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Abstract The extent to which a given extreme weather or
climate event is attributable to anthropogenic climate change
is a question of considerable public interest. From a scientific
perspective, the question can be framed in various ways, and
the answer depends very much on the framing. One such
framing is a risk-based approach, which answers the question
probabilistically, in terms of a change in likelihood of a class
of event similar to the one in question, and natural variability
is treated as noise. A rather different framing is a storyline
approach, which examines the role of the various factors con-
tributing to the event as it unfolded, including the anomalous
aspects of natural variability, and answers the question deter-
ministically. It is argued that these two apparently irreconcil-
able approaches can be viewed within a common framework,
where the most useful level of conditioning will depend on the
question being asked and the uncertainties involved.

Keywords Climate change . Extremes .Weather .

Dynamics .Meteorology . Attribution

Introduction

Extreme weather and climate events are of great societal in-
terest as they significantly affect people and property—usual-
ly adversely. They are also of public interest since they are
unusual natural phenomena, which have scientific stories

behind them. Just as weather is a topic of daily conversation,
extremeweather events (including longer-duration climate ex-
tremes such as drought) provide a universal talking point.
Whilst their proximate cause is meteorological, it is now in-
evitable that the question will be asked, BWas this event due to
climate change?^ This is a perfectly natural question to ask
given that climate change is a reality and that in many cases,
climate change will be felt most directly through its impact on
extremes. (For example, sea level rise will generally impact
society through storm surges leading to coastal inundation.)
People relate to what they have experienced, so if extremes are
the sharp edge of climate change, then it becomes important,
from the standpoint of both communication and risk reduc-
tion, to address this question scientifically.

It is sometimes said that anthropogenic warming of the
climate system will increase the energy of the atmosphere,
which will lead to more storminess and thus more extreme
behaviour. It is true that a warmer atmosphere can hold more
moisture, which can provide more latent heat release in a
convectively driven extreme event, and more precipitation in
general. But atmospheric motions are driven by energy
differences [1], not by energy itself, and the polar amplifica-
tion that is a fundamental characteristic of global warming [2]
will tend to reduce the pole-to-equator temperature gradient.
Also, in a warming world, one would tend to expect a reduc-
tion in cold extremes. Thus, whilst climate change has un-
doubtedly affected weather and climate extremes, both the
sign and the magnitude of the effect need to be assessed on
a case-by-case basis. Although there may be general expecta-
tions based on global aspects of climate change, there can be
local departures from that behaviour, and over any given time
period, multi-decadal variability can also play a role in chang-
es in extremes [3].

It has also to be recognized that an unprecedented event
does not imply that climate has changed. Weather and climate
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records are of finite length, and as the record lengthens, new
record-breaking events will continue to occur, even for sta-
tionary statistics. Thus, climate change is reflected in devia-
tions from this behaviour [4]. The temporal inhomogeneity
that results from defining a reference period at the beginning
of a time series can also lead to spurious trends in extremes
when the reference period is short and the variability is nor-
malized by that of the reference period [5]; several high-
profile papers have fallen prey to this error, e.g. [6].

Weather concerns the instantaneous state of the atmo-
sphere, but climate is generally understood to comprise its
averaged behaviour (including higher-order statistics repre-
sented in probability distributions) over some period of time.
The attribution of changes in the observed statistics of ex-
tremes is clearly a climate science question, which can be
addressed using well-established detection-attribution
methods [7]. In contrast, the role of climate change in a par-
ticular extreme event concerns only a single observed event,
and thus involves no observed change, nor any averaging over
observed events. This takes it out of the traditional domain of
climate science and places it more within the domain of
weather science or (for the longer-duration extremes) seasonal
prediction. If a weather or climate event is truly extreme in the
present climate, then perforce it requires unusual meteorolog-
ical conditions, which means that climate change is at most
only a contributing factor. (As noted by [8••], the failure to
recognize this fact can lead to apparently contradictory con-
clusions concerning the same event.) The issues involved are
illustrated for the extreme northern winter of 2013/2014 in
Fig. 1. However, even a small contributing factor can have
enormous consequences in the context of an extreme event,
because the impacts are generally highly nonlinear in the haz-
ard. The scientific question is then to determine that
contribution.

