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Summary

1. Species’ distributions are likely to be affected by a combination of environmental drivers.

We used a data set of 11 million species occurrence records over the period 1970–2010 to

assess changes in the frequency of occurrence of 673 macro-moth species in Great Britain.

Groups of species with different predicted sensitivities showed divergent trends, which we

interpret in the context of land-use and climatic changes.

2. A diversity of responses was revealed: 260 moth species declined significantly, whereas 160

increased significantly. Overall, frequencies of occurrence declined, mirroring trends in less

species-rich, yet more intensively studied taxa.

3. Geographically widespread species, which were predicted to be more sensitive to land use

than to climate change, declined significantly in southern Britain, where the cover of urban

and arable land has increased.

4. Moths associated with low nitrogen and open environments (based on their larval host

plant characteristics) declined most strongly, which is also consistent with a land-use change

explanation.

5. Some moths that reach their northern (leading edge) range limit in southern Britain

increased, whereas species restricted to northern Britain (trailing edge) declined significantly,

consistent with a climate change explanation.

6. Not all species of a given type behaved similarly, suggesting that complex interactions

between species’ attributes and different combinations of environmental drivers determine

frequency of occurrence changes.

7. Synthesis and applications. Our findings are consistent with large-scale responses to climatic

and land-use changes, with some species increasing and others decreasing. We suggest that land-

use change (e.g. habitat loss, nitrogen deposition) and climate change are both major drivers of

moth biodiversity change, acting independently and in combination. Importantly, the diverse

responses revealed in this species-rich taxon show that multifaceted conservation strategies are

needed to minimize negative biodiversity impacts of multiple environmental changes. We sug-

gest that habitat protection, management and ecological restoration can mitigate combined

impacts of land-use change and climate change by providing environments that are suitable for

existing populations and also enable species to shift their ranges.

Key-words: citizen science, climate change, frequency of occurrence, habitat loss, inverte-

brate declines, land-use change, Lepidoptera, moths

Introduction

The main drivers of global biodiversity change have

been identified (Millennium Ecosystem Assessment 2005),

but their impacts vary spatially, temporally and
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taxonomically. Drivers may also interact to produce syn-

ergistic or opposing effects (Travis 2003; Brook, Sodhi &

Bradshaw 2008; Schweiger et al. 2010), but there are few

empirical examples, particularly for insects, which com-

prise the majority of terrestrial biodiversity (Collen et al.

2012). Unquantified change and a resultant lack of evi-

dence-based conservation present pressing biological and

strategic management challenges.

Here, we utilize a substantial data set of species occur-

rence records to examine long-term changes in a species-

rich insect taxon (Lepidoptera: macro-moths) in Great

Britain (GB). Large-scale, comprehensive assessments of

biodiversity changes in speciose insect taxa are rare

(Thomas 2005; Mattila et al. 2008, 2009; Jeppsson et al.

2010). Moths constitute one of the largest groups of her-

bivorous insects, forming key links in food webs, inflict-

ing damage (as well as pollination) on their plant hosts

and providing a major food source for insectivorous ani-

mals in many ecosystems (Strong, Lawton & Southwood

1984).

We calculate long-term changes in frequency of occur-

rence of 673 lepidopteran species in GB and evaluate the

trends in relation to species’ predicted sensitivities to

recent climatic and habitat changes. Habitat modification,

particularly agricultural intensification, is considered the

pre-eminent cause of recent species declines in GB and

other western European countries (Warren & Key 1991;

Robinson & Sutherland 2002; Kleijn et al. 2009). In par-

allel, climate change is eliciting changes in the geographi-

cal range, abundance, phenology and biotic interactions

of Lepidoptera species (Parmesan 2006). Climate change

provides a shifting context for the impacts of habitat

modification, either amplifying or ameliorating species’

responses depending upon ecological traits and biogeo-

graphical situation.

