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An optimization problem concerning multiplicative
functions

Titus Hilberdink
Department of Mathematics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

In this paper we study the problem of maximizing a quadratic form 〈Ax, x〉 subject to

‖x‖q = 1, where A has matrix entries f( [i,j]
(i,j)

) with i, j|k and q ≥ 1. We investigate when the
optimal is achieved at a ‘multiplicative’ point; i.e. where x1xmn = xmxn. This turns out to
depend on both f and q, with a marked difference appearing as q varies between 1 and 2. We
prove some partial results and conjecture that for f is multiplicative such that 0 < f(p) < 1,
the solution is at a multiplicative point for all q ≥ 1.

2010 AMS Mathematics Subject Classification: 11A05, 11C20, 11N99, 15A36
Keywords and phrases: Optimization problem, Multiplicative functions

§1. Introduction
In optimization problems involving multiplicative structure, there is a tendency for multiplicative
functions to play a crucial role. This can appear in various ways; the optimal may itself be
multiplicative, or the point where the optimal occurs may be multiplicative.

For instance in [3], Codecá and Nair considered (amongst others) the problem of minimizing a

quadratic form 〈Bx, x〉 subject to ‖x‖2 = 1 where B is the d(k)× d(k) matrix with entries h((i,j))
ij

where i, j|k, (i, j) is the gcd of i and j, and k is squarefree. They proved that any real multiplicative
function f with 0 < f(p) < 1 (for primes p|k) can be realised as such as minimum. Further, they
explicitly determined this minimum when h is multiplicative and of the form h = 1∗ g, with g ≥ 0.

Another example comes from [7], where Perelli and Zannier considered the problem of mini-
mizing 〈Ax, x〉 subject to ‖x‖2 = 1 where A is the d(k) × d(k) matrix (again with k squarefree)

with entries f( [i,j]
(i,j) ) (here [i, j] is the lcm of i and j) in the special case that f(n) = 1

4 + 1
12n . They

show that the minimum is ϕ(k)
12k and that this is achieved at the point xd = µ(d)√

d(k)
.

In [6], it was noted that the operation c◦d = [c,d]
(c,d) is a group operation on D(k) = {d : d|k} if k

is squarefree and, as an application of this algebraic structure, the problem of maximizing 〈Afx, x〉
was considered, where Af = (f(c ◦ d))c,d|k but now subject to ‖x‖q = 1 with q ≥ 2. It was found
that for any f : D(k)→ (0,∞), the optimal is

d(k)1−
2
q

∑
d|k

f(d),

and that it occurs at xd constant. Notice that in both of the above examples, xdx1
is multiplicative

at the optimal, even if f is not. In the latter, the optimal itself is also multiplicative precisely
when f is.

In this paper we consider the above optimization problem for the range 1 < q < 2, which turns
out to be highly non-trivial. This has its origin in a problem concerning gcd sums. Briefly, one
wishes to maximize the sum

Fα(S) =
∑

m,n∈S

1

(m ◦ n)α

over all sets S of size N (see [5] for the case α = 1 and [4] and [1] for other values of α > 0). For
α ≥ 1

2 good bounds for this maximum have been established (sharp for α = 1 [5] and close to best
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possible for 1
2 ≤ α < 1 see [1], [2]), but for 0 < α < 1

2 little is as yet known, except for rather crude
upper and lower bounds. Thus it is known that in this range

N2−2α � max
|S|=N

Fα(S)� N2−2α exp

{
cα

√
logN log log logN

log logN

}
for some absolute constant c (see [2]), but the true order is far from settled. In work in progress, a
new lower bound N2−2α(log logN)2α can be established which may also turn out to be the correct
order of magnitude. This hinges (in part) on maximizing 〈Afx, x〉 with f(n) = n−α over ‖x‖q = 1,
where q = 1

1−α ∈ (1, 2). This motivates studying the following

Optimization problem: Let f : D(k)→ (0,∞) where k is squarefree. Find the supremum of

〈Afx, x〉 =
∑
c,d|k

f(c ◦ d)xcxd subject to ‖x‖q = 1.

Throughout the article, k is squarefree, q ≥ 1 and ‖x‖q is the usual q-norm: with x = (xd)d|k,

‖x‖q = (
∑
d|k |xd|q)1/q. Also let F (k) =

∑
d|k f(d).

