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Summary 
Solar eclipses provide a rapidly changing solar radiation environment. These changes can be studied using simple 

photodiode sensors, if the radiation reaching the sensors is unaffected by cloud. Transporting the sensors aloft using 

standard meteorological instrument packages modified to carry extra sensors, provides one promising but hitherto 

unexploited possibility for making solar eclipse radiation measurements. For the 20
th

 March 2015 solar eclipse, a 

coordinated campaign of balloon-carried solar radiation measurements was undertaken from Reading (51.44N, 0.94W), 

Lerwick (60.15N, 1.13W) and Reykjavik (64.13N, 21.90W), straddling the path of the eclipse. The balloons reached 

sufficient altitude at the eclipse time for eclipse-induced variations in solar radiation and solar limb darkening to be 

measured above cloud. Because the sensor platforms were free to swing, techniques have been evaluated to correct the 

measurements for their changing orientation. In the swing-averaged technique, the mean value across a set of swings was 

used to approximate the radiation falling on a horizontal surface; in the swing-maximum technique, the direct beam was 

estimated by assuming the sensing surface becomes normal to the solar beam direction at a maximum swing. Both 

approaches, essentially independent, give values that agree with theoretical expectations for the eclipse-induced radiation 

changes. 

 

 

 

Main text 
 

1. Introduction 

Solar eclipses provide an unusual opportunity to study a rapid and well-characterised change in the solar radiation 

entering the atmosphere. Whilst radiation measurements related to eclipse changes have been made at the Earth’s surface 

[1], these can suffer from vagaries of the weather despite considerable planning, but fewer measurements have been made 

aloft because of the logistical difficulty and expense. A considerable attraction in using a platform aloft is that, as 

increasing height is achieved, the likelihood of cloud interfering with the measurements is reduced. Weather balloons, 

carrying meteorological instrument packages returning data by radio (radiosondes) potentially offer inexpensive 

platforms for such measurement. Some disadvantages, such as motion associated with the payload, limitations in weight, 

power and opportunities for instrument recovery, may, however, all have contributed to radiosonde platforms having been 

underexploited for eclipse measurements. Recent innovations in low cost sensors have reinvigorated the utility of 

radiosondes as measurement platforms for parameters beyond the traditional meteorological variables. For example, a 

new data acquisition system has been developed to expand the science capabilities of standard commercial radiosonde 

systems in routine use internationally by meteorological services [2]. This system enhancement has already been used to 

successfully deploy a solar radiation sensor [3]. Importantly, both items are simple and inexpensive, which, as for the 

radiosonde itself, removes the need for them to be recovered: the instrumentation can be regarded as disposable. 

 

For a solar eclipse, a balloon-carried solar radiation sensor brings the possibility of measuring the radiation changes away 

from the immediate effects of the lower atmosphere, such as the attenuating or obscuring actions of cloud, or the 
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absorption of radiation by atmospheric constituents such as water vapour. The major eclipse-induced changes also 

typically tend to occur within the typical balloon flight times of 1 to 2 hours, which provides a rare source of well-

characterised variations for an in situ instrument. Modern meteorological balloon systems are essentially portable (e.g. 

allowing sampling of airborne volcanic ash in hazardous conditions [4]), but the use of an established meteorological site 

in the eclipse zone means that additional air traffic permissions are unlikely to be needed and that substantial items of 

equipment do not need to be transported. Because the typical burst height for a weather balloon carrying a standard 

meteorological radiosonde is at 15 to 20 km altitude, some of the measurements can be reliably expected to be made in air 

which is cloud free, hence many of the conventional climatological considerations usually applied to selecting a site for 

an eclipse study can be overcome. 

