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Abstract (60 words) 

GANE proposes that local glutamate-norepinephrine interactions enable “winner-take-more” 

effects in perception and memory under arousal. A diverse range of commentaries addressed 

both the nature of this ‘hotspot’ feedback mechanism and its implications in a variety of 

psychological domains, inspiring exciting avenues for future research.   

 



GANEing Traction: The Broad Applicability of NE Hotspots to Diverse Cognitive and 

Arousal Phenomena 

 

We proposed the Glutamate Amplifies Noradrenergic Effects (GANE) model to fill a gap in our 

understanding: What are the brain mechanisms that allow arousal to simultaneously enhance 

processing of salient or high priority stimuli and impair processing of inconspicuous or low priority 

stimuli? In our model, local level of glutamatergic neurotransmission signifies the priority of an 

activated representation. When glutamate spillover from activated synapses activates NMDA 

receptors on nearby segments of a LC neuron around the same time that the LC neuron is 

depolarized, this leads to more local release of NE, which further amplifies glutamate release and 

the activation of the information the highly excited neurons are representing. Elsewhere, lower 

glutamate levels fail to ignite hotspots and undergo greater suppression via NE-induced inhibition. 

We proposed that, in addition to enhancing activation of prioritized representations, the NE-

glutamate hotspots effects selectively recruit metabolic resources, enhance neuronal oscillations, 

and trigger synaptic plasticity processes that enhance long-term memory of prioritized 

information.  

 

Across the commentaries discussing GANE’s relevance to cognitive and neural processes, 

several important themes emerged (see Table 1). Generally, the responses can be grouped as 

having one of two foci (with some exceptions): behavioral and cognitive aspects of the arousal by 

priority interaction relevant to GANE or the NE hotspot mechanism itself.  

 

To predict which information will be selectively enhanced or impaired by arousal, it is important to 

focus on the two key factors necessary to ignite a hotspot: 1) an arousing-inducing stimulus that 

can stimulate LC activity (NE), and 2) a stimulus that has high priority (glutamate). As outlined in 

Table 1, several of the commentaries elaborated on these two factors, as well as on other issues 

and themes. We discuss the issues raised in the commentaries here in our response, starting 

with the topic of arousal. 



 

1. Arousal 

A number of commentaries raise questions regarding arousal.  

 

1.1. Nature of arousal. In our view, the LC-NE system is not the only brain system involved in a 

generalized arousal response (see Pfaff, 2006 for a review of arousal pathways in the brain), but 

its activation is a common theme that runs through all different modes of arousal. For instance, 

NE inputs to cells in the ventromedial hypothalamus are critical for initiating sexual arousal (Pfaff, 

2006; of relevance for Mouras’ commentary), while noradrenergic input to the amygdala is critical 

for enhancing memory for emotionally arousing stimuli (see Roozendaal et al. commentary and 

the section below on the role of the amygdala). 

 

What is arousal? At the most basic level, we have the contrast between sleep and wakefulness. 

NE is low during most sleep states (see Becchetti & Amadeo). Then during wakefulness, being 

physically active increases NE (Carter et al., 2010). But in addition to these broad-scale changes, 

the arousal system is also exquisitely sensitive and can adapt rapidly to small changes in the 

environment or internal goals. 

 

These arousal responses can be detected by measuring pupil dilation. NE system activity 

increases pupil dilation, as NE released by the LC inhibits pupil constriction (Koss, Gherezghiher, 

& Nomura, 1984; Wilhelm, 2008). During sleep, pupils are constricted compared to waking (Yoss, 

Moyer, & Hollenhorst, 1970). During wakefulness, aerobic exercise (Ishigaki, Miyao, & Ishihara, 

1991) or muscular exertion (Nielsen & Mather, 2015; Nielsen, Barber, Chai, Clewett, & Mather, 

2015) increase pupil dilation. Arousal induced by stimuli or tasks also increase pupil dilation. For 

instance, emotionally arousing scenes (Bradley, Costa, & Lang, 2015), sexually arousing stimuli 

(Bradley et al., 2015), surprise, uncertainty, loud noises and cognitive effort all increase pupil 

dilation. Subjective arousal ratings given for emotional images correlate with pupil diameter 

during viewing (Bradley, Miccoli, Escrig, & Lang, 2008). These consistencies across different 



elicitors of arousal provides an important starting point to elucidate the underlying mechanisms by 

which encountering emotionally arousing stimuli modulates cognitive and brain processing. Eldar, 

Cohen and Niv review a recent line of work in which they used pupil dilation as a marker of NE 

activity and found that indices of high NE function are associated with increased selectivity in 

learning, perception and memory, consistent with their neural network models in which NE was 

modeled as global increase in gain. GANE complements and extends this approach by providing 

hypotheses about how NE implements neural gain.  

 

We agree with Mouras and Kaspar regarding the relevance of sexual arousal and internal 

sources of arousal (such as from one’s thoughts). Our point of view is that these different types 

and sources of arousal can be accommodated by the GANE model, as evidence suggests that 

LC activation is a common theme for all of them.  

 

1.2. How the heartbeat influences LC activity. The LC is influenced not only by external stimuli 

and one’s own thoughts, but also by interoceptive signals. For instance, distension of the bladder 

or colon increases LC activity (Elam, Thorén, & Svensson, 1986), whereas an increase in blood 

pressure decreases LC activity (Elam, Yoa, Svensson, & Thoren, 1984). LC neurons also show a 

cardiac periodicity. For instance, in cats LC neurons are most likely to fire 80-180 ms after the 

peak of the cardiac r-wave (during diastole) and least likely to fire 40 ms before to 60 ms after the 

r-wave (during systole) (Morilak, Fornal, & Jacobs, 1986).  

 

Critchley and Garfinkel have shown that stimuli detection and memory encoding differ during 

the systole (contraction) and diastole phases of the heartbeat. During systole, participants are 

better able to detect fear (but not neutral) faces in an attentional blink paradigm and rate them as 

more intense (Garfinkel et al., 2014). When words are the T2 stimuli in an attentional blink 

paradigm, later memory for the words depends on both the confidence with which they were 

originally detected and at what heartbeat phase they were detected (Garfinkel et al., 2013). 

Words detected with high confidence during systole have a memory advantage whereas words 



detected with low confidence during systole have a memory disadvantage. Thus, during systole, 

highly salient stimuli such as fear faces and clearly detected target words get a boost in 

processing or later consolidation. But why would this GANE-like pattern occur during systole 

when the LC neurons are less likely to fire? This surprising aspect of the findings suggests the 

possibility that LC activity and salient glutamatergic representations may interact best when they 

are offset slightly in time. 

 

Critchley and Garfinkel argue that the GANE notion that LC-NE activity amplifies salience is not 

sufficient to account for their findings because their cardiac cycle effects sometimes appear to be 

driven by fear rather than arousal more generally. However, as shown in their figure, there was 

not a significant difference between fear and disgust or happy faces, and the disgust and happy 

faces showed trends towards enhancement where neutral faces showed a trend towards 

impairment at diastole. Fear faces are often more salient than happy or disgust faces (Anderson, 

Christoff, Panitz, De Rosa, & Gabrieli, 2003; Mather & Knight, 2006), thus, we think more work is 

needed before a specific-emotion account must be invoked in place of a salience mechanism 

such as that provided by GANE. 

 

2.3. How arousal may amplify the salience of negative stimuli. Kaspar makes the case that 

negative stimuli may be more likely than positive stimuli to ignite neuronal hotspots due to 

evolutionary pressure not to miss potential threats. One challenge is how to test this hypothesis, 

as negative stimuli on average induce more arousal than positive stimuli (Grühn & Scheibe, 

2008), and so any differences in processing or memory between negative and positive stimuli 

could be due to different levels of arousal when processing them rather than to different levels of 

priority. To try to address this question, we recently ran a study in which we induced arousal 

independently by having participants squeeze a ball in their hand as hard as they could before 

they viewed emotional pictures and examined how the resulting increases in arousal influenced 

memory for the pictures (Nielsen et al., 2015). We were interested in hormone effects and all 

participants were younger female women. Consistent with Kaspar’s predictions, we found that 



handgrip-induced arousal enhanced memory for the negative but not the positive pictures. This 

effect was most pronounced for women with low estrogen and progesterone levels at the time of 

testing.  

 

Kaspar also suggested that, due to declines in the LC-NE system, negative stimuli lose their 

arousing potential as people age. However, the evidence suggests that the older adults’ positivity 

effect is not due to a lack of bottom-up salience for negative stimuli. Like younger adults, older 

adults look first at arousing stimuli regardless of their valence (Knight et al., 2007) and notice 

arousing or threatening stimuli more quickly than other types of stimuli (Leclerc & Kensinger, 

2008; Mather & Knight, 2006). Bottom-up affective salience should play less of a role in 

influencing processing for low arousal pictures, and indeed, the positivity effect appears to be 

stronger among valenced stimuli low rather than high in arousal (Kensinger, 2008). In addition, 

we found that arousal induced by handgrip selectively benefited memory encoding of negative 

pictures (compared with positive or neutral pictures) in older women not taking hormone 

supplements as well as in younger women with low estrogen and progesterone levels (Nielsen, 

Chai, & Mather, in preparation). Thus, evidence suggests that arousing negative pictures have 

similar bottom-up salience for older adults as they do for younger adults. 

 

2.4. Relation to appraisal theory. Based on appraisal theory, Montagrin & Sander raise a 

question about how arousal and priority interact. They argue that arousal and goal-relevance are 

not independent and stimuli that are relevant for individuals’ goals, needs and values induce 

strong arousal and amygdala activity. We agree with them: Given that the LC shows phasic 

activity to goal-relevant stimuli (Aston-Jones & Cohen, 2005; Aston-Jones, Rajkowski, & Cohen, 

1999), it seems possible that goal-relevant stimuli become arousing. However, the appraisal 

theory approach they discuss does not detail the neural mechanisms by which arousal induced 

by goal-relevant stimuli helps people memorize (Montagrin, Brosch, & Sander, 2013) and 

prioritize attention to those stimuli (Pool, Brosch, Delplanque, & Sander, 2015). In contrast, our 

GANE model can explain their findings of enhanced processing of goal-relevant stimuli: once the 



amygdala and/or higher cortical regions detect goal-relevant stimuli and recruit the LC, NE 

hotspots will be generated in circuits transmitting goal-relevant information and, in turn, hotspots 

will enhance memory and perception for those stimuli. Thus GANE does not contradict the 

appraisal model but instead extends it. 

