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Background: Some studies have proven that a conventional visual brain computer

interface (BCI) based on overt attention cannot be used effectively when eye movement

control is not possible. To solve this problem, a novel visual-based BCI system based

on covert attention and feature attention has been proposed and was called the

gaze-independent BCI. Color and shape difference between stimuli and backgrounds

have generally been used in examples of gaze-independent BCIs. Recently, a new

paradigm based on facial expression changes has been presented, and obtained high

performance. However, some facial expressions were so similar that users couldn’t

tell them apart, especially when they were presented at the same position in a rapid

serial visual presentation (RSVP) paradigm. Consequently, the performance of the BCI is

reduced.

New Method: In this paper, we combined facial expressions and colors to optimize

the stimuli presentation in the gaze-independent BCI. This optimized paradigm was

called the colored dummy face pattern. It is suggested that different colors and facial

expressions could help users to locate the target and evoke larger event-related

potentials (ERPs). In order to evaluate the performance of this new paradigm, two other

paradigms were presented, called the gray dummy face pattern and the colored ball

pattern.

Comparison with Existing Method(s): The key point that determined the value of

the colored dummy faces stimuli in BCI systems was whether the dummy face stimuli

could obtain higher performance than gray faces or colored balls stimuli. Ten healthy

participants (seven male, aged 21–26 years, mean 24.5 ± 1.25) participated in our

experiment. Online and offline results of four different paradigms were obtained and

comparatively analyzed.

Results: The results showed that the colored dummy face pattern could evoke higher

P300 and N400 ERP amplitudes, compared with the gray dummy face pattern and the

colored ball pattern. Online results showed that the colored dummy face pattern had

a significant advantage in terms of classification accuracy (p < 0.05) and information

transfer rate (p < 0.05) compared to the other two patterns.

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://www.frontiersin.org/Computational_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fncom.2016.00005
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2016.00005&domain=pdf&date_stamp=2016-01-29
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:jinjingat@gmail.com
mailto:xywang@ecust.edu.cn
http://dx.doi.org/10.3389/fncom.2016.00005
http://journal.frontiersin.org/article/10.3389/fncom.2016.00005/abstract
http://loop.frontiersin.org/people/311369/overview
http://loop.frontiersin.org/people/143026/overview
http://loop.frontiersin.org/people/94460/overview
http://loop.frontiersin.org/people/260890/overview
http://loop.frontiersin.org/people/275332/overview
http://loop.frontiersin.org/people/8324/overview


Chen et al. Combinations of Stimuli for BCI

Conclusions: The stimuli used in the colored dummy face paradigm combined color

and facial expressions. This had a significant advantage in terms of the evoked P300 and

N400 amplitudes and resulted in high classification accuracies and information transfer

rates. It was compared with colored ball and gray dummy face stimuli.

Keywords: event-related potentials, brain-computer interface (BCI), dummy face, fusion stimuli,

gaze-independent, facial expression

INTRODUCTION

A brain-computer interface is designed to establish a
communication channel between a human and external
devices, without the help of peripheral nerves and muscle tissue
(Wolpaw et al., 2002; Neuper et al., 2006; Allison et al., 2007; Mak
and Wolpaw, 2009; Treder et al., 2011; Rodríguez-Bermúdez
et al., 2013). Event-related potential (ERP)-based BCIs are able
to obtain high classification accuracy and information transfer
rates. Consequently, they are one of the most widely used BCI
systems. ERP-based BCIs are used to control external devices
such as wheel-chairs, spelling devices, and computers (Lécuyer
et al., 2008; Cecotti, 2011; Li et al., 2013; Yin et al., 2013).

The N200, P300, and N400 ERPs are most frequently used
in ERP-based BCIs. The P300 component is a positive potential,
observed at central and parietal electrode sites about 300–400ms
after stimulus onset, which can be observed during an oddball
paradigm (Polich, 2007; Acqualagna and Blankertz, 2013). The
N200 and N400 components are negative potentials, which
can be observed approximately 200–300 and 400–700ms after
stimulus onset (Polich, 2007).

