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Highlights: 

 

• The personal thermal sensation modelling can be regarded as a 

classification problem. 

• C-Support Vector Classification algorithm can model personal thermal 

sensation. 

• Accurate rate of the prediction model is above 89% against the 

measured data. 

• The C-SVC method can be used for personalised system controls. 

 

Abstract 

The personalised conditioning system (PCS) is widely studied. Potentially, it is able to 

reduce energy consumption while securing occupants’ thermal comfort requirements. 

It has been suggested that automatic optimised operation schemes for PCS should be 

introduced to avoid energy wastage and discomfort caused by inappropriate operation. 

In certain automatic operation schemes, personalised thermal sensation models are 

applied as key components to help in setting targets for PCS operation. In this research, 

a novel personal thermal sensation modelling method based on the C-Support Vector 
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Classification (C-SVC) algorithm has been developed for PCS control. The personal 

thermal sensation modelling has been regarded as a classification problem. During the 

modelling process, the method ‘learns’ an occupant’s thermal preferences from his/her 

feedback, environmental parameters and personal physiological and behavioural 

factors. The modelling method has been verified by comparing the actual thermal 

sensation vote (TSV) with the modelled one based on 20 individual cases. Furthermore, 

the accuracy of each individual thermal sensation model has been compared with the 

outcomes of the PMV model. The results indicate that the modelling method presented 

in this paper is an effective tool to model personal thermal sensations and could be 

integrated within the PCS for optimised system operation and control.  

Key Words 

Personalised Conditioning System (PCS); Personal Thermal Sensation; Modelling 

Method; C-Support Vector Classification;   

 

 

List of Symbols 

𝑻𝒂   Air Temperature 

𝑻𝒓
̅̅ ̅   Mean Radiant Temperature 
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𝑻𝒈   Globe Temperature 

𝑹𝑯  Relative Humidity  

𝑴𝑬𝑻  Metabolic Rate   

𝑪𝒍𝒐  Clothing Insulation level 

 

 

1. Introductions 

 

The type of ‘personalised conditioning system’ (PCS) or ‘personal environment control’ 

(PEC) is a type of energy system that controls a small area of the environment 

surrounding an end user [1, 2]. This type of system has been regarded as a solution to 

achieve energy efficiency whilst satisfying an individual’s thermal comfort 

requirements because such a system has flexibilities for occupants to moderate their 

surrounding microenvironment based on their individual demands [1-6].  Vesely and 

Zeiler [1] conducted a review to investigate the energy efficiency of the PCS and 

revealed that energy consumption can be saved subject to the optimal operation, and 

inappropriate operation could lead to ‘rebound’ or ‘overshoot’ in system usage causing 

energy wastage and thermal discomfort. Furthermore, frequent adjusting of the system 
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manually could disturb workers’ productivity. Therefore, optimal control models for 

PCS operations based on a better understanding of personal thermal comfort demands 

are desired. It has been suggested that applying thermal sensation models to accurately 

predict individuals’ thermal sensation demands is an effective solution to achieve 

optimal control in certain types of PCS which aim to change the thermal environment 

around an end user in general [7]. Therefore, novel personal thermal sensation models 

based on the Support Vector Machine (SVM) algorithm are proposed in this research.   

Firstly, this paper briefly reviews the existing research in developing personal thermal 

sensation models and demonstrates that the thermal sensation modelling problem can 

be regarded as a classification problem. The SVM algorithm is a justified solution to 

the classification problem. The paper then introduces the procedures for training and 

testing of the personal thermal sensation models using experimental data. The 

performance of each generated individual personal thermal sensation model is also 

compared with the Predicted Mean Vote (PMV) index. Finally, a PCS system structure 

with a C-SVC-aided personal thermal sensation modelling method is presented.  