In general, there seem to be two basic (and at first sight
orthogonal) approaches for determining the impact of one
factor on an effect involving multiple factors. One is what will
be called the ‘risk-based’ approach, where the change in like-
lihood of the effect arising from the presence of that factor is
estimated. It is understood that the attribution is only probabi-
listic, much as smoking increases the risk of lung cancer but is
neither a necessary nor a sufficient cause of lung cancer in any
particular individual. This approach to extreme event attribu-
tion was introduced to the climate science community by [11]
and applied by [12] to the European heat wave of 2003. The
second is what will be called the ‘storyline’ approach, where
the causal chain of factors leading to the event is identified,
and the role of each assessed. This approach is exemplified in
[13••]’s study of the 2011 Texas drought/heat wave.

In considering the effects of climate change, there is a strik-
ing difference between those associated with purely thermo-
dynamic aspects of the climate system and those also involv-
ing dynamical aspects [14•]. The former—which include

continental- or basin-scale averages of quantities such as sea
level, surface air temperature, sea-ice extent, snow cover, or
upper-ocean heat content—exhibit changes that are generally
robust in observations, in theory, and in models. However,
regional aspects of climate change, including regional patterns
of precipitation, generally involve dynamical aspects of cli-
mate change related to atmospheric and oceanic circulation,
and these are robust neither in observations, in theory, or in
models. This distinction is reflected in the strength of the
various findings in the latest Summary for Policymakers of
the IPCC [15•]. The reasons include the comparatively small
signal-to-noise of forced changes in dynamically related quan-
tities, the poor understanding of the mechanisms behind them,
and sensitivity of model behaviour to parameterized process-
es. Figure 2 illustrates the issue for the case of annual-mean
precipitation. To the extent that extreme weather and climate
events involve dynamical processes—and most of course
do—these uncertainties must be addressed when addressing
the role of climate change in the event. Trenberth et al. [16••]
have recently argued that in some cases, these uncertainties
may prevent a reliable application of the risk-based approach
and thus that the storyline approach is to be preferred.

The Risk-Based Approach

The risk-based approach to extreme event attribution is fun-
damentally probabilistic and requires creating two sample
populations, a ‘factual’ (the world as it is) and a ‘counter-
factual’ (the world as it would have been without climate
change). The conceptual framework is illustrated in Fig. 3a,
b, for the case of small and large shifts in the mean (for sim-
plicity, the distribution shape is not altered). Given a factual
event, the effect of climate change can be expressed in terms
of either the altered frequency of occurrence of an event of that
magnitude (the intercepts of p0 and p1 with the vertical grey
line in Fig. 3a) or the altered magnitude of an event having that
frequency in the factual climate (the intercepts of p0 and p1
with the horizontal grey line in Fig. 3a). It is evident that the
relative role of climate change compared to natural variability
may be quite different when viewed in terms of frequency or
in terms of magnitude (cf. [8••]).1 Yet both perspectives are
clearly valid; the magnitude perspective is typical in a regula-
tory context, e.g. the need to protect against a 200-year event.

Implementing this approach involves several steps, which
have both practical and philosophical implications. The first
step is the event definition. The observed extreme event is
unique, so it must be abstracted to a class of event amenable
to statistical analysis. This requires a choice of physical

1 For the case of a shifted Gaussian shown in Fig. 3a, it is easy to show
that for a small shift, the relative change in frequency equals the relative
change in magnitude times the square of the normalized magnitude, so
e.g. is a factor of 9 greater for a 3σ event.
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variable and the spatial and temporal averaging used to define
the event. There is obviously considerable freedom in this
choice, yet any particular choice can have a strong effect on
the result; in Fig. 3a, different choices would correspond to
different locations of the grey lines, and the p1/p0 ratios will be
quite sensitive to this choice. See [17•] for an explicit
example.