 

2.5. Emotion regulation. Hull argues that the role of arousal in GANE is relevant for 

understanding impairments in emotion regulation. In particular, when stuck on a particular 

representation associated with negative emotions, decreases in arousal may be necessary to 

allow for less emotionally disturbing representations to be prioritized. Although not addressed in 

Hull’s commentary, a related point is the relevance of GANE for disorders such as post-traumatic 

stress disorder (PTSD) where intrusive thoughts are a problem. A particular disturbing thought or 

memory may induce arousal, which in turn enhances attention to and memory reconsolidation of 

that particular representation. Based on GANE, beta-blockers during initial encoding or retrieval 

of the memory should attenuate the immediate strength of its activation and its long-term synaptic 

strength. Consistent with this are some observational findings suggesting that beta-blockers may 

help prevent intrusive thoughts or PTSD (Krauseneck et al., 2010; Lindgren et al., 2013), 

although random assignment has yielded some null effects (Stein, Kerridge, Dimsdale, & Hoyt, 

2007).   

 

2. Priority  

 

Other commentaries focused on physiological and psychological aspects of priority, a key factor 

in GANE. 

 

2.1. Perspectives on physiological mechanisms of priority. Larkum and Phillips describe a 

novel physiological mechanism for contextual information to modulate pyramidal cell activity. 

Neocortical pyramidal cell bodies have an apical trunk that ascends to a dendritic branching 

pattern called an apical tuft which resides in a different cortical layer than the cell body and the 



basal dendrites around it. The long distance of the apical tuft from the cell body sets it up to serve 

a modulatory role in driving cell activity (Phillips, 2015). Apical amplification could, for example, 

provide top-down priority selection of a quiet bottom-up auditory input to cortical output circuits. In 

their figure they show the interaction of GANE and apical amplification priority, providing an 

experimentally testable physiological model. Houghton argues that, computationally, the mossy 

cell hilar circuit in hippocampus would set priority for hippocampal processing and suggests 

heavy hilar NE innervation is consistent with GANE amplification of that mechanism. Becchetti 

and Amadeo make the interesting point that conscious (thus prioritized) oneiric processing 

occurs during REM sleep, likely supported by high acetylcholine modulation. But with active 

suppression of LC-NE during REM, there is little or no memory of those priority events, also 

consistent with GANE.  

 

2.2. Fluency may be related to priority. Carbon & Albrecht point out that fluency (i.e., 

processing information more easily) is an important factor which determines stimulus priority. 

Greater fluency can arise because of perceptual salience (e.g., reading a word printed in a clear 

and high contrast font more quickly than a blurry word) or because of prior knowledge or 

experience (e.g., reading a familiar word more easily than an unfamiliar word). Previous findings 

had suggested that people feel more positively about stimuli that they process more fluently (e.g., 

Winkielman & Cacioppo, 2001). In a recent study, Albrecht and Carbon (2014) showed affective 

pictures that were either preceded (507 ms earlier) by that same image or by a different image 

shown for only 7 ms and asked participants to rate the valence of the pictures. There was no 

main effect of valence, but instead an amplification effect, with highly positive pictures rated more 

positively when they had been primed and highly negative pictures rated more negatively when 

they had been primed. Insofar as fluently processed stimuli yield higher glutamatergic activity 

than less fluently processed stimuli (something that seems plausible but remains to be tested) 

and that the emotional stimuli elicited arousal, their findings that valence judgments of emotional 

stimuli are amplified by fluency fit nicely with GANE. 

 



3. Predictive utility of GANE 

 

Commentaries by Huntsinger & Storbeck and Talmi & Barnacle argued that GANE does not 

provide clear predictions concerning whether the presentation of emotionally arousing stimuli 

would enhance or impair cognitive processing of stimuli that appear nearby in time or space. 

Huntsinger & Storbeck state that GANE can provide post-hoc explanations about the effects of 

emotional stimuli in a range of situations, but question GANE’s predictive utility. Talmi & 

Barnacle also argue that because we don’t know exactly how long emotional stimuli dominate 

competition for representation, we can explain either the enhanced or impaired effects of 

emotional stimuli on nearby neutral stimuli by GANE. 

 

We agree with them that it is hard to determine priority when comparing emotional vs. neutral 

stimuli. As discussed in our target article, emotional stimuli tend to have higher priority than 

neutral stimuli due to their goal relevance, bottom-up salience and emotional salience. Thus, in 

the hypothetical experiment Huntsinger & Storbeck mention, where emotional stimuli are 

presented as distractors with task-relevant neutral stimuli, emotional distractors can have higher 

priority than neutral goal-relevant stimuli. This could be especially the case when the top-down 

control mechanisms are not strong enough to establish the goal relevance of neutral stimuli (see 

Warren, Murphy, & Nieuwenhuis). 

 

Talmi & Barnacle suggest that one can get around the issue of the different salience between 

emotional and neutral stimuli by having a long interval between emotional and subsequent neutral 

stimuli. But having a long interval would not increase the priority of neutral stimuli as high as that 

of emotional stimuli; it is likely that emotional stimuli still have higher priority than neutral stimuli 

when they are presented randomly even with a long interval. In addition, since high arousal can 

impair top-down prioritization (Arnsten, 2011; Kuhbandner & Zehetleitner, 2011), top-down control 

mechanisms might fail to increase the priority of neutral stimuli presented after emotional stimuli. 

These considerations suggest that in their EEG study (Barnacle, Schaefer, Tsivilis, & Talmi, in 



prep), neutral stimuli intermixed with emotional stimuli still had lower priority than neutral stimuli 

presented in a neutral list, which led to the impaired processing of neutral stimuli in the intermixed 

condition as predicted by GANE. Furthermore, having a long interval has the disadvantage that 

the effects of phasic arousal and NE release might not last for a long duration (see Section 9 in 

our target article). 

 

In summary, it is difficult to test GANE in experimental settings where researchers simply include 

emotionally arousing stimuli and neutral stimuli without a clear manipulation of priority. In our 

view, to test GANE, it is important to manipulate the priority of neutral stimuli, independently from 

arousal (Lee, Sakaki, Cheng, Velasco, & Mather, 2014; Sakaki, Fryer, & Mather, 2014; 

Sutherland & Mather, 2012). One way to achieve this in the context of Barnacle et al. (in prep) 

would be to have high-priority neutral images and low-priority neutral images in the mixed list 

condition. Similar changes can be made in the bridge study mentioned by Huntsinger and 

Storbeck (Dutton & Aron, 1974); GANE predicts that arousal induced by the scary bridge will 

enhance memory for nearby high priority stimuli (e.g., a woman seen on the bridge if the 

participant were asked to approach a woman and ask her something) while impairing memory for 

nearby low priority stimuli (e.g., a man on the bridge who has no task relevance or particular 

interest). In summary, GANE can provide clear predictions as long as the experiment is set up 

properly. 

 

4. Alternatives to GANE proposed in commentaries 

Several of the commentaries propose alternatives to GANE to explain the mechanisms by which 

arousing stimuli affect cognitive processing. 

 



 

Figure 1. (A) Arousing negative sounds heard after seeing either a background scene alone or 

superimposed with a foreground object (B) impaired memory for the scene only when it was seen 

behind the object and therefore was somewhat suppressed by that competitor (Ponzio & Mather, 

2014). 

  

4.1. NE-only model. Strange and Galarza-Vallejo propose that the glutamate aspect of the 

model is not necessary -- that a simpler model is that priority is coded by phasic NE release in the 

brain. They work through an example from research on the emotional oddball - 1 (E-1) effect, in 

which emotional oddballs (words or pictures) impair memory for the immediately preceding item 

on the list if that item was low priority for the participant but enhance it if that item was high 



priority (e.g., Sakaki, Fryer, et al., 2014). A problem with their NE-only model is that it is not clear 

how phasic NE release can selectively “tag” the E-1 item and not other items. Perhaps in the 

simple set-up they describe, in which one word or object appears at a time in the list, phasic NE 

release could mark activated neural networks via a temporal tagging process. However, they do 

not consider findings that when multiple items are shown simultaneously, whether and how much 

memory for them is enhanced or impaired by a subsequent emotional item depends on their 

priority. For example, in an experiment in which a scene was either shown alone or with an object 

superimposed on it (Figure 1A), if the image was followed by an emotional sound, there was 

impaired memory for the scene later--but only if it had been made lower priority by being in the 

background (Figure 1B; Ponzio & Mather, 2014). Likewise, in another study in which participants 

saw four items at the same time that were then followed by a tone that was either conditioned to 

predict a shock (CS+) or no shock (CS-), having a subsequent arousing tone affected later 

memory for the simultaneously shown items differently depending on the relative priority of the 

items (Lee, Greening, & Mather, 2015). The model Strange and Galarza-Vallejo propose does not 

explain how phasic LC activation could have different effects on items shown at the same time. In 

our view, this is the main contribution of GANE -- by positing a mechanism for local cortical 

modulation of NE, it provides the only explanation to date of how arousal can have simultaneous 

differential effects on items based on their priority.   

 

4.2. Amygdala-based model. Roozendaal et al. argue that the amygdala is necessary for NE to 

enhance selective processing and memory consolidation of arousing stimuli. We agree that the 

amygdala plays a critical role, but that its role in mediating the effects of NE is only necessary 

when the amygdala is the primary site of the neural representation in question. 