Remarks 1

(a) Note the following symmetry: let x′ = (x′d) where x′d = xc◦d for some c|k (for all d|k); then
〈Afx′, x′〉 = 〈Afx, x〉, and ‖x′‖q = ‖x‖q. Thus if x is optimal, then so is x′. Also, as f > 0,
the maximum occurs for x ≥ 0. Hence, without loss of generality, by permuting the xd, we
may always assume that at the optimal, x1 ≥ xd ≥ 0 for every d|k.

(b) For Af positive definite, Af = B∗B for some B, so that 〈Afx, x〉 = ‖Bx‖2 and the problem
becomes one of evaluating the norm ‖B‖q,2. We discuss the details in §5.

For q = 2 the problem is standard: optimizing a (Hermitian) quadratic form. The optimal is just
the largest eigenvalue of Af , which is F (k) =

∑
d|k f(d). As mentioned earlier, for q > 2 the

answer is also relatively straightforward as shown in [6], and we briefly outline the proof. Our
main interest shall be the range 1 < q < 2.

Let Λ (or Λq if we wish to emphasize the dependence on q) denote the optimum, indeed
maximum. Also let

Mq = max
{
〈Afx, x〉 : ‖x‖q = 1 and xd

x1
is multiplicative

}
denote the maximum over ‘multiplicative’ x; i.e. when x1xmn = xmxn for (m,n) = 1.

Our main results are the following:

Theorem 1
Let f : D(k) → (0,∞). Then there exists c > 0, depending on f and k, such that for q ≥ 2 − c,
the optimal solution occurs at xd constant and Λq = d(k)1−2/qF (k).

Theorem 2
Let f be multiplicative on D(k) such that 0 < f(p) < 1 for all p|k. Then there exists c > 0,
depending on f and k, such that for q ∈ [1, 1 + c), the optimal solution occurs at a multiplicative
point; i.e. where x1xmn = xmxn whenever (m,n) = 1.

Combining these, we see that for f multiplicative, Mq = Λq for q ∈ [1, 1 + c1) ∪ (2 − c2,∞)
for some c1, c2 > 0, depending on f and k. However, we believe that the result is true throughout
[1,∞). In other words, we make the following

Conjecture: Let f be multiplicative on D(k) such that 0 < f(p) < 1 for all p|k. Then the optimal
solution occurs at a multiplicative point and so Mq = Λq for all q ≥ 1.
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Briefly we outline the rest of the paper. In §2, we indicate how the method of Lagrange
multipliers deals with the q ≥ 2 case and what it tells us about the range 1 < q < 2. We take a
particular look at the first non-trivial case k = 6.

In §3, we evaluate Mq explicitly, while in §4 we give the proofs of our main results. In §5, we
show how we can view the problem as a problem of determining a norm, giving an equivalent form
of the above conjecture.

§2. The method of Lagrange multipliers
To find the optimal, we use the method of Lagrange multipliers. We observe that, for q > 1, the
maximum must occur at an interior point; i.e. where each xd > 0. For suppose xa = 0 for some
a|k at a local maximum. There exists b such that xb > 0. Let

G(x) = 〈Afx, x〉 =
∑
c,d|k

f(c ◦ d)xcxd

and consider G(x+ h)−G(x) with h = (hd) = (. . . , ε, . . . ,−ε′, . . .) where there is an ε > 0 in the
ath place and −ε′ in the bth place and zeros elsewhere, with ε′ chosen so that ‖x + h‖q = 1. As
such

ε′ = xb − (xqb − ε
q)

1
q ∼ εq

qxq−1b

= o(ε),

as ε→ 0. Now

G(x+ h)−G(x) =
∑
c,d|k

f(c ◦ d)
{

(xc + hc)(xd + hd)− xcxd
}

= 2
∑
c,d|k

f(c ◦ d)xchd +
∑
c,d|k

f(c ◦ d)hchd

= 2ε
∑
c|k

f(c ◦ a)xc + o(ε) ≥ 2εf(a ◦ b)xb + o(ε) > 0,

for ε sufficiently small and positive. Thus G(x) cannot be maximal.

For x = (xd)d|k ∈ Rd(k)≥0 , let H(x) = G(x) − 2A(
∑
d|k x

q
d − 1), where A is to be determined.