The second step is the construction of the factual likelihood
distribution p1. This will generally be done with a climate
model. The fundamental challenge is that in order to estimate
the likelihood of an extreme event, one needs to performmany
years of simulation—the more extreme the event, the larger
the number of years. Yet, in order to do so, the model must be
computationally cheap to run, which means that it may not be
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Fig. 1 The extreme northern
winter of 2013/2014. a shows the
instantaneous potential
temperature distribution on the
quasi-horizontal surface defined
by Ertel potential vorticity equal
to 2 PV units, approximately
corresponding to the tropopause,
on 5 January 2014. These maps
are extremely useful for synoptic
interpretation since the features
behave quasi-materially; see [9].
The edge of the blue region
approximately corresponds to the
polar front (now sometimes called
‘polar vortex’), and the
undulations are Rossby waves. A
deep cold excursion is seen over
the central USA, leading to the
extreme cold snap experienced at
that time. An extratropical
cyclone is also seen over the
North Atlantic, heading for the
UK. This latter event was one of a
series of storms that hit the UK
that month, as the storm track was
stuck in location for an extended
period. Although no one storm
was unusual, the persistence of
the storm track was unusual and
led to the record wet conditions
shown in b. a Courtesy of Nick
Klingaman and Paul Berrisford,
using ECMWF operational
analyses, and available from
http://www.met.rdg.ac.uk/Data/
CurrentWeather/. b Courtesy of
Michaela Hegglin, using Hadley
Centre data available from www.
metoffice.gov.uk/hadobs [10]
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able to simulate credible facsimiles of the event in question.
Even for cases where attribution seems easy, such as large-
scale heat waves, land-surface feedbacks may involve meso-
scale processes that are not adequately represented in models,
and deficiencies in the representation of precipitation, let alone
precipitation extremes, in coarse-resolution climate models
are legion [18]. Therefore, the appropriateness of the model
for the study in question needs to be carefully assessed.

The third step is the construction of the counter-factual
likelihood distribution p0. All the issues of model fidelity
discussed above apply here as well of course, with the addi-
tional complication that the counter-factual observations do
not exist with which one might evaluate the model. One might
use historical observations instead, but those will be highly
limited and perhaps nonexistent for the extreme of interest,
and the assumption needs to be made that observed climate
change is identical to anthropogenic climate change. If the
climate model is coupled, then the attribution of differences
between the factual and counter-factual climates is clear (as-
suming the imposed greenhouse gas changes are entirely an-
thropogenic), but to speed up computations, often the sea-
surface temperatures (SSTs) are imposed in an atmosphere-
only model. The typical choice is to use observed SSTs for the
factual and define the counter-factual SSTs by subtracting an

SST anomaly taken from coupled model simulations of cli-
mate change. Sensitivity to the choice of the latter must be
assessed. Moreover, if the observed SSTs were important for
inducing the particular extreme in question, then the attribu-
tion is conditional on this situation, and that too must be
accounted for. See [17•] for an explicit example.

There are also philosophical issues. The risk-based ap-
proach uses concepts developed in epidemiology. In that con-
text, attribution involves analysis of a population, and the
question is asked whether the observed data are more consis-
tent with an outbreak of an infectious disease (say) than with
noise. That corresponds to the classic detection-attribution
question in climate science. But if the attribution question
concerns a single event, then the analogy with epidemiology
is no longer there. Moreover, the observed event is only used
to motivate the choice of event class, and confrontation with
observations is not an intrinsic part of the analysis, as it is with
detection-attribution. (Observations may be used to establish
confidence in the climate model, but are not explicitly used for
hypothesis testing.) The results therefore pertain very much to
‘model world’, and their physical connection to the actual
event is not immediate. If there is a reliable long-term data
record, this issue can be addressed by couching the event
attribution within a more traditional detection-attribution

