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Abstract

Starting from an improved understanding of the relationship between gender labour market
stocks and the business cycle, we analyse the contributing role of flows in the US and UK. Fo-
cusing on the post 2008 recession period, the subsequent greater rise in male unemployment can
mostly be explained by a less cyclical response of flows between employment and unemployment
for women, especially the entry into unemployment. Across gender and country, the inactivity
rate is generally not sensitive to the state of the economy. However, a flows based analysis
reveals a greater importance of the participation margin over the cycle. Changes in the rates
of flow between unemployment and inactivity can each account for around 0.8-1.1 percentage
points of the rise in US male and female unemployment rates during the latest downturn. For
the UK, although the participation flow to unemployment similarly contributed to the increase
of the female unemployment rate, this was not the case for men. The countercyclical flow rate
from inactivity to employment was also more significant for women, especially in the US, where
it accounted for approximately all of the fall in employment, compared with only 40% for men.

Keywords: Gender, Worker flows, Unemployment, Participation, Great Recession
JEL: E24, E32, J16

1. Introduction

What is the role of labour market flows in explaining the gender dimension of the business
cycle? The sparse analysis carried out to date has typically only described how the stocks of
men and women in unemployment respond to aggregate fluctuations. Figure 1 thus illustrates,
for both the US and UK, that during economic recessions male unemployment rises faster than
female, reducing the gender gap, and in the subsequent recovery, male unemployment falls faster,
returning the gender gap to some trend. The relative resilience of the female unemployment
rate during a downturn has been explained by one major factor, at least so far as the US
is concerned: men and women tend to be occupied in economic sectors that are differently
affected by recessions and booms. Occupations that predominantly hire men are typically more
cyclical and, therefore, more severely affected by economic recessions (Wood, 2014).1 However,
the extent to which different responses to the cycle can also be related to the fluidity of the

∗Corresponding author
Email addresses: g.razzu@reading.ac.uk (Giovanni Razzu), c.a.singleton@sms.ed.ac.uk (Carl

Singleton)
1For the UK there is some evidence that where men and women work cannot explain all of recent cyclical

differences, and after controlling for this, during the Great Recession, female job losses were more sensitive to
the downturn (Rubery and Rafferty, 2013; Perivier, 2014). Also, Elsby et al. (2013) tentatively suggest that
women’s real wages were particularly adversely affected by the latest downturn relative to men. Differences in
the response of male and female wages, which may not be sectoral, could also be of some relevance.
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labour market has largely been overlooked in the literature.2 By studying the flows between
employment, unemployment and inactivity, we can determine which of the flows into and out
of the three states drive the aggregate dynamics of labour market stocks. A flows analysis can
tell us something more specific about the sources of the gender business cycle.

Figure 1: Difference from trend of male and female unemployment rates, 16+

(a) US (b) UK

Source.- own calculations from seasonally adjusted CPS (US) & Labour Force Survey (UK). Detrended using
unobserved component model as described in section 2 with constrained frequency parameter to match estimated
cyclical periodicity of log GDP.

Notwithstanding the importance of using stocks to assess the health of the labour market
over time, it is now well acknowledged that flows data offer some clear advantages, and the
fluidity of the labour market has become the topic of a growing and influential literature since
the original contributions of the 1970s.3 The empirical analysis of flows has guided the devel-
opment of the search and matching class of models now most commonly used to understand
labour market fluctuations. Analysing flows data can give us more detailed insight into how
labour market stocks change, and this could underlie differences in how men’s and women’s
outcomes behave over the business cycle. Has a woman become unemployed because she has
lost a job, or because she has completed full-time education and become active in the labour
market? Similarly, has a man who has left unemployment done so because he has found a job,
or because he has withdrawn from the labour market, perhaps due to disability or other reasons
for inactivity? These transitions reveal quite dissimilar experiences, but they become hidden
when looking only at the stock of unemployed, employed or inactive persons. In the example of
the woman above, the two transitions would both result in an increase in female unemployment,
but flows data would tell us that in the first case this was due to a job exit, and in the second
case because of a positive labour supply response.

This study not only builds on but goes substantially beyond previous assessments of the
relationship between gender and the business cycle, which have been more limited in scope or
indirect, whether based on stocks or flows data.4 We compare the experiences of the US and
UK. These two countries had very similar pre-2008 industry and labour market structures. In

2For example, see the limited discussion of gender in key literature on labour market flows, such as Elsby et al.
(2010, 2011); Shimer (2012). These previous papers moreover do not relate flows back to the overall picture of
gender differences in the labour market over the business cycle.

3See for example Kaitz (1970); Perry (1972). More recently, important methodological contributions have
been provided by Shimer (2005, 2012); Petrongolo and Pissarides (2008); Fujita and Ramey (2009); Solon et al.
(2009); Elsby et al. (2010, 2015); Gomes (2012); Smith (2011).

4A notable exception to the lack of focus on gender differentials is Albanesi and Sahin (2013), who analysed the
trend and cycle properties of the gender unemployment gap. The authors also concluded that, within recessionary
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both there is extensive and similar gender segregation of work.5 Both countries experienced a
significant narrowing of the employment rate gap between men and women since the 1970s, and
the speed of this has slowed similarly since the 1990s (figure 2).

Figure 2: Female share of employment, 16+, SA

Source.- own calculations from CPS (US) & Labour Force Survey (UK).

We begin in section 2 by briefly revisiting the reduced form relationship between business
cycles and gender labour market rates. Although other studies have estimated the relationship
between unemployment rates and the business cycle over time, there is less direct evidence
about the response of gender gaps for other statuses.6 This broader view is necessary to con-
trast whether a stocks based view of the labour market reveals less than a flows based approach,
specifically with regards gender. The estimated response of the male employment rate is more
pronounced than the female, especially during the Great Recession, but this gender gap is not
more generally significant. On the other hand, for unemployment rates, business cycles are
not gender neutral, and affect men more than women. There are no substantial differences in
inactivity rate responses to the cycle.

Given this picture for the stocks in both the US and UK, section 3 moves on to the con-
tributing role of flows. One recent contribution to the flows literature, pertinent to the questions
posed here, is the identification of a so-called ‘stock-flow fallacy’ in the role of the participation
margin in shaping the dynamics of the unemployment rate. Accounting correctly for the flows
into and out of activity can explain a third of the rise in US unemployment during the 2007-
2012 downturn (Elsby et al., 2015). Theoretical studies of the labour market’s response to the
business cycle have tended to place less emphasis on the role of the participation margin after
noting that inactivity rates remain broadly constant. However, this result is due to the offsetting
feature of these flows, and in fact the underlying flows are highly cyclical, and their variation
could still explain a large fraction of changes in the unemployment rate. We ask whether or
not the stock-flow fallacy for the cyclical importance of the participation margin could extend
to gender differences. Is the role of flows between inactivity and activity actually relatively
important in explaining labour market outcomes by gender? And is the modest cyclicality of

periods, the male unemployment response in the US is stronger than the female, and this difference has been
consistent over time, being mostly explained by the distribution of work by industry.