 

2. Objectives 

The path of the 20
th

 March 2015 total solar eclipse across the north Atlantic and through the Faroe Islands generated an 

appreciable partial eclipse in the northern UK and Iceland. This presented an opportunity for a coordinated campaign of 

solar radiation measurements using radiometer radiosondes, launched from the University of Reading’s Atmospheric 

Observatory, the UK Met Office’s Lerwick site and the Icelandic Meteorological Office facilities at Reykjavik (figure 1). 

The objectives of this campaign were, firstly, to demonstrate that the radiosonde enhancement technology could be used 

straightforwardly for coordinated measurements of new atmospheric variables, and, secondly, to investigate data 

processing techniques needed to retrieve quantitative radiation information from an agitated, swinging platform carrying 

an inexpensive sensor. Although radiosondes have been used previously in eclipse meteorology for thermodynamic 

measurements [5], even including multiple soundings from the same launch site [6], it is possible that the 20
th

 March 

2015 undertaking represents the first coordinated radiosonde campaign to provide widely spatially separated non-

thermodynamic eclipse measurements.  

 

3. Solar radiation calculations  

A first consideration in configuring instrumentation for solar eclipse radiation measurements is to estimate the likely 

changes expected at each site. The sequence of events in a total eclipse follows from the Moon first appearing to reach the 

Sun (first contact) through second and third contact, between which there is the period of totality, to fourth contact when 

the Moon and Sun appear to emerge from each other. During the eclipse, the solar radiation is reduced from that expected 

for the same location and time of year, by the proportion of the solar disk’s area covered (the obscuration). Calculating 

the solar radiation during the eclipse can be achieved by combining the standard calculation of the daily variation in top-

of-atmosphere solar radiation with a modulating function to represent the eclipse. The top-of-atmosphere solar radiation 

is essentially an astronomical calculation: the actual radiation in the lower atmosphere will be reduced from the top-of-

atmosphere value through absorption by ozone and water vapour, which is variable. 

 
Assuming negligible difference between the actual and mean Sun-Earth distances, the time variation in solar irradiance on 

a horizontal surface at the top of the atmosphere ST(t) is given approximately by  

 

 )(cos)( 0 tZStST 
      (1), 

 

where S0 is the Total Solar Irradiance (TSI) and Z is the solar zenith angle at a time t. For a site at latitude  when the 

solar declination is , the variation in Z during the day is found from the hour angle h(t) as 

 

  )(coscoscossinsin)(cos thtZ       (2). 
 

The solar irradiance variation with time at a particular position is conventionally calculated by combining (1) and (2) to 

give 

 

 )(coscoscossinsin)( 0 thStST  
    (3). 

 
On a day with a total solar eclipse, an additional modulation function is needed to represent the effect of the eclipse. The 

solar irradiance can then be written as 

 

   )(coscoscossinsin)(1)( 0 thStEtST  
   (4), 
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where E(t) is the eclipse function. In this case the function is arranged to give the fraction of the Sun’s area covered as the 

eclipse progresses, with E(t)=0 at first and fourth contact. Full calculation of the eclipse function requires geocentric 

coordinates (e.g. [7]). Instead the simpler geometrical approximation is used [8], which represents the eclipsed Sun and 

Moon as two spherical bodies with an equal angular diameter at Earth, and assumes that the solar disk is of uniform 

brightness with no darkening at the solar limb. These two bodies progress to overlap each other at a steady rate, with the 

fractional area of the solar disk remaining exposed given by 


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where fe(t) is the eclipse magnitude, the proportion of the Sun’s radius obscured by the Moon at a time t. For a total solar 

eclipse occurring symmetrically between first contact t = t1 and fourth contact t = t4, fe(t) can be defined as  

 
 14

12
)(

21 tt

tt
tf

ttte







     (6a) 

 
 14

32
)(

43 tt

tt
tf

ttte







     (6b), 
 

with fe=1 during totality. For a symmetrical (and non-annular) partial eclipse having a maximum obscuration M at tM, the 

solar radiation does not reach zero and the solar radiation variation of equation (4) is modified to 

 

   )(coscoscossinsin)(1)( 0 thStMEtST  
   (7), 

 
with fe(t) found from  
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     (8b). 