a b

Fig. 2 Contrast between the robustness of projected changes in (a)
surface temperature and (b) precipitation. Both panels show the mean
changes projected over the twenty-first century by the CMIP5 model
ensemble according to the RCP 8.5 scenario. Hatching indicates where
the multi-model mean change is small compared to natural internal
variability (less than one standard deviation of natural internal
variability in 20-year means). Stippling indicates where the multi-model

mean change is large compared to natural internal variability (greater than
two standard deviations) and where at least 90 % of models agree on the
sign of change. Although temperature changes are robust over all land
areas, the mean precipitation changes over many populated regions are
non-robust either because of natural variability or because of model dis-
crepancies. Adapted from Figure SPM.8 of [15•]

Fig. 3 Schematic of probability distribution functions (PDFs) of some
geophysical quantity for a factual (p1) and a counter-factual (p0) world.
For simplicity, the distributions are taken to be Gaussian and climate
change is represented as a simple shift in the mean. a, b Unconditional
PDFs for the case of small and large shifts in the mean, relative to the
internal variability. cDepicts a blow-up around the event indicated by the

intersection of the grey lines in a, in the tail of the distributions; the grey
lines in c correspond to the unconditional PDFs, and the black lines to
PDFs conditioned on the dynamical situation leading to the event. This
yields a large separation of the means and a situation analogous to b,
albeit now highly conditioned
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framework, as illustrated by [19] for annual-mean Central
England Temperature. However, this will generally constrain
the spatiotemporal footprint of the event and will be limited to
situations where such long-term records exist and exhibit at-
tributable trends.

There is furthermore the question of interpretation.
Classically, there are two kinds of causation: necessary and
sufficient. These concepts have probabilistic analogues [20].
Necessary causation means the effect could not have occurred
without the factor in question, but it may be that other factors
were also necessary. As already noted, this is generally going
to be the case with extremes, because extreme meteorological
variability is usually required in order to be in the tail of the
PDF—as in Fig. 3a. An important point is that with only
necessary causation, there is no predictive power for single
events; if the factor in question recurs, then the effect may
not recur because it depends on the presence of other factors.
(Strictly speaking, there is predictive power for nonevents in
the counter-factual world, but that is not particularly useful
information.) This situation may be contrasted with sufficient
causation, where the factor in question is enough to make the
effect occur irrespective of other factors. The latter situation is
illustrated in Fig. 3b; here, what is extreme in the counter-
factual world is normal in the factual world, and perhaps
should not even be called an extreme at all. There is moreover
predictive power for single events, because one can expect
these so-called extremes (relative to the counter-factual) to
recur frequently. This is increasingly the case with summer-
time continental extreme temperatures, as shown in Fig. 4.
Confusion will ensue if the distinction between the two kinds
of causation is not recognized, but commonly used extreme-
event attribution measures such as the fraction of attributable
risk (FAR) only reflect necessary causation and do not distin-
guish between the two [22••].

Dynamic and Thermodynamic Mechanisms

As discussed earlier, there is a striking difference between the
robustness of purely thermodynamic aspects of climate
change and of dynamic aspects involving the atmospheric or
oceanic circulation. The former are quite certain, the latter
highly uncertain [14•]. At the regional scale, the thermody-
namic aspects are strongly modulated by the dynamic aspects
so the latter must be taken into account. Part of the issue is the
relatively small signal-to-noise of the circulation changes ex-
pected from models [23••]—although there are regional ex-
ceptions [24]—and part is the general non-robustness of the
circulation response in models (Fig. 4 of [14•], [25]). The
difficulty is compounded by the fact that the forced circulation
response can be expected to project on the modes of variabil-
ity [26], so is difficult to separate from the noise using finger-
printing methods, and is not well constrained theoretically
[27].

