
Comparison of terrain following and cut 
cell grids using a non-hydrostatic model 
Article 

Accepted Version 

Shaw, J. and Weller, H. ORCID: https://orcid.org/0000-0003-
4553-7082 (2016) Comparison of terrain following and cut cell 
grids using a non-hydrostatic model. Monthly Weather Review, 
144 (6). pp. 2085-2099. ISSN 0027-0644 doi: 
https://doi.org/10.1175/MWR-D-15-0226.1 Available at 
https://centaur.reading.ac.uk/57625/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1175/MWR-D-15-0226.1 

Publisher: American Meteorological Society 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



Comparison of Terrain Following and Cut Cell Grids using a1

Non-Hydrostatic Model2

James Shaw∗ and Hilary Weller3

Department of Meteorology, University of Reading, Reading, United Kingdom4

∗Corresponding author address: Department of Meteorology, University of Reading, Earley Gate,

PO Box 243, Reading, RG6 6BB, UK.

5

6

E-mail: js102@zepler.net7

Generated using v4.3.2 of the AMS LATEX template 1



ABSTRACT

Terrain following coordinates are widely used in operational models but the

cut cell method has been proposed as an alternative that can more accurately

represent atmospheric dynamics over steep orography. Because the type of

grid is usually chosen during model implementation, it becomes necessary to

use different models to compare the accuracy of different grids. In contrast,

here a C-grid finite volume model enables a like-for-like comparison of terrain

following and cut cell grids. A series of standard two-dimensional tests using

idealised terrain are performed: tracer advection in a prescribed horizontal ve-

locity field, a test starting from resting initial conditions, and orographically

induced gravity waves described by nonhydrostatic dynamics. In addition,

three new tests are formulated: a more challenging resting atmosphere case,

and two new advection tests having a velocity field that is everywhere tan-

gential to the terrain following coordinate surfaces. These new tests present a

challenge on cut cell grids. The results of the advection tests demonstrate that

accuracy depends primarily upon alignment of the flow with the grid rather

than grid orthogonality. A resting atmosphere is well-maintained on all grids.

In the gravity waves test, results on all grids are in good agreement with exist-

ing results from the literature, although terrain following velocity fields lead

to errors on cut cell grids. Due to semi-implicit timestepping and an upwind-

biased, explicit advection scheme, there are no timestep restrictions associated

with small cut cells. We do not find the significant advantages of cut cells or

smoothed coordinates that other authors find.
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1. Introduction30

Representing orography accurately in numerical weather prediction systems is necessary to31

model downslope winds and local precipitation. Orography also exerts strong non-local influ-32

ences: from the latent heat release due to convection, by directly forcing gravity waves and plan-33

etary waves, and by the atmospheric response to form drag and gravity wave drag. There are two34

main approaches to representing orography on a grid: terrain following layers and cut cells, with35

the immersed (or embedded) boundary method (Simon et al. 2012) being similar to a cut cell ap-36

proach. All methods align cells in vertical columns. Most models are designed for a particular37

type of grid, and the study by Good et al. (2014) compared cut cell results with terrain following38

solutions implemented within different models. Instead, this study uses a single model to enable a39

like-for-like comparison between solutions using terrain following and cut cell grids.40

With increasing horizontal model resolution, the discrete representation of terrain can become41

steeper, making accurate calculation of the horizontal pressure gradient more difficult when using42

terrain following layers (Gary 1973; Steppeler et al. 2002). Numerical errors in this calculation43

result in spurious winds and can cause numerical instability (Fast 2003; Webster et al. 2003). Cut44

cell methods seek to reduce the error that is associated with steep orography.45

With terrain following (TF) layers the terrain’s influence decays with height so that the bot-46

tommost layers follow the underlying surface closely while the uppermost layers are flat. There47

are two main approaches to minimizing errors associated with TF layers. First, by smoothing48

the effects of terrain with height, the influence of the terrain is reduced, hence errors in the cal-49

culated horizontal pressure gradient are also reduced aloft (Schär et al. 2002; Leuenberger et al.50

2010; Klemp 2011). However, the error is not reduced at the ground where steep terrain remains51

unmodified.52
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Second, numerical errors can also be reduced by improving the accuracy in calculating the hor-53

izontal pressure gradient itself. TF layers are usually implemented using a coordinate transforma-54

tion onto a rectangular computational domain, which introduces metric terms into the equations of55

motion. The techniques proposed by Klemp (2011) and Zängl (2012) both involve interpolation56

onto z-levels in order to calculate the horizontal pressure gradient. This gave them the flexibility to57

design more accurate horizontal pressure gradient discretizations using more appropriate stencils.58

The technique proposed by Weller and Shahrokhi (2014) involved calculating pressure gradients59

in the direction aligned with the grid, thus ensuring curl-free pressure gradients and improving60

accuracy.61

Despite their associated numerical errors, TF layers are in widespread operational use (Step-62

peler et al. 2003). They are attractive because their rectangular structure is simple to process by63

computer and link with parameterisations, and boundary layer resolution can be increased with64

variable spacing of vertical layers (Schär et al. 2002).65

Cut cells is an alternative method in which the grid does not follow the terrain but, instead, cells66

that lie entirely below the terrain are removed, and those that intersect the surface are modified in67

shape so that they more closely fit the terrain. The resulting grid is orthogonal everywhere except68

near cells that have been cut. Hence, errors are still introduced when calculating the horizontal69

pressure gradient between cut and uncut cells.70

The cut cell method can create some very small cells which reduce computational efficiency71