To calculate the top of atmosphere solar radiation variation on a day with an eclipse, values of t1 to t4 and M are required, 

available from eclipse tables. The other parameters required for the calculation are: (a) the declination , given (in 

degrees) by 

 








 
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

     (9), 
 

where d is the day of the year, (b) the hour angle h, given (in degrees) by  

 
24

360 0tt
h




      (10) 
 

with t the time of day for which the solar radiation is required and t0 the time of the local solar noon in hours, and (c) the 

total solar irradiance S0, 1365 Wm
-2

. 

 

Table 1 summarises the circumstances of the partial eclipse at Reading, Lerwick and Reykjavik, in particular the 

parameters t1, t4 (from which tM can be found) and M. These have been used to calculate the variation in top of 

atmosphere solar radiation, ST using equation (7) for each site, plotted in figure 2. The variations differ between the sites. 

At Reading the eclipse begins when ST has a larger value than at the other sites but undergoes a smaller change than at the 

other sites during the eclipse; at Lerwick and Reykjavik the eclipse effects are greater, but change from smaller ST values 

than at Reading.  
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4. Instrumentation 

The calculations of figure 2 indicate that a dynamic range of ~ 1000 W m
-2 

is needed for full measurement for the solar 

radiation measurements changes during the 20
th

 March 2015 eclipse. The radiosonde radiation instrumentation described 

previously [2] was not intended for accurate radiometry, as its primary use was for detecting the radiation changes 

associated with cloud to clear air transitions. However, in principle the device should be capable of good radiation 

measurements, as the single conditioning circuitry employed a linear current to voltage converter, with the voltages 

recorded accurately on the radiosonde system using an analogue-to-digital converter. Furthermore, comparison at the 

surface against a calibrated radiometer had also shown a linear response to radiation, and part-to-part variation between 

the photodiode sensors used was small. The same device was therefore chosen for eclipse measurements. 

 

For the eclipse radiation measurements, instrumentation was constructed using the previous signal conditioning circuitry 

[3], and the PANDORA radiosonde data acquisition system [2]. Two similar radiometers were built for each radiosonde, 

but with silicon photodiode sensors of slightly different spectral ranges. The typical spectral response of a silicon 

photodiode begins at about 200 nm and rises steadily to a maximum around 950 nm, above which it sharply loses 

sensitivity. In one of the balloon radiometers, a VTB8440B photodiode was used, which includes a filter to remove the 

response at the infra-red end of the visible spectrum. In the other, a VTB8440 photodiode was used, which is an 

unfiltered type and has a wider spectral range. Table 2 summarises these details. Of the two photodiodes, the filtered 

device approximately covers the range of visible solar radiation, with its peak spectral response at 580 nm. The unfiltered 

device includes the visible range, but its principal sensitivity is weighted towards the near-infra red end of its response at 

920 nm, with less response in the visible region.  In a subsidiary experiment, photodiodes of both kinds were compared 

with a calibrated radiometer to determine their response to solar radiation; a summary is given in the Supplementary 

Information. 

 

In use for the soundings, the photodiodes were mounted on an upper horizontal surface of the plastic enclosure housing 

the data acquisition system, which was strapped to the radiosonde package. This added a further 130 g of payload to the 

350g mass of the radiosonde. The existing radiosonde battery was used to power the additional instrumentation. The 

PANDORA system was programmed to return data every 1 s over the standard UHF data telemetry, with the photodiodes 

sampled 64 times per second to improve the effective resolution of the 10 bit analogue-to-digital convertor employed. 