5Compare for example BLS (2013) for the US and ONS (2013) for the UK.
6See for examples Clark and Summers (1980); Blank (1989); Peiro et al. (2012); Hoynes et al. (2012) who all

note the greater cyclical response of male unemployment than female.
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the inactivity rate, and insignificant or small gender difference, a case of a stock-flow fallacy?
To address these, we decompose the variation in labour market stocks during the economic cycle
into contributions from the attributing flow hazard rates using a modest modification on the
methods of Fujita and Ramey (2009) & Elsby et al. (2015). Since 1990, as much as a half of
the monthly variation in the US gender unemployment rate gap can be accounted for by flows
between unemployment and inactivity. This result is robust to adjustments for possible bias in
the estimated transition rates. These flows also explain a significant fraction of the evolution of
the UK gender gap. Looking specifically at the Great Recession, the majority of the greater rise
in male unemployment between 2007 and 2012 in both countries can be explained by a more
cyclical response of flows between employment and unemployment than for women, especially
for the job separation rate. Movements between inactivity and activity were nonetheless rele-
vant in explaining the variation in recent outcomes. In the US, flows between unemployment
and inactivity each contributed around 0.8-1.1 percentage points to the rise in the unemploy-
ment rate from 2007 for both men and women. However, for the UK, the flow from inactivity
to unemployment does not explain the rise in the male unemployment rate, but can account for
around half a percentage point for women. This suggests some macro evidence to support the
presence and significance of a so-called ‘added worker effect’, whereby women are more likely to
move from inactivity to activity during periods of economic recession, perhaps to compensate
for a partner’s loss of job and income.7

We also consider the possible presence of this effect at the aggregate level by considering
heterogeneity in the flow from inactivity to unemployment, across time and conditional on
gender. Generally for all groups, the participation margin in the US was equally affected by the
downturn for men and women, and an aggregate added worker effect is unlikely to be gender
specific. However, in the UK there are starker differences that suggest a specifically female added
worker effect could be a reasonable explanation for the relatively greater importance for women
of inactivity to activity flows over the cycle. Although our results focus on unemployment, a
notable gender difference also emerges when we consider the contributing role of flows changes to
the employment rate. The large and persistent fall in transitions from inactivity to employment
observed during the Great Recession explains a large and greater share of the female employment
rate fall in both countries.

2. Reviewing gender business cycles

2.1. Data & Methods

For both the US and UK we use seasonally adjusted quarterly chained volume measures of
real GDP, and (un)employment levels and population ratios for those aged 16+.8 We consider
all those aged 16+ so as to avoid having to make judgements about what constitutes working
age over time and across the two countries, however our results are qualitatively unchanged
if we restricted attention to ages sixteen to sixty-four.9 The series are detrended using both
the Hodrick and Prescott (1997) (HP) filter and the unobserved components model (UCM)

7See Stephens (2002) for an overview of literature concerning the added-worker effect, and for recent analysis
of its presence using micro data see Juhn and Potter (2007) and Bryan and Longhi (2013) for the US and
UK respectively. See also Mankart and Oikonomou (2015) for a novel theoretical discussion and its role at the
aggregate level.

8GDP data from BEA, 1947-2013 and ONS, 1955-2013, respectively, and labour market data obtained from
BLS, 1948-2013, and ONS, 1971-2013. The estimation window for the US is therefore longer at 1948-2013
compared with 1971-2013 for the UK.

9For brevity, the results form this robustness check are excluded here, but are available on request.
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methodology of Harvey (1989).10

In reviewing the relationship between gender outcomes and business cycles, a helpful starting
point is Okun’s law, which posits that, in response to some external shock, there is a predictable
decomposition into the factors which could comprise some output gap identity. This predictabil-
ity is dynamic also. Since labour market variables respond slowly, these are lagging indicators of
output gaps, and by construction, vice versa for output per employee. We motivate our method
here using the most simple identity relating output and labour market outcomes,11

Yt ≡
Yt
Et

Et

Nt
Nt, (1)

where Yt is real GDP, Yt/Et is output per employee, Et/Nt is the ratio of employment to
population, and Nt is the total population. Note also that Ut/Nt = 1 − Et/Nt − It/Nt is the
ratio of unemployed to population, where It denotes the level of economically inactivity. We
take a first order log approximation of (1) around some trend levels, for example Eτ

t , thus
expressing the output gap (or zero sample mean log points from trend of GDP), yct , as a as a
tractable additive function of gender (un)employment or inactivity rate trend deviations,

yct =
Eτ,m

t

Eτ
t

[ec,mt − nc,m
t ] +

Eτ,f
t

Eτ
t

[ec,ft − nc,f
t ] + υt (2)

or

yct = −U τ,m
t

Eτ
t

[uc,mt − nc,m
t ]− U τ,f

t

Eτ
t

[uc,ft − nc,f
t ]− Iτ,mt

Eτ
t

[ic,mt − nc,m
t ]− Iτ,ft

Eτ
t

[ic,ft − nc,f
t ] + ζt, (3)

where {m, f} denote male and female respectively, and υt & ζt capture the behaviour of other
variables in the output gap identity such as output per employee, population and an approxi-
mation error. Based on (2) & (3), the cyclical components of male and female (un)employment
and inactivity rates, weighted by their trend levels relative to total employment, and conse-
quently the gender employment rate gap, could have a predictable relationship with respect to
the business cycle and output gaps. Previous empirical studies of gender, such as Peiro et al.
(2012), have tended to ignore both the need to weight or adjust (un)employment rates in this
way and the possibility of causality between male and female outcomes, as well as typically only
focusing on one labour market variable.

2.2. Estimation & results

We begin by considering the period of the Great Recession only. Using (2) & (3), figure 3
represents the cumulative contributions of deviations from logarithmic trend of labour market
population rates to the output gap, with the final quarter of 2007 indexed to zero. For the US,
changes to the labour market accounted for a much greater share of the output gap than the
UK.12 Changes to male (un)employment accounted for a greater share, with the female contri-
bution in the UK being particularly weak. For both countries and genders there were limited
contributions from changes in inactivity rates. Although we could replicate the decomposition
of figure 3 for any particular period, and thus describe the gender properties of the business
cycle, we also consider a more general approach.