Data from individuals with amygdala lesions helps reveal which types of representations depend 

on the amygdala and which types can be supported by other brain regions. Compared with 

controls, unilateral amygdala patients showed as much enhanced visual cortex activity when 

viewing emotionally salient images (Edmiston et al., 2013), as much of an advantage for 

detecting emotional targets (Piech et al., 2010), and as much emotional capture by emotional 



stimuli during an attentional blink task (Piech et al., 2011). Two individuals with selective bilateral 

amygdala lesions showed a significant advantage in recalling aversive (compared with neutral) 

words during an attentional blink task, and this advantage was as large as that seen for matched 

control participants (Bach, Talmi, Hurlemann, Patin, & Dolan, 2011). Someone with complete 

bilateral amygdala lesions who could not recognize fear from faces still showed normal rapid 

detection of those faces (Tsuchiya, Moradi, Felsen, Yamazaki, & Adolphs, 2009). Thus, the 

amygdala is not necessary for the initial selective attention and encoding advantages seen for 

emotionally arousing stimuli, suggesting that NE-glutamate hotspots in sensory brain regions can 

occur even in the absence of the amygdala. 

 

In addition, highly salient sensory stimuli yield normal physiological responses in people missing 

amygdalae (e.g., Tranel & Damasio, 1989). For instance, in studies of fear conditioning, 

individuals with amygdala lesions show normal skin conductance responses to aversive stimuli 

such as loud noises (Bechara et al., 1995; Klumpers, Morgan, Terburg, Stein, & van Honk, 2014). 

Likewise, three patients with bilateral amygdala lesions each had a panic attack when inhaling 

35% CO2 (Feinstein et al., 2013), indicating that amygdala lesion patients still experience fear in 

response to interoceptive alarming cues. These intact responses to interoceptive or external 

sensory stimuli contrast with the lack of fear shown by amygdala patients in response to 

experiences or visual stimuli (e.g., a haunted house or a live snake) that typically elicit fear 

because of their association with danger (Feinstein, Adolphs, Damasio, & Tranel, 2011).  

 

This pattern of findings suggests the amygdala is essential for anticipatory physiological 

responses to stimuli that predict something aversive. This possibility is supported by fear 

conditioning studies with individuals with amygdala lesions (Bechara et al., 1995; Klumpers et al., 

2014). These individuals lacked skin conductance responses to CS+ cues that predicted loud 

noises, even though they acquired explicit knowledge about the CS+ contingency. In contrast, an 

individual with bilateral hippocampal lesions failed to acquire explicit knowledge about the 

contingency but showed skin conductance responses to the CS+ (Bechara et al., 1995). Thus, 



amygdala lesions impair physiological responding but not explicit learning about which cues 

predict threat. Amygdala lesions also impair physiological responding to simulated monetary 

rewards and losses in the context of a gambling game (Bechara, Damasio, Damasio, & Lee, 

1999), indicating that the amygdala is necessary for an abstract stimulus predicting something 

positive or negative to yield a physiological affective response.   

 

The findings that patients with amygdala lesions no longer have physiological responses to 

predictive cues despite as much explicit knowledge about the contingencies as normal controls 

suggests that: 1) there are amygdala-based neural representations of associations between 

neutral cues and potential affectively relevant outcomes; and 2) these amygdala-based 

representations are necessary to trigger signals to sympathetic pathways to mount a 

physiological response, possibly in part via amygdala projections to the LC (Cedarbaum & 

Aghajanian, 1978). 

Likewise, the finding that an individual with a hippocampal lesion lacked explicit knowledge about 

fear conditioning contingencies despite showing a skin conductance response to the CS+ 

suggests that there also are amygdala-independent hippocampal-based neural representations of 

associations between CS and US. However, in people with intact amygdalae and hippocampi, 

these separate representations in the two regions are likely to have close interactions, in part 

supported by a direct glutamatergic pathway from the basolateral amygdala to the CA1 region of 

the hippocampus (Rei et al., 2015). 

 

One domain in which the noradrenergic contributions to interactions between amygdala and 

hippocampus have been examined is in one-trial learning to avoid a shock (McIntyre et al., 2005). 

In this paradigm, the beta-adrenergic receptor agonist clenbuterol is infused into the basolateral 

complex of the amygdala shortly after a rat learns that moving from a brightly lit compartment of 

an alley through a door to a dark compartment is associated with a shock. The beta-adrenergic 

stimulation of the amygdala increases Arc expression (indicating more synaptic changes 

occurred) in the hippocampus in the 45 minutes after the shock. Of particular relevance in this 



context, however, are findings that the increased Arc expression depends not only on greater NE 

activity in the amygdala itself, but also on arousal levels more generally (McReynolds, Anderson, 

Donowho, & McIntyre, 2014). Specifically, whereas basolateral amygdala infusions of a beta-

agonist increased Arc protein levels for the inhibitory avoidance shock task as seen in previous 

studies and also for a “high arousal” version of an object recognition task, NE activity in the 

amygdala was not sufficient to increase Arc in the hippocampus when the object recognition task 

was not arousing. These findings suggest that glutamate-NE feedback loops in the amygdala can 

be intensified by within-amygdala local beta-adrenergic activation (Figure 2A). This hotspot 

activity increases glutamatergic signaling to the hippocampus (Figure 2B) but does not directly 

increase NE levels in the hippocampus. However, the increased glutamatergic activity in the 

hippocampus can stimulate local release of NE via NMDA receptor activity at LC neuron 

varicosities if the LC is depolarized (Figure 2C; see target article for more details on hotspot 

mechanisms). In summary, McReynolds’ data suggests that NE can influence hippocampal 

activity either indirectly via glutamatergic pathways from the amygdala, or directly via local 

release from LC varicosities. More generally, we posit that NE action within the amygdala has 

important glutamatergic modulatory effects elsewhere in the brain (in particular in the 

hippocampus) but that NE also modulates excitation and inhibition directly in these other brain 

regions via local release. The critical experiments to test this have not been done yet (see 

relevant proposed study in Table 2). 

     

 

 



 

Figure 2. Glutamate-NE hotspots originating in the amygdala modulate hippocampal activity via 

glutamatergic pathways. However, local NE release within the hippocampus also has an impact. 

Roozendaal et al. also argue that “the impairing effects of amygdala-NE interactions on memory 

of non-salient/non-arousing information involve an active process that is dependent on the 

amygdala.” They make this case based on Lovitz and Thompson (2015), whom they interpret as 

showing that intra-BLA infusion of a beta-adrenergic agonist (clenbutorol) decreases hippocampal 

excitability in non-IA trained control animals. However, their interpretation appears to be incorrect, 

as in that study, there was no significant difference between vehicle and clenbutorol in the 

untrained rats. 

 

5. The role of NE hotspots in long-term memory formation     

Some commentaries raise questions concerning the role of NE hotspots in memory. First, 

Hurlemann, Nauerm & Scheele point out the importance of cortisol in addition to NE and 

glutamate in explaining the effects of arousal on memory. Combining neuroimaging with a 



psychopharmacological approach, Hurlemann and colleagues demonstrated that NE and 

glucocorticoids interact during processing of emotional stimuli (Hurlemann, 2008; Kukolja et al., 

2008; Kukolja, Klingmüller, Maier, Fink, & Hurlemann, 2011). In particular, their work suggests 

that NE interacts with cortisol to enhance learning of emotional information within the amygdala-

hippocampal network. 

 

Acute stress and administration of glucocorticoids lead to enhanced glutamate release both in the 

amygdala (Reznikov et al., 2007) and hippocampus (Moghaddam, Bolinao, Stein-Behrens, & 

Sapolsky, 1994) via mechanisms mediated by glucocorticoid receptors (GR) and 

mineralocorticoid receptors (MR; for reviews see Popoli, Yan, McEwen, & Sanacora, 2012; Sandi, 

2011). In the amygdala and hippocampus, interactions between glucocorticoids and NE have 

been observed as well (for reviews Joëls, Fernandez, & Roozendaal, 2011; Krugers, Karst, & 

Joels, 2012). These results suggest the interesting possibility that glucocorticoids help NE create 

hotspots in the amygdala-hippocampus circuit by enhancing glutamatergic activity. One question 

is whether the NE-cortisol interaction goes beyond the amygdala-hippocampus circuit. While 

most previous research focuses on the effects of glucocorticoids either in the amygdala-

hippocampus pathway or the PFC, glucocorticoids might also amplify NE hotspots in other 

cortical regions, given that GRs are widely expressed in brain (Morimoto, Morita, Ozawa, 

Yokoyama, & Kawata, 1996). Furthermore, elevated cortisol and NE levels tend to impair goal-

directed attentional processes in the PFC (Schwabe, Tegenthoff, Höffken, & Wolf, 2012), which 

should enhance the impact of the bottom-up, salience-driven hotspots predominant in sensory 

brain regions. 

 

Second, Ritchey, Murty & Dunsmoor state that the tag-and-capture model is better able than 

GANE hotspot mechanisms to explain the effects of arousal on memories for events that 

happened minutes to hours before the arousing event. For example, initially weak memories can 

be strengthened by a subsequent salient signal, such as novelty or aversive events (Dunsmoor, 

Murty, Davachi, & Phelps, 2015; Redondo & Morris, 2011). The tag-and-capture model explains 



these results by asserting that memory traces are tagged during initial learning, which allows for 

subsequent plasticity-related proteins mediated mechanisms to capture those tagged traces to 

create long-term memories. Ritchey et al. also argue that the effects of arousal on protein 

synthesis processes are mediated by dopaminergic neuromodulation. 