(Klein et al. 2009), and several approaches have been tried to alleviate the problem. Yamazaki72

and Satomura (2010) combine small cells with horizontally or vertically adjacent cells. Steppeler73

et al. (2002) employ a thin-wall appoximation to increase the computational volume of small cells74

without altering the terrain. Jebens et al. (2011) avoid the timestep restriction associated with75

explicit schemes by using an implicit method for cut cells and a semi-explicit method elsewhere.76
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Some studies have shown examples where cut cells produce more accurate results when com-77

pared to TF coordinates. Spurious winds seen in TF coordinates are not present with cut cells and78

errors do not increase with steeper terrain (Good et al. 2014). A comparison of TF and cut cells79

using real initial data by Steppeler et al. (2013) found that five-day forecasts of precipitation and80

wind over Asia in January 1989 were more accurate in the cut cell model, although this result was81

dependent on using an old version of a model.82

Another alternative method is the eta coordinate, described by Mesinger et al. (1988). This83

transformation, expressed in pressure coordinates, quantises the surface pressure at each grid box84

using prescribed geometric heights. This results in terrain profiles having a staircase pattern which85

is known as ‘step’ orography. The eta coordinate improves the accuracy of the horizontal pressure86

gradient calculation compared to the sigma coordinate (Mesinger et al. 1988).87

In an experiment of orographically induced gravity waves, Gallus and Klemp (2000) found that88

horizontal flow along the lee slope was artificially weak in the Eta model. Mesinger et al. (2012)89

offer an explanation for this behaviour: air flowing along the lee slope cannot travel diagonally90

downwards but must first travel horizontally, then vertically downward. However, lee slope winds91

are weakened because some of the air continues to be transported horizontally aloft.92

Mesinger et al. (2012) refined the formulation to allow diagonal transport of momentum and93

temperature immediately above sloping terrain. This arrangement is similar to the finite volume94

cut cell method. The new method improved test results, increasing lee slope winds by 4 m s−1 to95

5 m s−1 (Mesinger et al. 2012).96

This study uses a modified version of the fully-compressible model from Weller and Shahrokhi97

(2014) to enable a like-for-like comparison between terrain following and cut cell grids for ide-98

alised, two-dimensional test cases from the literature. Section 2 presents the formulation of the99

terrain following and cut cell grids used in the experiments that follow. In section 3 we give the100
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governing equations and outline the model from Weller and Shahrokhi (2014). Section 4 analyses101

the results from three advection tests, a test of a stably stratified atmosphere initially at rest, and102

orographically induced gravity waves. Concluding remarks are made in section 5.103

2. Grids104

Here we describe the formulation of the terrain following grids and the method of cut cell grid105

construction. The techniques presented are used to define the grids for the experiments in section 4.106

Gal-Chen and Somerville (1975) proposed a basic terrain following (BTF) coordinate defined107

as108

z = (H−h)(z?/H)+h (1)

where, in two dimensions, z(x,z?) is the physical height of the Cartesian coordinate surface at the109

model level with transformed height z?, H is the height of the domain, and h(x) is the height of110

the terrain surface. In this formulation z varies between h and H and z? ranges from 0 to H. Using111

this coordinate, the terrain’s influence decays linearly with height but disappears only at the top of112

the domain. An example is shown in figure 1a.113

The smooth level vertical (SLEVE) coordinate proposed by Schär et al. (2002) achieves a more114

regular TF grid in the middle and top of the domain than the BTF coordinate. The terrain height115

is split into large-scale and small-scale components, h1 and h2, such that h = h1 + h2, with each116

component having a different exponential decay. The transformation is defined as117

z = z?+h1b1 +h2b2 (2)

where the vertical decay functions are given by118

bi =
sinh((H/si)

n− (z?/si)
n)

sinh(H/si)
n (3)
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and s1 and s2 are the scale heights of large-scale and small-scale terrain respectively. The exponent119

n was introduced by Leuenberger et al. (2010) in order to increase cell thickness in the layers120

nearest the ground, allowing longer timesteps. Leuenberger et al. (2010) found the exponent has121

an optimal value of n = 1.35. Choosing n = 1 gives the decay functions used by Schär et al.122

(2002). An example of the SLEVE grid can be seen in figure 1b.123

Most implementations of terrain following layers use a coordinate system that makes the com-124

putational domain rectangular, but introduces metric terms into the equations of motion. Instead,125

the model employed in this study uses Cartesian coordinates and non-orthogonal grids. By doing126

so, results from the same model can be compared between terrain following and cut cell grids127

without modifying the equation set or discretisation.128

Cut cell grids are generated in a different way to the typical shaving technique described by129

Adcroft et al. (1997). Starting from a uniform grid, all cell vertices that lie beneath the orography130

are moved up to the surface. Additionally, to avoid creating very thin cells, all vertices up to131