Given this situation, a number of researchers have
attempted to separate the thermodynamic from dynamic as-
pects in explaining the behaviour of observed extremes. [28••]
examined the cold European winter of 2010 and argued that
once one accounted for the anomalous circulation regime,
including record persistence of a negative North Atlantic
Oscillation (NAO) index, the winter was anomalously warm,
in line with a warming climate. The results are illustrated in
Fig. 5. Diffenbaugh et al. [29•] examined the recent California
drought and showed that whilst there was no apparent change
in observed precipitation, the systematic warming over the
past century meant that dry years were now almost invariably
also warm years (hence increasing the proclivity of drought),
whereas in the past, the combination of the two conditions was
less common. California precipitation is controlled by dynam-
ical processes related to the storm track, and its future evolu-
tion is therefore highly uncertain [30]. Without a clear predic-
tion of precipitation changes, [29•] argue that the risk of
drought in California is increasing. In both cases, the authors
regard the thermodynamic aspects of the observed changes as
certain, and the dynamic aspects as uncertain and probably
best interpreted as natural variability.

If an extreme event was mainly caused by purely thermo-
dynamic processes, then the risk-based analysis using a cli-
mate model is probably reliable and a strong attribution state-
ment can be made. If, on the other hand, an extreme event was
caused in part by extreme dynamical conditions, then any risk-
based analysis using a climate model also has to address the
question of whether the simulated change in the likelihood or
severity of such conditions is credible. Without attributed ob-
served changes, or a theoretical understanding of what to ex-
pect, or a robust prediction from climate models, this would
seem to be an extremely challenging prospect. And if plausi-
ble uncertainties are placed on those changes, then the result is
likely to be ‘no effect detected’. This is indeed what tends to
be concluded in event attribution studies of dynamically driv-
en extremes [31]. But absence of evidence is not evidence of
absence. Can we do better?

The Storyline Approach

Since climate change is an accepted fact [15•], it should no
longer be necessary to detect climate change; rather, the ques-
tion (for extreme event attribution) is what is the best estimate
of the contribution of climate change to the observed event. In
this case, effect size is the more relevant question than statis-
tical significance [32]. Trenberth et al. [16••] argue that a
physical investigation of how the event unfolded, and how
the different contributing factors might have been affected
by known thermodynamic aspects of climate change, is the
more effective approach when the risk-based approach yields
a highly uncertain outcome. This storyline approach, which is
analogous to accident investigation (where multiple
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contributing factors are generally involved and their roles are
assessed in a conditional manner), was employed by [13••] to
investigate the 2011 Texas drought/heat wave. Although
[13••] emphasized the dominance of natural variability, spe-
cifically the precipitation deficit associated with anomalous
Pacific SSTs, they estimated that about 0.7 °C (20 %) of the
heat-wave magnitude relative to the 1981–2010 mean was
attributable to anthropogenic climate change. Thus, the

storyline approach can quantify the magnitude of the an-
thropogenic effect, but only for that particular event.
This could be useful for liability, or for planning if
historical events are used as benchmarks for resilience.
(It may be difficult to convince people to invest in
defences against a hypothetical risk, but easier to do
so if an event has previously occurred so clearly could
occur again, but potentially with more impact.)
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Fig. 4 The changing map of
record summer temperatures over
Europe. The two panels show the
spatial distribution of the decade
in which the record-high
summertime temperature
occurred, over 1500–2000 (a) and
over 1500–2010 (b). The
height of the bar indicates the
temperature anomaly, relative to
1970–1999, and the colour the
decade. The additional 10 years
included in b completely re-draw
the map, showing that the most
recent years have been
exceptionally hot. The inset
shows the corresponding
percentage of European areas
with summer temperatures above
the indicated temperature (in units
of standard deviation, SD) for
1500–2000 (dashed) and 1500–
2010 (dotted). What used to be
extreme has now become normal.
From [21]. Copyright American
Association for the Advancement
of Science, used with permission