10See online supplementary appendix A for a brief discussion of detrending methods and summary statistics.
11See Gordon (1993) for a discussion of output identities of this type and their implicit role in Okun (1962,

1965).
12This is the so-called labour productivity puzzle for the UK observed since the start of the Great Recession,

but further discussion here is outside the scope of this study.
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Figure 3: Cumulative contribution of changes in labour market variables from trend to the output gap, 2007q4-
2012q4

(a) US employment rates (b) US unemployment and inactivity

(c) UK employment rates (d) UK unemployment and inactivity

Note.- all series detrended using HP-1600 filter.

To estimate the general properties of the gender business cycle we use a VAR model for
the de-trended and subsequently stationary series of the output gap and weighted gender em-
ployment rates motivated by (2).13 We also estimate the model to study the general responses
of inactivity by gender over the business cycle, a surprisingly neglected issue. To do so, based
on (3), we replace employment rates in the VAR model with cyclical components of inactivity
rates, alongside unemployment population ratios. Finally, to compare our results across the
estimated models, we consider impulse responses from an orthogonal shock to GDP which are
scaled to give a maximum cumulative output gap increase of approximately one percentage
point, and confidence intervals are estimated using non-parametric bootstrapping.14

To quantitatively interpret the results of the VAR estimations by gender we ‘unweight’ the
impulse response functions, dividing by the trend weighting factors, e.g. Eτ,f

t /Eτ
t . We can

approximately assume that population is constant in the short term such that responses give
changes in levels as well as rates. Table 1 shows the maximum cumulative log point changes
in the difference from trend of (un)employment and inactivity population rates, following a
shock to the output gap which has a maximum cumulative increase of one percentage point, for
two time periods; 1975q1 & 2007q1. For the following discussion we focus on results obtained

13Alternatively, see Attfield and Silverstone (1998) for an alternative approach to our own whereby the Okun
coefficient could be interpreted and estimated as the cointegrating relationship between variables.

14200 repetitions. See online supplementary appendix A for a more complete description of the estimation
strategy and cumulative impulse response functions for the estimated models, with a brief discussion thereof.
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using UCM detrended data and evaluated at 2007 trend levels of gender population rates. The
estimated labour market response is typically stronger in the US than the UK, with employment
rising 0.6-0.7 & 0.3-0.5 percent above trend respectively. However, there is no suggestion of a
significant gender business cycle for employment. However, the maximum decline in UK male
unemployment is more than double the female. The gender response is substantially different
also for the US, with male unemployment falling as much as ten percent following such a shock,
and only five percent for women. We also see that the implied change in participation over the
business cycle is relatively small, as are any gender differences.

Given that this analysis produces results for all three labour market states, direct com-
parisons with other studies are possible only for the unemployment rate. Peiro et al. (2012)
analysed the same countries and roughly similar time periods. They estimate that a four suc-
cessive quarterly one percentage point increase in the output gap would decrease the US male
and female unemployment rates (not de-trended) cumulatively by 2.4 and 1.7 percentage points
respectively; and 2.7 and 1.0 points for the UK. Although the comparison is not direct, since the
estimated impacts here from such a shock are interpreted as log point deviations from trend,
the magnitude of the impacts are roughly similar, and not out of step with the updated Okun
hypothesis of a 2:1 percentage point ratio for GDP and unemployment rate changes.15 Perhaps
more interestingly, Peiro et al. (2012) also suggested that the estimated responses for the UK
appear to decrease over time, but not for the US, estimating their model over two sub-samples
for each country.16 However, this is also consistent with the significant decline over time in UK
average unemployment rates, and less so for the US, between these two time periods, which
suggests that this result may not be due to a structural change in the effect of the business
cycle, but due to the model design.17 In fact, when applying the output gap identity model
structure, since the average ratio of unemployed to employed has fallen more significantly in the
UK than the US for these two periods, and had the cyclical components of unemployment rates
not been ‘weighted’, we might have concluded that the relationship had become stronger over
time, when from our own sensitivity analysis over the sample period there is no such evidence.

In summary, focusing on the Great Recession only, there is some evidence of a gender
business cycle in both countries. But notably there is little difference in participation response.
When considering if this pattern is more general over past decades, there is more limited evidence
of a gender business cycle. Women and men in employment are equally affected. Participation
changes little and gender differences are small. Unemployment rates respond more for men.
Nonetheless, we should not necessarily conclude from these results that the participation margin
is not cyclically important, nor that there are no gender differences. To test this further, we also
consider the relative importance of flows in and out of participation since these could potentially
drive the observed gender difference in unemployment responses to the cycle.

3. Gender labour market flows

3.1. Data

We use monthly gross flows from the CPS for the US, and derived from the Labour Force
Survey (ONS) Two Quarter Longitudinal datasets for the UK. Both surveys have a rotating

15See for example Lee (2000) for detailed estimates of Okun’s law for the UK and US. Baseline estimates are
a ratio of 1.84 and 1.39 for the US and UK respectively, and 2.0 as an average across a sample of sixteen OECD
countries.

161948-1987 & 1988-2008 for the US, and 1971-1995 & 1996-2008 for the UK; these particular results also
suggest that over time in the US, the gender difference reverses.

17Likewise, the average US female unemployment rate increases in the latter sample period of Peiro et al.
(2012), and is higher than the male.
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Table 1: Estimated max. cumulative response of population rates from trend to a one percentage point cumulative
increase in the output gap

U.S. U.K.

HP-1600 UCM HP-1600 UCM
1975

Male employment 0.7* 0.6 0.6 0.3

(0.5, 0.8)** (0.5, 0.8) (0.4, 0.9) (0.1, 0.5)

Female employment 0.6 0.7 0.6 0.5
(0.4, 0.8) (0.5, 0.9) (0.3, 0.8) (0.2, 0.8)

2007
Male employment 0.8 0.7 0.7 0.3

(0.6, 1.0) (0.6, 0.9) (0.4, 1.0) (0.1, 0.6)

Female employment 0.5 0.6 0.5 0.4
(0.4, 0.6) (0.4, 0.8) (0.3, 0.7) (0.1, 0.6)

1975
Male unemployment -7.6 -5.4 -10.4 -6.9

(-9.2, -6.0) (-6.7, -4.2) (-14.1, -6.7) (-10.3, -3.5)

Female unemployment -4.6 -4.4 -4.4 -1.9
(-5.7, -3.5) (-5.6, -3.3) (-6.3, -2.6) (-3.0, -0.7)

Male inactivity -0.4 -0.4 -0.7 -0.5
(-0.6, -0.3) (-0.5, -0.2) (-1.0, -0.5) (-0.7, -0.4)

Female inactivity -0.1 0.0 -0.2 -0.2
(-0.2, -0.1) (-0.1, 0.0) (-0.3, -0.1) (-0.3, -0.1)