A P300 BCI is a typical example of a BCI system based on
visual, audio, or tactile stimuli (Hill et al., 2004; Fazel-Rezai,
2007; Kim et al., 2011; Mak et al., 2011; Jin et al., 2014a;
Kaufmann et al., 2014).The first P300-based BCI system was
presented by Farwell and Dochin using a 6 × 6 matrix of letters
(Farwell and Donchin, 1988). This stimulus matrix was a mental
typewriter, which consisted of symbols laid out in six rows and
six columns. The user focused on one of symbols while the rows
and columns were highlighted in a random order. The symbol
the user focusses on (the target) could be identified based on
the classification result of the ERPs. However, the information
transfer rate and classification accuracy of the system was not
high enough for practical applications. Many studies had been
conducted to attempt to improve classification accuracies and
information transfer rates of the P300 speller (Donchin et al.,
2000; Guan et al., 2004; Townsend et al., 2010; Bin et al., 2011;
Jin et al., 2011; Zhang et al., 2011).

One of the main goals of BCI is to help people who have
lost the ability to communicate or control external devices.
Most of the visual-based BCI systems use a matrix like Forwell
and Donchin’s system (Farwell and Donchin, 1988). However,
recent studies have shown that the matrix-based speller does
not work well for individuals who are not able to control their
gaze (Brunner et al., 2010; Treder and Blankertz, 2010; Frenzel
et al., 2011). In these patterns, the absence of early occipital
components reduced classification performance (Brunner et al.,
2010). It has been proved that these components are modulated

by overt attention and contribute to classification performance in
BCI systems (Shishkin et al., 2009; Bianchi et al., 2010; Brunner
et al., 2010; Frenzel et al., 2011). Furthermore, Frenzel et al’s
research suggested that the occipital N200 component mainly
indexed the locus of eye gaze and that the P300 mainly indexed
the locus of attention (Frenzel et al., 2011).

In view of the above problems, researchers have made efforts
to develop BCI systems which are independent of eye gaze. A
possible solution is to use non-visual stimuli such as auditory
or tactile stimuli (Klobassa et al., 2009; Kübler et al., 2009;
Brouwer and van Erp, 2010; Chreuder et al., 2011; Schreuder
et al., 2011; Lopez-Gordo et al., 2012; Thurlings et al., 2012).
Additionally, for visual-based BCI systems, some new areas of
research were developed (Marchetti et al., 2013; An et al., 2014;
Lesenfants et al., 2014). For example, Treder et al. presented
the first study on gaze independent BCIs in 2010 (Treder and
Blankertz, 2010). Following on from this work they optimized the
gaze-independent pattern by using non-spatial feature attention
and facilitating spatial covert attention in 2011 (Treder et al.,
2011).

Schaeff et al. reported a gaze-independent paradigm with
motion VEPs in 2012 (Schaeff et al., 2012). Acqualagna
et al. presented a novel gaze-independent paradigm called
the rapid serial visual presentation (RSVP) paradigm in
2010 (Acqualagna et al., 2010). In this paradigm, all the
symbols were presented one by one in a serial manner and
in the center of the display. The classification accuracy of
these presented paradigms was acceptable and could work
for individuals who could not control their gaze. However,
the classification accuracies and information transfer rates of
these gaze-independent BCIs should be improved further for
practical applications. The common stimuli used in gaze-
independent paradigms were letters, numbers, and polygons,
which were used to evoke false positive ERPs in the non-target
trials.

It had been proven that face stimuli could be used to obtain
high BCI performance (Jin et al., 2012; Kaufmann et al., 2012;
Zhang et al., 2012). Facial expressions on dummy faces could
evoke strong ERPs (Curran and Hancock, 2007; Chen et al.,
2014; Jin et al., 2015). Additionally, the use of different facial
expressions has been shown to produce different ERP amplitudes
during a BCI control experiment. In our study, the stimuli were
colored ball and dummy faces, which were only composed of
simple lines and arcs. Meanwhile, dummy faces could show a
person’s facial expressions and are easily edited without copyright
infringement problems. That is, every face was a cartoon face.
The primary goal of this study was to survey whether the stimuli,
which combined different facial expression and colors, could
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obtain higher performance compared with the traditional gaze
independent pattern.