a b c

Fig. 5 aObserved surface temperature anomalies in winter 2010 relative
to the reference period 1949–2010. b Surface temperature anomalies
expected from the circulation pattern experienced during that winter
(including a record-persistent negative NAO index), based on the

historical relationship with temperature. c The difference between the
two, which is the ‘thermodynamic’ signal. Thus, the unusually cold
winter was entirely consistent with thermodynamic warming. From
[28••]. Copyright American Geophysical Union, used with permission
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A limitation of this approach is that it is only a partial
attribution, in that it does not address the potential change in
likelihood of the dynamical situation leading to the event. The
counter-argument is that it is useful to distinguish between the
dynamical and purely thermodynamic factors leading to the
extreme event, as they have very different levels of uncertain-
ty. Recognizing that distinction allows the risk-based and the
storyline approaches to be cast within a common framework.
If the extreme event was mainly the result of a dynamical
situation conducive to that extreme, then one can represent
the probability of the event in the conditional manner.

P Eð Þ ¼ P E
�
�
�D

� �

P Dð Þ þ P E
�
�
�ND

� �

P NDð Þ ð1Þ

where E is the extreme event, D is the dynamical situation, and
ND is not the dynamical situation (i.e. the complement of D).
For small changes, the change in probability from climate
change is then
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: ð2Þ

The risk-based approach estimates δP(E), or sometimes
δP(E,D), the change in the joint occurrence of E and D (e.g.
the combination of high temperature and anti-cyclonic circu-
lation anomaly used by [8••] for the 2010 Russian heat wave).
The dynamically conditioned attribution, in contrast, esti-
mates δP(E|D); this is equivalent to the ‘circulation analogues’
approach described earlier and illustrated in Fig. 5, where
anthropogenic changes in temperature for a particular extreme
winter were estimated after conditioning on the circulation
regime. The signal-to-noise of this estimate can be expected
to be large, since the conditioning (especially if on a specific
synoptic situation) eliminates most of the dynamical variabil-
ity; the concept is illustrated in Fig. 3c. The product P(D)
times δP(E|D) is simply the change in probability of the ex-
treme event, assuming no change in occurrence of the dynam-
ical situation that led to the event. The justification for the
dynamically conditioned approach is that the latter change in
occurrence, δP(D), is highly uncertain and best assumed to be
zero unless there are strong grounds for assuming something
else [16••]. In any case, its impact on δP(E) depends on the
ratio of the signal-to-noise of the dynamical change, δP(D)/
P(D), to that of the thermodynamic change, δP(E|D)/P(E|D).
Since this ratio can generally be expected to be small, the
neglect of this term is not unreasonable. There is also the last

term in eq. 2, but assuming that D was a necessary condition
for the occurrence of the extreme, it will be negligible. Since
P(E,D)=P(E|D)P(D), neglect of the last term in eq. 2 is im-
plicit in the risk-based approach when an event is defined by
the joint occurrence P(E,D).

It may be noted that this approach is analogous to specify-
ing the meteorology and quantifying the impact of a chemical
change on atmospheric composition, which assumes that the
composition change is too small to appreciably affect the me-
teorology. This was used by [33] to quantify the contribution
of changes in ozone-depleting substances to the observed
total-ozone record on a year-by-year basis, i.e. deterministi-
cally, rather than only statistically as would be the case with a
free-running model.