Then at the optimal solution, we must have ∂H
∂xd

= 0 for every d|k; i.e.

Axq−1d =
∑
c|k

f(c ◦ d)xc (∀d|k).

Multiplying through by xd and summing over d shows that we must take A = Λ. Thus, at the
optimal,

Λxq−1d =
∑
c|k

f(c ◦ d)xc for every d|k. (2.1)

2.1 The case q ≥ 2
Using equations (2.1), the case q ≥ 2 can be easily dealt with.

Theorem A (see [6])

Let k be squarefree, f : D(k) → (0,∞) and q ≥ 2. Then Λ = d(k)1−
2
qF (k), where the optimal

occurs for xd constant; i.e. xd = 1
q
√
d(k)

.

Proof. Let x = (xd) denote the optimal and x and x the minimum and maximum of xd respectively.
By (2.1), for some d|k,

Λxq−1 =
∑
c|k

f(c ◦ d)xc ≥ x
∑
c|k

f(c ◦ d) = xF (k)
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since (D(k), ◦) is a group. On the other hand, for some d′|k,

Λxq−1 =
∑
c|k

f(c ◦ d′)xc ≤ x
∑
c|k

f(c ◦ d′) = xF (k).

Combining these gives Λxq−2 ≥ F (k) ≥ Λxq−2. For q = 2 this forces Λ =
∑
d|k f(d). For q > 2,

we must have x ≤ x; i.e. xd must be constant. As
∑
d|k x

q
d = 1, this forces xd = 1/ q

√
d(k). This

must give the maximum value of G as it exists and it lies in the interior of the region. Hence

Λ = d(k)1−
2
qF (k) follows.

�

2.2 The case 1 < q < 2
If q ∈ (1, 2), the above analysis using Lagrange Multipliers leading to (2.1) is still valid, but the
conclusion that xd is constant at the optimum no longer holds in general. However, as we shall
prove in Theorem 1, this constant solution continues to hold in an interval q ∈ (2− c, 2) for some
c > 0, depending on both f and k.

For smaller q though, the optimal changes. Indeed, looking at the behaviour of the optimal
solution when q is close to 1, shows precisely what is required for multiplicativity. Indeed, for
q = 1, one can construct examples with f > 1 where the optimal is not multiplicative, even if f is
(see Remarks 2). By continuity, this shows it also fails for some q > 1. However, if f(n) ≤ f(1) = 1
for all n, then the optimal when q = 1 occurs at x = (1, 0, . . . , 0). For q close to 1, we shall see
that in this case (taking x1 ≥ xd)

xq−1d ∼ f(d) as q → 1+, for every d|k.

Thus for xd/x1 to be multiplicative, we need f to be multiplicative.
However, there are indications that it is also sufficient. Note that for f multiplicative, the

eigenvalues of Af are
∏
p|k(1± f(p)) (where any combination of ± is possible – see [6]) and Af is

positive definite precisely when −1 < f(p) < 1 for all prime divisors p of k. The condition that f
is at most 1 in Theorem 2 is therefore quite natural.

2.3 The simplest non-trivial case; k = 6
The reason why we expect multiplicativity at the optimum may not be clear at this stage. That it
is true in a fairly trivial way for q ≥ 2 is not sufficient reason. Also it is vacuously true when k is
prime. A look at the first non-trivial case gives some indication why multiplicativity is expected.

Writing f(2) = a and f(3) = b (so that f(6) = ab), the problem for the k = 6 case now
becomes: maximize

x21 + x22 + x23 + x26 + 2a(x1x2 + x3x6) + 2b(x1x3 + x2x6) + 2ab(x1x6 + x2x3)

subject to x1, x2, x3, x6 ≥ 0 and xq1 + xq2 + xq3 + xq6 = 1.

The Conjecture says that, if 0 < a, b < 1 then, at the maximum, x1x6 = x2x3.
Let us see why this is plausible. Equations (2.1) give

Λxq−11 = x1 + ax2 + bx3 + abx6

Λxq−12 = ax1 + x2 + abx3 + bx6

Λxq−13 = bx1 + abx2 + x3 + ax6

Λxq−16 = abx1 + bx2 + ax3 + x6.