 

5. Results and data processing 

To increase the likelihood of the sensors being above the cloud during the time of maximum eclipse (about 0930UT), the 

radiosondes were launched from each site close to 0845UT. For an ascent rate of nominally 5 m s
-1

, this was intended to 

ensure that the radiosondes were above 10 km during the phase of the greatest eclipse. As well as being situated above 

cloud, the amount of radiative absorption from water vapour at this height is considerably reduced compared with that at 

the surface, and the solar radiation more closely approximates the calculated top-of-atmosphere value. The actual heights 

obtained from radiosondes depend, however, on the contributions of local winds, the balloons and the amount of free lift 

used. A further factor is that balloons can burst randomly at lower altitudes, although only rarely, for which 

circumstances an additional spare device was prepared as a contingency. Even so, unless such a random burst occurred at 

a low altitude or as part of the launch, the spare instrument was unlikely to rise sufficiently above cloud layers to give the 

unobstructed solar view sought. Fortunately the contingency was not required at any of the sites. 

 

Measurements from the data acquisition system of both the unfiltered and filtered photodiode currents were merged with 

the standard radiosonde data of temperature, pressure, relative humidity, GPS position and flight time. The less rapidly-

obtained (at 2 s sampling) standard radiosonde data were linearly interpolated to give values coincident with those from 

the PANDORA data.  Figure 3 shows the trajectories of the Lerwick and Reading balloons on 20
th

 March 2015, derived 

from the standard GPS information. It is clear that the radiosondes’ altitudes during the maximum eclipse were above 

10 km as planned. (Similar positional information was not available from Reykjavik, due to a software problem, although 

the unfiltered photodiode data was still returned satisfactorily.) 

 

(a) Lerwick 

Figure 4 shows measured data obtained at 1 s sampling from two Lerwick solar radiation soundings on the 20
th

 March 

2015, during the eclipse launch at 0858UT (a), (b) (c), and in the afternoon after the eclipse (d), (e) and (f) launched at 

1500UT. Figure 4 (a) and (d) show the vertical profiles of measured meteorological thermodynamic variables, including 

the dew point temperature Tdew. Tdew is equal to the local air temperature Tair, when the air is saturated, which is a good 

indicator of the presence of cloud. On this criterion, low cloud is evident in both ascents, and in the lowest 2 km of the 

eclipse ascent, consistent with visual reports from the site. Figures 4(b), (c), (e) and (f) show the raw values of 

instantaneous currents measured by the two photodiodes carried. These also indicate low cloud from the reduction in 
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photodiode current in this region, implying less solar radiation. Above this, the photodiode currents become more 

variable, dominated by the motion of the instrument package beneath the balloon carrying the sensors in and out of the 

direct solar beam. For the eclipse ascent, from 10 km to the burst height at 17 km, both photodiodes show steady 

reduction and then recovery in output current approximately symmetrically around 15 km, which is the effect of the solar 

eclipse. The solar radiation profiles shown in figures 4(b) and (c) during the eclipse show markedly reduced radiation 

compared with the measurements made later in the day (figures 4e and 4f). 

 

The variability apparent in the eclipse ascents (figures 4b and 4c) indicates that further data processing is needed for a 

comparison to be made with the calculations of ST given in figure 2. Because the orientation of the platform is not known, 

an exact correction for the alignment of the sensors with respect to the incoming solar beam cannot be made. Modest 

swing of the platform is usual, however, and this can be used to inform assumptions about the position of the sensors. The 

typical period of swing was found using a Fourier transform, by regarding the photodiode measurements as a time series. 

This value of about ~10 s is consistent with that of a simple pendulum for a string length of 30 m (Table 3), although the 

actual motion may be considerably more complicated than a simple pendulum in regions of atmospheric turbulence [8]  

 

Figure 5 shows some possible exposure scenarios associated with the swing of the radiosonde and photodiode sensors. 

Figure 5(a) shows the arrangement of the instrument package beneath the balloon and position of the sensors on the upper 

surface of the instrument package. When hanging vertically (figure 5b), the position of the sensor surface is horizontal. 