 

While in our target article we focused mainly on the immediate effects of NE hotspots, we believe 

that evidence indicates a role of these hotspots in tag-and-capture scenarios. β-adrenergic 

receptor activity stimulates protein synthesis and gene expression alterations associated with 

long-term potentiation maintenance (Maity, Jarome, Blair, Lubin, & Nguyen, 2015; O'Dell, 

Connor, Gelinas, & Nguyen, 2010). NE hotspots should play a role in tag-and-capture by 

elevating local NE levels to activate β-adrenergic receptors as well as by increasing glutamatergic 

activation of NMDA receptors. Both β-adrenergic and NMDA activity (in addition to dopamine 

D1/D5 receptor activity) are essential to “set the learning tag” for an initial weak memory and β-

adrenergic receptor activation is required during exposure to the modulating novel event 

occurring an hour later (Moncada, Ballarini, Martinez, Frey, & Viola, 2011). A particularly 

intriguing finding is that the behavioral tagging phenomena requires the initial weak event and the 

subsequent novel event to occur in the same sensory modality, thereby activating the same 

general population of neurons (Ballarini, Moncada, Martinez, Alen, & Viola, 2009). Likewise, 

Dunsmoor et al. (2015) found that fear conditioning enhanced memory for previously learned 

images only when those images are semantically related to a fear-conditioned category; when 

images of animals were fear-conditioned, memories for previously learned animals were 

enhanced, whereas when images of tools were fear-conditioned, memories for previously learned 

tools were enhanced. This is consistent with the local nature of NE hotspots and raises the 

interesting question of just how widely the plasticity-related proteins stimulated via β-adrenergic 

receptor activation at NE hotspots modulate interconnected memory circuitries. The behavioral 

findings (Ballarini et al., 2009; Dunsmoor et al., 2015) suggest that they do not have an influence 

much beyond a local region that represents the same category or sensory modality of item. While 

much still needs to be worked out about the potentially complementary roles of dopamine and 



norepinephrine on tag-and-capture phenomena, we believe that thinking about the local nature of 

the β-adrenergic activity induced by arousing modulatory events will be fruitful.  

 

6. How GANE amplifies prioritized representations during a “network reset” 

According to a prominent theory, NE release orchestrates a “network reset” that reorients 

attention and, consequently, re-organizes underlying representational networks during a sudden 

and unexpected change in environmental imperatives (Bouret & Sara, 2005; Sara & Bouret, 

2012). We agree with Susan Sara’s perspective that GANE is complementary to the ‘reset’ 

hypothesis. From the perspective of GANE, whether this type of reorienting occurs will depend on 

whether there are currently representations with high glutamatergic activity or not. If there are no 

current strongly active representations, both GANE and the network reset theory predict that the 

predominant effect of an increase in LC activity would be to enhance reorienting to new salient 

stimuli. However, when there is already a highly active representation, GANE predicts that an 

increase in LC activity will further enhance processing of that representation (e.g., Anderson, 

Wais, & Gabrieli, 2006; Knight & Mather, 2009; Sakaki, Fryer, et al., 2014), which appears to be 

the opposite of a network reset effect. Based on these findings, in our target article we argued 

that the network reset perspective fails to account for the ability of arousal to enhance memory of 

preceding high priority information. Sebastian Bouret responded by suggesting that enhanced 

memory for a preceding event could be consistent with a network reset if, when an arousing 

event occurred, the preceding salient event was now represented in a qualitatively different way 

that was integrated with the arousing event.  

 

One domain with evidence related to the “altered” representation view is the fear/evaluative 

conditioning paradigm; events repeatedly followed by emotional outcomes acquire emotional 

properties (for a review see Baeyens, Field, & Houwer, 2005). Our previous research also 

demonstrates that when individuals are presented with neutral cues followed by emotional or 

neutral outcomes, emotional outcomes facilitate memory for neutral cues only when they are 

aware of the cue-outcome contingency (Mather & Knight, 2008; Sakaki, Ycaza-Herrera, & 



Mather, 2014). These results are in line with Bouret’s argument that arousal enhances memory 

for preceding information when the preceding information is integrated with the arousing events.    

 

However, there is also evidence consistent with the idea that arousal strengthens original 

representations for high-priority information. Empirical evidence suggests that emotional arousal 

enhances the veracity of the original representation, or detail memory, rather than gist alone 

(Sakaki, Fryer, et al., 2014). To address the important question raised by Bouret about whether 

arousal changes the nature of representations, future research should probe the effects of 

arousal on the specificity of mental and neuronal representations. At least one recent study 

suggests active sensory representations are strengthened rather than altered by noradrenergic 

system activation (Shakhawat et al., 2015). 

 

7. Alternative ways to trigger LC activity  

While most of the target article focused on how emotionally arousing stimuli shape cognitive 

processing, non-emotional stimuli can also activate the LC and thereby influence cognition. In this 

section, we discuss how prediction errors, uncertainty and competition each influence LC activity. 

 

7.1. Prediction errors activate LC. Prediction is a central feature of efficient cognitive 

processing. As described by Fernando Ferreira-Santos, GANE fits well with ‘predictive coding’ 

frameworks of cognition: sudden mismatches between predicted and actual sensory and affective 

inputs represent an important form of conflict and competition that can elicit arousal and LC 

activity. Supporting this view, pupil dilation has been linked to the occurrence of prediction errors 

(Braem, Coenen, Bombeke, van Bochove, & Notebaert, 2015; Preuschoff, Marius’t Hart, & 

Einhäuser, 2011). Furthermore, in monkeys, phasic LC activity ceases to signal the occurrence of 

reward once it follows a specific action predictably (Sara & Segal, 1991). Emotional arousal likely 

elicits the most robust biased competition effects, because it represents the “net sum” of several 

types of prediction error, including sensory, affective, and task-related mismatches (Barrett & 

Simmons, 2015; Vogel, Shen, & Neuhaus, 2015). 



 

7.2. Uncertainty activates LC. As pointed out by Nassar, Bruckner and Eppinger (as well as 

by Bouret), it is important to consider the purpose of having different levels of arousal change 

cognitive processing. When is it useful for cognitive processing to remain focused on previously 

salient information and when will it be advantageous to be open to new prioritized information? 

Nassar and colleagues argue that during times of uncertainty, it is especially important not just to 

focus on current prioritized cues but to amplify incoming prioritized sensory information (Yu & 

Dayan, 2005). They review findings that pupil diameter is larger during periods of uncertainty than 

when expectations are reliable. Thus, tonically higher levels of NE should decrease the threshold 

for new salient stimuli to ignite hotspots. They suggest that older adults’ deficits in learning under 

conditions of uncertainty may be linked with age-related declines in LC function. 

 

7.3. Conflict activates LC and is related to gamma and theta oscillations. As highlighted by 

Hans Phaf, there is much evidence that competition and conflict between representations can 

induce arousal. These stimuli/events are likely to produce hotspots too, based on evidence that 

conflict - along with novelty, target detection, uncertainty, and performance errors - elicit LC 

activity (for reviews see Berridge & Waterhouse, 2003; Nieuwenhuis, Aston-Jones, & Cohen, 

2005; Ullsperger, Harsay, Wessel, & Ridderinkhof, 2010; Yu & Dayan, 2005). Fundamentally, 

GANE predicts that any stimulus that activates the LC-NE system will produce hotspots in an 

activity-dependent manner, regardless of whether NE release is triggered by something 

emotional or not. If competition elicits arousal, it could very well be an effect driven by prediction 

errors (i.e., significant discrepancies between feedforward and feedback inputs) initiating a 

network reset via the LC.  

 

One particularly useful contribution to GANE is Phaf’s description of the distinct but 

complementary roles of theta and gamma oscillations in signaling and resolving stimulus conflict, 

respectively. According to Phaf, theta arises from conflict, is a substrate of arousal, and helps 

select dominant representations via inter-cortical communication. Subsequently, gamma 



oscillations facilitate a resetting and stabilization of “winning” representations. We also agree with 

his assertion that competition begets arousal, as conflict can elicit LC responses. 

 

His description is consistent with Susan Sara’s empirical data. In her commentary, Sara 

describes evidence that stimulating the LC briefly suppresses gamma oscillations for 200ms, 

which is followed by a near doubling of the gamma power immediately after, as well as an 

increase in theta power (Sara, 2015). Interestingly, in an early report of conflict activating LC, the 

absence of expected reward elicited a specific theta band increase (~7.7 Hz) in hippocampus 

(Gray & Ball, 1970). This effect was later demonstrated to require forebrain norepinephrine (Gray, 

McNaughton, James, & Kelly, 1975). It could be useful to re-examine this theta signature of LC 

activation (for more recent support see Walling, Brown, Milway, Earle, & Harley, 2011) and its 

role in synchronizing activity for prioritized representations. Another interesting question is 

whether (as suggested in the target article) NE hotspots enhance local gamma power via a beta-

adrenergic pathway, thereby increasing selective attention. 

 

8. Additional mechanistic considerations/complications for GANE 

As noted by several commentators, GANE is necessarily a simplification of a complex reality. It 

does not, for example, incorporate the function of post-synaptic alpha2 receptors, the 

subthreshold input promoting role of alpha1 receptors, the synergistic role of alpha1 with beta-

adrenergic receptors or recently described astrocytic functions of alpha1 receptors. The co-

release of peptides from LC varicosities is not considered nor are the probable role of other 

neuromodulators known to be elevated in various forms of arousal discussed. This is a beginning 

that will, ideally, lead to a more veridical model of cortical self-regulation and the role of arousal in 

engaging self-regulatory mechanisms. Below we discuss some of the mechanistic issues raised 

in the commentaries. 

 

8.1. Varied effects of adrenoceptors. As highlighted in several commentaries, the GANE model 

does not incorporate all known adrenoreceptor functions. These omissions include the role of 



postsynaptic alpha2 receptors that play important roles in the PFC (see commentaries by 

Abdallah et al. and Todd et al.) and which also occur in other areas of neocortex (Venkatesan, 

Song, Go, Kurose, & Aoki, 1996). Navarra and Waterhouse and Gaucher and Edeline point out 

that alpha1-adrenoreceptors have more varied actions, including synergies with beta-

adrenoreceptor effects, potentiating effects on their own, and astrocytic actions. In particular, they 

highlight that the role of alpha1-adrenoreceptor in sensory cortex may be facilitatory: when 

activated, these receptors appear to potentiate postsynaptic excitatory responses and can boost 

subthreshold inputs (for a review see Berridge & Waterhouse, 2003). Furthermore, Ding et al., 

(2013) have shown that global astrocytic calcium waves are initiated via LC-NE activation of 

astrocytic alpha1-adrenoreceptors (Ding et al., 2013), consistent with a model in which LC-NE 

global effects recruit both alpha1- and alpha2-adrenoreceptors.  

 

8.2. NE has mainly suppressive effects in sensory regions. Gaucher and Edeline emphasize 

the suppressive actions of exogenous NE on processing in auditory cortex as being inconsistent 

with GANE. But their finding that a small population of auditory neurons encoding natural stimuli 

are enhanced by NE (Gaucher & Edeline, 2015) and contribute to discrimination is similar to 

newer findings in olfactory cortex that LC-NE modulation is essential for difficult natural odor 

discrimination and increases the stability of small distributed odor representations (Shakhawat et 

al., 2015), as predicted by GANE.  