Different colors and facial expressions were used to help
participants to locate the target stimulus, resulting in enlarged
evoked ERPs when the participant was focusing on the
target. Furthermore, different facial expressions were used to
decrease the repetition effects in evoking the ERPs (Jin et al.,

2014b). To evaluate the validity of the colored dummy face
pattern in increasing information transfer rates, improving
classification accuracies, and evoking ERPs, three different
paradigms were presented, which were called the colored
dummy face pattern, the gray dummy face pattern, and the
colored ball pattern. The colored ball pattern was a gaze-
independent paradigm using different colors; the gray dummy

FIGURE 1 | One trial of the experiment. Pattern I is the colored ball paradigm, pattern II is the gray dummy face paradigm, and pattern III is the colored dummy

face paradigm.
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FIGURE 2 | The stimulus display. The stimulus is shown in a layout that is independent of eye gaze.

FIGURE 3 | Configuration of electrode positions. The electrode positions

used in our experiment were F3, F4, Fz, C3, C4, Cz, P7, P3, Pz, P4, P8, O1,

O2, and Oz; Fpz was used as the ground electrode position; A2 was used as

the reference electrode position.

face pattern was a gaze-independent paradigm using different
facial expressions; finally, the colored dummy face pattern was
a gaze-independent paradigm that combined the different colors
and facial expressions.

MATERIALS AND METHODS

Participants
Ten healthy individuals (seven male, aged 21–26 years, mean
24.5 ± 1.25) participated in this study, and were marked as S1,
S2, S3, S4, S5, S6, S7, S8, S9, and S10. The 10 participants signed
a written consent form prior to this experiment and were paid
for their participation. The local ethics committee approved the

FIGURE 4 | One run of the experiment for online and offline

experiments.

consent form and experimental procedure before any individuals
participated. The native language of all the participants was
Mandarin Chinese.

Stimuli and Procedure
After being prepared for EEG recording, the participants
were seated in a comfortable chair 70 ± 3 cm in front
of a standard 24 inch LED monitor (60Hz refresh rate,
1920 × 1080 screen resolution) in a shielded room. The
stimuli were presented in the middle of the computer screen.
During data acquisition, participants were asked to relax and
avoid unnecessary movement. There were three experimental
paradigms, the colored ball paradigm (Pattern I), the gray
dummy face paradigm (Pattern II), and the color dummy
face paradigm (Pattern III). Every dummy face paradigm
included six different cartoon face stimuli, which were taken
from the internet and modified with Photoshop 7.0. These
face stimuli encode six facial expressions, which could be
facially encoded laughter, sighing, happiness, anger, sadness, or
disgust. These facial stimuli had the same size and lighting.
The stimuli used in these three paradigms are shown in
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Figure 1. Every dummy face picture consisted of simple lines and
arcs.

Every picture as a stimulus was shown in the middle of a
computer screen (Figure 2). The serial number of each picture

(including target and non-target) was shown at the top of
the screen. Only three conditions differed between the stimuli
images. Every condition contained six pictures (Figure 1). The
flash stimulus on time was 200ms, and the off time was 100ms

TABLE 1 | Averaged peak values and averaged latency of N200 at P7, P300 at Cz, and N400 at Fz.

ERP Electrodes Amplitude (µV) Latency (ms)

CDF-P GDF-P CB-P CDF-P GDF-P CB-P

N200 P7 −1.5941 −1.6428 −1.8780 259.22 270.16 248.13

P300 Cz 5.2707 4.1858 5.9231 391.82 376.73 387.91

N400 Fz −7.1997 −7.5562 −5.4153 693.75 719.14 667.97

“CDF-P” denotes the colored dummy face pattern, “GDF-P” denotes the gray dummy face pattern, and “CB-P” denotes the colored ball pattern.

FIGURE 5 | Grand averaged ERPs of target flashes across all participants over 12 electrode sites. The red line, black line, and green line indicate the target

amplitude of the colored dummy face pattern, gray dummy face pattern, and colored ball pattern, respectively.
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(Figure 1). After the stimuli off time there was nothing in
the screen. The stimuli of three paradigms were illustrated in
Figure 2.