This can then be compared with the calculation of ST for the same time, or solar zenith angle Z can be used to resolve the 

radiation measured to that occurring on a sensing surface normal to the solar beam. The position of the sensing surface is 

not known, however if the photodiode is assumed to swing symmetrically, the photodiode will be exposed horizontally at 

the lowest point in the swing. Its exposure to solar radiation will increase as it swings into the solar beam, and reduce as it 

swings in the opposite direction. Averaging measurements obtained during several swing cycles can therefore provide an 

estimate of the radiation obtained horizontally, and a measure of the associated variability resulting from the swinging 

motion. 

 

An alternative approach is suggested in figure 5(c). During the pendulum-like motion of the instrument package, the 

greatest radiation value measured will be when the sensing surface swings normal to the solar beam. Clearly, depending 

on the solar elevation, the swing may not be of sufficient amplitude to bring the sensing surface normal to the beam and 

these conditions will only be approximately obtained. However, as the solar elevations approach the local noon, the 

maximum value measured during the swing will provide a better approximation to the direct beam radiation at normal 

incidence. 

 

Results from the two approaches of figures 5(b) and (c) are compared in figure 6, with figures 6(a) and (b) concerning the 

swing-averaged method and figures 6(c) and (d) concerning the swing-maximum method. For both methods, 1 min 

periods of the 1 s samples are calculated. This choice was informed by the median swing time of the instrument package 

(Table 3), of ~ 10 s, which indicates that several complete cycles will usually be completed with a 1 min averaging time.  

 

In figure 6(a), average currents for the filtered photodiode around the eclipse time have been converted to solar radiation 

S using the linear regression found in the calibration experiment and corrected using cosZ at the same time to give the 

equivalent value normal to the solar beam. These values show a similar variation with time and similar magnitude to the 

calculated direct beam, Sbcalc, found as ST/cosZ. The quantities are compared directly in figure 6(b), with the standard 

error on the 1 minute mean used to provide an error estimate. There is increasing deviation for the larger radiation values, 

but values obtained are not inconsistent with the calculated values. To evaluate the swing-maximum method, the upper 

95
th

 percentile value of each 1 min of samples has been extracted (S95) and over-plotted on the time variation of ST/cosZ in 

figure 6(c). The upper 95
th

 percentile was used rather than the maximum value, in case the single maximum value 

recorded in the 1 min period was an outlier. Again there is agreement in shape and magnitude. Figure 6(d) compares the 

values from this method with the Sbcalc. No estimate of uncertainty is available as only one value can be obtained, but 

good agreement is nevertheless apparent between S95 and Sbcalc. 

 

(b) Reading  

A similar analysis to that for the Lerwick data is used for the sounding from Reading, again for the filtered photodiode 

sensor. Figures 7(a) and (b) show the results for the swing-averaged methods, and figures 7(c) and (d) show the results for 

the swing-maximum method. Both methods show agreement in shape with Sbcalc values, although the swing-average 

method slightly over-estimates the radiation and the swing-maximum method underestimates it. As mentioned above, the 

swing-maximum method will underestimate the radiation if the swing amplitude is insufficient to bring the sensing 

surface normal to the solar beam direction. 
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(c) Reykjavik 

Due to software difficulties, only measurements from the unfiltered photodiode sensor were obtained from the Reykjavik 

sounding. Whilst a calibration is available for these sensors from the surface experiment, the wider spectral range of the 

unfiltered photodiodes matches the spectrum of the visible sunlight less closely. The broader spectral range, and the peak 

response at 920 nm brings with it the possibility that additional sources of near infra-red radiation may contribute to the 

measurement, or changes in the spectral composition of the radiation as a result of the eclipse [10]. The eclipse magnitude 

at Reykjavik is almost total (0.98), but there is still a finite current measured by the unfiltered photodiode, when very 

little current was observed by the filtered photodiode during the other sites’ local eclipse maxima. This is likely to be due 

to additional sources of near infra-red radiation as mentioned above, or the result of a spectral shift in the remaining solar 

radiation to this part of the spectrum where the unfiltered photodiode is particularly sensitive. As a correction to allow the 

shape of the response with time to be obtained, after applying the solar radiation calibration for the filtered photodiode, 

the offset current at maximum eclipse has been subtracted. 