 

8.3. Differential effects of adrenergic receptors in the prefrontal and posterior cortex. 

Chadi Abdallah and colleagues highlight the differences between the actions of NE on classic 

sensory synapses in subcortical and posterior sensory regions and newly evolved circuits in layer 

3 of the DLPFC. Based on animal and human research, they suggest hotspot effects are most 

likely to occur in sensory and limbic (e.g., amygdala, hippocampus) synapses where beta-

adrenoreceptors promote glutamate responses and LTP.  In the PFC, in contrast to “classic” 

sensory areas, beta-adrenoreceptor activation has been shown to impair rather than enhance 

postsynaptic function via increased cAMP signaling (Arnsten, Raskind, Taylor, & Connor, 2015; 



Ramos & Arnsten, 2007). Like beta-adrenoreceptors, alpha1- and alpha2-adrenoreceptors also 

appear to have contrasting influences on neuronal activity in the PFC versus sensory cortices: 

whereas alpha1 receptors enhance sensory neuron firing, they tend to impair PFC function and 

working memory (Ramos & Arnsten, 2007); on the other hand, whereas alpha2 receptors 

enhance inhibitory signals and suppress noisy activity in the posterior cortex, their activation 

strengthens DLPFC functional network connectivity and promotes working memory (Arnsten, 

Wang, & Paspalas, 2012).  

 

These inverted rules of adrenoreceptor function in the PFC have important implications for how 

GANE influences cognitive processing during sudden arousal. Whereas an arousal-induced 

surge of NE may disrupt working memory representations in the DLPFC (e.g., current event 

models), it should also transiently enhance the throughput of strong glutamatergic signals in the 

hippocampus (Brown, Walling, Milway, & Harley, 2005). Thus DLPFC impairments may facilitate 

reorienting during arousal to information that has bottom-up salience and is associated with 

hotspots of high activity in sensory regions but not in PFC.  

 

8.4. Relative timing of arousal and prioritization process. The key distinction outlined in the 

previous section between the effects of NE in sensory cortices and limbic regions versus in the 

PFC accords well with the timing hypotheses proposed by Warren et al. In their commentary, 

Warren and colleagues present evidence that the relative strength of bottom-up and top-down 

(cognitive control) priority inputs changes rapidly within a single trial. Whereas bottom-up salience 

dominates the competition for mental resources early on, cognitive control processes take longer 

to develop and overcome the initial dominance of perceptual salience. Warren et al. suggest that 

this time-variant model of salience determines whether phasic arousal enhances or impairs task 

relevant (but not perceptually salient) information.  

 

Indeed, the GANE model predicts that arousal-induced NE release will bias competition in favor 

of whatever information has the highest priority at that moment. Experiencing arousal while a 



representation is highly active should amplify the effects of priority in perception and memory 

regardless of whether the priority occurred via top-down goals or bottom-up salience, since 

cognitive control goals have had sufficient time to strengthen goal-relevant representations 

elsewhere in cortex before any potential disruption of PFC due to moderate-to-high levels of NE 

occurs (Ramos & Arnsten, 2007).  In contrast, the source of priority may matter more when 

experiencing arousal before a stimulus is perceived. While pre-stimulus arousal should amplify 

the effects of bottom-up salience, it might actually diminish the effects of top-down priority if, as 

outlined in the previous section, working memory processes that help maintain and implement 

processing goals are impaired by the arousal (Ramos & Arnsten, 2007).  

 

Data from our lab provide clear evidence that pre-stimulus arousal enhances the impact of 

bottom-up salience (Lee, Itti and Mather, 2013; Sutherland and Mather, 2011; Sutherland and 

Mather, 2015), while post-stimulus arousal enhances the impact of top-down prioritization (Lee, 

Greening and Mather, 2015; Sakaki et al., 2014). Whether arousal enhances priority for the other 

two combinations remains to be seen. We have not yet tested scenarios in which something 

perceptually salient is followed by something arousing, but GANE would predict that as long as 

the representation associated with that perceptually salient item were still strongly active when 

arousal increased, it would benefit further from the arousal. In contrast, as outlined above, the 

situation in which arousal occurs before top-down prioritization occurs could show the reverse 

effect -- insofar as arousal disrupts PFC ability to prioritize an otherwise non-salient stimulus, 

arousal should diminish the impact of top-down priority because the goal-relevant representation 

isn’t highly activated. Consistent with this, we have found that playing an emotional sound before 

a brief display of letters makes it harder for participants to selectively report the letters in the high 

point value color (Sutherland, Lee, & Mather, in preparation). Based on the impairing effects of 

high NE on DLPFC, in order for a pre-stimulus arousal to enhance processing of a goal-relevant 

item, the goal prioritization process would need to be relatively independent of PFC, perhaps 

because it is automatic or habitual.  

     



8.5. Inverted-U relationship between LC firing and cognitive selectivity. Aston-Jones and 

Cohen (2005) proposed an inverted-U model of tonic NE function, in which low tonic LC activity 

promotes being inattentive and non-alert, moderate LC activity promotes being focused, and high 

tonic LC activity promotes distractibility. In their commentary, Navarra and Waterhouse bring up 

the question of where along the inverted-U function the glutamate-NE interactions proposed in 

GANE would operate. Their question is in part inspired by data from Devilbiss and Waterhouse 

(2000), who simultaneously administered glutamate and NE into in vitro rat barrel field cortex 

slices. They found that some cells showed a monotonic suppression of the excitatory post-

synaptic response to glutamate, as NE increased. Other cells showed an inverse U shape, in 

which there were increasing glutamate-evoked discharges as NE increased to 5 nA but then 

decreasing glutamate-evoked discharges as NE tonic levels were further increased (10-30 nA). 

These findings suggest that tonic levels of NE modulate post-synaptic responses to glutamatergic 

input, which is quite interesting. In particular, it seems that high tonic levels of NE would quiet 

activity in neurons exhibiting this post-synaptic NE suppression, which could contribute to the 

general decrease in neural noise seen under arousal (one interesting side note is that they found 

that, unlike in layers II/III, NE-induced facilitation of glutamate-evoked responses was the 

predominant response in layer V, which may connect with the apical amplification ideas of 

Larkum and Phillips). However, the in-vitro preparation of the study eliminated the LC from the 

equation and so did not provide the opportunity to observe the glutamate-evoked local release of 

NE proposed in GANE. As outlined in Table 2, more research is needed measuring in vivo 

interactions of glutamate and NE, as the GANE hotspot mechanism involves interactions between 

the LC and distant cortical representations.  

 

8.6. Individual differences. Geva points out that tonic levels of arousal predict whether infants 

orient towards novel or familiar stimuli and suggests that infancy is an interesting test case for 

GANE as, unlike in later stages of development, infants lack “established neural network(s)” and 

aren’t, “set with implicit “know-how’s” that provide the glutamatergic priority signal necessary to 

ignite hotspots under arousal. Differences at the other end of life are also relevant, as Nassar et 



al. point out. Genetic variation in adrenergic receptors also may matter, as Todd et al. make the 

case that ADRA2b deletion carriers have reduced inhibitory autoreceptor function.   

 

9. Conclusion 

As evinced by the diverse range of commentary, the NE hotspot mechanism goes beyond just the 

emotion-cognition literature to explain how arousal influences different forms of cognitive 

selectivity. One of GANE’s most vital contributions is that it showcases the ability of the cortex to 

regulate its own processing efficiency. Such local control of cognition represents a fundamental 

mechanism of adaptive brain function that has the potential to explain a variety of cognitive 

phenomena. As GANE exemplifies, synaptic activity isn’t just passively modified by 

neuromodulators. Instead, under situations of arousal that demand our attention, such as threat 

or excitement, salient brain signals recruit the ingredients necessary to form lasting memories.  

 



Table 1. General topics raised in commentaries.   
What elicits LC 
activity? 

Higher levels of arousal associated with uncertainty may help new 
salient information gain priority via hotspot mechanisms whereas lower 
levels of arousal may protect existing strong predictions from distracting 
information under conditions of high certainty (Nassar, Bruckner & 
Eppinger).  
 
Prediction errors may trigger a phasic NE response that facilitates the 
selective updating of predictions in the prioritized manner outlined by 
GANE (Ferreira-Santos). 
 
Competition elicits arousal, which leads to an increase in theta and 
gamma oscillations that select and stabilizing “winning” representations 
(Phaf).  
 
Negative stimuli might evoke more arousal than positive stimuli (Kaspar). 

Forms of priority Fluently processed stimuli yield a stronger signal (or are more salient) 
and so GANE can explain how arousal amplifies responses to these 
stimuli. (Carbon) 

How does GANE 
operate in relation to 
specific aspects of 
brain function?  

Commentators discussed dendritic integration (Larkum & Phillips), 
relative timing of oscillatory patterns (Phaf), the role of the dentate 
gyrus in memory selection (Houghton), and genetic variations in the 
ADRA2B gene (Todd, Ehlers & Anderson). 

The spatial extent of 
hotspots 

Eldar et al. recognize that in the GANE model hotspots would be co-
extant with distributed cortical representations, while Gaucher and 
Edeline are expecting more spatially extensive loci. This difference in 
visualization highlights the need for tools to identify active hotspot 
elements. Immediate early genes may be useful in this regard. 

What are the 
adaptive functions of 
the neural effects of 
NE? 

GANE may be a general purpose function that cuts across a variety of 
cognitive and behavioral effects (Hull) 
 
Salient events trigger the LC to release NE cortically, which facilitates a 
‘network reset’ that promotes quick changes in cortical states and 
adaptive behavioral responses (Sara). 
Salient stimuli may predict threatening or significant stimuli (Bouret) 

Relevance of GANE 
in various domains 

Stress. Endocrine signals, in particular cortisol, work in tandem with NE 
to promote long-term adaptive changes and memories (Hurlemann, 
Maier, & Scheele). 
 