Multiplying the cases d = 1 and d = 6 together and subtracting the product of d = 2 and d = 3
gives (after some cancellation)

Λ2
(

(x1x6)q−1 − (x2x3)q−1
)

= (1− a2)(1− b2)(x1x6 − x2x3).
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This indicates the special role played by the quantity x1x6 − x2x3.
If x1x6 6= x2x3, then we may divide through:

Λ2 = (1− a2)(1− b2)
x1x6 − x2x3

(x1x6)q−1 − (x2x3)q−1
<

x1x6 − x2x3
(x1x6)q−1 − (x2x3)q−1

,

It is not difficult to show that the RHS has its supremum (over all x such that ‖x‖q = 1 and
x1x6 6= x2x3) when xd is constant, interpreted in the limit as x1x6 → x2x3. (We omit the details.)
As a result,

Λ2 ≤ (1/4)
2(2−q)
q

q − 1
.

But Λ ≥ 1 (by taking x1 = 1 and xd = 0 for d > 1). Thus x1x6 6= x2x3 implies

(q − 1)4
2(2−q)
q < 1.

But this is (fairly easily) shown to be false for q ∈ (1.1076, 2]. Thus the conjecture holds when k = 6
for q ∈ (1.1076, 2] at least. By Theorem 2, it also holds for q in an interval [1, 1 + c) but, unfortu-
nately, c is not an absolute constant, depending as it does on a and b. So the case k = 6 is still open.

§3. The maximum over multiplicative x for f multiplicative
Now we calculate the maximum over ‘multiplicative’ x (i.e. evaluate Mq) when f is multiplicative.
We shall require some preliminaries. For 1 ≤ q < 2, a ∈ (0, 1) and x ≥ 0, define the functions

hq(a, x) = axq + xq−1 − a− x

Lq(a, x) =
1 + 2ax+ x2

(1 + xq)2/q
.

Note that hq(a, 1) = 0, and for x > 0, hq(a,
1
x ) = −x−qhq(a, x) and Lq(a,

1
x ) = Lq(a, x).

Lemma 3.1
Fix q ∈ (1, 2) and a ∈ (0, 1) and let γ = 2

q − 1, so that γ ∈ (0, 1). Then

(a) if a ≥ γ, then hq(a, x) < 0 in [0, 1);

(b) if a < γ, then hq(a, x) has precisely one root in [0, 1).

Proof. We have hq(a, 0) = −a < 0, hq(a, 1) = 0 and h′q(a, 1) = q(a− γ). Thus we have a zero at 1
in any case, while if a < γ we must have (at least) one more in (0, 1). But also

h′′q (a, x) = q(q − 1)xq−3(ax− γ).

If a < γ, then h is concave in [0, 1] and so there is precisely one zero in (0, 1). If a ≥ γ, then h′ is
decreasing on [0, γa ] and increasing on [γa , 1]. Thus

min
0≤x≤1

h′q(a, x) = h′q

(
a,
γ

a

)
=
(a
γ

)2−q
− 1 ≥ 0

and so hq(a, x) is (strictly) increasing in [0, 1].
�

Now let rq(a) denote the unique root of hq(a, x) in (0, 1) for a < γ. Thus

rq(a)q−1 =
a+ rq(a)

1 + arq(a)
. (3.1)
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Also extend to (0, 1) by defining rq(a) = 1 for γ ≤ a < 1. Let

Qq(a) = sup
x≥0

Lq(a, x) = max
0≤x≤1

Lq(a, x).

Since L′q(a, x) = − 2hq(a,x)

(1+xq)2/q
, it is quickly seen that for q > 1, Qq(a) = Lq(a, rq(a)) while

Q1(a) =

{
1 if a ≤ 1

1+a
2 if a > 1

.

Lemma 3.2
Fix a ∈ (0, 1). Then, as q → 1+, rq(a)→ 0. More precisely, for a < γ = 2

q − 1,

rq(a) ≤ q − 1

1− aq
.

Hence (3.1) implies rq(a)q−1 → a as q → 1+.

Proof. For a < γ, hq(a, x) has one turning point in (0, 1), say at s(a). This is necessarily
a maximum and r(a) < s(a). We have aqs(a)q−1 + (q − 1)s(a)q−2 = 1. In particular, 1 ≤
(q − 1)s(a)q−2 + aq. Thus

r(a) ≤ r(a)2−q ≤ s(a)2−q ≤ q − 1

1− aq
.