 

Figure 8 shows the data obtained from the Reykjavik sounding. The first panel shows the thermodynamic data and the 

height variation with time. This suggests that the instruments were in, or close to, cloud as the maximum eclipse time was 

approached. The second panel shows the measured radiation following the procedure described above, using the swing-

maximum method. Whilst the absolute values cannot be regarded with the same confidence as for the Lerwick and 

Reading ascents, because of the presence of cloud and the correction procedure necessary, there is nevertheless agreement 

between the Sbcalc values and the equivalent solar radiation derived from the unfiltered photodiode. 

 

 

(d) Spectral changes 

The different spectral responses of the unfiltered and filtered (visible light) photodiodes carried on the same instrument 

package can be investigated by comparing their measurements during the eclipse ascent. Figure 9(a) and (c) show the 

photodiode currents obtained simultaneously plotted against each other, for Lerwick and Reading respectively. 

Extrapolating the filtered photodiode response to zero current (i.e. when light in the visible spectrum would be absent) 

shows that a finite current would nevertheless be maintained at the unfiltered photodiode, as suggested by the current 

measured during the Reykjavik ascent at the eclipse maximum. Further broadband spectral information can be obtained 

by subtracting the current measured at the filtered photodiode (wavelength range 330 nm to 720 nm) from that of the 

unfiltered photodiode (wavelength range 320 nm to 1100 nm), yielding the response to radiation in the range 720 nm to 

1100 nm, i.e. in the near IR. Figures 9 (b) and (d) show this near IR current as a fraction of that obtained by the unfiltered 

photodiode, as a function of time. This ratio changed with time, and during the maximum of the eclipse dropped by about 

60% at Lerwick and about 40% at Reading. This indicates, at both sites, a relative spectral shift from the visible towards 

the near IR range of wavelengths, with the greater relative change at the location where the eclipse was the greater. 

 

Such a spectral change can be expected from solar limb darkening, which causes the edge of the solar disk to appear 

darker and cooler. More limb darkening will occur at the site with the greatest eclipse, hence the proportional change in 

contribution of the near IR radiation will be greater at Lerwick than Reading, as observed. Previous calculations for the 

11
th

 August 1999 indicated a change of 60% at 310 nm and 30% at 1500 nm, not inconsistent with the present 

observations.  

 

 

6. Conclusions 

The coordinated use of radiosondes carrying solar radiation detectors successfully provided measurements of the solar 

radiation changes caused by the same solar eclipse at three spatially separated locations. Because the eclipse provides a 

prescribed change in solar radiation which occurs more rapidly than the typical flight time of the radiosonde, the 

performance of the detectors in flight can be evaluated, which is not normally possible.  

 

In the soundings made from Reading and Lerwick, the measurements showed good agreement with a simple theoretical 

model of the expected changes. This encourages further use of the calculation method. Further, the agreement between 

model and measurements supports the use of unstabilised photodiode sensors on radiosondes for quantitative radiometry, 

using the swing-averaged method. In some circumstances when there is high solar elevation and appreciable swing, the 

swing-maximum method can provide an additional measurement, potentially independent of the swing-average method if 

the single swing-maximum value is removed prior to calculating the average. Finally, the simultaneous use of two 

photodiodes with different spectral responses on the same platform demonstrates the solar limb darkening effect. Clearly, 

a wider range of spectral responses could be combined in future eclipse balloon sounding experiments, or multiple narrow 

band sensors used simultaneously. 
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Other future work in this area could include performing coordinated night-time radiosonde launches during lunar eclipses.  

