than

Z˛.T /2 	 1

T

Z T

0

ˇ

ˇ

ˇ

ˇ

1
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt � Z˛.T /2kak2;

by the Montgomery–Vaughan mean value theorem (under appropriate conditions).

On the other hand, (3.31) is expected to be approximately

1

T

Z T

0

ˇ

ˇ

ˇ

ˇ

1
X

nD1

bnni t

ˇ

ˇ

ˇ

ˇ

2

dt �
1
X

nD1

jbnj2 D k'˛ak2:

Putting these together gives
k'˛ak
kak . Z˛.T /:

The left-hand side, as a function of kak, can be made as large as F.kak/, where

F.x/ D expfc˛
.log x/1�˛

.log log x/˛ g. If the above continues to hold for kak as large as T , then

M˛.T / � Z˛.T / would follow. Even if it holds for kak as large as a smaller power

of T , one would recover Montgomery’s �-result.
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Alternatively, considering (3.31) over ŒT; 2T �,

1

T

Z 2T

T

j�.˛ �i t/j2
ˇ

ˇ

ˇ

ˇ

1
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt D j�.˛ C i t0/j2 	 1

T

Z 2T

T

ˇ

ˇ

ˇ

ˇ

1
X

nD1

anni t

ˇ

ˇ

ˇ

ˇ

2

dt (3.32)

for some t0 2 ŒT; 2T � and, using the Montgomery–Vaughan mean value theorem

(assuming it applies), this is approximately

j�.˛ C i t0/j2
1
X

nD1

janj2 D j�.˛ C i t0/j2kak2:

On the other hand, formally multiplying out the integrand, by writhing �.˛ � i t/ D
P1

nD1
nit

n˛ and formally multiplying out the integrand, the left-hand side of (3.32)

becomes (heuristically)

1

T

Z 2T

T

ˇ

ˇ

ˇ

ˇ

1
X

nD1

bnni t

ˇ

ˇ

ˇ

ˇ

2

dt �
1
X

nD1

jbnj2 D k'˛ak2:

Equating these gives
k'˛ak
kak � j�.˛ C i t0/j:

Clearly there are a number of problems with this. For a start, we need '˛a 2
l2. More importantly, the error term in the Montgomery–Vaughan theorem contains
P1

nD1 njanj2, which may diverge. Also, an and hence kak may depend on T , and

finally, the series for �.˛ � i t/ doesn’t converge for ˛ � 1.

If an D 0 for n > N , the above argument can be made to work, even for N
a (small) power of T (see for example [15]), but difficulties arise for larger powers

of T .

There seem to be some reasons to believe that the error from the Montgomery–

Vaughan theorem should be much smaller when considering products. These occur

when an is multiplicative. For example (with Q D
Q

p�P p so that log Q D �.P / �
P by the Prime Number Theorem),

1

2T

Z T

�T

ˇ

ˇ

ˇ

ˇ

Y

p�P

.1 C pi t /

ˇ

ˇ

ˇ

ˇ

2

dt D 1

2T

Z T

�T

ˇ

ˇ

ˇ

ˇ

X

d jQ
d i t

ˇ

ˇ

ˇ

ˇ

2

dt D
X

d jQ
1 C O

�

1

T

X

d jQ
d

�

:

The ‘main term’ is d.Q/ D 2�.P /, while the error is at least
Q
T

. However the left-

hand side is trivially at most 4�.P /, so the error dominates the other terms if P >
.1 C ı/ log T . If, say, P is of order log T log log T (which is the range of interest),

then �.P / � log T , so 2�.P / is like a power of T , but Q is roughly like T log log T –

far too large.

Thus it may be that for an completely multiplicative, it holds that

1

T

Z 2T

T

j�.˛ � i t/j2
ˇ

ˇ

ˇ

ˇ

Y

p�P

1

1 � appi t

ˇ

ˇ

ˇ

ˇ

2

dt � j�.˛ C i t0/j
Y

p�P

1

1 � japj2
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for P up to c log T log log T . This suggests the following might be true:

(a) given a 2 M2 with kak D T , there exists t 2 ŒT; 2T � such that

k'˛ak
kak � j�.˛ C i t/j:

(b) given T � 1, there exists a 2 M2 with kak D T such that

k'˛ak
kak � j�.˛ C iT /j:

Here, � means something like log-asymptotic, �, or possibly even D. Thus (a)

implies M˛.T / . Z˛.T /, while (b) implies the opposite. Together they would imply

we can encode real numbers into M2-functions with equal l2-norm, such that '˛ has

a similar action as �˛ .

Closure of MB2
N

? We finish these speculations with a final plausible conjecture

regarding the closure under multiplication of functions in B2
N

with multiplicative co-

efficients.