Experiment Setup, Offline, and Online
Protocols
EEG signals were recorded with a g.USBamp and a g.EEGcap
(Guger Technologies, Graz, Austria) with a sensitivity of 100µV,
band pass filtered between 0.1 and 30Hz, and sampled at
256Hz. We recorded from 14 EEG electrode positions based
on the extended International 10–20 system (Figure 3). These
electrodes were Cz, Pz, Oz, Fz, F3, F4, C3, C4, P3, P4, P7, P8, O1,
and O2. The right mastoid electrode was used as the reference
and the front electrode (FPz) was used as the ground. Data
were recorded and analyzed by using the ECUST BCI platform
software package which was developed by East China University
of Science and Technology (Jin et al., 2011).

In this paper, the term “flash” referred to each individual event.
A single character flash pattern was used here. In each trial, each
ball, or dummy face, was flashed once. In other words, each trial
included six flashes. All patterns had 200ms of flashes followed

FIGURE 6 | Upper part: The amplitude difference of P300 between target

and non-target ERP amplitudes at electrode Cz across all 10 participants (µV);

Lower part: The amplitude difference of N400 between target and non-target

ERP amplitudes at electrode Fz across all 10 participants (µV).

by a 100ms delay, and each trial lasted 1.8 s with one target and
five non-targets (see Figure 1). A trial block referred to a group of
trials with the same target. During the offline experiment, there
were 16 trials per trial block and each run consisted of five trial
blocks, each of which involved a different target. Participants had
a 2min break after each offline run. During the online experiment
participants attempted to identify 24 targets (see Figure 4).

There were three conditions, which were presented to each
participant in random order. For each condition, participants
first took part in three offline runs. Participants had 2min
rest between each offline run (Figure 4). After all offline runs,
participants were asked to attempt to identify 24 targets for each
pattern in the online experiment. Feedback and target selection
time was 5 s before each trial block. Participants had 2min rest
before starting the online task for each condition. The target cue
(a dummy face or a colored ball) was shown in the middle of
the screen for 2 s before each run. Participants were instructed
to focus on, and count, appearances of this cue during both
the online and offline experiments. The feedback, which was
obtained during the online experiments, was shown at the top
of the screen.

Feature Extraction Procedure
A third-order Butterworth band pass filter was used to filter the
EEG between 0.1 and 30Hz. The EEG was then down-sampled
from 256 to 51Hz by selecting every fifth sample from the filtered
EEG. A single flash, which lasted 800ms, was extracted from
the data. For the offline data, Windsorizing was used to remove
the electrooculogram (EOG). The 10th percentile and the 90th
percentile were computed for the samples from each electrode.
Amplitude values lying below the 10th percentile or above the
90th percentile were, respectively, replaced by the 10th percentile
or 90th percentile (Hoffmann et al., 2008).

Classification Scheme
Bayesian linear discriminant analysis (BLDA) is an extension
of Fisher’s linear discriminant analysis (FLDA) that avoids
over fitting and possibly noisy datasets. The detail of the
algorithm can be found in Hoffmann et al. (2008). By using a
Bayesian analysis, the degree of regularization can be estimated
automatically and quickly from the training data (Hoffmann
et al., 2008). Data acquired from the offline experiment was
used to train the classifier using the BLDA classifier to obtain
the classifier model. This model is then used in the online
system.

Raw Bit Rate and Practical Bit Rate
In this paper, we used a bit rate calculation method called raw bit
rate (RBR), which was calculated via

B = {log2 N+P log2 P+ (1−P) log2[(1−P)/(N−1)]}×T (1)

where P denotes the classification accuracy and N denotes the
number of target every trial.N was equal to six in our experiment.
T denotes the completion time of the target selection task. Bit
rate is an objective measure for measuring BCI performance
and for comparing different BCIs (Wolpaw et al., 2002). RBR
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is calculated without selection time as defined in Wolpaw et al.
(2002).

Practical bit rate (PBR) may be used to estimate the speed of
the system in a real-world setting. PBR incorporates the fact that
every error requires two additional selections to correct the error.
Thus, selecting the wrong character is followed by a backspace
and the selection of the correct character. The PRB is calculated
as RBR ∗ (1 – 2 ∗ P1), where RBR is the raw bit rate and P is the
online error rate of the system (Townsend et al., 2010). If P >

50%, PRB is zero. The PBR also incorporates the time between
selections (4 s).