It is believed that variations in the solar radiation that is reflected by the moon during lunar eclipses have not previously 

been measured using radiosondes suspended from weather balloons.  Lunar eclipses differ from solar eclipses in several 

important respects that would need to be taken into account.  First, whereas solar eclipses such as the one measured 

herein are visible from only a relatively small fraction of the Earth’s surface, lunar eclipses are visible across the entire 

night side of the Earth. Second, lunar eclipses tend to be substantially longer in duration than solar eclipses. Finally, the 

radiation levels and their reductions during a lunar eclipse are much weaker than for a solar eclipse, indicating that more 

sensitive radiometers may be required.  In this respect, a partial or total lunar eclipse would be more promising than a 

penumbral lunar eclipse, because the reduction in reflected solar radiation is greater. 

 

Additional Information 
 

Information on the following should be included wherever relevant.  
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Tables 

 

Table 1. Circumstances of the 20
th

 March 2015 solar eclipse at the three radiosonde launch sites. 

 

 

 

 

 

 

 

 

Table 2. Spectral response of photodiodes. 

 

Part number min (nm) max  (nm) peak  (nm) comment 

VTB8440 320 1100 920 Unfiltered – broader wave length 

response 

VTB8440B 330 720 580 IR filter – visible wavelength response 
 

 

Table 3. Details of instrument package deployments. 

 

 

 

 

 

 

 

 

 

 

  

Site Latitude 

N 

Longitude 

W 

Eclipse start 

(UT) 

Eclipse end 

(UT) 

magnitude 

Reading 51.44 0.94 0824 1040 0.88 

Lerwick 60.15 -1.13 0839 1051 0.97 

Reykjavik 64.13 21.90 0838 1040 0.98 

Site Launch 

time (UT) 

Balloon 

mass (g) 

String 

length(m) 

Median cycle 

time for swing (s) 

Burst height 

(m) 

Reading 0848 200 30 9.9 17360 

Lerwick 0858 200 30 10.7 17736 

Reykjavik 0857 300 30 9.1 24005 

http://dx.doi.org/10.1063/1.4905529
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Figures 

 
 

Figure 1. Region of totality of the solar eclipse of 20
th

 March 2015 (grey band), with times marked. Contours of 

percentage obscuration are given in the regions experiencing a partial eclipse. The radiosonde launch sites at Reading 

(southern UK), Lerwick (Shetland) and Reykjavik (western Iceland) are marked with hollow squares. 
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Figure 2. Calculated solar irradiance on a horizontal surface at the top of the atmosphere (ST) plotted against time of day 

(in hours UT) for the 20
th

 March 2015, with the solar eclipse included for (a) Reading, (b) Lerwick and (c) Reykjavik. 

(The dotted line marks the solar irradiance calculated for the same day without the eclipse.) 
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Figure 3. Details of balloon launches on 20
th

 March 2015 from Reading ( (a) flight trajectory in terms of longitude and 

latitude and (b) flight profile, with vertical height in km shown on a vertical axis), and Lerwick (as for (a) and (b), with 

trajectory (c) and profile (d) ). On the profile plots (b) and (d), the points have been shaded according to the proportion of 

the eclipsed solar radiation measured at the same time, with black shading corresponding to the maximum obscuration 

and therefore the least radiation. 
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Figure 4. Vertical profiles of measurements obtained from the Lerwick soundings on 20

th
 March at 0845UT (a), (b) and 

(c) and 1500UT (d), (e) and (f). These show: (a) and (d) thermodynamic data (air temperature Tair and dew point 

temperature Tdew), and instantaneous currents measured from (b) and (e) the spectrally filtered and (c) and (f) the 

spectrally unfiltered photodiodes. 
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Figure 5. Configuration of the instrumentation used for the solar radiation measurements. (a) Arrangement of the 

radiosonde beneath its helium-filled carrier balloon, with the photodiode sensors mounted on its upward facing surface. 