 

2. Related Work 

The thermal sensation prediction is essential to indoor thermal environment design, 

operation and assessment. Methods of prediction have been widely adopted by design 

standards and guides. For example, the widely applied PMV-PPD index has been 

adopted by the ASHREA 55 and ISO 7730 standards [9, 10]; the adaptive model using 

running mean temperature in the EN15251 standard [11] and the aPMV model 

integrated in the ‘Chinese Evaluation standard for the indoor thermal environment in 

civil buildings’[12]. However, it is criticized that the thermal sensation prediction 

recommended by the international standards are not suitable to be directly applied as 

individual thermal comfort predictors in many conditions [7, 13]. It is argued that these 

models recommended by the standards are developed for the estimation of the average 

thermal sensation of a large number of people under certain conditions, which may not 

be suitable for the situation when significant individual differences of thermal comfort 

preferences exist [14]. Recently, developing personal thermal sensation modelling has 

attracted many researchers’ interests. Table 1 lists the most current published papers on 

the topic and their main characteristics. 

 

Table 1 Properties of existing thermal sensation models  
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Paper Name Modelling 

methods 

Is the model 

accuracy 

testing 

presented in 

the paper? 

Are the inputs of 

the personal 

thermal sensation 

models involved 

all  ;  ;

and factors ?  

Are outputs of the 

model directly 

compared with the 

real collected TSVs 

with ASHRAE 7 

scales? 

 

[14] Neural 

Network 

Evaluation 

Model 

(NNEM) 

Back 

Propagation 

Neural 

Network 

Yes Yes No 

[8] N/A Fisher 

Discriminant 

No No No 

[15] N/A Support 

Vector 

Regression 

Yes No Yes 

[7] Predicted 

Personal 

Vote Model  

(PPV 

Model) 

Least Square 

Regression 

Yes Yes Yes 

[13] Personalised 

Dynamic 

Thermal 

Comfort  

(PDTC) 

Model 

Weighted 

Least Square 

Estimation 

Yes Yes Yes 

 

 

From Table 1 it can be seen that Back Propagation neural network technology has been 

applied to build a personal thermal sensation model, which categorised the personal 

thermal sensations into three conditions: hot, neutral, and cold [14]. Comparing to the 

ASHRAE 7-scale sensations, this model outputs the thermal sensations in less detail. 

Feldmeier and Paradiso [8] developed a model that applied the Fisher Discriminant 

method to separate different levels of thermal sensation. It can be found that the 

different levels of thermal sensations are separated by linear decision boundaries in this 

research. Gao and Keshav [7] developed a predicted personal vote (PPV) model. 

However, the effectiveness of the modelling method may need further investigation, as 

in the presented work the evaluation process is only expressed by one case study with 

12 training samples and 8 testing samples. Zhao, et al. [13] introduced a Personalised 

Dynamic Thermal Comfort (PDTC) model, which is similar to the PPV model. It also 
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applied a regression method to estimate the personal coefficients of the model function.  

The support vector machine (SVM) algorithm has been utilised in the thermal comfort 

research area. Megri, et al. [16] applied the support vector regression (SVR) to develop 

the thermal sensation model. It is claimed that their research showed the potential of 

using the SVM to generate the thermal index of a particular small group of people. Rana, 

et al. [15] applied the similar 𝜖 -SVM regression method to generate the personal 

thermal sensation model and verify the feasibility of using ‘humidex’ as a predictor. 

The inputs of the personal model developed in this research only include temperature 

and humidity, or ‘humidex’ which is calculated from temperature and humidity. Megri 

and Rana both applied the SVM algorithm as a regression tool in their research.  