2007
Male unemployment -8.4 -10.0 -7.2 -4.6

(-10.2, -6.6) (-12.3, -7.6) (-9.7, -4.6) (-6.9, -2.4)

Female unemployment -5.6 -5.1 -3.7 -1.5
(-6.9, -4.3) (-6.5, -3.8) (-5.2, -2.2) (-2.4, -0.5)

Male inactivity -0.4 -0.3 -0.5 -0.3
(-0.5, -0.3) (-0.4, -0.2) (-0.6, -0.3) (-0.4, -0.2)

Female inactivity -0.2 -0.1 -0.3 -0.3
(-0.3, -0.1) (-0.1, 0.0) (-0.4, -0.1) (-0.4, -0.2)

* interpretation: 100 x log points from trend change (or approximate percentage points
from trend);
** 90% non-parametric bootstrap confidence intervals.
Note.- using the intervals here, and whether or not they overlap, is not an appropriate
check of whether the estimated difference between male and female is statistically sig-
nificant. Instead, one should use the graphical response functions in the appendix, and
also note that the length of time before the max. cumulative response can also differ
by gender.

sample. For the UK, the total sample of over one hundred thousand individuals is split into five
waves, with one wave leaving the sample and another new wave entering each quarter. Thus it
is possible to observe changes in labour market status between quarters of approximately eighty
percent of individuals that take part in the survey. The CPS has a similar structure but on
a monthly rather than quarterly basis. In any given month the CPS has eight groups, six of
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which will remain in the sample in the next month so that they can be linked longitudinally
and individuals’ transitions between the three labour market states can be computed. For the
UK we use data for men aged 16-64 and women aged 16-59 from 1996 to the second quarter
of 2015, smoothing the derived gross flows series with a four quarter moving average. For the
US, a research series of seasonally adjusted monthly flows for ages sixteen and over are publicly
available from the BLS from February 1990. From these gross flows we compute transition
probabilities, namely the probability that an individual moves from one state to another over
the period. For example, from the employment to unemployment gross flow, EUt, the transition
probability is measured as pEUt = EUt/Et−1.

Survey based flows estimates are subject to some methodological problems, most notably
biases that arise from time aggregation and classification error.18 Time aggregation bias arises
because of the discrete nature of the data from which we can estimate flow probabilities be-
tween states. For instance, a woman might be longitudinally recorded as inactive, followed by
employed in the following month or quarter. Whilst we observe only one transition in the data,
she could have moved from inactivity to unemployment first, and then from unemployment to
employment between responses to the survey. These other transitions are not captured due to
the limitation of the data collection frequency. One robust correction to this problem has been
provided by Shimer (2012).19 We apply the equivalent of this correction to our data, denoting
these derived continuous time hazard rates by fijt , but also present results both with and with-
out this correction.

A classification error bias can arise if respondents to the survey are systematically classified
as having the wrong labour market status. This problem is known to be particularly relevant in
the US data for transitions between unemployment and inactivity. Abowd and Zellner (1985)
estimated that more than nine percent of the sample was erroneously classified as inactive
instead of unemployed in the original interview. The authors also provided a method to correct
for the classification error based on re-interviews of a sub-sample of the CPS. However, re-
interview surveys are no longer conducted, meaning that the historical correction might not be
applicable to more recent surveys.20 Here we apply this correction to the US gross flows as
per Poterba and Summers (1986) using the re-interview survey tables in Abowd and Zellner
(1985), with separate adjustments for male and female. In terms of gender differences, this
correction implies a larger reduction in the relative gross flows EU , UE, UI & IU for men,
with the reduction for EI & IE greater for women. Importantly for our analysis here, although
the correction affects the estimated levels of transitions, and gender gaps, it has little effect on
their relative importance in explaining fluctuations in labour market stocks over time. With
regards the UK, as noted by Clarke (1999), there is also evidence of significant classification
bias, or at least inconsistencies in the longitudinal flows relative to reported state durations,
with male inconsistencies for the IU flow being greater. However, there is no equivalent re-
interview survey for the UK, and duration data in the survey, which could also be recorded

18Non-response bias is also potentially an issue, but this has been addressed in the published CPS flows (Frazis
et al., 2005), and is accounted for in the longitudinal weights for the UK two quarter datasets (see relevant user
guides).

19See also the appendix in Elsby et al. (2015) on how the Shimer correction takes the analytical form of an
eigendecomposition, which then allows for the numerical computation of all of the underlying continuous time
hazard rates.

20Elsby et al. (2015) also adopt a novel approach to correct for classification error in the CPS data, which they
refer to as “de-NUNification.” This is based on the re-coding of unemployment-inactivity flows for each wave
over four months so that, for example, if an individual is observed as having the IIUI classification over four
periods, this is indiscriminately recoded as IIII. However this is intended mainly as a sensitivity analysis of
their main results rather than a robust correction of the estimated time series.
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inconsistently, is not sufficient to correct all of the flows. Therefore, this is a limitation of the
UK data and an area for further research.21

3.2. Methods
To estimate the relative importance of changes in each flow rate to gender patterns in the

stocks over time we use a version of the three state, non-steady-state decomposition method-
ology of Elsby et al. (2015). The original literature in this field tended to ignore inactivity
rates and participation flows, whereas the three state approach recognises that a fuller picture
of labour market dynamics should also take into account flows in and out of inactivity. Other
decompositions of unemployment variation are often based on the assumption that the actual
unemployment rate is close to its steady-state value, defined as the value of the unemployment
rate that would prevail in the long run if the inflow and outflow rates did not change from their
current level.22 However, this approach could lead to misleading results if the actual unem-
ployment rate deviates persistently from its implied steady-state level, as described for the UK
by Smith (2011). To account for this, Smith (2011) proposes a decomposition of changes in
the unemployment rate that incorporates the impact of past transition rates, but her method
only allows for an analysis of how indirect flows between employment and unemployment via
inactivity could explain changes in the stocks. Elsby et al. (2015) note that the discrete time
change in the vector of labour market population rates can be re-written as a distributed lag
model of past and present changes in implied steady-state levels, and some initial values, thus
allowing for a complete decomposition of the change in each population rate into contributions
from each flow hazard rate. Our own approach differs from Elsby et al. (2015) in so far as we
do not ignore births and deaths to the labour market population in the decomposition, which
could be instructive potentially in their contribution to longer term trends in population rates
and their gender gaps.