Let M0B2
N denote the subset MB2

N of functions f for which Of 2 M0. Recall

that M2
0 is the subset of M2 for which g 2 M2 ) f � g 2 M2. This suggests the

following conjecture:

Conjecture. Let f 2 MB2
N and g 2 M0B2

N. Then fg 2 MB2
N.

In particular, MB2
NMcB

2
N D MB2

N. Since �˛ 2 McB
2
N for ˛ > 1

2
, this would

imply �k
˛ 2 MB2

N
for every k 2 N and ˛ > 1

2
, which implies the Lindelöf hypothesis.

4 Connections to matrices of the form

.f .ij =.i; j /2//i;j �N

The asymptotic formulae for ˆf .N / in Theorem 3.1 can be used to obtain infor-

mation on the largest eigenvalue of certain arithmetical matrices. Various authors

have discussed asymptotic estimates of eigenvalues and determinants of arithmetical

matrices (see for example [4], [5], [24] to name just a few).

Let AN .f / denote the N � N matrix with ij th-entry f .i=j / if j ji and zero oth-

erwise. (i.e. AN .f / D MN . Of /). As noted in the introduction, these matrices behave

much like Dirichlet series with coefficients f .n/; namely,

AN .f /AN .g/ D AN .f � g/:
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In particular, AN .f / is invertible if f has a Dirichlet inverse, i.e., f .1/ ¤ 0, in which

case AN .f /�1 D AN .f �1/.
Suppose for simplicity that f is a real arithmetical function. (For complex values

we can easily adjust.) Observe that ˆf .N /2 is the largest eigenvalue of the matrix

AN .f /T AN .f /:

Indeed, we have (with bn D
P

d jn f .d/an=d )

b2
n D

X

i;j jn
f
�n

i

�

f
�n

j

�

ai aj ;

so that, on noting i; j jn if and only if Œi; j �jn (where Œi; j � denotes the lcm of i and

j )
N
X

nD1

b2
n D

N
X

nD1

X

Œi;j �jn
f
�n

i

�

f
�n

j

�

aiaj D
X

i;j �N

b
.N /
ij aiaj ;

where (using .i; j /Œi; j � D ij )

b
.N /
ij D

X

k� N
Œi;j �

f
� ki

.i; j /

�

f
� kj

.i; j /

�

:

But b
.N /
ij is also the ij th-entry of AN .f /T AN .f /, as an easy calculation shows. Thus

ˆf .N /2 D sup
a2

1
C���Ca2

N
D1

X

i;j �N

b
.N /
ij ai aj (3.33)

is the largest eigenvalue of AN .f /T AN .f /, i.e., ˆf .N / the largest singular value7

of AN .f /. Thus an equivalent formulation of Corollary 2.2 for f supported on N is:

For f 2 l1 non-negative, the largest singular value of AN .f / tends to kf k1.

Now if f is completely multiplicative, then

b
.N /
ij D f

� ij

.i; j /2

�

X

k� N
Œi;j �

f .k/2;

which for large N is roughly kf k2
2f . ij

.i;j /2 / for f 2 l2. This suggests that the matrix
�

f . ij

.i;j /2 /
�

i;j �N
has its largest eigenvalue close to ˆf .N /2=kf k2

2. This is indeed

the case.

7The singular values of a matrix A are the square roots of the eigenvalues of AT A (or A�A if A has

complex entries).



Bibliography 119

Corollary 4.1. Let f 2 l2 be non-negative and completely multiplicative. Let ƒN

denote the largest eigenvalue of
�

f . ij

.i;j /2 /
�

i;j �N
. Then

ˆf .N /2

kf k2
2

� ƒN � ˆf .N 3/2

PN
kD1 f .k/2

:

In particular, for f 2 l1,

lim
N !1

ƒN D kf k2
1

kf k2
2

:

Proof. We have

ƒN D sup
a2

1
C���Ca2

N
D1

X

i;j �N

f
� ij

.i; j /2

�

aiaj (3.34)

When f � 0, the supremums in (3.33) and (3.34) are reached for an � 0. Thus,

ˆf .N /2 � kf k2
2ƒN

follows immediately.

On the other hand, for i; j � N , Œi; j � � N 2 so

ˆf .N 3/2 �
X

i;j �N

f
� ij

.i; j /2

�

ai aj

X

k�N

f .k/2:

Taking the supremum over all such an gives, ˆf .N 3/2 � ƒN

P

k�N f .k/2, as

required.

Finally, if f 2 l1, then ˆf .N / ! kf k1 and so ƒN ! kf k2
1

kf k2
2

follows. �

The approximate formulae for ˆ˛.N / in Theorem 3.1 lead to:

Corollary 4.2. Let f .n/ D n�˛ and let ƒN .˛/ denote the largest eigenvalue of
�

f . ij

.i;j /2 /
�

i;j �N
. Then

ƒN .1/ D 6

�2
.e
 log log N C O.1//2;

log ƒN .˛/ � .log N /1�˛

log log N
for 1

2
< ˛ < 1;

log ƒN

�1

2

�

�
s

log N

log log N
:
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