RESULTS

Offline Analysis
In this paper, electrode P7 was selected to measure the amplitude
of N200 difference (Hong et al., 2009); electrode Cz was selected
to measure the amplitude of P300 (Treder et al., 2011); and
electrode Fz was selected to measure the amplitude of the N400
(Jin et al., 2014a).

The mean latency and amplitude of ERPs from all 10
participants is shown in Table 1. Figure 5 shows the grand
averaged amplitudes of target and non-target flashes across all
participants over 12 electrode sites for the colored dummy face
pattern, the gray dummy face pattern, and the colored ball
pattern. Specifically, frontal and central channels contain an
early negative ERP at around 250ms (N200), followed by a high
positive potential at around 350ms (P300), and then a larger
negative ERP at around 700ms (N400).

Figure 6 shows the amplitude differences between target and
non-target ERPs at Cz (P300, peak point ± 25ms), and at

Fz (N400, peak point ± 25ms). A one-way repeated measures
ANOVA was used to show P300 peak amplitude [F(2, 27) = 4.1,
p = 0.0279], and N400 peak amplitude [F(2, 27) = 3.9, p= 0.0324)
among three patterns. It was shown that the colored dummy face
pattern evoked a significantly higher P300 ERP (p < 0.05) and
N400 ERP (p < 0.05) compared to other two patterns.

Figure 7 shows the grand average r-squared values of ERPs
across all 10 participants at site Fz, Cz, Pz, Oz, F3, F4, C3, C4, P7,
P3, P4, P8, O1, and O2. A one-way repeated measures ANOVA
was used to show the r-squared value difference of the N200
ERP across all 10 participants. It was significant at electrode P7
[F(2, 27) = 0.12, p = 0.91] for the N200 (peak point ± 25ms),
at Cz [F(2, 27) = 3.74, p = 0.0368] for the P300 (peak point
± 25ms), and at Fz [F(2, 27) = 3.38, p = 0.049] for the N400
(peak point± 25ms). It was shown that the colored dummy face
pattern obtained significantly higher r-squared values during the
P300 ERP (p < 0.05) and the N400 ERP (p < 0.05) compared to
the other two patterns.

Figure 8 shows the offline classification accuracies of the three
patterns when differing numbers of trials (1–16) were used to
construct the averaged ERP.

Figure 9 shows three boxplots, which illustrate the
distribution of correct detection rates of each stimulus across all
10 participants for the three patterns. Correct detection rate of a
stimulus shows the rate of correct classification for one stimulus.
It indicates that the classification accuracy of the six stimuli
in the colored dummy face pattern was the most stable when
compared to the other two patterns.

Online Results
Table 2 shows the online classification accuracies and
information transfer rates with an adaptive strategy (Jin

FIGURE 7 | R-squared values of ERPs. (A) R-squared values of ERPs from the three paradigms between 1 and 1000ms averaged from participants 1–10 at sites

Fz, Cz, Pz, Oz, F3, F4, C3, C4, P7, P3, P4, P8, O1, and O2. (B) The r-squared values at P7, Cz, and Fz.
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FIGURE 8 | Offline classification accuracies with differing numbers of trials used for constructing the averaged ERPs.
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et al., 2011). A one-way repeated measures ANOVA was used to
show the difference in classification accuracies [F(2, 27) = 4.27,
p = 0.0245], RBRs [F(2, 27) = 4.17, p = 0.0264], and PBR
[F(2, 27) = 4.63, p = 0.0186] across three patterns. It shows that
the colored dummy face pattern achieved significantly higher
classification accuracies (p < 0.05), RBRs (p < 0.05), and PRB
(p < 0.05), than the gray dummy face pattern and the colored
ball pattern.

DISCUSSION

The primary goal of this study was to verify that the colored
dummy face pattern could increase the distinguishability of
stimuli, and improving classification accuracies and information
transfer rates. Facial expression stimuli could evoke strong
N200, P300, and N400 ERPs, while colored stimuli could also
evoke high P300 ERPs, especially in gaze-independent paradigms
(Treder et al., 2011; Acqualagna and Blankertz, 2013; Chen et al.,
2014; Jin et al., 2015). In this paper, the different colors and
face expressions were combined to produce enlarged ERPs. The
results show that higher N400 and P300 ERPs were evoked
by the colored dummy face pattern, compared with the gray
dummy face pattern and the colored ball pattern. The colored
dummy face pattern had a significant advantage in terms of
the P300 (p < 0.05) and N400 (p < 0.05) ERP amplitudes
(see Figure 6) compared to other two patterns. Furthermore, the
colored dummy face pattern had an advantage over other two
patterns in terms of r-squared values of ERP amplitudes at Cz
(p < 0.05) for the P300 ERP, and the N400 ERP at Fz p < 0.05).