Let the civilian population be normalised to one in each period, i.e. Et + Ut + It = 1,
initially ignoring births (labour market entrants at age sixteen, immigration etc.) and deaths
(retirement, emigration etc.), pijt are discrete transition probabilities, and k denotes each two
month/quarter longitudinal period. However, it is possible that Et−1,k−Et−1,k−1 = DE,t−1 ̸= 0.
When there are more ‘births’ to employment than ‘deaths’ DE,t−1 > 0. We refer to this as a
‘demography factor.’23 When analysing changes in the stocks we consider, ∆Et,k = Et,k −
Et−1,k−1, i.e. the difference in the second period stock between consecutive two month/quarter
longitudinal periods. The relationship between labour market stocks and flows can then be
written as  E

U
I


t,k

=

 pEE pUE pIE
pEU pUU pIU
pEI pUI pII


t︸ ︷︷ ︸

Mt


 E

U
I


t−1,k−1

+

 DE

DU

DI


t−1

 . (4)

Which can be reduced to[
E
U

]
t,k

=

[
1− pEU − pEI − pIE pUE − pIE

pEU − pIU 1− pUE − pUI − pIU

]
t

([
E
U

]
t−1,k−1

+

[
DE

DU

]
t−1

)
+

[
pIE
pIU

]
t

, (5)

21See online supplementary appendix B for a brief description and figures of the estimated gender flows time
series.

22For examples see Petrongolo and Pissarides (2008); Solon et al. (2009); Fujita and Ramey (2009); Gomes
(2012); Shimer (2012).

23Despite attempts by the statistical agencies to correct for non-response bias in the longitudinal weights
applied to the flows, it is still possible that when we disaggregate the data further than intended, i.e. by gender,
that these are not perfect, and thus the ‘demography factor’ may also capture any systematic bias here also.
However, we find that this is not a major concern for gender, but when attempting other disaggregations of the
labour market, for example types of employment, this can become a greater concern for validity.
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or equivalently in simplified notation,

st,k = Pt[st−1,k−1 + dt−1] + qt. (6)

The steady-state of this system is then given by

s̄t,k = (I − Pt)
−1[Ptdt−1 + qt]. (7)

Following Elsby et al. (2015),

∆st,k = (I − Pt)∆s̄t + (I − Pt)Pt−1(I − Pt−1)
−1∆st−1,k−1. (8)

And thus, iterating (8) backwards we can write the present change in labour market stocks as
a distributed lag function of the change in steady-state values and some initial value for the
stocks. Taking a second order approximation of s̄t around lagged values,24 and substituting into
(8), the change in the stocks in period t is re-written as an additive function of past and present
changes of each transition rate Cijt , the demography factor Cdt , and some initial change in the
labour market state C0t ,

∆st,k ≈
∑
i ̸=j

Cijt + Cdt + Cs0t . (9)

Given this additively separable representation, we can then decompose the variance of the
change in the stocks into contributions from changes in present and past transition probabilities,
the initial values, and changes in ‘demography.’ And so, for example, we can compute, the
fraction of the variance of the monthly/quarterly change in unemployment explained by changes
in pEUt ,

25

βU
EU =

cov(∆Ut,k, {CEUt}2,1)
var(∆Ut,k)

. (10)

We could also replace the steady-state in (8) with its continuous (or time aggregation bias
adjusted) hazard rate, fijt , equivalent, where

s̄t = −F−1
t gt − d̃t, (11)

and terms are continuous time equivalents of those in (7). These hazard rates are obtained
by solving the ordinary differential equation given by (4), noting that the conditions for the
existence and uniqueness of the logarithm of Mt are trivially satisfied (see Davies (2010) for an
overview), and whereby it can be shown that

d̃t = −(I − Pt)
−1Ptdt−1. (12)

The derivatives in the Taylor approximation then take a different analytical form. To derive
a decomposition of changes in the active labour force unemployment rate, as opposed to the
share of the population unemployed, we use the first order approximation

∆ut,k ≈ (1− ut−1,k−1)
∆Ut,k

(Ut−1,k−1 + Et−1,k−1)
− (ut−1,k−1)

∆Et,k

(Ut−1,k−1 +Et−1,k−1)
. (13)

In what follows we also discuss how changes in flow rates account for variation in the percentage
point gender (un)employment rate gap. This is derived by subtracting the female decomposition
of the change in the population rates (9) from the male equivalent.

24As used in other studies, a first order approximation is sufficient for a cyclical analysis since the approximation
error does not correlate, but we nonetheless find that including second order terms, excluding the cross-derivatives,
reduces the size of the errors significantly.

25For a complete description of the variance flows decomposition methodology see also Fujita and Ramey
(2009).
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3.3. Results

3.3.1. Unemployment rate variation

Tables 2 summarizes the results for the above decomposition for the US and UK unem-
ployment rates.26 Entries for the US show the estimated fraction of monthly variation in
unemployment from June 1990 to August 2015 accounted for by variation in each component
of the decomposition, i.e. the βs as per (10). UK entries similarly show computed results for
quarterly variation between the third quarter of 1997 and second quarter of 2015. Each table
shows results using flow transition probabilities, pij and hazard rates which have been adjusted
for the presence of time aggregation bias in the flows, fij . Cyclically this bias tends to lead to
a substantial underestimation of the relative importance of flows from unemployment, offset by
an overestimation for the reverse flows. For example, using unadjusted transition probabilities
would for both countries underestimate the UE flow’s relative importance in explaining employ-
ment and unemployment rate variation by as much as a third. Additionally, for the US we give
results including the constant Abowd and Zellner (1985) correction for classification bias. The
adjustment implies that the estimated importance of the UI flow for unemployment variation
would otherwise be biased downwards, and vice versa for the IU flow. However, although this
substantially affects the magnitude of estimated flow rates, it has less impact on the results of
the cyclical analysis.27 For both countries in what follows we focus on results using hazard rates
corrected for time aggregation bias, fij .

When making cross-country comparisons here we must be conscious that we are comparing
results using monthly and quarterly derived transitions. By applying the time aggregation bias
correction we should theoretically be accounting for this difference. But as noted by Gomes
(2015), who applies the correction to US transitions from the CPS at both monthly and quar-
terly frequencies, the effect on cyclical properties of the estimated flows can differ depending
on the frequency of the data. This is because the correction assumes the flow hazard rate is
constant over time for all workers. In reality it isn’t, varying with tenure and unemployment
duration for example. Therefore he suggests comparisons across countries should at least use
similar frequency data. However, this critique should not apply to comparisons of gender dif-
ferences within country: we can assume that the effects of applying the bias correction to flows
measured over the same periodicity will be similar for men and women.