�

Proposition 3.3
Let f be multiplicative and positive on D(k). Then, with γ = 2

q − 1

Mq =
∏
p|k

Qq(f(p)) =
∏

f(p)<γ

Qq(f(p))
∏

f(p)≥γ

1 + f(p)

2γ
.

In particular for q = 1,

M1 =
∏

f(p)>1

1 + f(p)

2
.

Proof. For x = (xd) such that ‖x‖q = 1, we may write

xd =
g(d)

G(k)
, where g ≥ 0 is multiplicative and G(k) = (

∑
d|k g(d)q)1/q.

We recall from [6] that with F ⊗ G defined on D(k) by (F ⊗ G)(n) =
∑
d|k F (d)G(n ◦ d), then

(F ⊗̃G)(n) := (F⊗G)(n)
(F⊗G)(1) is multiplicative whenever F and G are, provided that (F ⊗ G)(1) 6= 0.

Further, (F ⊗̃G)(p) = F (p)+G(p)
1+F (p)G(p) for a prime p. As such,

〈Afx, x〉 =
1

G(k)2

∑
c,d|k

f(c ◦ d)g(c)g(d) =
1

G(k)2

∑
d|k

g(d)(f ⊗ g)(d)

=
1

G(k)2

∑
c|k

f(c)g(c)
∑
d|k

g(d)(f⊗̃g)(d)

=
∏
p|k

{
1 + f(p)g(p)

(1 + g(p)q)2/q
· (1 + g(p)(f⊗̃g)(p))

}
(by multiplicativity)

=
∏
p|k

{
1 + 2f(p)g(p) + g(p)2

(1 + g(p)q)2/q

}
=
∏
p|k

Lq(f(p), g(p)).

6



In order to maximize this, we maximize each factor independently of the others. Since there is no
restriction on g(p), we need to maximize Lq(f(p), t) over t in (0,1). Thus we take g(p) = rq(f(p))
giving the maximum Qq(f(p)), and so

Mq =
∏
p|k

Qq(f(p)).

The second formula follows on using Qq(f(p)) = 1+f(p)
2γ whenever f(p) ≥ γ.

�

Remarks 2

(a) Note that if f(p) < 1 for each p|k then, for q close to 1, g(p)q−1 = f(p) +O(q−1) by Lemma
3.2 and, by multiplicativity, g(d)q−1 = f(d) +O(q − 1).

(b) From the formula for M1 we can show that the maximum need not necessarily occur at a
‘multiplicative’ point, even if f is multiplicative. As an example, take k = 6 and let f be
multiplicative with f(2), f(3) > 1. Then

M1 =
(1 + f(2))(1 + f(3))

4
.

But at x = ( 1
2 , 0, 0,

1
2 ), 〈Afx, x〉 = 1+f(2)f(3)

2 , which is larger. (Indeed this can be shown to
be the maximum.) By continuity, for this f , Mq < Λq if q is a little larger than 1.

§4. Proof of Theorems 1 and 2

Proof of Theorem 1. We need only consider q < 2. Since Λq varies continuously with q and
Λ2 = F (k), we must have

Λq = F (k) + o(1) as q → 2−.

Let x be such that ‖x‖q = 1 and x1 ≥ xd without loss of generality. Then we have

1 =
∑
d|k

xqd ≤ x
q
1d(k),

so that x1 ≥ d(k)−1/q = 1√
d(k)

+ o(1). Now put d = 1 in (2.1). Thus

∑
c|k

f(c)xc = Λqx
q−1
1 ∼ F (k)x1.

It follows that, for every d|k,

0 ≤ f(d)(x1 − xd) ≤
∑
c|k

f(c)(x1 − xc) = F (k)x1 − Λqx
q−1
1 → 0

as q → 2−. Thus xd = x1 + o(1) for every d|k. We may therefore write

xd = x1e
−ηd , where 0 ≤ ηd → 0 as q → 2−.

Let η = maxd|k ηd and H = 1
d(k)

∑
d|k ηd. Note that H ≤ η, and η → 0 as q → 2−. Then

1 =
∑
d|k

xqd = xq1
∑
d|k

e−qηd = xq1
∑
d|k

(1− qηd +O(η2)) = xq1d(k)(1− qH +O(η2)).