Comparing all the research mentioned in this section, a research question has been 

raised as to whether an SVM-based personal thermal comfort model has better 

performance when it takes into account a complete set of environmental factors that 

affect thermal sensation including temperature, humidity, air velocity and mean radiant 

temperature. In this research, a modelling method aided by C-support Vector 

Classification (C-SVC) [17] is proposed for generating personal thermal sensation 

models. Being different to the existing thermal comfort modelling methods, this new 

study attempts to solve the personal thermal sensation modelling using an algorithm 

that particularly deals with classification problems. Comprehensive boundary decision-

making methods are used here rather than directly applying linear boundaries in all 

cases. The input parameters of the model include the well-accepted key factors of the 

ambient thermal environment affecting thermal feelings, which include air temperature, 

mean radiant temperature, air velocity, relative humidity, clothing insulation level and 

activity level [18, 19]. The outputs of the generated models are expected to closely 

match the value of the personal thermal sensation vote, which accord with the ASHRAE 

seven-scale thermal comfort scheme. The format of the original thermal sensation data 

from the questionnaire survey has been retained. A strict evaluation rule is applied: a 

success prediction will only be declared if the prediction value is exactly the same as 

the collected true value.     

 

3 The Modelling Method and Algorithm 

3.1 Regarding the Personal Thermal Sensation Modelling as a Classification 

Problem 

From the machine-learning perspective, supervised learning means developing 
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functions from input and output pairs that map the input vectors with the output vectors 

[20, 21]. In this research, the input vectors of the thermal comfort model are the 

environmental parameters and personal factors, while the outputs are thermal 

sensations. The personal thermal sensation model functions to ‘map’ the particular 

thermal conditions with an individual’s thermal sensation. In this case, the personal 

thermal sensation modelling issue can be regarded as a supervised learning problem. In 

the supervised learning area, learning problems have two subcategories: classification 

and regression. ‘Classification is the process of finding a model (or function) that 

describes and distinguishes data classes or concepts’ [22].  If the model’s output is ‘one 

of the finite set of values (such as sunny, cloudy or rainy), the learning problem is called 

classification’ [21]. In other words, the property of the model’s outputs decides whether 

the problem is a classification problem. In previous research, the occupants’ thermal 

feelings were collected in the form of the thermal sensation votes (TSV) based on the 

ASHRAE thermal comfort seven-scale scheme, i.e. cold (-3), cool (-2), slightly cool (-

1), neutral (0), slightly warm (1), warm (2) and hot (3) [9]. It is logical to maintain the 

model predictions format to remain consistent with the format of the collected real data. 

In this case, the model’s thermal sensation predictions will also be expressed using the 

ASHRAE scale detailed above. These discrete data can be regarded as the label of the 

different thermal sensation levels. Therefore, referring to the definitions from the 

machine learning field, the personal thermal sensation modelling problem can be 

regarded as a classification problem. Consequently, C-support Vector Classification (C-

SVC) is chosen to support the model generation programming, which is a popular tool 

to solve classification problems.  

 

3.2 The Background of the C- SVC Algorithm  

 

SVM is a machine learning algorithm, which was developed into different formulations, 

and has been applied in various domains and regarded as an effective classification tool 

[23] [24-28]. The C-SVC classifier is a separator developed by the C-SVC which is 

able to categorise two types of thermal sensations  [17]. The basic classifier generation 

is illustrated in this section. For machine-learning purposes, the collected data are 

arranged as input and output pairs. Assume the total number of data sets is 𝑁, the input-

output pairs can be expressed as ( �̅�𝑖  , yi); 𝑖 = 1,2, … 𝑁. The input vector �̅�𝑖  contains 

environment parameters and personal factors. The targeted output yi only contains one 
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element which is the thermal sensation of a person in the circumstance, which is defined 

by �̅�𝑖  .  Let yi = 1  represent the thermal sensation class number one and yi = −1 

represent thermal sensation class number two. 

All sets of the input and output pairs are divided into training sets and test sets. Let the 

number of training sets be represented by 𝑀, during the training process, only training 

sets are used. The SVM utilises ‘maximum margin hyperplane’ as the decision 

boundary to separate two different classes when solving classification problems, and it 

is the optimal hyperplane that provides the maximum margin between the two classes 

[29]. The ‘maximum margin hyperplane’ is illustrated in Fig. 1. Note that this figure 

only depicts the situation when two classes are linearly separable. In Fig. 1, nodes 

expressed by the same symbol (star or triangle) belong to the same class. 