Gradients of land use, climate and species’ distribu-

tions combine conveniently to provide distinct (often

opposite) predictions of changes to species’ occurrence in

GB. Northern GB retains a higher proportion of semi-

natural habitats than southern GB, where levels of land

conversion to intensive agriculture and urbanisation have

been greater (Morton et al. 2011). Therefore, moth spe-

cies that are not strongly constrained by climate and

occur widely in GB might be expected to decline in the

south while remaining relatively stable in the north, in

response to land-use changes. On the other hand, many

insect species (including many macro-moths) reach the

north-western climatic limit of their European range

within southern GB. These species should benefit from

climate change, leading to the opposite prediction – they

should potentially increase as the climate has warmed

(Hickling et al. 2006). In contrast, arctic–alpine species

that are restricted to northern and montane areas in GB

might be expected to decline in response to regional

warming. By considering warm-adapted, cold-adapted

and relatively climate-insensitive (within GB) species

across a broad gradient of land-use intensity, we attempt

to tease apart the effects of change in land use and

climate on GB moths.

Land-use changes involve altered management (e.g.

increased fertilizer input) as well as conversion from one

land-use type to another. We considered these effects by

analysing the occurrence changes in moths that are

monophagous on larval host plants that possess different

environmental requirements. Trait-based analyses of

plant trends have been linked to drivers of change

(Carey et al. 2008), utilizing Ellenberg indicator values to

characterize the realized niches of plants along environ-

mental gradients, such as those relating to soil chemistry

and light availability (Ellenberg 1979). Thus, by consider-

ing the Ellenberg indicator values of moth larval hosts,

we can examine links between drivers of botanical

change and changes to the frequency of occurrence of

moths.

Here, we test three hypotheses: (i) macro-moth species

will show a wide diversity of changes as they respond to

diverse drivers, but will have declined overall, mirroring

wider biodiversity trends. (ii) The responses of species

with different geographical distributions (southern, north-

ern, widespread) are expected to differ because the effects

of climate and land use may differ between these species

categories. (iii) Moth occurrence trends will be associated

with host plant attributes (Ellenberg indicator values);

specifically, moths that use types of plant that are in

decline, such as those associated with low nitrogen soil

conditions, will also be in decline.

We found support for each hypothesis, enabling us to

assess long-term moth biodiversity change. These results

will guide future research into drivers of biodiversity

change and inform ecological management to buffer

species from negative impacts.

Materials and methods

DATA SOURCES

GB species occurrence records for macro-moths (here defined

as Lepidoptera families: Hepialidae, Cossidae, Zygaenidae,

Limacodidae, Sesiidae, Lasiocampidae, Saturniidae, Endromidae,

Drepanidae, Geometridae, Sphingidae, Notodontidae, Erebidae,

Nolidae and Noctuidae) for the period 1970–2010 were obtained

from the National Moth Recording Scheme data base:

11 074 870 records were extracted. These were collated from

volunteer observers during recording for distribution atlases

organized by the Biological Records Centre and Butterfly

Conservation (Heath & Emmet 1983; Hill et al. 2010) (accessi-

ble via the National Biodiversity Network http://data.nbn.org.

uk).

Interspecies detectability differences can be an issue with

analysis of occurrence data (MacKenzie et al. 2006; K�ery,

Gardner & Monnerat 2010), so we only considered within-

species changes over time. New knowledge of species’ biology

or novel collection methods may also alter detectability (Jepps-

son et al. 2010). Thus, non-resident species and those subject

to taxonomic revision since 1970 were excluded from the analy-
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sis. We also excluded species for which recording methodolo-

gies changed (e.g. most Sesiidae were excluded because the

recent introduction of pheromone lures has greatly improved

detection rates) and species that occurred in <10 grid squares

in the 1970–1999 period, as no range margin could be deter-

mined for these species (see next section). This left 673 species

(10 462 519 records in total) for our analysis.

Each species occurrence was attributed to a 10 9 10 km grid

square of the GB Ordnance Survey (OS) National Grid (hereafter

‘grid squares’) for analysis. The records cover 93% of GB grid

squares.