2∆z/5 above the orography are moved down to the surface. Where all four of a cell’s vertices are132

moved, the cell has zero volume and so it is removed. Where two vertices at the same horizontal133

location are moved up to the surface they will occupy the same point; this results in a zero-length134

edge that is removed to create a triangular cell. Figure 2 shows how a 2× 3-cell, uniform grid is135

transformed into a cut cell grid. Cells c5 and c6 are removed because they have zero volume, and136

the zero-length edge at point q is removed to create a triangular cell, c3. Point p is moved down137

because it is within 2∆z/5 of the surface, avoiding the creation of a very thin cell.138

Some small cells are generated but, unlike most cut cell grids, cells are typically made smaller139

in height but their width is unaltered. A grid that has these thin cells can be seen in figure 5c. This140

technique has the advantage that cells are not shortened in the direction of flow and so there should141

be no additional constraints on the advective Courant number.142
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3. Models143

Three models are used for the test cases in this study: two linear advection models and a model144

of the fully-compressible Euler equations. All are operated in a two-dimensional x–z slice config-145

uration.146

The two finite volume models make use of the upwind-biased multidimensional cubic advection147

scheme from Weller and Shahrokhi (2014) which is non-monotonic and not flux corrected. The148

scheme uses a least-squares approach to fit a multidimensional polynomial over an upwind-biased149

stencil which contains more cells than the number of polynomial coefficients. This fit is used150

to interpolate cell values onto face values for discretisation of the advection term using Guass’s151

divergence theorem. Following Lashley (2002) and Weller et al. (2009), the two cells either side152

of the face we are interpolating onto are weighted in the least squares fit so that the fit goes nearly153

exactly through these cell centres but does not go exactly through the other points. This method154

worked well when used for terrain following meshes by Weller and Shahrokhi (2014) but can be155

unstable in the presence of very small cut cells. This is because the least squares fit can generate a156

larger interpolation weight for the downwind cell than the upwind cell. In order to overcome this157

problem, wherever a large downwind cell interpolation weight is calculated by the least-squares158

fit, the weighting of the upwind cell is increased for the least-squares fitting and the fit is re-159

calculated. This procedure is repeated until the interpolation weight of the upwind cell is greater160

than the interpolation weight of the downwind cell. More details of this approach and a study of161

its behaviour is the subject of a future publication.162
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a. Finite volume linear advection model163

The first model discretises the linear advection equation in flux form:164

∂φ/∂ t +∇ · (uφ) = 0 (4)

where u = (u,w) is a prescribed velocity field and the tracer density, φ , is interpolated onto cell165

faces using one of two schemes: first, the centred linear scheme which takes the average of the two166

neighbouring cell values; second, the upwind-biased cubic scheme. The time derivative is solved167

using a three-stage, second order Runge-Kutta scheme defined as:168

φ? = φ (n)+∆t f (φ (n)) (5a)

φ?? = φ (n)+
∆t
2

(
f (φ (n))+ f (φ?)

)
(5b)

φ (n+1) = φ (n)+
∆t
2

(
f (φ (n))+ f (φ??)

)
(5c)

where f (φ (n)) = −∇ · (uφ (n)) at time level n. This time-stepping scheme is used for consistency169

with the trapezoidal implicit scheme used for the fully-compressible model, described in sec-170

tion 3c. To ensure that the discrete velocity field is non-divergent, velocities are prescribed at cell171

faces by differencing the streamfunction, Ψ(x,z), along the edges from Ψ stored at cell vertices.172

b. Finite difference linear advection model173

The second model is a modified version of the linear advection model first used by Schär et al.174

(2002). It uses terrain following coordinates and it is configured with leapfrog timestepping and175

either second-order centred differences, or a fourth-order centred difference scheme given by:176

∂uφ
∂x
≈ 1

∆x

(
ui+ 1

2
Fi+ 1

2
−ui− 1

2
Fi− 1

2

)
(6a)

Fi+ 1
2
=

1
12

(−φi+2 +7φi+1 +7φi−φi−1) (6b)

and similarly for ∂ (wφ)/∂ z.177

9



Once again, velocity fields are prescribed using a streamfunction defined at cell vertices (referred178

to as double staggered grid points by Schär et al. (2002)). The original version of the code effec-179

tively smoothed the orography, interpolating the geometric height, z, at doubly staggered points180

from values at adjacent half levels in order to calculate the streamfunction. The modified version181

used here directly calculates the height at vertices to enable comparisons with the finite volume182

model solutions.183

c. Finite volume fully-compressible model184

The third model is taken from Weller and Shahrokhi (2014) which details a discretisation of the185

fully-compressible Euler equations, given by186

Momentum
∂ρu
∂ t

+∇ ·ρu⊗u = ρg− cpρθ∇Π−µρu (7a)

Continuity
∂ρ
∂ t

+∇ ·ρu = 0 (7b)

Thermodynamic equation
∂ρθ
∂ t

+∇ ·ρuθ = 0 (7c)