The ‘support vectors’ are the vectors closest to the decision hyperplane derived from 

the training set and they define the optimal hyperplane which has the maximum margin 

[29]. In Fig.1, nodes 1, 2 and 3 are selected as support vectors. The equation of the 

optimal hyperplane can be expressed as Equation (1) [21]: 

�̅�𝑇�̅� + 𝑏 = 0                                                             (1) 

�̅�  and 𝑏  are the weight vector and bias respectively, and �̅�  is an input vector. The 

mathematical derivation of the C-SVC problem is briefly demonstrated in Function (2) 

to Function (8). Further details can be found in references [17, 20, 25, 30].  

For all the training sets and the maximum-margin hyperplane, the rule represented in 

Function (2) must be obeyed by: 

yi(�̅�𝑇�̅�𝑖 + 𝑏) ≥ 1                                                   (2) 
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Fig. 1. Support vectors and hyperplane 

It has been proved that finding the maximum margin is equivalent to finding the 

minimum of the output of the Function (3) [30]: 

𝜃(�̅�) =
1

2
�̅�𝑇 ∙ �̅�                     (3) 

Function (3) satisfy the constrain: yi(�̅�𝑇�̅�𝑖 + 𝑏) ≥ 1; i=1,2,…M.  

However, in real-world applications, the training data may be noisy. Furthermore, the 

data from the two classes may not be linearly separated. So the ‘soft margin hyperplane’ 

and the ‘kernel trick’ are introduced into the C-SVC algorithm to realise the classifiers 

in these situations.  First, for the soft margin hyperplane, a parameter 𝜉𝑖  is introduced, 

then the function going to be minimised becomes Function (4) [25, 30]: 

min
�̅�,𝑏,𝝃

1

2
ω̅T ∙ ω̅ + C ∑ ξi

M
i=1      (4)  

The constraint condition of (4) is  yi(�̅�𝑇�̅�𝑖 + 𝑏) ≥ 1 − 𝜉𝑖;  𝜉𝑖 > 0 ; i=1,2,…M, and C 

is a user defined positive figure.  

This research employed the ‘radial-basis function’ (RBF) kernel [20] for the problem 

of linearly inseparable cases. The kernel is used to map the input vectors from the 

original feature space into a higher dimensional space where the cases become linearly 

separable and the RBF can be expressed as Function (5):  

K(u̅i, u̅j) = e
−

1

2δ2‖u̅i−u̅j‖
2

        (5) 

 

The problem of finding the maximum-margin hyperplane becomes solving the 

optimisation problem, which is expressed in Function (4) subject to [27]:   

                    yi(ω̅T∅̅(�̅�𝑖) + 𝑏) ≥ 1 − 𝜉𝑖;               (6) 

                                                        𝜉𝑖 ≥ 0; 𝑖 = 1,2 … . 𝑀                         (7) 

 

∅(�̅�𝑖) is from the kernel function: 

                                      𝐾(�̅�𝑖 , �̅�𝑗) = ∅(�̅�𝑖)𝑇∅(�̅�𝑗)                                   (8) 

The minimisation problem of Function( 4) can be converted into solving the dual 

problem expressed in Function (9) to Function (11)[17] [30]: 

min
𝒍

  
1

2
∑ ∑ 𝑙𝑖

𝑀
𝑗=1 𝑙𝑗𝑦𝑖𝑦𝑗

𝑀
𝑖=1 𝐾(�̅�𝑖, �̅�𝑗) − ∑ 𝑙𝑖

𝑀
𝑖=1                                 (9)                   

subject to:         

                                                                            ∑ 𝑙𝑖
𝑀
𝑖=1 𝑦𝑖 = 0;                        (10) 