CLASSIF ICATION OF SOUTHERN, NORTHERN AND

WIDESPREAD SPECIES

Range margins were determined as the mean latitude of the 10

most northerly or southerly occupied grid squares in 1970–1999

(Hickling et al. 2006), the baseline period for our analysis. Spe-

cies were then classified into three groups, based on the 488 km

north gridline (OS National Grid). ‘Southern species’ had a

northern (cold) range margin that occurred in the southern half

of Britain (i.e. south of 488 km north OS). ‘Northern species’

had a southern (warm) range margin north of 488 km north.

‘Widespread species’ did not meet either criteria, occurring in

both northern and southern GB (Fig. 1). There was little

evidence of taxonomic bias between these groups (Fig. S1,

Supporting information).

ANALYSIS OF CHANGES IN FREQUENCY OF

OCCURRENCE

Temporal and spatial variation in recording intensity (Boakes

et al. 2010) must be accounted for in analyses of species occur-

rence data (Ponder et al. 2001; Heden€as et al. 2002; Telfer,

Preston & Rothery 2002; Hassall & Thompson 2010; Pardo

et al. 2013). We interpreted moth occurrence data using the

program Frescalo to determine temporal trends for each species

(Hill 2012). This method utilizes the presence or absence of

‘benchmark’ species to assess recording intensity at a given

location. A local set of benchmark species was defined for each

(focal) grid square, based on species occurrence data in sur-

rounding ‘neighbourhoods’. The fraction of benchmark species

observed in a focal square enables recording effort to be esti-

mated, which can then be used to adjust the observed frequen-

cies of species occurrence. The adjusted frequencies are then

used to assess trends over time (see Hill 2012 and Appendix

S1, Supporting information for detailed explanation).

Frescalo was applied to the total moth data set (673 spe-

cies), split into two time periods of roughly equal numbers of

records, 1970–1999 vs. 2000–2010. For each time period, a grid

square was categorized as having species detected (1) or not-

detected (0) (giving a sample of 720 969 data points). Neigh-

bourhoods were defined based on spatial proximity and floristic

similarity using 1970 onwards vascular plant data from Pres-

ton, Pearman & Dines (2002). For each location in our

analysis, the corresponding neighbourhood was defined as the

Fig. 1. Change in frequency of occurrence (per year change in relative reporting rate, RRR) 1970–1999 vs. 2000–2010 for southerly dis-

tributed, northerly distributed and geographically widespread moths. Significant results shown as ** P < 0�01 and *** P < 0�001. Species
with individually significant changes (P < 0�05) are shown in black. Change values are multiplied by 103 to improve axis legibility.
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50 most floristically similar (using a spatial smoothing kernel)

grid squares selected from the 100 geographically closest

squares to each location (Appendix S1, Supporting informa-

tion).

Change in moth species’ frequency of occurrence was estimated

by considering the relative reporting rate (RRR; Appendix S1,

Supporting information) of each species in each time period

(1970–1999 and 2000–2010) (Hill 2012). Temporal trends for each

species were expressed as the yearly change in RRR, calculated

as the overall change between the mid-points of the two time

periods (i.e. 1984 and 2005, respectively) divided by the number

of intervening years. The significance of these trends was deter-

mined using a z-test by:

z ¼ t2 � t1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 þ r22

p

where t1 and t2 are the relative reporting rates of a given species

from the first and second time periods, and r12 and r22 are the

variances associated with the RRR for periods t1 and t2, respec-

tively. Trends in RRR were determined to be significant (at the

95% confidence level) if |z| > 1�96. The analyses of Frescalo

trends were carried out in R v2.9.2 (R Development Core Team

2009).

Finally, for widespread species, RRR trends were recalculated

separately for the northern and southern halves of Britain, divid-

ing the data along the 488 km north gridline.