Thus

x1 =
1 +H +O(η2)

d(k)1/q
. (4.1)
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Next,

Λq = x21
∑
c,d|k

f(c ◦ d)e−ηc−ηd = x21
∑
c,d|k

f(c ◦ d)(1− ηc − ηd +O(η2))

= x21

(∑
c|k

∑
d|k

f(c ◦ d)− 2
∑
c|k

ηc
∑
d|k

f(c ◦ d) +O(η2)
)

= x21F (k)d(k)(1− 2H +O(η2)).

Inserting (4.1) gives
Λq = F (k)d(k)1−2/q(1 +O(η2)). (4.2)

Now, with d = 1 in (2.1), and dividing through by x1,

Λqx
q−2
1 =

∑
c|k

f(c)e−ηc =
∑
c|k

f(c)(1− ηc +O(η2)) = F (k)−
∑
c|k

f(c)ηc +O(η2).

Rearranging and inserting (4.1) and (4.2),∑
c|k

f(c)ηc = F (k)− Λqx
q−2
1 +O(η2) = F (k)− F (k)(1 + (q − 2)H) +O(η2)

= (2− q)HF (k) +O(η2) ≤ (2− q)ηF (k) +O(η2).

But the left-hand side is at least f(d)η for some d. If η > 0, we may divide through to get

f(d) ≤ (2− q)F (k) +O(η).

This is a contradiction for all q sufficiently close to 2. Thus η = 0 and xd is constant.
�

For the proof of Theorem 2, we first determine the asymptotic behaviour of the solution and Λq
as q → 1. For the following result we do not require f to be multiplicative, only to be bounded by 1.

Proposition 4.1
Let f : D(k)→ (0, 1] such that f(d) = 1 at d = 1 only. Then, at the optimal, as q → 1+

Λq = 1 +O(q − 1) and xq−1d = f(d) +O(q − 1).

Proof. Since f ≤ 1, we have for ‖x‖q = 1,

1 ≤ Λq ≤
(∑
d|k

xd

)2
≤
(∑
d|k

xqd

) 2
q
(∑
d|k

1
)2(1− 1

q )

= d(k)
2(q−1)
q = 1 +O(q − 1).

Also 1 =
∑
d|k x

q
d ≤ d(k)xq1 ≤ d(k)x1, so that 1

d(k) ≤ x1 ≤ 1 and hence xq−11 = 1 +O(q − 1). Now

(2.1) with d = 1 implies ∑
c|k

f(c)xc = Λqx
q−1
1 = 1 +O(q − 1).

But
∑
c|k xc = 1 +O(q − 1) also, and subtracting gives∑

c|k

(1− f(c))xc = O(q − 1).

As f(c) < 1 whenever c > 1, we see that xd = O(q−1) for each d > 1, and hence x1 = 1+O(q−1).
This implies

Λqx
q−1
d =

∑
c|k

f(c ◦ d)xc = f(d) +O(q − 1),

8



with c = 1 giving the main term. Thus xq−1d = f(d) +O(q − 1) as required.
�

Proof of Theorem 2. Again we may assume that at the optimal solution x1 ≥ xd > 0 for all d|k.
We shall also assume that q > 1, the q = 1 case being trivial, so that the method of Lagrange
multipliers is valid and equations (2.1) hold.

These may be rewritten by letting h(d) = xd
x1

as follows. Then dividing (2.1) through by the
d = 1 case gives

h(d)q−1
∑
c|k

f(c)h(c) =
∑
c|k

f(c ◦ d)h(c) or h(d)q−1 = (f⊗̃h)(d). (4.3)

The aim is now to show that h(d) = g(d), where g(d) is the optimal chosen in the multiplicative
case in Proposition 3.3. There we found that

g(p)q−1 =
f(p) + g(p)

1 + f(p)g(p)
= (f⊗̃g)(p).

Since f and g are multiplicative, it follows that

g(d)q−1 = (f⊗̃g)(d).

Thus g(d) also satisfies (4.3).
Furthermore, both g(d)q−1 = f(d) +O(q − 1) and h(d)q−1 = f(d) +O(q − 1) as q → 1+ (from

Remarks 2(a) and Proposition 4.1 respectively). Thus h(d) � g(d) � f(d)
1
q−1 and we may write

h(d) = g(d)eηd ,

where ηd = O(1). As such, (4.3) becomes∑
c|k

(
f(c ◦ d)− f(c)g(d)q−1eηd(q−1)

)
h(c) = 0.