                                                               0 ≤ 𝑙𝑖 ≤ 𝐶, 𝑖 = 1,2 … . 𝑀                (11)                          
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By finding the optimum solution of the Function (9) subject to (10) and (11), let 𝑙𝑖𝑜 and 

𝑏𝑜 be the optimised coefficients, then the decision function G(�̅�) can be expressed as: 

G(�̅�) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝑙𝑖𝑜𝐾(u̅𝑖 , �̅�)𝑀
1 + 𝑏𝑜)      (12)   

If an input vector �̅�  is submitted into Function (12), which contains environmental 

parameters and personal factors, and G(�̅�) = 1, this means that the generated classifier 

predicts the thermal sensation of the subject as being in thermal sensation class number 

one under the input circumstance.   

In this research, there are seven levels of thermal sensations that need to be classified 

but the classifier described above can only identify two classes at a time. This multi-

class classification problem is solved by the ‘one against one’ method [31], and then 

multiple classifiers will be generated all together to create a complete thermal sensation 

model for a subject. In this research, the C-SVC algorithm with the ‘one against one’ 

method has been realised by using the LIBSVM MATLAB library [17].  

 

 
4. Data Process and Model Training 

 

In order to test the accuracy of the C-SVC-based model of the reflection and prediction 

of personal sensations, experimental data from a series of experiments carried out in 

Chongqing, China from 2008 to 2010 are used. A recent publication [32] describes the 

details of the experiments. The experimental indoor environment was supplied by a 

heating, ventilation and air conditioning (HVAC) system. Twenty-one healthy people 

aged between 20-30 years old were involved in a series of experiments. All of them 

stayed in Chongqing city for more than two years. One person did not complete the 

experiment so this individual’s partial data is not used in this modelling. Every single 

experiment session lasted for 90 minutes for one person. In the first 20 minutes, no data 

was recorded as the subject was getting used to the exposed indoor environment. Then, 

his/her thermal comfort sensation was recorded by using a questionnaire survey in 

every 10 min. In the questionnaire, the thermal sensation was measured by the seven-

level ASHRAE scale:  cold, cool, slightly cool, neutral, slightly warm, warm and hot 

[9]. At the same time, their ambient environmental parameters were recorded including 

the globe temperature, air temperature, relative humidity and air velocity. During the 

experiment, all the subjects were wearing clothes with the same insulation level and 

were doing work having the same activity level. The settings of environmental 
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parameters are illustrated in Table 2. A total of 1199 sets of valid data from 20 subjects 

were collected and these data have been used for the development and verification of 

models. 

Table 2  

Range of environmental parameters in the controlled environment 

Environmental Parameters Minimum Value  Maximum Value 

𝑻𝒈   24.94 ℃ 29.58℃ 

𝑻𝒂  26.07℃ 30.04℃ 

𝑹𝑯 41.5% 80.1% 

𝑽𝒂   0.11m/s 0.17m/s 

 

The data used as training data should not be used again as test data. Therefore, around 

50% of each subject’s data were used to develop the model and the remaining 50% were 

used to verify the accuracy of the model. Fig. 2 shows the number of samples used for 

training and testing the personal thermal sensation model of each individual. The real 

numbers of training samples and testing samples of a subject depend on the total amount 

of valid raw data collected from the experiment. The mean radiant temperature is 

calculated using Equation (14) where 𝑇𝑔 is the globe temperature collected on-site [33].  

𝑇�̅� = [(𝑇𝑔 + 273)
4

+
1.1∗108𝑉𝑎

0.6

𝜖𝐷0.4
(𝑇𝑔 − 𝑇𝑎)]0.25 − 273                                       (14) 

 

 

Fig. 2. Number of training and testing samples for each subject 
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Fig. 3. Training process of the personal thermal sensation model 

Fig.3 illustrates the input data structure and the model training process. All the data 

should also be arranged into input and targeted output pairs to fit the C-SVC algorithm. 