For the unemployment rate in the US, over half of the variation in changes for both men
and women can be attributed to the combined exits to employment and inactivity. However,
the composition of this variance share differs, with the exit to inactivity, UI, being relatively
more important in explaining the path of female unemployment. However, this small measured
difference in the importance of the UI flow, twenty-five vs nineteen percent, could disguise a
larger actual difference in responses to the cycle. If we accept that the labour market attach-
ment of unemployed women is generally lower, and if the procyclical UI hazard rate is largely
explained by composition effects on the pool of those unemployed, as hypothesised by Darby
et al. (1986) and demonstrated in Elsby et al. (2015), then, we would have expected the impor-
tance of the male flow to be greater through this composition channel alone. Differences in the
relative importance of flows into unemployment are also greater. The EU flow is almost twice
as important for male employment changes than it is for female, and vice versa for the IU flow.

26For brevity here, and as consistent with the focus of the literature, results and a discussion of the decompo-
sition for the employment rate is included only in the supplementary appendix. However, when we focus on the
Great Recession period later we do draw out some pertinent gender differences which can only be seen from the
employment rate results.

27These biases in the estimates can also be discerned by scrutinising the flow rates time series given by figures
B2-B7 in the online appendix B.
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For men and women combined flows between unemployment and inactivity explain thirty-four
and forty-nine percent of the variance in unemployment rate changes, emphasising again the
importance of the labour market participation margin for both genders over the cycle.

Table 2: Flows decomposition of monthly changes in the unemployment rate and gender gap

UE EU EI UI IE IU Init. val. d approx. err.

US: June 1990 - August 2015

pi,j All 0.29* 0.27 -0.02 0.16 0.04 0.24 0.00 0.00 0.01
Male 0.28 0.33 -0.01 0.14 0.03 0.21 0.00 0.00 0.01
Female 0.25 0.22 -0.03 0.18 0.04 0.33 0.00 0.01 0.01

Gap** 0.12 0.38 0.01 0.18 0.00 0.30 0.00 0.00 0.00

fi,j All 0.39 0.20 -0.02 0.22 0.03 0.17 0.00 0.00 0.01
Male 0.37 0.26 -0.01 0.19 0.02 0.15 0.00 0.00 0.01
Female 0.34 0.15 -0.03 0.25 0.04 0.24 0.00 0.01 0.01
Gap 0.17 0.33 0.01 0.22 0.00 0.27 0.00 0.00 0.00

fi,j w. AZ corr. All 0.42 0.22 -0.03 0.25 0.03 0.09 0.00 0.00 0.01
Male 0.39 0.29 -0.01 0.21 0.02 0.09 0.00 0.00 0.01
Female 0.36 0.16 -0.03 0.27 0.04 0.18 0.00 0.01 0.01
Gap 0.17 0.36 0.00 0.21 0.00 0.25 0.00 0.00 0.00

UK: q3 1997 - q2 2015

pi,j All 0.28 0.32 -0.01 0.14 0.03 0.14 0.07 0.02 0.01
Male 0.26 0.36 -0.01 0.12 0.01 0.10 0.10 0.04 0.02
Female 0.28 0.23 0.00 0.16 0.04 0.21 0.02 0.04 0.00
Gap 0.15 0.35 0.00 0.13 -0.02 0.07 0.13 0.18 0.01

fi,j All 0.36 0.25 -0.01 0.19 0.03 0.08 0.07 0.02 0.01
Male 0.32 0.31 -0.01 0.15 0.02 0.06 0.10 0.04 0.02
Female 0.38 0.16 -0.01 0.24 0.05 0.11 0.02 0.05 0.00
Gap 0.19 0.30 0.00 0.15 -0.03 0.06 0.13 0.18 0.01

* βu
UE is approximated from equivalent components for the unemployment and employment population

shares as per (13) for current and past changes in the UE transition probability.

** Gender gap computed as male unemployment rate minus female.
Note: rows may not sum to one due to rounding errors.

Specifically focusing on the evolution of the US gender unemployment rate gap over the
past 25 years, around a third of its variation can be explained by greater volatility in male
entries from employment, a half by the combined difference in transitions rate changes between
unemployment and inactivity, and the remaining sixth by the difference in volatility of exits to
employment. Crucially for robustness of this result, these shares are not substantially altered
when we either remove the time aggregation bias correction or add the adjustment for classifi-
cation error in the gross flows.

The results for the UK are qualitatively similar to the US. Exits explain a greater share of
female unemployment variation than male, sixty-two vs forty-seven percent, with the majority
of this difference accounted for by the UI rate. The contribution of the reverse IU flow to
variation over the last two decades is relatively small, although greater for women. Departures
from employment to the unemployment pool explain half as much of the variation in the female
unemployment rate as the male. With regards explaining changes in the gender gap, the variance
of the entry rates to unemployment is more important than any gender difference in exits. The
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combined changes in flows between unemployment and inactivity can account for approximately
a fifth of the gap’s variation. Compared loosely with the US, inactivity flows therefore appear
less significant. This is most likely explained by institutional differences and social welfare
eligibility conditions, which in the UK encourage individuals to remain active in the labour
market continuously. A major conclusion from these stock-flow decompositions is again to
reiterate the cyclical importance of the participation margin, and add to the evidence in Elsby
et al. (2015) by showing this is not unique to the US.

3.3.2. The Great Recession

Given our short sample period containing only the one major downturn, our results above
ought to be driven by the labour market experiences of men and women during the Great Re-
cession. Therefore, using the stocks decomposition as an accounting identity, we can focus more
precisely on how the evolution of unemployment rates between 2007 and 2012 was determined
by changes in the underlying hazard rates. Figures 4 & 5 give the cumulative contributions
of changes in each of the hazard rates to the percentage point change in the unemployment
rate by gender, indexed to zero at the end of 2007. Here the gender differences in the relative
importance of the flow rates become clearer, and their contributions to the change in the un-
employment rate gap during this time can be read off indirectly. For the US, unemployment
exits to employment for both men and women explain around a third of the initial rise in un-
employment to the end of 2008, with this rising to a half by the time the unemployment rate
hits its peak towards the end of 2009. The fall in the unemployment exit rate contribution
persists then through to 2010, despite the fall in the unemployment rate seen especially for
men. This differing pattern of unemployment over the cycle appears to be driven by the greater
contribution of the EU rate, which for men peaks with unemployment, and then declines to
pre-recession levels. However, the rise in this entry rate to unemployment never substantially
contributes to the stock of unemployed women. The procyclical decline in the UI flow, and the
countercyclical rise in the IU flow, contribute each to the unemployment rate increase for men
and women by around 0.8-1.1 percentage points at its peak level. Thus, despite explaining a
greater share of the female unemployment rise within the recession, the rise in the gender gap
cannot be significantly explained by the participation margin, whereas over the past 25 years
more generally, changes in these flows can explain a much larger share of the gap’s variation.