The radiosonde package is free to swing beneath the balloon. Geometry of the sun and photodiode when the principal 

solar beam is directed at a zenith angle Z and the photodiode sensing surface is (b) horizontal and (c) normal to the solar 

beam. 
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Figure 6. Processed data from the Lerwick 20
th

 March 2015 ascent, for the filtered photodiode, selected for times around 

the eclipse. (a) One minute averages of measured solar radiation data corrected by the solar zenith angle Z (points) plotted 

with the calculated top of atmosphere direct solar beam Sbcalc (line). (b) Comparison of the calculated direct beam (Sbcalc) 

and the data from (a), with a 1:1 dashed line added. (Error bars show 1.96 standard errors on the calculated mean value.) 

(c) Points show 95
th

 percentile values chosen from one minute of solar radiation data (S95), with Sbcalc (line), again 

compared directly (d) with Sbcalc with a 1:1 dashed line added. 
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Figure 7. As for figure 6, but for the Reading ascent.  
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Figure 8. (Left panel) Thermodynamic data from the Reykjavik sounding, showing profiles of air temperature (Tair) and 

dew point temperature (Tdew). Heights of the sounding against time are also plotted using + signs, with time given on the 

upper horizontal axis. (Right panel) Measurements from the unfiltered photodiode during the eclipse (1 min mean 

values). Points show the 95
th

 percentile value of solar radiation found from successive one minute intervals containing 

one second samples (i.e. using the swing maximum method), after subtracting an offset of 204.6 Wm
-2

 at the time of the 

eclipse minimum. The calculated direct beam at the top of atmosphere is plotted as a line. 
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Figure 9. Comparison of currents from the filtered (if) and unfiltered (iuf) photodiodes measured during the eclipse 

sounding for Lerwick ( (a) and (b) ), and Reading ( (c) and (d) ), using 1 min averages in each case. In (a) and (c) the 

currents obtained simultaneously from the two photodiodes on the same flight are plotted against each other; in (b) and 

(d) the ratios of the visible photodiode current (if) to the near-infra red current, found by differencing the photodiodes (iuf-

if), are plotted against time for Lerwick and Reading. 
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Supplementary material 

 

 

Two photodiode radiometer circuits containing filtered (VTB8440B) and unfiltered (VTB8440) photodiodes were 

calibrated by mounting their sensing photodiodes horizontally during a sunny day (15
th

 April 2015) and comparing their 

response with a Kipp and Zonen CM11 pyranometer at the Reading University Atmospheric Observatory. The voltage 

outputs of both the pyranometer and the photodiodes were sampled by a Campbell CR3000 data logger at 1 s intervals, 

from which 5 min averages were calculated. The output voltages were converted to photodiode currents from the known 

linear response of the current to voltage converter [2], for the photodiodes operated in photocurrent mode. Figure S1 plots 

the derived photodiode currents against the measured global solar irradiance Sg. The response of the unfiltered diode is 

greater. These photodiode responses are regarded as their equivalent response to the spectral response of the pyranometer, 

which is essentially flat over the wavelength range 300 to 3000 nm. 

 

 
Figure S1. Results from surface atmospheric calibration of an unfiltered (VTB8440) and a filtered (VTB8440B) 

photodiode with their associated signal conditioning circuitry, mounted with their sensing surfaces horizontal during a 

sunny day (15
th

 April 2015). (a) Derived filtered and unfiltered photodiode currents if and iuf respectively, compared with 

horizontal solar irradiance Sg obtained simultaneously using a Kipp and Zonen CM11 pyranometer. (b) Variation of the 

difference in the photodiode currents (iuf - if) with Sg. For (a), linear least squares fits give Sg = (0.622±0.004) iuf + (-

22.81±0.3), and Sg = (1.704±0.003) if + (36.26±0.8), for iuf and if in A and Sg in Wm
-2

. For both (a) and (b), 5 min mean 

values are plotted, found from 1 s samples. 
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