CORRELATION WITH HOST PLANT AND

ENVIRONMENTAL VARIABLES

We tested host plant effects for the subset of 56 GB macro-

moths that are monophagous (Skinner 2009; Waring, Town-

send & Lewington 2009) on vascular plant species for which

distribution and trait (Ellenberg indicator values) data were

available. Long-term GB distribution changes in the plants

(1930–1960 vs. 1987–1999) and Ellenberg values were derived

from PLANTATT (Hill, Preston & Roy 2004). We used all

Ellenberg values in PLANTATT (soil nitrogen, soil pH, soil

moisture and shade tolerance) excluding salt tolerance, for

which there was insufficient variation for the plants in our

analysis.

We tested whether changes in frequency of occurrence

(DRRR year�1) of the 56 moth species were correlated with

distribution change in their host plants. We fitted a multiple

regression of moth changes against their host’s Ellenberg values

for light, moisture, reaction (pH) and nitrogen. In all these sta-

tistical models, we included species distribution grouping

(‘southern’ or ‘widespread’ species; no northern species were

part of the monophagous group) as a control variable. Regres-

sions were fitted in R with moth DRRR year�1 as a response

variable and either plant distribution change or Ellenberg traits

as explanatory variables. Initially, model residuals did not con-

form to normality, so three outlying data points were removed

to rectify this (Shapiro test for normality of residuals:

W = 0�9776, P = 0�42, n = 53), although results were qualita-

tively similar when including these data. We considered the

phylogenetic non-independence of species by fitting a mixed-

effects model with genus and family as random effects. Higher-

level phylogenetic relationships are not well resolved in

Lepidoptera so a full comparative analysis using a phylogeny

was not possible (Mutanen, Wahlberg & Kaila 2010). We used

the lme4 and lmerTest packages (Bates, Maechler & Dai 2008;

with significance of variables assessed using Satterthwaite’s

approximation for degrees of freedom, Kuznetsova, Brockhoff

& Christensen 2013).

Results

British macro-moth species decreased significantly in fre-

quency of occurrence between the periods 1970–1999 and

2000–2010 (Wilcoxon signed-rank test on DRRR year�1

using all species: V = 87 558, n = 673, P < 0�001): 260 of

the 673 species exhibited significant declines (P < 0�05),
with a further 157 species showing a tendency to decline.

In contrast, 160 species increased significantly (P < 0�05)
in frequency of occurrence, with 96 others showing a ten-

dency to increase. Thus, 420 (62%) of the species have

undertaken significant changes in frequency, with 1�6
times as many decreasing as increasing (Table S1, Sup-

porting information). The magnitude of these changes

was relatively similar between groups (median

DRRR year�1 for significantly increasing species = 0�006
[range 0�002–0�033]; significantly declining species:

median = �0�006 [range = �0�024 to �0�002]; Table S1,

Supporting information). The results reveal a wide diver-

sity of occurrence changes among moths.

Geographically limited species showed contrasting

trends (Fig. 1). Species restricted to northern Britain

(trailing edges of distributions) declined significantly in

frequency of occurrence (with 94% of species declining;

V = 10, n = 17, P = 0�002). In contrast, species confined

to southern GB did not show a significant change overall

(V = 8575, n = 186, P = 0�87): 24% of species declined

significantly, while 27% increased significantly.

On average, geographically widespread species

decreased in frequency of occurrence (V = 39 066,

n = 470, P < 0�001; Fig. 1): 45% of individual species in

this group declined significantly. When trends for wide-

spread species were recalculated separately for southern

and northern GB, we found disproportionately larger

declines in the south (Fig. 2). There was no significant

change in frequency of occurrence of widespread species

in northern GB (V = 53 569, n = 470, P = 0�55), but a

significant decline in the south (V = 37 017, n = 470,

P ≤ 0�001).
Changes in frequency of occurrence of monophagous

macro-moths and distribution changes in their larval host

plants were not significantly linked (linear regression:

slope = 0�002, t = 1�33, P = 0�19, R2 = 0�03; mixed model:

slope = 0�002, t = 1�99, P = 0�057; n = 53 species for

both; Fig. S2, Supporting information). However, there

was a negative relationship between moth species’ trends

and their host plant Ellenberg light values and a positive

correlation between moth trends and host Ellenberg nitro-

gen values (Table 1; Fig. 3). Moths utilizing larval host

plants growing in open, low-fertility conditions declined

over time compared to species using plants in more

© 2014 The Authors Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.,
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shaded, nitrogen-rich environments. There were no rela-

tionships between moth trends and Ellenberg values for

moisture or reaction.