Ideal gas law Π(1−κ)/κ =
Rρθ

p0
(7d)

where ρ is the density, u is the velocity field, g is the gravitational acceleration, cp is the heat187

capacity at constant pressure, θ = T (p0/p)κ is the potential temperature, T is the temperature,188

p is the pressure, p0 = 1000hPa is a reference pressure, Π = (p/p0)
κ is the Exner function of189

pressure, and κ = R/cp is the gas constant to heat capacity ratio. µ is a damping function used for190

the sponge layer in the gravity waves test in section 4d.191

The fully-compressible model uses the C-grid staggering in the horizontal and the Lorenz stag-192

gering in the vertical such that θ , ρ and Π are stored at cell centroids and the covariant component193

of velocity at cell faces. The model is configured without Coriolis forces.194
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Acoustic and gravity waves are treated implicitly and advection is treated explicitly. The trape-195

zoidal implicit treatment of fast waves and the Hodge operator suitable for non-orthogonal grids196

are described in appendix A. To avoid time-splitting errors between the advection and the fast197

waves, the advection is time-stepped using a three-stage, second-order Runge-Kutta scheme. The198

advection terms of the momentum and θ equations, (7a) and (7c), are discretised in flux form199

using the upwind-biased cubic scheme.200

4. Results201

A series of two-dimensional tests are performed over idealised orography. For each test, results202

on terrain following and cut cell grids are compared. The first test from Schär et al. (2002) advects203

a tracer in a horizontal velocity field. Second, a new tracer advection test is formulated employing204

a terrain following velocity field to challenge the advection scheme on cut cell grids. The third205

test solves the Euler equations for a stably stratified atmosphere initially at rest, following Klemp206

(2011). Fourth, as specified by Schär et al. (2002), a test of orographically-induced gravity waves207

is performed. Finally, another advection test is formulated that transports a stably stratified thermal208

profile in a terrain following velocity field. No explicit diffusion is used in any of the tests.209

The OpenFOAM implementation of the numerical model, grid generation utilities and test210

cases are available at https://github.com/hertzsprung/tf-cutcell-comparison/tree/211

shaw-weller-2015-mwr.212

a. Horizontal advection213

Following Schär et al. (2002), a tracer is transported above wave-shaped terrain by solving the214

advection equation for a prescribed horizontal wind. This test challenges the accuracy of the215

advection scheme in the presence of grid distortions.216
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The domain width is 301 km, taken as the horizontal distance between the inlet and outlet bound-217

aries. The domain is 25 km high, discretized onto a grid with ∆x = 1km and ∆z? = 500m. Note218

that Schär et al. (2002) measured the domain width as 300 km between the outermost cell centres219

where tracer values are specified. Both formulations create a cell centre (or mass point) rather than220

a cell face (or horizontal velocity point) over the top of the highest peak which is crucial for the221

accuracy of the centred advection schemes.222

The terrain is wave-shaped, specified by the surface height, h, such that223

h(x) = h? cos2(αx) (8a)

where224

h?(x) =


h0 cos2(βx) if |x|< a

0 otherwise
(8b)

where a= 25km is the mountain envelope half-width, h0 = 3km is the maximum mountain height,225

λ = 8km is the wavelength, α = π/λ and β = π/(2a). On the SLEVE grid, the large-scale226

component h1 is given by h1(x) = h?(x)/2 and s1 = 15km is the large scale height, and s2 = 2.5km227

is the small scale height. The optimisation of SLEVE by Leuenberger et al. (2010) is not used, so228

the exponent n = 1.229

The wind is entirely horizontal and is prescribed as230

u(z) = u0


1 if z≥ z2

sin2
(

π
2

z−z1
z2−z1

)
if z1 < z < z2

0 otherwise

(9)

where u0 = 10m s−1, z1 = 4km and z2 = 5km. This results in a constant wind above z2, and zero231

flow at 4 km and below.232
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The discrete velocity field is defined using a streamfunction, Ψ. Given that u = −∂Ψ/∂ z, the233

streamfunction is found by vertical integration of the velocity profile:234

Ψ(z) =−u0

2


(2z− z1− z2) if z > z2

z− z1− z2−z1
π sin

(
π z−z1

z2−z1

)
if z1 < z≤ z2

0 if z≤ z1

(10)

A tracer with density φ is positioned upstream above the height of the terrain. It has the shape235

φ(x,z) = φ0


cos2 (πr

2

)
if r ≤ 1

0 otherwise
(11)

having radius, r, given by236

r =

√(
x− x0

Ax

)2

+

(
z− z0

Az

)2

(12)

where Ax = 25km, Az = 3km are the horizontal and vertical half-widths respectively, and φ0 =237

1kg m−3 is the maximum density of the tracer. At t = 0s, the tracer is centred at (x0,z0) =238

(−50km,9km) so that the tracer is upwind of the mountain and well above the maximum terrain239

height of 3 km. Analytic solutions can be found by setting the tracer centre such that x0 = ut. Tests240

are integrated forward in time for 10000 s with a timestep of ∆t = 25s.241

The test was executed on the BTF, SLEVE and cut cell grids using a centred linear scheme and242

the upwind-biased cubic scheme. Results were also obtained on BTF and SLEVE grids with the243

fourth order scheme from Schär et al. (2002) using the modified version of their code.244

Minimum and maximum tracer values and `2 error norms on the BTF, SLEVE, cut cell and245

regular grids are summarised in table 1, where the `2 error norm is defined as246

`2 =

√
∑c (φ −φT )

2 Vc

∑c
(
φ 2

T Vc
) (13)

where φ is the numerical tracer value, φT is the analytic value and Vc is the cell volume.247
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The results of the cubic upwind-biased scheme on TF and regular grids are comparable with248

those for the fourth-order centred scheme from Schär et al. (2002). Error is largest on the BTF249

grid with `2 = 0.112 but is significantly reduced on the SLEVE grid with `2 = 0.0146. Advection250

is most accurate on the cut cell grid, with `2 approximately half of that on the SLEVE grid. Tracer251

minima and maxima for the centred linear and fourth order schemes are lower than those presented252

by Schär et al. (2002) because no interpolation is used to calculate the streamfunction.253