Similarly for the UK, the persistent decline in the UE flow can explain a large part of the
rise in male and female unemployment rates, and the difference in their evolution since 2007 can
largely be accounted for by the relatively muted rise in EU transitions for women. However,
unlike for the US, the rise in the participation flow to unemployment for men, IU , explains
none of the unemployment rate change, whereas for women it can account for around half a
percentage point.

The more significant rise in male unemployment from 2007 in both countries can mostly be
accounted for by differences in the magnitude of responses to the downturn of the flows between
employment and unemployment. However, the relative insensitivity of the inactivity rate to the
business cycle belies the important role that changes in the rates individuals move into and out
of the active labour force have in determining the rise in unemployment. Further, for the UK
there is some evidence that an aggregate gender specific ‘added worker’ effect could be present,
manifested by a countercyclical IU hazard rate for women and absence of the like for men.

The employment change over the period can likewise be decomposed into its specific flow
rate contributions. An interesting feature of the Great Recession has been the relative role of
the procyclical IE flow. The collapse in this transition rate, and especially the persistence of
this fall, is largely a puzzle (Kroft et al., 2014). Figure 6 demonstrates how this can account
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Figure 4: US cumulative percentage point contributions from changes in hazard rates to the unemployment rate
change, 2008-2012

(a) Male - EU & UE (b) Female - EU & UE

(c) Male - EI & IE (d) Female - EI & IE

(e) Male - UI & IU (f) Female - UI & IU

Note.- hazard rates here are calculated without the Abowd and Zellner (1985) correction for classification error
to the gross flows.

for a large part of the fall in employment to 2012, even as compared with the decline in entries
from unemployment, the most cyclically important flow rate. There is also some common gender
difference in the significance of this flow across countries. In terms of absolute percentage points,
IE transitions account for a similar amount of the employment rate fall for both sexes in the UK,
and over half a point more for women in the US. However, given the smaller decrease in female
employment, it remains a demonstrably more relevant cyclical factor for women. For example,
in the US, by the end of 2010 it accounts for approximately all of the female employment fall,
notwithstanding the offsetting contributions of other flows, as opposed to only 40% for men.
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Figure 5: UK cumulative percentage point contributions from changes in hazard rates to the unemployment rate
change, 2008-2012

(a) Male - EU & UE (b) Female - EU & UE

(c) Male - EI & IE (d) Female - EI & IE

(e) Male - UI & IU (f) Female - UI & IU

3.3.3. Heterogeneity in the IU flow rate

We can explore the possible presence of the added worker effect by considering heterogeneity
in the IU transition rate, across time and conditional on gender. Focusing on individuals aged
20-54, we consider age, the age of the youngest child in the family, the number of dependent
children, whether living as a married couple, when an individual left their last job, reasons
for leaving, and their more detailed inactivity status.28 We compute the US monthly and UK
quarterly transition probabilities for men and women defined by these various characteristics
and we average these probabilities over two broad time periods: one ending before the start of

28For the US, survey responses of when an individual left their last job, and reasons for leaving are either not
available or reliable for those who are inactive.
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Figure 6: Cumulative percentage point contributions from changes in entry hazard rates to the employment rate
change, 2008-2012

(a) US Male (b) US Female

(c) UK Male (d) UK Female

Note.- US hazard rates here are calculated without the Abowd and Zellner (1985) correction for classification
error to the gross flows.

the latest economic downturn, 1997 to 2007, and the second capturing broadly the period of the
Great Recession, 2008 to 2012 (see tables D1 & D2 in the online appendix D). It is not possible
to carry out a time aggregation or classification error bias adjustment on these transitions. But
especially for time aggregation, we should not expect these biases to be systematic with gender
and time. If we only consider the pre-recession period, for both countries, across all groups, the
male flow probability from inactivity to unemployment is greater than the female. This implies
that men, when inactive, are closer to the labour market than women, even controlling for type
of inactivity. Looking within types of heterogeneity, the relative difference between the flow
probability for men who declare themselves to be inactive because they are looking after the
family or home, and other inactivity groups, is higher than for women. Furthermore, in both
countries again, the male flow probability decreases with the age of youngest child, as opposed
to increasing for women (although only marginally so for the US).

Have these patterns changed since the Great Recession? To answer this we consider changes
between the two broad time periods (table 3). For the US, there were large increases in the
monthly flow probability for both men and women who are inactive looking after the family or
home, as well as for those with young children. Likewise, the probability of transition for married
men increased by over fifty percent, and a third for women. These are groups of individuals
for whom we might expect to see large countercyclical increases in transition probabilities if
a theoretical added worker effect were relevant. Based simply on these unconditional averages
over time, it would appear as though this is equally the case for men and women. Those without
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dependent children, or not living as a married couple, both male and female, appear to be less
affected than those with. Generally, across all groups it appears as though the participation
margin in the US is equally affected by the downturn for men and women. However, in the UK,
there are more stark differences. Younger men, and those in full-time education, see a smaller
rise in their likelihood of rejoining the labour market via unemployment than do women. Across
most groups, the male flow is less cyclical. More relevantly to the hypothesised added worker
effect, the rise in the flow probability for those looking after family or home is twenty & thirty-
nine percent respectively for men and women, and the equivalent figures for those with children
aged zero to one are six and forty-one percent. The differences remain large for those with
youngest child aged two to four also. Women living as a married couple are a third more
likely to move from inactivity to unemployment during the Great Recession whereas the male
transition barely increases. Like the US, having no dependent children is associated with a
relatively smaller increase in the flow probability. Therefore, while in the US these simple
average flow probabilities suggest that an added worker effect might not be gender specific,
for the UK we find more associated evidence that it is. This may contribute to the aggregate
gender difference in the cyclical importance of the participation margin in explaining changes
in unemployment rates observed for the UK, and also why this is not the case over the same
period for the US.

Table 3: Percent change in pIU from 1997-2007 to 2008-2012

U.S. U.K.