Discussion

Macro-moth species in Great Britain decreased overall in

frequency of occurrence between 1970–1999 and 2000–

2010, in keeping with a significant decrease in GB macro-

moth abundance over a similar period (Conrad et al.

2006), moth distribution trends in other countries (Mattila

et al. 2008; Groenendijk & Ellis 2011), and declines in

other insect taxa (Warren et al. 2001; Cameron et al.

2011). It provides further evidence that invertebrates are

as negatively impacted by environmental change as verte-

brates (Thomas et al. 2004; Collen et al. 2012). The diver-

sity of trends suggests that combinations of different

drivers are resulting in a mixture of responses.

The occurrence trends were calculated using the

Frescalo method to control for spatiotemporal variation

in recorder effort (Hill 2012). Without controlling for this

bias, variation in the intensity of recording can confound

assessments of species occurrence over time. The method

estimated frequency of occurrence, which is a function of

both local abundance and distribution extent (Appendix

S1, Figs S3 and S4, Supporting information).

The Frescalo method makes a number of assumptions.

One is that the probability of finding a species in a local-

ity can be estimated by its frequency in the neighbour-

hood (floristically similar grid squares in close spatial

proximity). We believe this is reasonable because moth

species tend to be associated with specific ecotypes and

plant communities and because plant communities are

generally good indicators of a range of local environmen-

tal conditions (e.g. soil structure, pH, moisture levels and

microclimate; Ellenberg 1979). A second potential consid-

eration of the Frescalo method is that poorly recorded

neighbourhoods cannot provide information about local

species frequency. This was not an issue in the current

analysis of moth data at 10-km resolution with neigh-
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Fig. 2. Change in the frequency of occurrence (per year change

in relative reporting rate, RRR) 1970–1999 vs. 2000–2010 of geo-

graphically widespread moth species in the northern and southern

halves of Britain (divided by 488 km north OS gridline, see

Fig. 1). Significant result shown as *** P ≤ 0�001. Species with

individually significant changes (P < 0�05) are shown in black.

Change values are multiplied by 103 to improve axis legibility.

Table 1. Relationships from a multiple regression and linear mixed model of host plant Ellenberg indicator values on change in

frequency of occurrence of monophagous moth species (n = 53 for both). Significant results (P < 0�05) shown in bold text. Species distri-

bution grouping (‘southern’ or ‘ubiquitous’ species; no northern species were part of the 53 species) was included as a covariate, with the

intercept representing southern species

Coefficient

Model 1 multiple regression Model 2 mixed effects (phylogenetic control)

Coefficient SE t P Coefficient SE t P

Intercept 0�0057 0�0050 1�14 0�261 0�0042 0�0049 0�849 0�401
Light �0�0014 0�0005 �2�64 0�011 �0�0011 0�0005 �2�179 0�035
Moisture �0�0007 0�0006 �1�20 0�236 �0�0006 0�0005 �1�139 0�261
Reaction �0�0004 0�0005 �0�89 0�378 �0�0007 0�0005 �1�432 0�160
Nitrogen 0�0013 0�0006 2�32 0�025 0�0015 0�0005 2�772 0�008
Species distribution grouping 0�0006 0�0012 0�52 0�607 0�0006 0�0012 0�477 0�636
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bourhoods of 50 grid squares, but it could be if analyses

were conducted at finer spatiotemporal scales. Finally, the

Frescalo method may have limited applicability for less

speciose taxonomic groups that have few potential bench-

mark species.

Our results demonstrate different patterns of change in

the frequency of occurrence among macro-moths with dif-

ferent geographical distributions and host plant traits,

providing full or partial support for each of our hypothe-

ses. Moths as a whole decreased in frequency of occur-

rence, as did northern and geographically widespread

species, while southerly distributed species showed no

overall trend. Additional analyses showed that geographi-

cally widespread species only decreased in the southern

half of Britain and showed no overall trend in the north.