The results of the horizontal advection test show that numerical errors are due either to misalign-254

ment of the flow with the grid, or to grid distortions. In the following section, we propose a new255

test in order to identify the cause of the errors.256

b. Terrain following advection257

In the horizontal advection test, results were least accurate on the BTF grid, where the grid258

was most non-orthogonal and flow was misaligned with the grid layers. Here, we formulate a259

new tracer advection test in which the velocity field is everywhere tangential to the basic terrain260

following coordinate surfaces. On the BTF grid, the flow is then aligned with the grid, but the261

data in the multidimensional advection stencil is not uniformly distributed because the BTF grid262

is non-orthogonal. Conversely, on the cut cell grid, the flow is misaligned with the grid but, except263

in the lowest layer, the grid is orthogonal. This test determines whether the primary source of264

numerical error is due to non-orthogonality or misalignment of the flow with grid layers.265

The spatial domain, mountain profile, initial tracer profile and discretisation are the same as266

those in the horizontal tracer advection test, except for the timestep ∆t = 20s. The velocity field is267

defined using a streamfunction, Ψ, so that the discrete velocity field is non-divergent and follows268
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the BTF coordinate surfaces given by equation (1) such that269

Ψ(x,z) =−u0H
z−h
H−h

(14)

where u0 = 10m s−1, which is the horizontal wind speed where h(x) = 0. The horizontal and270

vertical components of velocity, u and w, are then given by271

u =−∂Ψ
∂ z

= u0
H

H−h
, w =

∂Ψ
∂x

= u0H
dh
dx

H− z

(H−h)2 (15)

dh
dx

=−h0
[
β cos2 (αx)sin(2βx)+α cos2 (βx)sin(2αx)

]
(16)

Unlike the horizontal advection test, flow extends from the top of the domain all the way to the272

ground. The discrete velocity field is calculated using the streamfunction in the same way as the273

horizontal advection test.274

At t = 10000s the tracer has passed over the mountain. The horizontal position of the tracer275

centre can be calculated by integrating along the trajectory to find t, the time taken to pass from276

one side of the mountain to the other:277

dt = dx/u(x) (17)

t =
∫ x

0

H−h(x)
u0H

dx (18)

t =
x
u0
− h0

16u0H

[
4x+

sin2(α +β )x
α +β

+

sin2(α−β )x
α−β

+2
(

sin2αx
α

+
sin2βx

β

)]
(19)

Hence, we find that x(t = 10000s) = 51577.4m. Because the velocity field is non-divergent,278

the flow accelerates over mountain ridges and the tracer travels 1577.4 m further compared to279

advection in the purely horizontal velocity field. Tracer height is unchanged downwind of the280

mountains because advection is parallel to the coordinate surfaces.281

Tracer contours at t = 0s,5000s and 10000s are shown in Figure 3 using the centred linear282

scheme on the BTF grid and cut cell grid (3a and 3b respectively). At t = 5000s, the tracer is283
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distorted by the terrain-following velocity field. On the BTF grid, the tracer correctly returns to284

its original shape having cleared the mountain by t = 10000s, but this is not the case with centred285

linear scheme on the cut cell grid. Here, the tracer has spread vertically due to increased numerical286

errors when the tracer is transported between layers. Dispersion errors are apparent with grid-scale287

oscillations that travel in the opposite direction to the wind (figure 3d) and some artifacts remain288

above the mountain peak.289

A small improvement is obtained on the BTF grid by using the upwind-biased cubic scheme: as290

seen in figure 3e, errors are less than 0.02 in magnitude and errors are confined to the expected291

region of the tracer. However, results are substantially improved by using the upwind-biased cubic292

scheme on the cut cell grid (figure 3f). Results on the SLEVE grid are comparable to those on the293

cut cell grid except that the artifacts above the mountain peak with the centred linear scheme on294

the cut cell grid are not present on the SLEVE grid (not shown).295

`2 errors and tracer extrema for this test are compared with the horizontal advection results in296

table 1. In the terrain following velocity field, tracer accuracy is greatest on the BTF grid. Errors297

are about ten times larger on the SLEVE and cut cell grids compared to the BTF grid.298

We conclude from this test that accuracy depends upon alignment of the flow with the grid, and299

accuracy is not significantly reduced by grid distortions. Error on the BTF grid in the terrain fol-300

lowing advection test is comparable with the error on the SLEVE grid in the horizontal advection301

test.302

c. Stratified atmosphere initially at rest303

An idealised terrain profile is defined along with a stably stratified atmosphere at rest in hy-304

drostatic balance. The analytic solution is time-invariant, but numerical errors in calculating the305

pressure gradient can give rise to spurious velocities which become more severe over steeper ter-306
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rain (Klemp 2011). Cut cell grids are often suggested as a technique for reducing these spurious307

circulations (Yamazaki and Satomura 2010; Jebens et al. 2011; Good et al. 2014).308

The test setup follows the specification by Klemp (2011). The domain is 200 km wide and 20 km309

high, and the grid resolution is ∆x = ∆z? = 500m. All boundary conditions are no normal flow.310