From the figure, it can be seen that the input data required for modelling include: 1) 

ambient environmental parameters such as 𝑻𝒂 , 𝑻𝒓
̅̅ ̅ , 𝑽𝒂 and 𝑹𝑯 and personal data such 

as 𝑴𝑬𝑻 and 𝑪𝒍𝒐; and 2) a subject’s TSV (thermal sensation vote). These data are fed 

into the modelling algorithm based on the C-SVC and modelled thermal sensations 

based on the inputted information are then produced. For a subject, only the data 

collected from the experiments he/she attended were used to develop his/her personal 

thermal sensation model. 

In the development of the modelling algorithm, the LIBSVM library was applied. 

According to the developer of the library, two parameters:𝐶 𝑎𝑛𝑑 𝛾, are used to control 

the performance of the C-SVC algorithm. Optimal pairing 𝐶 and 𝛾 values will improve 

the C-SVC model quality. 𝐶 is the user-defined positive figure and 𝛾 is used to define 

𝛿 in the RBF kernel Function (5), which is defined by Function (15) [17] 

𝛾 =
1

2𝛿2
                                (15) 

In this research, these parameters have been optimally selected by a ‘grid-search’ 

method which is recommended by the library developer [17]. It was approved as a 

reliable method in the existing research [23]. In the ‘grid-search’ procedure, a series of 

𝐶 and 𝛾 values were first calculated separately. Then all the possible combinations of 

(𝐶, 𝛾) pairs were generated. Based on the performance of the modelling program, both 

the parameters C and 𝛾 were calculated by 2𝐴 where A is from the data range (-4,-3,-
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2,-1,0,1,2,3,4). The program automatically selects one pair of (𝐶, 𝛾 ) each time then 

applies it to train a model. The performance of the selected (𝐶, 𝛾) was verified by a 

cross-validation method, which is integrated in the LIBSVM library. A five-fold cross-

validation method was programmed. During the validation process, the program spilt 

the training sets equally into five subsets then five rounds of the modelling process were 

performed for each pair of (𝐶, 𝛾). In each round of modelling, four subsets were used 

to train the model and the remaining part was used to validate the performance. The 

validation result of the model generated in this round was then saved. The procedure 

has been iterated using the data from different subsets. The same process was repeated 

five times. All five saved test results were averaged and the average value was used to 

represent the performance of the modelling program with the selected (𝐶, 𝛾). In the end, 

the selected model was the one developed by the combination of C and 𝛾 giving the 

best validated performance. If more than one (𝐶, 𝛾) pair reached the best performance, 

the program would select the pair that was validated last in the whole validation process. 

Fig.4 depicts the performance of different (𝐶, 𝛾) pairs during the model training process 

for subject B. It can be found that multiple (𝐶, 𝛾) pairs have the same performance 

which validation results reach 100% accurate, so after the training process, the chosen 

(𝐶, 𝛾) pair was (16, 16), which is illustrated as the point Z in Fig.4.  
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Fig. 4. Performance of different (𝐶, 𝛾) pairs   

 

5. Verifications of the Model    

The developed individual thermal sensation model was verified by the test samples. In 

the test samples, the attributes 𝑻𝒂 , 𝑻𝒓
̅̅ ̅ , 𝑽𝒂  , 𝑹𝑯, 𝑴𝑬𝑻 and 𝑪𝒍𝒐 were used as the inputs 

of the personal thermal sensation models. The models’ predictions were compared with 

the actual TSV data collected from the experiment. If, under the same environmental 

and personal conditions, a model’s prediction was equal to the actual TSV data, then 

the prediction would be regarded as a correct prediction. The performance of a model 

is expressed by the model's prediction accuracy rate, which is calculated by Equation 

(9) [17] 

 

 Prediction Accuracy Rate = The Number of Correct Predictions/Total Number of Test 

Samples     (9) 

 

Fig. 5 depicts results of two series of experiments, which test the performance of two 

individual models for two subjects. The X axis presents the number of the experiment. 