Correlations between trends of monophagous moths and

Ellenberg indicator values of their host plants revealed

mixed findings.

The development of an understanding of the drivers of

moth biodiversity change in GB is a vital step for conser-

vation biologists and practitioners. We propose an inter-

pretation of our findings based on two major drivers of

change for GB biodiversity: habitat modification and

climate change. There is growing indirect evidence of the

impacts of these drivers on GB moths (Merckx et al.

2012; Fox 2013), but we acknowledge that other factors

may be involved and drive changes in the occurrence of

individual species.

The overall decrease in moth frequencies, and that of

the subset of geographically widespread species, is consis-

tent with a response to high levels of habitat modification,

as for butterflies (Warren et al. 2001), although it does

not exclude other explanations.

Our second set of hypotheses related to the perfor-

mances of three geographically defined groups of moths.

Southerly distributed (warmth associated) species were

predicted to increase in response to regional climate

warming (Fig. S5, Supporting information), but they also

inhabit the parts of GB with the highest levels of land-use

change. Some of these species increased and others

decreased (resulting in no overall significant trend in this

group, Fig. 1). This might reflect a diversity of habitat

and climatic sensitivities, although such results could also

be due to the species being insensitive to recent changes in

climate and land use.

In northern Britain, cold-adapted species have declined,

a response consistent with synergistic negative effects of

climate change and habitat modification (as found for

four northern GB butterfly species, Franco et al. 2006).

This is in keeping with other studies implicating climate

change in the retraction of warm range margins of

cold-adapted Lepidoptera (Thomas, Franco & Hill 2006;

Chen et al. 2011; Dieker, Drees & Assmann 2011).

Specific conservation measures may be required for these

trailing edge populations (Hampe & Petit 2005), including

steps to minimize negative land-use impacts and the

protection of climatic refugia.

Geographically widespread species only decreased, on

average, in southern GB; population monitoring has

yielded similar findings (Conrad et al. 2006; Fox et al.

2011). Almost all of the widespread species also occur in

warmer parts of Europe and are unlikely therefore to

have experienced a climatic deterioration of conditions in

southern GB, although there may be exceptions (e.g. Arc-

tia caja Conrad, Woiwod & Perry 2002) due, for example,

to local climatic adaptation. A greater proportion of

widespread species is increasing in northern GB (Fig. 2)

perhaps reflecting the positive impacts of climate change

for some species.

Southern GB has undergone greater loss of semi-natural

habitats since the early 20th century than the north. Com-

parison of 10-km grid square resolution land cover data

for 1931–1941 with 2000 data suggests an increase in arable

and urban land of 20% and 6%, respectively, in southern

GB, and a 4% decrease in arable and 1% increase in urban

land in the north (T. Jucker pers. comm.; Jucker 2010).

Although these habitat conversion trends have slowed

recently, the overall pattern of greater habitat modification

in the south has been retained and ongoing degradation in

habitat quality (e.g. loss of botanical species richness in lin-

ear features) has been recorded (Haines-Young et al.

2003; Carey et al. 2008). We suggest that the decline of

widespread moth species in southern GB is predominantly

linked to habitat modification. Further research is needed

to assess whether these rates of decline will cause regional

extinctions, and to identify effective conservation strate-

gies in the wider countryside (Kleijn et al. 2011).

The variation among species is as revealing as the over-

all trends (Table S1, Supporting information). Sixteen of

the 17 northern species showed a declining trend, suggest-

ing relatively consistent responses to drivers of change. In

contrast, many southern species increased significantly

while others decreased significantly; a pattern also seen

among widespread species. Given that species vary in

their habitat associations and likely responsiveness to

different elements of climate, it is not surprising that

simultaneous habitat and climatic changes generate

increases in frequency in some species and declines in

others (Men�endez et al. 2007).