Splitting eηd(q−1) into 1 + (eηd(q−1) − 1) and using (4.3) for g leads to∑
c|k

(
f(c ◦ d)− f(c)g(d)q−1

)
g(c)(eηc − 1) = g(d)q−1(eηd(q−1) − 1)

∑
c|k

f(c)h(c). (4.4)

Choose d such that |ηd| ≥ |ηc| for all c|k and suppose for a contradiction that |ηd| > 0. Then the
RHS in (4.4) is, in modulus, at least

g(d)q−1|eηd(q−1) − 1| ∼ f(d)|ηd|(q − 1).

But on the left of (4.4), the c = 1 term is zero, while for c > 1, g(c) is exponentially small, as
g(c)q−1 → f(c) < 1. Thus the LHS of (4.4) is, in modulus,

� |ηd|
∑
c>1

g(c)� |ηd|(max
c>1

f(c))
1
q−1 = o(|ηd|(q − 1)).

We have our desired contradiction, and so h = g, making h multiplicative.
�

§5. Problem transposed into one of norms
If Af is positive definite, which is our main interest, then Af = B∗B for some B, so that 〈Afx, x〉 =
‖Bx‖2 and the problem becomes one of evaluating the norm

‖B‖q,2 = sup
x 6=0

‖Bx‖2
‖x‖q

.
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Such norms are generally difficult to find, there being no general formulae. Indeed, for bounded
linear operators ϕ : lp → lq, a general formula (in terms of the associated matrix entries) is only
known for the cases p = 1 or q =∞ (see for example [8], Chapter 4).

Now if f is multiplicative, then Af is positive definite precisely when f(p) ∈ (−1, 1) for all p|k.
We can give a precise form for B in this case. We require some concepts from [6].

Every f : D(k)→ C has a Fourier series

f(n) =
1

d(k)

∑
χ∈ ˆD(k)

f̂(χ)χ(n),

where χ ranges over the characters of D(k) and f̂(χ) are the Fourier coefficients of f , given by

f̂(χ) =
∑
d|k

χ(d)f(d)
(

=
∏
p|k

(1 + χ(p)f(p)) if f is multiplicative
)
.

If f̂(χ) ≥ 0 for all χ, we may define for α > 0,

f⊗α(n) =
1

d(k)

∑
χ∈ ˆD(k)

f̂(χ)αχ(n). (5.1)

Equivalently, we may write Af = U∗DU where U is the unitary matrix with entries (χ(d))
d|k,χ∈D̂(k)

and D = diag(f̂(χ))
χ∈D̂(k)

, in which case Aαf = Af⊗α .

Also let f ⊗̃α(n) = f⊗α(n)
f⊗α(1) whenever the denominator is non-zero.

Proposition 5.1
Let f be multiplicative on D(k) such that 0 < f(p) < 1 for all primes p|k. Then f ⊗̃α is multiplica-
tive for every α > 0, and furthermore for each n|k,

f ⊗̃α(n) =
∏
p|n

(1 + f(p))α − (1− f(p))α

(1 + f(p))α + (1− f(p))α
.

Proof. Denote the d(k) characters of D̂(k) by χd(·) = µ((·, d)) where d|k and µ(·) is the Möbius
function. We prove by induction on w(k) (the number of prime factors of k) that

f⊗α(n) =
1

d(k)

∏
p|k

{
(1 + f(p))α + χp(n)(1− f(p))α

}
. (5.2)

For if (5.2) holds, then dividing through by the n = 1 case and using χp(n) = −1 if p|n and 1
otherwise, gives the result.

Now if w(k) = 2, then k is prime and D̂(k) consists of two characters 1 and µ. Thus by (5.1)

f⊗α(n) =
1

2
(f̂(1)α1(n) + f̂(µ)αµ(n)) =

1

2

(
(1 + f(k))α + µ(n)(1− f(k))α

)
which is the RHS of (5.2).

For the inductive step, suppose (5.2) holds for some k squarefree and all n|k. Let q be prime
and such that q6 |k, and consider (5.2) for qk.

Observe that (i) D(qk) = D(k)∪ qD(k) (since every divisor d|qk satisfies either d|k or d = qd′,

d′|k), and (ii) χ ∈ D̂(qk)⇔ χ = χd or χ = χqd = χqχd for d|k since (q, d) = 1.