The wave-shaped mountain profile has a surface height, h, given by311

h(x) = h0 exp
(
−
(x

a

)2
)

cos2 (αx) (20)

where a = 5km is the mountain half-width, h0 = 1km is the maximum mountain height and312

λ = 4km is the wavelength. For the optimised SLEVE grid, the large-scale component h1 is313

specified as314

h1(x) =
1
2

h0 exp
(
−
(x

a

)2
)

(21)

and, following Leuenberger et al. (2010), s1 = 4km is the large scale height, s2 = 1km is the small315

scale height, and the optimal exponent value of n = 1.35 is used.316

Tests were performed with two different stability profiles, both having an initial potential tem-317

perature field has θ(z = 0) = 288K and a constant static stability with Brunt-Väisälä frequency318

N = 0.01s−1 everywhere, except for a more stable layer of N = 0.02s−1. Figure 4a shows319

where this inversion layer is positioned in the two tests: the ‘high inversion’ test follows Klemp320

(2011), placing the layer between 2km ≤ z ≤ 3km; the ‘low inversion’ test is designed to chal-321

lenge the pressure gradient calculations on the cut cell grid by placing the inversion layer between322

0.5km≤ z≤ 1.5km so that it intersects the terrain.323

The Exner function of pressure is calculated so that it is in discrete hydrostatic balance in the324

vertical direction (Weller and Shahrokhi 2014). The damping function, µ , is set to 0 s−1. Unlike325

Klemp (2011), there is no eddy diffusion in the equation set.326
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The test was integrated forward by 5 hours using a timestep ∆t = 100s on the BTF, SLEVE327

and cut cell grids. Maximum vertical velocities are presented in figure 4b and are similar on328

the BTF, SLEVE and cut cell grids. For the high inversion test, the largest vertical velocity of329

0.37 m s−1 was found on the BTF grid after 400 s, compared with a maximum of ∼ 7m s−1 found330

by Klemp (2011) using their improved horizontal pressure gradient formulation. Errors are two331

orders of magnitude smaller on the cut cell grid with vertical velocities of ∼ 1×10−4 m s−1, but332

this advantage is lost when the inversion layer is lowered to intersect the terrain. Unlike the result333

from Klemp (2011), the SLEVE grid does not further reduce vertical velocities compared to the334

BTF grid. This implies that the numerics we are using are less sensitive to grid distortions.335

Good et al. (2014) found the maximum vertical velocity in their cut cell model was336

1×10−12 m s−1, which is better than any result obtained here. It is worth noting that our model337

stores values at the geometric centre of cut cells, whereas the model used by Good et al. (2014)338

has cell centres at the centre of the uncut cell, resulting in the centre of some cut cells being below339

the ground (S.-J. Lock 2014, personal communication). This means that the grid is effectively340

regular when calculating horizontal and vertical gradients. This would account for the very small341

velocities found by Good et al. (2014).342

The results in figure 4b have maximum errors that are comparable with Weller and Shahrokhi343

(2014) but, due to the more stable split into implicitly and explicitly treated terms (described in344

the appendix), the errors decay over time due to the dissipative nature of the advection scheme.345

In summary, we reproduce the result found by Good et al. (2014) that cut cells can reduce346

spurious velocities over orography. However, in addition, we find that, with the right numerics,347

these errors can be very small on a BTF grid. We also find that, if changes in stratification intersect348

cut cells, spurious velocities on cut cell grids are comparable with those on TF grids.349
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d. Gravity waves350

The test originally specified by Schär et al. (2002) prescribes flow over terrain with small-scale351

and large-scale undulations which induces propagating and evanescent gravity waves.352

Following Melvin et al. (2010), the domain is 300 km wide and 30 km high. The mountain353

profile has the same form as equation (20), but the gravity waves tests have a mountain height of354

h0 = 250m. As in the resting atmosphere test, a = 5km is the mountain half-width and λ = 4km355

is the wavelength.356

A uniform horizontal wind (u,w) = (10,0)m s−1 is prescribed in the interior domain and at the357

inlet boundary. No normal flow is imposed at the top and bottom boundaries and the velocity field358

has a zero gradient outlet boundary condition.359

The initial thermodynamic conditions have constant static stability with N = 0.01s−1 every-360

where, such that361

θ(z) = θ0 exp
(

N2

g
z
)

(22)

where the temperature at z = 0 is θ0 = 288K. Potential temperature values are prescribed at the362

inlet and upper boundary using equation (22), and a zero gradient boundary condition is applied at363

the outlet. At the ground, fixed gradients are imposed by calculating the component of ∇θ normal364

to each face using the vertical derivative of equation (22). For the Exner function of pressure,365

hydrostatic balance is prescribed on top and bottom boundaries and the inlet and outlet are zero366

normal gradient.367
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Sponge layers are added to the upper 10 km and leftmost 10 km at the inlet boundary to damp368

the reflection of waves. The damping function, µ , is adapted from Melvin et al. (2010) such that369

µ(x,z) = µupper +µinlet (23)

µupper(z) =


µ sin2

(
π
2

z−zB
H−zB

)
if z≥ zB

0 otherwise

(24)

µinlet(x) =


µ sin2

(
π
2

xI−x
xI−x0

)
if x < xI

0 otherwise

(25)

where µ = 1.2s−1 is the damping coefficient, zB = 20km is the bottom of the sponge layer, H =370