For a weather extreme that is predictable, the dynamically
conditioned approach can be implemented within a weather
model that is capable of simulating the extreme in question.
That is one of the great advantages of this approach: that one
can obtain a credible estimate of δP(E|D). The main uncertain-
ty probably lies in the specification of the counter-factual ther-
modynamic environment, but that is an issue for any attribu-
tion study. The concept is illustrated in Fig. 6, which shows
the impact of cooler SSTs on re-forecasts of hurricane Sandy.
Of course, since the atmosphere is chaotic, any small differ-
ence in conditions will lead to a difference in the outcome, and
if the observed outcome was extreme, then one might gener-
ically expect a weakened extreme from any perturbation. This
potential pitfall can be easily guarded against by alsomaking a
perturbation in the opposite direction. Lackmann [35] applied
this approach to Sandy, finding that the hurricane’s intensity
would have been slightly weaker had it occurred in
1900, but would be substantially greater if it re-
occurred in 2100. Another application of this approach
is [36•], who ran a nested convection-resolving model,
constrained by the large-scale circulation, to simulate
the 2012 Krymsk precipitation extreme. Remarkably,
they identified a bifurcation whereby the mesoscale sys-
tem leading to the extreme could only occur for Black
Sea temperatures above a certain threshold (which they
argued was of anthropogenic origin).

As illustrated by Fig. 3c, conditioning on the dynam-
ical situation leading to the event can convert necessary
causation to sufficient causation, in which case even a
single event can distinguish between alternative hypoth-
eses. For example, [37] argued that the exceptionally
warm European fall/winter of 2006/2007 could not have
occurred, in conjunction with the observed circulation
anomaly, without anthropogenic warming. This then ties
the attribution directly to the observed event, rather than
being only probabilistic. The direct confrontation with
data as an essential component of the attribution is a
very attractive feature of this approach, as is its empha-
sis on a physically based causal narrative.
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It may be that circulation changes are expected to be im-
portant in the future occurrence of an extreme. An example is
provided in Fig. 7, where the spread in future cold-season
Mediterranean drying—a model prediction with enormous
socioeconomic implications for Europe—across the CMIP5
models is almost entirely explained by the spread in the circu-
lation response [38]. In this case, eq. 2 is still informative
because it allows one to separately estimate the uncertainty
associated with the thermodynamic and dynamic aspects of
climate change. Particular choices of δP(D) could be consid-
ered as plausible storylines.

Conclusions

In climate science, we are accustomed to strive for quantitative
answers, but it is important to appreciate that being quantita-
tive is not necessarily the same thing as being rigorous [39]. In
particular, it is essential to distinguish between quantifiable
uncertainty and Knightian (i.e. deep) uncertainty [40].
Uncertainty associated with sampling variance is quantifiable,
e.g. through boot-strapping methods, but many of the uncer-
tainties associated with climate change—especially the deep
uncertainties associated with the atmospheric circulation
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Fig. 6 Effect of warmer sea-surface temperatures on hurricane Sandy.
The two panels show the ensemble mean ECMWF forecast of mean sea
level pressure (showing only contours at or below 990 hPa, in units of
5 hPa) from 24 October 2012 verifying on 29 October 2012, using (a)
observed SSTs and (b) climatological SSTs over the previous 20 years.
The SSTs are shown in the colours, with the 26C contour indicated. The

unusually warm SSTs along the US coast in 2012 led to exceptionally
strong surface latent heat fluxes which fueled a more powerful storm. To
the extent that the warmer SSTs are partly anthropogenic, this was a
contributor to Sandy’s intensity. From [34]. Copyright American
Meteorological Society, used with permission

a b

Fig. 7 Dependence of cold-season Mediterranean drying on the
circulation response to climate change. a The distributions of yearly
cold-season precipitation anomalies over the Mediterranean basin for all
CMIP5 models in the historical period (1976–2005), relative to their
climatological mean (black solid), and the projected anomalies during
2070–2099 under RCP8.5 for the 20 % of models with the strongest
(dashed grey) and weakest (solid grey) circulation responses to climate