Thus for χ ∈ D̂(qk), we have

f̂(χ) =
∏
p|qk

(1 + χ(p)f(p)) = (1 + χ(q)f(q))
∏
p|k

(1 + χ(p)f(p))

=

{
(1 + f(q))

∏
p|k(1 + χ(p)f(p)) if χ = χd

(1− f(q))
∏
p|k(1 + χ(p)f(p)) if χ = χqd

(d|k),
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using the fact that χq(p) = 1 if p|k and −1 otherwise. Thus∑
χ∈D̂(qk)

χ(n)f̂(χ)α =
∑

χ∈D̂(k)

χ(n)(1 + f(q))α
∏
p|k

(1 + χ(p)f(p))α

+
∑

χ∈D̂(k)

χq(n)χ(n)(1− f(q))α
∏
p|k

(1 + χ(p)f(p))α

=
(

(1 + f(q))α + χq(n)(1− f(q))α
) ∑
χ∈D̂(k)

χ(n)
∏
p|k

(1 + χ(p)f(p))α

=
(

(1 + f(q))α + χq(n)(1− f(q))α
)∏
p|k

{
(1 + f(p))α + χp(n)(1− f(p))α

}
(by assumption)

=
∏
p|qk

{
(1 + f(p))α + χp(n)(1− f(p))α

}
.

�
Note also that 0 < f ⊗̃α(p) < 1 for all p|k.

It follows from Proposition 5.1 that for f multiplicative on D(k) satisfying 0 < f(p) < 1 for
p|k, we have

Af = A2
g = g(1)2A2

h,

where g = f⊗
1
2 and h is the multiplicative function f ⊗̃

1
2 . Thus

Λq = f⊗
1
2 (1)2‖Ah‖2q,2,

and an equivalent problem is therefore to evaluate ‖Ah‖q,2 for a general multiplicative function h.
As such, let hp : D(k)→ (0,∞) denote the function restricted to D(p); i.e.

hp(n) =

{
h(n) if n = 1, p

0 otherwise
.

Using the above relation to Λq, it is readily seen1 that ‖Ahp‖q,2 =
√

1 + h(p)2
√
Qq(f(p)) with Qq

as in section 3. But also Proposition 3.3 gives

max
{‖Ahx‖2
‖x‖q

: x is multiplicative
}

=

√
Mq

f⊗
1
2 (1)

=
∏
p|k

‖Ahp‖q,2,

by using (5.2). On replacing h by f , the conjecture (made after the statement of Theorem 2) is
therefore equivalent to

Conjecture: Let f be multiplicative on D(k) such that 0 < f(p) < 1 for all p|k. Then

‖Af‖q,2 =
∏
p|k

‖Afp‖q,2, (5.3)

and the norm is achieved at a multiplicative point.
Note that since Af =

∏
p|k Afp (see Theorem 3.3, [6]), (5.3) may equally be written as∥∥∥∏

p|k

Afp

∥∥∥
q,2

=
∏
p|k

‖Afp‖q,2.

1Use the formula
√

1 + f(p) +
√

1− f(p) = 2
1+h(p)2

.

11



References

[1] C. Aistleitner, I. Berkes, and K. Seip, GCD sums from Poisson integrals and systems of dilated
functions, J. Eur. Math. Soc. (to appear). (See arXiv:1210.0741.)

[2] A. Bondarenko and K. Seip, GCD sums and complete sets of square-free numbers, Bull. London Math.
Soc. 47 (2015) 29-41.

[3] P. Codeca and M. Nair, Calculating a Determinant associated with Multiplicative Functions, Bollet-
tino Unione Math. Ital. (8) 5 (2002) 545-555.

[4] T. Dyer and G. Harman, Sums involving common divisors, J. London Math. Soc. 34 (1986) 1-11.

[5] I. S. Gál, A theorem concerning Diophantine approximations, Nieuw Arch. Wiskunde 23 (1949) 13-38.

[6] T. W. Hilberdink, The group of squarefree integers, Linear Algebra and its Applications 457 (2014)
383-399.

[7] A. Perelli and U. Zannier, An extremal property of the Möbius function, Arch. Math. 53 (1989) 20-29.
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