Sleep and memory. Acetylcholine is likely to have different hotspot 
properties than NE and so low NE and high acetylcholine during REM 
sleep may help explain lack of memory for dreams (Becchetti & Amadeo). 
 
Early development. The LC shows developmental changes during 
infancy and early development and early life stress shapes glutamate and 
GABA responses in ways that should be considered in the GANE model 
(Geva). 
 
Responses to sexual stimuli. Contrary to expectations of posture 
showing approach/avoidance biases, people viewing either threatening or 
sexual stimuli show a freezing-like reaction in which they are more 



immobile (Mouras).  
 
Emotion regulation. Arousal levels should influence the ability to alter 
behavioral responses (Hull). 
 
Appraisal theory. Stimuli that are relevant for individuals’ goals, needs 
and values induce strong arousal and amygdala activity (Montagrin & 
Sander) 

Factors that should 
be addressed 

Commentators pointed out that GANE needs further development to 
specify timing (Talmi & Barnacle; Navarra & Waterhouse; Warren, 
Murphy, & Nieuwenhuis), address different effects in prefrontal cortex 
(Abdallah et al.), role of context and individual differences in 
determining salience (Huntsinger & Storbeck), the role of alpha-1 
receptors (Navarra & Waterhouse). and again the role of timing in beat-
to-beat the functional effects LC firing modulation and cortical activity 
modulation (Critchley). 

Alternatives to GANE Priority is coded by phasic NE release and so there is no need for 
glutamate to signal priority (Strange & Galarza-Vallejo; see response in 
section 4.1) 
 
The amygdala is necessary for NE to enhance selective processing and 
memory consolidation of arousing stimuli (Roozendaal, Luyten, de Voogd, 
& Hermans; see response in section 4.2) 
 
The tag-and-capture model is better able than GANE hotspot 
mechanisms to explain the effects of arousal on memories for events that 
happened minutes to hours before the arousing event (Ritchey, Murty, & 
Dunsmoor; see response in section 5). 
 
Countering the target article’s argument that a ‘network reset’ model 
could not account for enhanced memory for well-attended items seen 
before an arousing event, Bouret argued that such enhanced memories 
could be accounted for by network reset if the qualitative nature of the 
representation changed (see discussion in section 6).  

 



Table 2. Data needed to test hypotheses and better understand arousal-priority or NE-glutamate 
interactions. 
Can we measure GANE-
proposed neurotransmitter 
mechanisms in laboratory 
animals?  

Direct measurements of local glutamate levels and NE or beta 
adrenergic receptor activation levels in awake cortex with 
arousal/cue manipulations would make it possible to test our 
physiological GANE model. New techniques make it possible 
to track extra-synaptic glutamate activity (Okubo et al., 2010) 
and researchers are getting closer to being able to monitor 
levels of NE and G-couple protein receptor activation at 
spatial resolutions corresponding to a representational 
network (Muller, Joseph, Slesinger, & Kleinfeld, 2014). 

Does NE interact with 
apical amplification priority 
signaling? 

The Larkum and Phillips hypothesis that NE modulates apical 
amplification in the output neurons of cortex as the mediator 
of top down or cortico-cortical priority signals can be 
examined both in vitro and in vivo. Evidence for such gating 
would significantly expand the GANE model. 

Is ‘network reset’ a general 
motor-sensory or a 
structure-specific effect? 

Immediate early genes with the ability to reveal two brain 
activation sequences separated by a temporal interval could 
test the reset (reorganizing) versus amplification effects of 
phasic LC activation. We predict evoked sensory 
representations would be enhanced and stabilized by phasic 
glutamatergic activation of LC while hippocampal and 
possible prefrontal representations would be reconfigured. 
Tonic effects of NE would not evoke reset. 

How close in time does 
phasic arousal need to be 
in order to modulate the 
priority of another event?  

Initial behavioral data suggest that arousal induced by one 
event can modulate processing of other events occurring 
within a few seconds (see target article for review). Previous 
work indicates glutamate activation of NMDA receptors has 
slow decay that can last hundreds of milliseconds (Lester, 
Clements, Westbrook, & Jahr, 1990), but more work is 
needed to quantify the timing of glutamate and NE actions at 
hotspots (allowing for formal modeling, as highlighted by 
Warren et al. in their commentary).  

Can we measure GANE-
proposed neurotransmitter 
mechanisms in humans?  

Advances in human magnetic resonance spectroscopy (MRS) 
enable the measurement of glutamate metabolites in vivo, but 
with poor spatial and temporal resolution. One straightforward 
test of GANE would be to examine whether an arousing 
stimulus can elicit a local, activity-dependent increase in 
glutamate levels for a prioritized stimulus.  

Test of NE hotspots in 
humans 

During task-related fMRI involving an arousal x priority 
manipulation, trial-by-trial estimates of pupil dilation to the 
arousing stimulus could be used to scale BOLD responses in 
cortical representational regions underlying the high priority 
stimulus. Thus, this would provide an estimate of how LC 
responses selectively modulate local cortical activity. 

Test Roozendaal et al.’s 
argument that NE effects 
on memory rely on the 
amygdala. 

The fact that the hippocampus has many NE receptors 
suggests that NE can modulate memory consolidation in the 
hippocampus directly, without amygdala modulation (while NE 
release in the amygdala can lead to glutamatergic activation 
of hippocampus, it does not directly increase NE in the 



hippocampus; see Figure 2). A simple experiment would be to 
attempt to modulate consolidation of a hippocampally 
represented memory such as learning the context of a novel 
object by infusing NE into the hippocampus (as has been 
done with NE infused into the amygdala Barsegyan, 
McGaugh, & Roozendaal, 2014) 

The inverted U curve A direct examination of inverted U curve effects with 
norepinephrine would be of interest. It is not clear if the 
functional shift seen at high levels of arousal is uniquely, or 
even critically, due to high NE levels or is a multifactorial 
effect depending on co-activation of other systems. 

 
 



References 
 

Albrecht, S., & Carbon, C.-C. (2014). The Fluency Amplification Model: Fluent stimuli show more 
intense but not evidently more positive evaluations. Acta Psychologica, 148, 195-203.  

Anderson, A. K., Christoff, K., Panitz, D., De Rosa, E., & Gabrieli, J. D. (2003). Neural correlates 
of the automatic processing of threat facial signals. The Journal of Neuroscience, 23(13), 
5627-5633.  

Anderson, A. K., Wais, P. E., & Gabrieli, J. D. E. (2006). Emotion enhances remembrance of 
neutral events past. Proceedings of the National Academy of Sciences of the United 
States of America, 103(5), 1599-1604. doi: 10.1073/pnas.0506308103 

Arnsten, A. F., Raskind, M. A., Taylor, F. B., & Connor, D. F. (2015). The effects of stress 
exposure on prefrontal cortex: translating basic research into successful treatments for 
post-traumatic stress disorder. Neurobiology of stress, 1, 89-99.  

Arnsten, A. F., Wang, M. J., & Paspalas, C. D. (2012). Neuromodulation of thought: flexibilities 
and vulnerabilities in prefrontal cortical network synapses. Neuron, 76(1), 223-239.  

Arnsten, A. F. T. (2011). Catecholamine influences on dorsolateral prefrontal cortical networks. 
Biological Psychiatry, 69(12), e89-e99. doi: 
http://www.sciencedirect.com/science/article/pii/S0006322311001193  

Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine 
function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 
403-450.  

Bach, D. R., Talmi, D., Hurlemann, R., Patin, A., & Dolan, R. J. (2011). Automatic relevance 
detection in the absence of a functional amygdala. Neuropsychologia, 49(5), 1302-1305.  

Baeyens, F., Field, A. P., & Houwer, J. D. (2005). Associative learning of likes and dislikes: Some 
current controversies and possible ways forward. Cognition & Emotion, 19(2), 161-174.  

Ballarini, F., Moncada, D., Martinez, M. C., Alen, N., & Viola, H. (2009). Behavioral tagging is a 
general mechanism of long-term memory formation. Proceedings of the National 
Academy of Sciences, 106(34), 14599-14604.  

Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews 
Neuroscience.  

Barsegyan, A., McGaugh, J. L., & Roozendaal, B. (2014). Noradrenergic activation of the 
basolateral amygdala modulates the consolidation of object-in-context recognition 
memory. Frontiers in Behavioral Neuroscience, 8.  

Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the 
human amygdala and ventromedial prefrontal cortex to decision-making. Journal of 
Neuroscience, 19(13), 5473-5481.  

Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). 
Double dissociation of conditioning and declarative knowledge relative to the amygdala 
and hippocampus in humans. Science, 269(5227), 1115-1118.  

Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: 
modulation of behavioral state and state-dependent cognitive processes. Brain Research 
Reviews, 42(1), 33-84. doi: 10.1016/s0165-0173(03)00143-7 

Bouret, S., & Sara, S. J. (2005). Network reset: a simplified overarching theory of locus coeruleus 
noradrenaline function. Trends in Neurosciences, 28(11), 574-582. doi: 
http://dx.doi.org/10.1016/j.tins.2005.09.002 

Bradley, M. M., Costa, V. D., & Lang, P. J. (2015). Selective looking at natural scenes: Hedonic 
content and gender. International Journal of Psychophysiology, 98(1), 54-58.  

Bradley, M. M., Miccoli, L., Escrig, M. A., & Lang, P. J. (2008). The pupil as a measure of 
emotional arousal and autonomic activation. Psychophysiology, 45(4), 602-607. doi: 
10.1111/j.1469-8986.2008.00654.x 

Braem, S., Coenen, E., Bombeke, K., van Bochove, M. E., & Notebaert, W. (2015). Open your 
eyes for prediction errors. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 374-
380.  

Brown, R. A. M., Walling, S. G., Milway, J. S., & Harley, C. W. (2005). Locus ceruleus activation 
suppresses feedforward interneurons and reduces beta-gamma electroencephalogram 



frequencies while it enhances theta frequencies in rat dentate gyrus. Journal of 
Neuroscience, 25(8), 1985-1991. doi: 10.1053/jneurosci.4307-04-2005 

Carter, M. E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K., 
& de Lecea, L. (2010). Tuning arousal with optogenetic modulation of locus coeruleus 
neurons. Nature Neuroscience, 13(12), 1526-U1117. doi: 10.1038/nn.2682 

Cedarbaum, J. M., & Aghajanian, G. K. (1978). Afferent projections to the rat locus coeruleus as 
determined by a retrograde tracing technique. Journal of Comparative Neurology, 178(1), 
1-15.  