Classification Accuracy and Information
Transfer Rate
Classification accuracy and information transfer rate are two
important indexes to measure the performance of BCI systems.
Online classification accuracies and information transfer rates
of the three patterns are shown in Table 2. A one-way repeated
ANOVA was used to show the difference in classification
accuracy (F = 4.27, p < 0.05), RBR (F = 4.17, p < 0.05),
PBR (F = 4.63, p < 0.05) between the three patterns. It
showed that the use of the colored dummy face pattern resulted
in significantly higher classification accuracies (p < 0.05), RBRs
(p < 0.05), and PBRs (p < 0.05), compared with the gray dummy
face pattern and the colored ball pattern. The mean classification
accuracy of the colored dummy face pattern was 8.8% higher than
that of the gray dummy face pattern, while the mean RBR of the
colored dummy face pattern was 6.2 bits min−1 higher than that
of the gray dummy face pattern. The mean classification accuracy
and RBR of the colored dummy face pattern are 16.7% and 11.7
bit min−1 higher than those of the colored ball pattern.

Potential Advantage for Users
The system is a kind of gaze-independent BCI, which is based
on RSVP, which could be used by individuals who completely or
partially lost their ability to control their eye gaze. Figure 9 shows
that the stimuli used in the colored dummy face pattern is more

FIGURE 9 | Boxplot of correct detection rate of each stimulus for 10

participants. Panels (A), (B), and (C) are the Boxplots of correct detection

rate of each stimulus across all 10 participants for the colored dummy face

pattern (A), the gray dummy face pattern (B), and the colored ball pattern (C),

respectively.
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TABLE 2 | Classification accuracy, raw bit rate, and practical bit rates achieved during online experiments.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average

Acc (%) CDF-P 100 83.3 100 79.2 100 91.7 100 95.8 95.8 100 95.0 ± 7.6

GDF-P 95.8 79.1 100 62.5 91.7 83.3 83.3 100 95.8 70.8 86.2 ± 12.7

CB-P 91.7 54.2 91.7 45.8 95.8 87.5 75.0 79.2 79.2 83.3 78.3 ± 16.4

RBR CDF-P 37.6 20.3 39.0 19.1 39.8 27.3 36.3 33.8 28.9 35.7 31.8 ± 7.5

GDF-P 32.6 17.9 39.0 10.7 30.4 21.4 21.7 39.0 28.9 14.3 25.6 ± 9.9

CB-P 29.9 6.3 29.3 3.7 31.4 25.0 16.5 17.3 20.6 21.0 20.1 ± 9.5

PBR CDF-P 17.8 6.4 18.5 5.3 18.8 10.8 17.2 14.7 12.5 16.9 13.9 ± 5.0

GDF-P 14.1 4.9 18.5 1.3 12.0 6.7 6.9 18.5 12.5 2.8 9.8 ± 6.2

CB-P 11.8 0.2 11.6 0 13.6 8.9 3.9 4.8 5.7 5.8 6.6 ± 4.7

In this table, “Acc” refers to classification accuracy, “RBR” refers to raw bit rate, measured in bits/min, and “PBR” refers to practical bit rate, measured in bits/min. “CDF-P” denotes the

colored dummy face pattern, “GDF-P” denotes the gray dummy face pattern, and “CB-P” denotes the colored ball pattern.

stable for all participants compared to the other two patterns,
which shows the advantage of the colored dummy face pattern
for practical applications.

CONCLUSIONS

A colored dummy face paradigm for visual attention-based
BCIs was presented. The stimuli used in this pattern combined
colors and facial expressions, which lead to high classification
accuracies during RSVP. It had a significant advantage in terms
of the evoked P300 and N400 amplitudes. It was also able to
obtain high classification accuracies and information transfer
rates, compared with the color change paradigm and the facial
expression paradigm. In the future we will further verify the
performance of this paradigm with patients.
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