Male Female Male Female

Age 20-29 20.8 28.1 11.0 33.2
30-39 52.7 38.1 4.9 28.8
40-54 52.1 44.6 28.3 26.2

Inactivity reason Retired -14.4 1.3 33.1 21.3
Disabled 23.6 23.9 22.3 41.5
Family/home 36.9 43.5 20.1 39.2
Student 28.6 25.3 9.2 25.9
Other 33.6 43.3 11.6 19.4

When left last job τ ≤12 17.0 23.8
(τ months) τ >12 / never 24.2 38.3

0.0 0.0
Reason left last job Job loser 28.0 17.9

Job leaver 26.7 35.2
Temp. job ended 13.5 10.6

Living as a married couple Yes 49.1 36.6 5.2 33.6
No 34.7 25.8 15.3 26.5

Age of youngest child 0-2 / 0-1 43.8 48.5 6.6 41.4
3-5 / 2-4 62.0 54.6 17.8 38.5
6-13 / 5-9 74.6 28.8 18.0 28.9

Number of dep. children < 18 / 19 0 39.2 37.7 15.3 28.9
1 55.2 51.7 38.9 38.5
2 71.9 41.5 29.2 32.9
3 57.3 39.7 5.9 24.5
≥4 43.0 13.3 -29.2 33.0
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3.4. Further discussion

Our analysis suggests a greater cyclical importance of IU flows for men in the US than in
the UK during the Great Recession. Before making too much out of this cross-country result,
we must be confident that these observed differences do not emerge from the types of data
we have used, in particular the frequency over which we have estimated hazard rates. It is
possible that the counter-cyclical US male IU transition and observed cyclical neutrality for
the UK could be accounted for by frequent back and forth transitions between unemployment
and inactivity for men within the quarter, even after our corrections for other biases in the
flow rates. For example, the recorded quarterly UU flow in the UK would be equivalent to
the UNNU chain over four months seen in the US data. To check whether this drives our
results, we use waves one and five matched with four & eight from the CPS to estimate a
quarterly series of gross US flows by gender for each month. In figure 7 we see that the strong
counter-cyclicality of the male quarterly transition probability remains, and this appears at
least as significant for women over the downturn. The differing cross-country male participation
response to the Great Recession could be a result of inactive men in the UK having a particular
set of characteristics that put them further from the labour market, relative to women, than is
the case for those in the US. Future research could assess whether inactive men in the UK and
the US, otherwise identical along relevant observable characteristics such as marital status and
number of dependent children, have residually different probabilities of moving from inactivity
to unemployment.

Figure 7: Estimated quarterly US transition probability from inactivity to unemployment

Source.- gross flows estimated using waves one & five matched with four & eight for each month of CPS datasets,
un-weighted, and twelve month moving average.

4. Summary

Our main aim has been to shed light on the gender dimension of the relationship between
labour market stocks and flows during the business cycle. We have built on limited evidence,
which tended to focus on what happens to unemployment rates only, by looking at the rela-
tionship between the cyclical components of output and all three labour market states, with an
analysis motivated by a robust output gap decomposition. Moreover, the gender dimension of
labour market flows has also been overlooked in previous studies. The analysis is structured
around one main issue that has emerged from the existing literature: the so-called stock-flow
fallacy, whereby a lack of cyclicality in certain stocks, notably the participation rate, does not
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necessarily imply that flows between this state and others are not significantly cyclical, nor
important in driving the labour market response to recessions. We assess whether there is a
particular gender dimension to this stock-flow fallacy. Although male and female inactivity
rates are not especially cyclical, there could be greater gender differences in the importance of
flows in and out of this state over the cycle.

In both the US and UK, the response of male employment rates was at least stronger during
the Great Recession, but not more generally over previous downturns. The response of the un-
employment rate is not gender neutral. The male rate tends to increase more significantly than
female during economic recessions. There are not substantial gender differences in the response
of inactivity rates. When assessing the role fluidity has in shaping stocks, more prevalent gender
differences arise than those implied by the stock-based results alone. In the past 25 years as
much as a half of the variation in the US gender unemployment rate gap can be accounted for by
changes in male and female rates of transition between unemployment and inactivity. For the
UK these flows can also explain some of the pattern in gender differences. The majority of the
difference in the unemployment rate response to the 2008 downturn can however be accounted
for by a less strong response of the flows between employment and unemployment for women.
But changes in the flow rates between inactivity and unemployment were also significant. For
the US, these contributed similarly to the unemployment rate rise for both men and women.
However, for the UK, unlike for women, the male participation flow to unemployment accounted
for none of the rise in the unemployment rate. This suggests that a gender specific added worker
effect was more likely to be present in the UK than in the US at the aggregate level. This is
corroborated by an assessment of the heterogeneity of inactivity to unemployment transition
probabilities, comparing the period of the Great Recession with the years before. Employment
rate responses to the cycle also belie gender differences in the importance of the participation
margin. In both countries employment is driven substantially by the procyclical entry rate from
inactivity, and more so for women than for men, especially during the latest downturn.

Acknowledgements

We would like to thank participants at the 2014 European Association of Labour Economists
Conference, attendees of the Centre for Analysis of Social Exclusion (CASE: LSE) and the
Department of Economics RiP (University of Reading) seminar series and colleagues in the
departments of economics at the University of Reading and University of Edinburgh for their
comments, as well as anonymous referees. Carl Singleton would like to offer particular thanks
to the Economic and Social Research Council (UK) for funding support.

References

Abowd, J. M., Zellner, A., 1985. Estimating gross labor-force flows. Journal of Business & Economic Statistics
3 (3), 254–283.

Albanesi, S., Sahin, A., 2013. The gender unemployment gap. Staff Reports 613, Federal Reserve Bank of New
York.

Attfield, C. L. F., Silverstone, B., July 1998. Okun’s Law, Cointegration and Gap Variables. Journal of Macroe-
conomics 20 (3), 625–637.

BEA, 2014. U.S. Bureau of Economic Affaris, National Income and Product Accounts, NIPA - accessed 5/5/2014.
Blank, R. M., May 1989. Disaggregating the Effect of the Business Cycle on the Distribution of Income. Economica

56 (222), 141–63.
BLS, 2013. U.S. Bureau of Labour Statistics, Labour Force Statistics, Employed persons by occupation, sex and

age, CPS - accessed 5/5/2014.
BLS, 2014. U.S. Bureau of Labour Statistics, Labour Force Statistics, CPS - accessed 5/5/2014.
BLS, 2015. U.S. Bureau of Labour Statistics, Research series on labor force status flows from the Current

Population Survey - accessed 14/9/2015.

20



Bryan, M. L., Longhi, S., Nov. 2013. Couples’ Labour Supply Responses to Job Loss: Boom and Recession
Compared. IZA Discussion Papers 7775, Institute for the Study of Labor.

Clark, K. B., Summers, L. H., July 1980. Demographic Differences in Cyclical Employment Variation. Working
Paper 514, National Bureau of Economic Research.

Clarke, P. S., 1999. Methodological issues in the production and analysis of longitudinal data from the Labour
Force Survey. No. 17. Office for National Statistics.

Darby, M. R., Haltiwanger, J. C., Plant, M. W., August 1986. The Ins and Outs of Unemployment: The Ins
Win. Working Paper 1997, National Bureau of Economic Research.

Davies, E., 2010. Embeddable markov matrices. Electronic Journal of Probability 15, 1474–1486.
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