Devilbiss, D. M., & Waterhouse, B. D. (2000). Norepinephrine exhibits two distinct profiles of 
action on sensory cortical neuron responses to excitatory synaptic stimuli. Synapse, 
37(4), 273-282.  

Ding, F., O’Donnell, J., Thrane, A. S., Zeppenfeld, D., Kang, H., Xie, L., Wang, F., & Nedergaard, 
M. (2013). α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical 
astrocytes in awake, behaving mice. Cell Calcium, 54(6), 387-394. doi: 
http://dx.doi.org.idpproxy.reading.ac.uk/10.1016/j.ceca.2013.09.001 

Dunsmoor, J. E., Murty, V. P., Davachi, L., & Phelps, E. A. (2015). Emotional learning selectively 
and retroactively strengthens memories for related events. Nature.  

Dutton, D. G., & Aron, A. P. (1974). Some evidence for heightened sexual attraction under 
conditions of high anxiety. Journal of Personality and Social Psychology, 30(4), 510.  

Edmiston, E. K., McHugo, M., Dukic, M. S., Smith, S. D., Abou-Khalil, B., Eggers, E., & Zald, D. 
H. (2013). Enhanced visual cortical activation for emotional stimuli is preserved in 
patients with unilateral amygdala resection. The Journal of Neuroscience, 33(27), 11023-
11031.  

Elam, M., Thorén, P., & Svensson, T. H. (1986). Locus coeruleus neurons and sympathetic 
nerves: activation by visceral afferents. Brain Research, 375(1), 117-125.  

Elam, M., Yoa, T., Svensson, T., & Thoren, P. (1984). Regulation of locus coeruleus neurons and 
splanchnic, sympathetic nerves by cardiovascular afferents. Brain Research, 290(2), 281-
287.  

Feinstein, J. S., Adolphs, R., Damasio, A., & Tranel, D. (2011). The human amygdala and the 
induction and experience of fear. Current Biology, 21(1), 34-38.  

Feinstein, J. S., Buzza, C., Hurlemann, R., Follmer, R. L., Dahdaleh, N. S., Coryell, W. H., Welsh, 
M. J., Tranel, D., & Wemmie, J. A. (2013). Fear and panic in humans with bilateral 
amygdala damage. Nature Neuroscience, 16(3), 270-272.  

Garfinkel, S. N., Barrett, A. B., Minati, L., Dolan, R. J., Seth, A. K., & Critchley, H. D. (2013). What 
the heart forgets: Cardiac timing influences memory for words and is modulated by 
metacognition and interoceptive sensitivity. Psychophysiology, 50(6), 505-512. doi: 
10.1111/psyp.12039 

Garfinkel, S. N., Minati, L., Gray, M. A., Seth, A. K., Dolan, R. J., & Critchley, H. D. (2014). Fear 
from the heart: sensitivity to fear stimuli depends on individual heartbeats. The Journal of 
Neuroscience, 34(19), 6573-6582.  

Gaucher, Q., & Edeline, J. M. (2015). Stimulus-specific effects of noradrenaline in auditory cortex: 
implications for the discrimination of communication sounds. The Journal of Physiology, 
593(4), 1003-1020.  

Gray, J., & Ball, G. (1970). Frequency-specific relation between hippocampal theta rhythm, 
behavior, and amobarbital action. Science, 168(3936), 1246-1248.  

Gray, J., McNaughton, N., James, D., & Kelly, P. (1975). Effect of minor tranquillisers on 
hippocampal θ rhythm mimicked by depletion of forebrain noradrenaline.  

Grühn, D., & Scheibe, S. (2008). Age-related differences in valence and arousal ratings of 
pictures from the International Affective Picture System (IAPS): Do ratings become more 
extreme with age? Behavior Research Methods, 40(2), 512-521.  

Hurlemann, R. (2008). Noradrenergic–glucocorticoid mechanisms in emotion-induced amnesia: 
from adaptation to disease. Psychopharmacology, 197(1), 13-23.  

Ishigaki, H., Miyao, M., & Ishihara, S. y. (1991). Change of pupil size as a function of exercise. 
Journal of Human Ergology, 20(1), 61-66.  



Joëls, M., Fernandez, G., & Roozendaal, B. (2011). Stress and emotional memory: a matter of 
timing. Trends in Cognitive Sciences, 15(6), 280-288.  

Kensinger, E. A. (2008). Age differences in memory for arousing and nonarousing emotional 
words. Journal of Gerontology: Psychological Sciences, 63, P13-P18.  

Klumpers, F., Morgan, B., Terburg, D., Stein, D. J., & van Honk, J. (2014). Impaired acquisition of 
classically conditioned fear-potentiated startle reflexes in humans with focal bilateral 
basolateral amygdala damage. Social Cognitive and Affective Neuroscience, nsu164.  

Knight, M., & Mather, M. (2009). Reconciling findings of emotion-induced memory enhancement 
and impairment of preceding items. Emotion, 9(6), 763-781. doi: 10.1037/a0017281 

Knight, M., Seymour, T. L., Gaunt, J. T., Baker, C., Nesmith, K., & Mather, M. (2007). Aging and 
goal-directed emotional attention: Distraction reverses emotional biases. Emotion, 7(4), 
705-714. doi: 10.1037/1528-3542.7.4.705 

Koss, M. C., Gherezghiher, T., & Nomura, A. (1984). CNS adrenergic inhibition of 
parasympathetic oculomotor tone. Journal of the Autonomic Nervous System, 10(1), 55-
68.  

Krauseneck, T., Padberg, F., Roozendaal, B., Grathwohl, M., Weis, F., Hauer, D., Kaufmann, I., 
Schmoeckel, M., & Schelling, G. (2010). A β-adrenergic antagonist reduces traumatic 
memories and PTSD symptoms in female but not in male patients after cardiac surgery. 
Psychological Medicine, 40(05), 861-869.  

Krugers, H. J., Karst, H., & Joels, M. (2012). Interactions between noradrenaline and 
corticosteroids in the brain: from electrical activity to cognitive performance. Frontiers in 
cellular neuroscience, 6.  

Kuhbandner, C., & Zehetleitner, M. (2011). Dissociable effects of valence and arousal in adaptive 
executive control.  

Kukolja, J., Klingmüller, D., Maier, W., Fink, G., & Hurlemann, R. (2011). Noradrenergic-
glucocorticoid modulation of emotional memory encoding in the human hippocampus. 
Psychological Medicine, 41(10), 2167-2176.  

Kukolja, J., Schlapfer, T. E., Keysers, C., Klingmuller, D., Maier, W., Fink, G. R., & Hurlemann, R. 
(2008). Modeling a Negative Response Bias in the Human Amygdala by Noradrenergic-
Glucocorticoid Interactions. Journal of Neuroscience, 28(48), 12868-12876. doi: 
10.1523/jneurosci.3592-08.2008 

Leclerc, C. M., & Kensinger, E. A. (2008). Effects of age on detection of emotional information. 
Psychology and Aging, 23(1), 209-215.  

Lee, T. H., Greening, S. G., & Mather, M. (2015). Encoding on goal-relevant stimuli is 
strengthened by emotional stimuli in memory. Frontiers in psychology, 6:1173.  

Lee, T. H., Sakaki, M., Cheng, R., Velasco, R., & Mather, M. (2014). Emotional arousal amplifies 
the effects of biased competition in the brain. Social Cognitive and Affective 
Neuroscience, 9(12), 2067-2077.  

Lester, R. A., Clements, J. D., Westbrook, G. L., & Jahr, C. E. (1990). Channel kinetics determine 
the time course of NM DA receptor-mediated synaptic currents. Nature, 346, 565.  

Lindgren, M. E., Fagundes, C. P., Alfano, C. M., Povoski, S. P., Agnese, D. M., Arnold, M. W., 
Farrar, W. B., Yee, L. D., Carson, W. E., & Schmidt, C. R. (2013). Beta-blockers may 
reduce intrusive thoughts in newly diagnosed cancer patients. Psycho-Oncology, 22(8), 
1889-1894.  

Lovitz, E., & Thompson, L. (2015). Memory-enhancing intra-basolateral amygdala clenbuterol 
infusion reduces post-burst afterhyperpolarizations in hippocampal CA1 pyramidal 
neurons following inhibitory avoidance learning. Neurobiology of Learning and Memory, 
119, 34-41.  

Maity, S., Jarome, T. J., Blair, J., Lubin, F. D., & Nguyen, P. V. (2015). Norepinephrine goes 
nuclear: Epigenetic modifications during long-lasting synaptic potentiation triggered by 
activation of beta-adrenergic receptors. The Journal of Physiology.  

Mather, M., & Knight, M. (2008). The emotional harbinger effect: Poor context memory for cues 
that previously predicted something arousing. Emotion, 8(850-860), 850-860.  



Mather, M., & Knight, M. R. (2006). Angry faces get noticed quickly: Threat detection is not 
impaired among older adults. Journals of Gerontology Series B: Psychological Sciences 
and Social Sciences, 61, P54-P57.  

McIntyre, C. K., Miyashita, T., Setlow, B., Marjon, K. D., Steward, O., Guzowski, J. F., & 
McGaugh, J. L. (2005). Memory-influencing intra-basolateral amygdala drug infusions 
modulate expression of Arc protein in the hippocampus. Proceedings of the National 
Academy of Sciences of the United States of America, 102(30), 10718-10723.  

McReynolds, J. R., Anderson, K. M., Donowho, K. M., & McIntyre, C. K. (2014). Noradrenergic 
actions in the basolateral complex of the amygdala modulate Arc expression in 
hippocampal synapses and consolidation of aversive and non-aversive memory. 
Neurobiology of Learning and Memory, 115, 49-57. doi: 
http://dx.doi.org/10.1016/j.nlm.2014.08.016 

Moghaddam, B., Bolinao, M. L., Stein-Behrens, B., & Sapolsky, R. (1994). Glucocortcoids 
mediate the stress-induced extracellular accumulation of glutamate. Brain Research, 
655(1), 251-254.  