Much recent research has focussed on species’ traits as

predictors of biodiversity decline (Mattila et al. 2008;
€Ockinger et al. 2010), but success in explaining climate

change responses has been limited (Angert et al. 2011).

We examined traits of the plant hosts of moths, which are

expected to reflect sensitivity to land-use changes more

than the climate (Firbank et al. 2008; Kleijn et al. 2009).

Surprisingly, we found no significant relationship

between changes in host plant distributions and frequency

of occurrence of dependent moths (Fig. S2, Supporting

information). However, specialist moths rarely occupy the

entire range of their larval hosts (Quinn, Gaston & Roy

1997), and change in host plant distribution might occur

in parts of the range unoccupied by the associated moth.

In addition, thresholds of host plant abundance, quality
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and local distribution may determine moth persistence

(Men�endez & Thomas 2000), but these are not accounted

for in assessments of distribution change. Finally, the lack

of association may stem from the inherent differences in

the measures being compared (frequency of occurrence

change for moths vs. distribution change for plants).

We did find significant correlations between changes in

the frequency of occurrence of moth species and Ellenberg

values of host plants for two predictors, showing that

monophagous moths that utilize plant species associated

with high light intensity and low-fertility soils tended to

decrease most strongly (as have plants with these traits,

Carey et al. 2008). Decreases among plants and their spe-

cialist herbivores associated with open, nutrient-poor con-

ditions can be attributed to habitat modification directly,

through changing agricultural and woodland manage-

ment, and also indirectly, for example due to eutrophica-

tion of the environment (Warren & Key 1991; Firbank

et al. 2008; Kleijn et al. 2009; Payne et al. 2013). Such

impacts, mediated through botanical communities (Payne

et al. 2013), have rarely been recorded among herbivores

(Hendriks et al. 2013). Although enrichment may be

reversible on individual sites, new approaches to the man-

agement of nutrients in the wider countryside will be

required to address declines of species restricted to low-

nutrient environments (Robertson & Vitousek 2009).

Synergistic climate change interactions, both negative

and positive, may also occur. Warmer conditions extend

the growing season (Menzel & Fabrian 1999) leading to

increased plant growth, particularly if coupled with rising

soil fertility. Thus, climate change could favour shade-tol-

erant species and could, perversely, reduce warm microcli-

matic niches required by invertebrates (WallisDeVries &

van Swaay 2006; Oliver et al. 2012). On the other hand,

for moth species that utilize plants favoured in high-

nitrogen environments, eutrophication may facilitate

climate-driven range expansion (Betzholtz et al. 2012).

Understanding species’ responses to the drivers of bio-

diversity change is vital to develop adaptive conservation

strategies (Mawdsley, O’Malley & Ojima 2009). The

diverse patterns of change revealed by our study suggest

that drivers of trends are likely to differ between species,

necessitating multifaceted approaches to conservation.

Nevertheless, a generic solution is to maintain existing

high-quality habitats and create new areas (Lawton et al.

2010). This will minimize declines (e.g. of widespread spe-

cies in the south) and maximize increases (e.g. of southern

species), regardless of whether species are responding

most strongly, or in combination, to land-use or climatic

changes. Hence, conservation strategies should aim to

retain sufficient quantity and quality of habitat to mini-
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Fig. 3. Change in the frequency of occurrence (per year change

in relative reporting rate, RRR) 1970–1999 vs. 2000–2010 of

monophagous moth species in relation to host plant Ellenberg

indicator values. Change values are multiplied by 103 to improve

axis legibility. Dashed lines are from univariate regressions.
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mize negative synergistic effects (Oliver et al. 2010; Ara�ujo

et al. 2011), while facilitating the exploitation of opportu-

nities created by climate warming (Hodgson et al. 2011;

Thomas et al. 2012). This requires the protection of

remaining habitats from deleterious impacts, but also suf-

ficient knowledge of land management techniques to max-

imize habitat quality. Such knowledge is limited for

moths but can start by identifying landscape elements and

management practices associated with enhanced species

richness and abundance (Fuentes-Montemayor, Goulson

& Park 2011; Merckx et al. 2012).
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