30km is the top of the domain, x0 =−150km is the leftmost limit of the domain and xI =−140km371

is the rightmost extent of the inlet sponge layer. The sponge layer is only active on faces whose372

normal is vertical so that it damps vertical momentum only.373

Note that, while the domain itself is 30 km in height, for the purposes of generating BTF grids,374

the domain height is set to 20 km because the sponge layer occupies the uppermost 10 km.375

The simulation is integrated forward by 5 hours and the timestep, ∆t = 8∆z/300s, is chosen376

so that it scales linearly with spatial resolution and, following the original test specified by Schär377

et al. (2002), ∆t = 8s when ∆z = 300m. Test results are compared between the BTF and cut cell378

grids at several resolutions. The spatial and temporal resolutions tested are shown in table 2. The379

lowest resolution is the same as that used by Schär et al. (2002), and higher resolutions preserve380

the same aspect ratio. The vertical resolution is chosen to test various configurations of cut cell381

grid. At ∆z= 300m, the mountain lies entirely within the lowest layer of cells, while at ∆z= 250m382

and ∆z = 125m the mountain peak is aligned with the interface between layers. With increasing383

resolutions up to ∆z = 50m, the orography intersects more layers and becomes better resolved.384
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Three of the cut cell grids are shown in figure 5 at ∆z = 300m, 200m and 150m. Small cells are385

visible on the 150m grid but, on the 200m grid, the small cells are merged with those in the layer386

above.387

The ratio of minimum and maximum cell areas in the various grids is shown in table 3, providing388

an indication of size of the smallest cut cells. As expected, there is almost no variation in cell sizes389

on the BTF grids. Small cells are generated on cut cell grids at resolutions finer than ∆z = 300m390

in which the terrain intersects grid layers.391

At ∆z = 300m, vertical velocities on the BTF and cut cell grids are visually indistinguishable392

(not shown). They agree with the high resolution mass-conserving semi-implicit semi-Lagrangian393

solution from Melvin et al. (2010). The initial thermal profile is subtracted from the potential394

temperature field at the end of the integration to reveal the structure of thermal anomalies. The395

anomalies on the BTF grid with ∆z = 50m is shown in figure 6. A vertical profile is taken at x =396

50km, marked by the dashed line in figure 6, with results shown for the BTF grids in figure 7a and397

on the cut cell grids in figure 7b. The position is chosen to be far away from the mountain where the398

gravity wave amplitude is small in order to better reveal numerical errors. On all grids, potential399

temperature differences increase with height in the lowest 1200 m at x = 50km, in agreement with400

the results seen in figure 6. Results are seen to converge on all grids, with the exception of small401

errors in the lowest layers on the cut cell grids.402

To summarize, results of the gravity waves test on all grids are in good agreement with the403

reference solution from Melvin et al. (2010). The potential temperature field converges, though404

errors are found in the lowest layers on the cut cell grids. The source of the errors in the cut cell405

grids will be investigated further with an advection test in the following subsection.406
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e. Terrain following advection of thermal profile407

The potential temperature anomalies in the gravity waves test do not converge with resolution408

when using the cut cell grids. This may be due to differences in the wind fields between grids,409

or errors in the advection of potential temperature, amongst other possible causes. To help estab-410

lish the primary source of error, a new advection test is formulated in which the initial potential411

temperature field from the gravity waves test is used. To eliminate any differences in wind fields,412

the field is advected in a fixed, terrain-following velocity field that mimics the flow in the gravity413

waves test.414

The spatial domain, mountain profile, grid resolutions and timesteps are the same as those in the415

gravity waves test in section 4d. The terrain following velocity field is defined by the streamfunc-416

tion:417

Ψ(x,z) =−u0


HTF

z−h
HTF−h if z≤ HTF

z if z > HTF

(26)

where HTF = 20km is the level at which the terrain following layers become flat; the domain418

height is 30km. For z≤ HTF, the u and w components of velocity are given by equation (15), but419

h(x) has the same form as equation (20), hence the derivative is:420

dh
dx

=−h0 exp
(
−
(x

a

)2
)[

α sin(2αx)− 2x
a2 cos2 (αx)

]
(27)

For z > HTF, u = u0 and w = 0.421

The potential temperature field, θ , and its boundary conditions, are the same as those of the422

initial potential temperature field in the gravity waves test. Following the gravity waves test,423

the simulation is integrated forward by 18000 s, by which time the potential temperature initially424

upwind of the mountain will have cleared the mountain range. Hence, the analytic solution, θT , can425

be found by considering the vertical displacement of the thermal profile by the terrain following426
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velocity field:427

θT (x,z) = θ0 exp
(

N2

g
z?(x,z)

)
(28)

where the potential temperature at z = 0, θ0 = 288K, and the transform, z?, is given by rearranging428

equation (1).429

Enlargements of the error field near the mountain are shown in figure 8 at ∆z = 50m with430

contours of potential temperature overlayed. Errors are only just visible on the BTF grid with431

an `2 error of 1.12×10−7. However, on the cut cell grid, the error is about ten times larger.432