Moncada, D., Ballarini, F., Martinez, M. C., Frey, J. U., & Viola, H. (2011). Identification of 
transmitter systems and learning tag molecules involved in behavioral tagging during 
memory formation. Proceedings of the National Academy of Sciences of the United 
States of America, 108(31), 12931-12936. doi: 10.1073/pnas.1104495108 

Montagrin, A., Brosch, T., & Sander, D. (2013). Goal conduciveness as a key determinant of 
memory facilitation. Emotion, 13(4), 622.  

Morilak, D. A., Fornal, C., & Jacobs, B. L. (1986). Single unit activity of noradrenergic neurons in 
locus coeruleus and serotonergic neurons in the nucleus raphe dorsalis of freely moving 
cats in relation to the cardiac cycle. Brain Research, 399(2), 262-270.  

Morimoto, M., Morita, N., Ozawa, H., Yokoyama, K., & Kawata, M. (1996). Distribution of 
glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an 
immunohistochemical and in situ hybridization study. Neuroscience Research, 26(3), 
235-269.  

Muller, A., Joseph, V., Slesinger, P. A., & Kleinfeld, D. (2014). Cell-based reporters reveal in vivo 
dynamics of dopamine and norepinephrine release in murine cortex. nAture methods, 
11(12), 1245-1252.  

Nielsen, S. E., Barber, S. J., Chai, A., Clewett, D. V., & Mather, M. (2015). Sympathetic arousal 
increases a negative memory bias in young women with low sex hormone levels. 
Psychoneuroendocrinology, 62, 96-106.  

Nielsen, S. E., Chai, A., & Mather, M. (in preparation). Sympathetic arousal enhances memory for 
negative stimuli in older women not taking hormone replacement therapy.  

Nielsen, S. E., & Mather, M. (2015). Comparison of two isometric handgrip protocols on 
sympathetic arousal in women. Physiology and Behavior, 142, 5-13.  

Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus 
coeruleus--norepinephrine system. Psychological Bulletin, 131(4), 510.  

O'Dell, T. J., Connor, S. A., Gelinas, J. N., & Nguyen, P. V. (2010). Viagra for your synapses: 
Enhancement of hippocampal long-term potentiation by activation of beta-adrenergic 
receptors. Cellular Signalling, 22(5), 728-736. doi: 10.1016/j.cellsig.2009.12.004 

Okubo, Y., Sekiya, H., Namiki, S., Sakamoto, H., Iinuma, S., Yamasaki, M., Watanabe, M., 
Hirose, K., & Iino, M. (2010). Imaging extrasynaptic glutamate dynamics in the brain. 
Proceedings of the National Academy of Sciences, 107(14), 6526-6531.  

Pfaff, D. W. (2006). Brain arousal and information theory: Harvard University Press. 
Phillips, W. A. (2015). Cognitive functions of intracellular mechanisms for contextual amplification. 

Brain and Cognition. doi: http://dx.doi.org/10.1016/j.bandc.2015.09.005 
Piech, R. M., McHugo, M., Smith, S. D., Dukic, M. S., Van Der Meer, J., Abou-Khalil, B., Most, S. 

B., & Zald, D. H. (2011). Attentional capture by emotional stimuli is preserved in patients 
with amygdala lesions. Neuropsychologia, 49(12), 3314-3319.  

Piech, R. M., McHugo, M., Smith, S. D., Dukic, M. S., Van Der Meer, J., Abou-Khalil, B., & Zald, 
D. H. (2010). Fear-enhanced visual search persists after amygdala lesions. 
Neuropsychologia, 48(12), 3430-3435.  



Ponzio, A., & Mather, M. (2014). Hearing something emotional affects memory for what was just 
seen: How arousal amplifies trade-off effects in memory consolidation. Emotion, 14, 
1137-1142.  

Pool, E., Brosch, T., Delplanque, S., & Sander, D. (2015). Attentional Bias for Positive Emotional 
Stimuli: A Meta-Analytic Investigation. Psychological Bulletin.  

Popoli, M., Yan, Z., McEwen, B. S., & Sanacora, G. (2012). The stressed synapse: the impact of 
stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience, 
13(1), 22-37.  

Preuschoff, K., Marius’t Hart, B., & Einhäuser, W. (2011). Pupil dilation signals surprise: evidence 
for noradrenaline’s role in decision making. Frontiers in Neuroscience, 5.  

Ramos, B. P., & Arnsten, A. F. T. (2007). Adrenergic pharmacology and cognition: Focus on the 
prefrontal cortex. Pharmacology and Therapeutics, 113(3), 523-536. doi: 
http://dx.doi.org.idpproxy.reading.ac.uk/10.1016/j.pharmthera.2006.11.006 

Redondo, R. L., & Morris, R. G. (2011). Making memories last: the synaptic tagging and capture 
hypothesis. Nature Reviews Neuroscience, 12(1), 17-30.  

Rei, D., Mason, X., Seo, J., Gräff, J., Rudenko, A., Wang, J., Rueda, R., Siegert, S., Cho, S., 
Canter, R. G., Mungenast, A. E., Deisseroth, K., & Tsai, L.-H. (2015). Basolateral 
amygdala bidirectionally modulates stress-induced hippocampal learning and memory 
deficits through a p25/Cdk5-dependent pathway. Proceedings of the National Academy 
of Sciences, 112(23), 7291-7296. doi: 10.1073/pnas.1415845112 

Reznikov, L. R., Grillo, C. A., Piroli, G. G., Pasumarthi, R. K., Reagan, L. P., & Fadel, J. (2007). 
Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: 
differential effects of antidepressant treatment. European Journal of Neuroscience, 
25(10), 3109-3114.  

Sakaki, M., Fryer, K., & Mather, M. (2014). Emotion strengthens high priority memory traces but 
weakens low priority memory traces. Psychological Science, 25(387-395).  

Sakaki, M., Ycaza-Herrera, A. E., & Mather, M. (2014). Association learning for emotional 
harbinger cues: when do previous emotional associations impair and when do they 
facilitate subsequent learning of new associations? Emotion, 14(1), 115.  

Sandi, C. (2011). Glucocorticoids act on glutamatergic pathways to affect memory processes. 
Trends in Neurosciences, 34(4), 165-176.  

Sara, S. J. (2015). Locus Coeruleus in time with the making of memories. Current Opinion in 
Neurobiology, 35, 87-94.  

Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates 
cognition through arousal. Neuron, 76(1), 130-141. doi: 10.1016/j.neuron.2012.09.011 

Sara, S. J., & Segal, M. (1991). Plasticity of sensory responses of locus coeruleus neurons in the 
behaving rat: implications for cognition. Progress in Brain Research, 88, 571-585.  

Schwabe, L., Tegenthoff, M., Höffken, O., & Wolf, O. T. (2012). Simultaneous glucocorticoid and 
noradrenergic activity disrupts the neural basis of goal-directed action in the human brain. 
The Journal of Neuroscience, 32(30), 10146-10155.  

Shakhawat, A. M., Gheidi, A., MacIntyre, I. T., Walsh, M. L., Harley, C. W., & Yuan, Q. (2015). 
Arc-expressing neuronal ensembles supporting pattern separation require adrenergic 
activity in anterior piriform cortex: An exploration of neural constraints on learning. The 
Journal of Neuroscience, 35(41), 14070-14075.  

Stein, M. B., Kerridge, C., Dimsdale, J. E., & Hoyt, D. B. (2007). Pharmacotherapy to prevent 
PTSD: Results from a randomized controlled proof-of-concept trial in physically injured 
patients. Journal of Traumatic Stress, 20(6), 923-932.  

Sutherland, M. R., Lee, T. H., & Mather, M. (in preparation). Arousal impairs top-down 
prioritization in selective attention.  

Sutherland, M. R., & Mather, M. (2012). Negative arousal amplifies the effects of saliency in 
short-term memory. Emotion, 12, 1367-1372. doi: 10.1037/a0027860 

Tranel, D., & Damasio, H. (1989). Intact electrodermal skin conductance responses after bilateral 
amygdala damage. Neuropsychologia, 27(4), 381-390. doi: 
http://dx.doi.org/10.1016/0028-3932(89)90046-8 



Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of 
fearful faces in the absence of the amygdala. Nature Neuroscience, 12(10), 1224-1225.  

Ullsperger, M., Harsay, H., Wessel, J., & Ridderinkhof, K. R. (2010). Conscious perception of 
errors and its relation to the anterior insula. Brain Structure and Function, 214(5-6), 629-
643. doi: 10.1007/s00429-010-0261-1 

Venkatesan, C., Song, X. Z., Go, C. G., Kurose, H., & Aoki, C. (1996). Cellular and subcellular 
distribution of α2A-adrenergic receptors in the visual cortex of neonatal and adult rats. 
Journal of Comparative Neurology, 365(1), 79-95.  

Vogel, B. O., Shen, C., & Neuhaus, A. H. (2015). Emotional context facilitates cortical prediction 
error responses. Human Brain Mapping, 36(9), 3641-3652.  

Walling, S. G., Brown, R. A. M., Milway, J. S., Earle, A. G., & Harley, C. W. (2011). Selective 
tuning of hippocampal oscillations by phasic locus coeruleus activation in awake male 
rats. Hippocampus, 21(11), 1250-1262. doi: 10.1002/hipo.20816 

Wilhelm, H. (2008). The pupil. Current Opinion in Neurology, 21(1), 36-42.  
Winkielman, P., & Cacioppo, J. T. (2001). Mind at ease puts a smile on the face: 

psychophysiological evidence that processing facilitation elicits positive affect. Journal of 
Personality and Social Psychology, 81(6), 989.  

Yoss, R. E., Moyer, N. J., & Hollenhorst, R. W. (1970). Pupil size and spontaneous pupillary 
waves associated with alertness, drowsiness, and sleep. Neurology, 20(6), 545-545.  

Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681-
692.  

 