change, where the circulation response is measured by the lower
tropospheric (850 hPa) zonal wind change over North Africa. b The
relation between the projected changes in cold-season Mediterranean
precipitation, and in North Africa zonal wind, across the different
CMIP5 models. The changes in circulation explain about 85 % of the
CMIP5 mean precipitation response and 80% of the variance in the inter-
model spread. Figure courtesy of Giuseppe Zappa, adapted from [38]
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response to climate change—are not easily quantifiable.
Examining the sensitivity of a result to the choice of climate
model, as is becoming common practice in risk-based ap-
proaches [19], is an important first step in determining robust-
ness. However, model spread is not a quantification of model
uncertainty because a multi-model ensemble does not repre-
sent a meaningful probability distribution [41]. It has therefore
been argued that the quest for more accurate climate model
predictions is illusory and that instead we need to be using
models for understanding, not prediction [42, 43].

The risk-based approach to extreme event attribution is
inherently probabilistic and does not claim to attribute the
specific event that inspired the study; indeed, in [12], the ob-
served event was excluded from the analysis to avoid selection
bias, and the results concerned observed changes prior to the
event itself, and expected future changes, rather than the event
itself. Such analyses are clearly useful for policy and planning,
and potentially also for liability [11, 44], if they can be
established to be credible. However, for weather-related ex-
tremes, converting a weather question into a climate question
by abstracting the particular event to an event class (e.g. re-
garding the extreme precipitation across a GCM grid cell as a
proxy for extreme precipitation in a mountain valley or can-
yon) could be seen as substituting a simple problem in place of
a complex one [45], and thus as falling prey to Whitehead’s
fallacy of ‘misplaced concreteness’ [40]. If the quantitative
estimates of altered risk are sensitive to the spatiotemporal
footprint of the event, as they almost certainly will be, then
the quantification provided by the climate model may not be
relevant at the spatiotemporal scale of the extreme weather
event itself. Furthermore, if dynamical aspects of climate
change are crucial to the model result, the credibility of these
changes needs to be established. The ideal situation is when a
model can reliably simulate the dynamics leading to the ex-
treme, and the modelled effect of climate change is mainly
occurring through well-represented thermodynamic
processes.

The storyline approach to event attribution has the merit of
being strongly anchored in a physically based causal narrative,
at the price of not addressing the potential change in likelihood
of the dynamical situation leading to the event. It has been
argued here that this apparent weakness may actually be a
strength insofar as it explicitly distinguishes between quanti-
fiable risk [through δP(E|D)] and Knightian uncertainty
[through δP(D)]. In this respect, the storyline approach is not
so much ignoring the possibility of a dynamical component to
climate change, as treating it separately from the purely ther-
modynamic changes concerning which there is much higher
confidence. [46•] have recently advocated a similar approach
for climate projections, within a transdisciplinary framework.
This has the further advantage that other anthropogenic factors
(i.e. apart from climate change) can be explicitly included in
the analysis. (This can be done in the risk-based approach too,

of course, but the effects would be more challenging to isolate
because of the lower signal-to-noise.) For example, rather than
removing urban heat-island effects from the data in order to
isolate the ‘true’ climate signal, would it not be more useful to
include them in the analysis—since those effects do kill peo-
ple—and understand how the different factors combine?

Of course, the two approaches to extreme event attribution
are not mutually exclusive, and as argued here can be cast
within a common framework; there is no reason why they
could not be used in a complementary fashion, thereby bring-
ing together climate-oriented and weather-oriented perspec-
tives. Moreover, conditioning can be done to various degrees.
Indeed, [17•] argue that for Africa, where inter-annual variabil-
ity is strongly controlled by SSTs, an SST-conditioned attribu-
tion may in some cases be more useful to users than an uncon-
ditioned attribution since observed events serve as a benchmark
for resilience, which people can relate to. Conditioning by SSTs
is merely the first step towards conditioning by circulation, and
ultimately by synoptic situation. The most useful level of con-
ditioning will depend on the question being asked, and the
confidence one has in the resulting answer.
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