The Y axis shows the TSV values. The crosses in the figure are the TSV values predicted 

by C-SVC-based personal thermal sensation models, and the circles represent the actual 

TSV data collected from the subjects. In the figure, the cross covering the circle means 
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the model makes a correct prediction.  Fig. 6 shows the accuracy rate of the predicted 

models for 20 subjects.  From the figure, it can be seen that the average prediction 

accuracy is 89.82%. 17 out of 20 subjects’ individual thermal sensation models have an 

accuracy rate higher than 80%.   
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Fig. 5. Model predicted TSV VS subjects’ actual TSV for subjects P and R  
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Fig. 6.  Model’s prediction accuracy rates  

 

 

 

6. Comparison Studies  

 In order to further verify the performance of personal thermal sensation models based 

on the C-SVC algorithm, a comparative study is presented. Using the same sets of data 

we calculated the individual’s thermal sensations by using the PMV and C-SVC 

methods.  

According to the literature [15],  if the value of the difference between PMV  and the 

occupant’s TSV is less than or equal to 0.5, then the prediction using PMV is regarded 

as accurate. The accuracy rate of PMV prediction was calculated according to Equation 

(9). Fig. 7 depicts the mean values of the accuracy rate of the PMV index and the C-

SVC-generated personal thermal sensation models. It can be seen that the average 

accuracy rate of the personal thermal sensation models (89.82%) is significantly higher 

than that obtained from the PMV model (49.71%).  
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Fig. 7. Mean accuracy of PMV and C-SVC based models 

 

7. Application of the Modelling Method  

 

The modelling algorithm presented in this paper can be integrated into a personalised 

conditioning system to improve the operation performance by providing a realistic 

personal thermal sensation of an individual person. The operation system obtains a 

more precise personal thermal preference through the C-SVC learning process. The 

learnt knowledge will be memorised as a personal thermal sensation model which can 

be used by the operation system. Consequently, the PCS can eliminate the disturbance 

of frequent manual adjustment. The feasibility and operations of the learning-

algorithm-aided PCS system have been discussed in some research such as [7, 8, 14]. 

Based on existing open literature, the structure of the C-SVC algorithm supported PCS 

is proposed and illustrated in Fig. 8. Small arrows between the blocks illustrate the 

directions of information flow. The personal thermal sensation modelling algorithm 

utilises the collected environment data and the information from the user as inputs. It 

outputs the trained model for the decision-making algorithm. Once the model is 

developed and verified, its predictions can provide reliable information for the 

personalised HVAC to operate based on the individual’s demands. At the same time, 
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information from the system will be fed back to the user through the human-machine 

interface. Consequently, the system can maximally avoid inappropriate user operations, 

which may lead to unnecessary energy wastage. 

 

 

  

 
Fig. 8. The Structure and Information flow of PCS System with C-SVC Algorithm 

 

8. Conclusions 

 

This paper presents a C-SVC method of modelling personal thermal sensations. The 

modelling method has been verified using the experimental data collected in an HVAC-

supplied indoor environment with real thermal sensation votes from twenty subjects. 

The average rate of prediction accuracy of these models is above 89%. The results of 

this study indicate that the modelling problem can be regarded as a classification 

problem in the context of machine learning. The method will be ideally used in the 

intelligent control for a personalised conditioning system because the C-SVC 

realistically reflects an individual occupant’s personal thermal preference and provides 

the individual’s specific thermal comfort need. It is argued that people’s thermal 

sensation could vary from season to season; the C-SVC algorithm can be re-developed 

on a seasonal basis in order to fully reflect the dynamic adaptation of humans. It is 

expected that the performance of a personalised conditioning system can be improved 

in terms of energy efficiency and wellbeing through intelligent control that reflects 

people’s thermal demands.   Future research to verify the method in various indoor 

environments such as free-running buildings will be conducted.  
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