Advection errors are apparent around mountainous terrain, with small cells having some of the433

largest errors. These errors are advected horizontally along the lee slope, forming stripes. The434

same error structure is present on all cut cell grids.435

For comparison with the potential temperature anomalies in the gravity waves test, vertical pro-436

files of potential temperature error are taken at x= 50km. As seen in figure 7c, errors are negligible437

on the BTF grids, but figure 7d reveals significant errors in the lowest layers of the cut cell grids438

that were advected from the mountain peaks.439

While the magnitude and structure of error on the cut cell grids in this test differs from potential440

temperature anomalies in the gravity waves test, results on the BTF grids are in close agreement in441

both tests but not on the cut cell grids. Therefore, it is likely that anomalies on the cut cell grids in442

the gravity waves test are primarily due to errors in the advection of potential temperature through443

cut cells.444

23



5. Conclusions445

We have presented a like-for-like comparison between terrain following and cut cell grids using446

a single model. Accuracy on the BTF, SLEVE and cut cell grids was evaluated in a series of447

two-dimensional tests.448

Across all tests, a high degree of accuracy was achieved for all grids. Even on the highly-449

distorted BTF grid errors were often small in the tests presented here. In the first two tests, tracers450

were advected by horizontal and terrain following velocity fields. We found that the accuracy of451

the upwind-biased cubic advection scheme depended upon alignment of the flow with the grid452

rather than on grid distortions. Spurious vertical velocities in the resting atmosphere tests were453

similar on terrain following and cut cell grids. In the gravity waves test, vertical velocities were in454

good agreement with the reference solution from Melvin et al. (2010) across all grids.455

Cut cell grids reduced errors in the horizontal advection test. Conversely, in the terrain following456

tracer advection test, errors were large on the SLEVE and cut cell grids where velocities were457

misaligned with the grids. Errors were also large on the cut cell grids in the terrain following458

thermal advection test. This result suggests that, in the gravity waves test, potential temperature459

errors in the cut cell grids are primarily due to advection errors.460

The cubic upwind-biased advection scheme takes an approach for treating small cut cells that461

differs from other existing approaches by adjusting weightings to ensure that advection remains462

upwind-biased near small cells. The implementation of this technique in OpenFOAM is available463

at https://github.com/hertzsprung/AtmosFOAM/tree/shaw-weller-2015-mwr and will464

be described in greater detail a future publication. Combined with semi-implicit timestepping and465

a new cut cell generation technique that preserves cell length in the direction of the flow, small cells466

did not impose additional timestep constraints. By using a suitable multidimensional advection467
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scheme and a curl-free pressure gradient formulation, we did not find significant advantages of468

cut cells or smoothed coordinate systems unlike Good et al. (2014); Klemp (2011); Schär et al.469

(2002). In contrast, errors that do not reduce with resolution are on cut cell grids. No significant470

problems were found when using basic terrain following grids.471
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Appendix A . Semi-implicit treatment of the Hodge operator477

In order to ensure curl-free pressure gradients, following Weller and Shahrokhi (2014), the co-478

variant momentum component, that is the momentum at the cell face in the direction between cell479

centres, is used as the prognostic variable for velocity:480

Vf = ρ f u f ·d f (29)

where d f is the vector between cell centres and subscript f means “at face f ”. The contravariant481

momentum component, that is the flux across faces, is a diagnostic variable:482

U f = ρ f u f ·S f (30)

where S f is the outward-pointing normal vector to face f with magnitude equal to the area of the483

face. If U is the vector of all values of U f and V is the vector of all values of Vf then we can define484

the Hodge operator as a matrix that transforms V to U :485

U = HV. (31)
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For energy conservation, Thuburn and Cotter (2012) showed that the Hodge operator must be486

symmetric and positive definite. We define a symmetric H suitable for arbitrary 3D meshes:487

U f = (ρu)F ·S f (32)

where subscript F denotes mid-point interpolation from two surrounding cell values onto face f :488

(ρu)F =
1
2 ∑

c∈ f
(ρu)C (33)

where c ∈ f denotes the two cells sharing face f . (ρu)C is the consistent cell centre reconstruction489

of ρu from surrounding values of Vf :490

(ρu)C =

(
∑
f ′∈c

d f ′⊗dT
f ′

)−1

∑
f ′∈c

d f ′Vf ′

where d f ′⊗dT
f ′ is a 3×3 tensor and so the inversion of the tensor sum is a local operation which491

can be calculated once for every cell in the grid before time-stepping begins. The H implied492

by this reconstruction of U is likely to be positive definite for meshes with sufficiently low non-493

orthogonality, although this has not been proved.494

The semi-implicit technique involves combining the momentum (7a), continuity (7b) and θ (7c)495

equations and the equation of state (7d) to form a Helmholtz equation to be solved implicitly, as496

described by Weller and Shahrokhi (2014). The semi-implicit solution technique with a Hodge497

operator can be defined by considering only a discretised form of the continuity equation:498

φ (n+1)−ρ(n)

∆t
+

1
2

{
∇ · (HV )(n)+∇ · (HV )(n+1)

}
= 0. (34)

The divergence is discretised using Gauss’ divergence theorem so that:499

∇ · (HV ) =
1
Vc

∑
f∈c

n f (HV ) f (35)

where Vc is the volume of cell c, f ∈ c denotes the faces of cell c, and n f = 1 if d f points outwards500

from the cell and n f =-1 otherwise. Equation (35) is now a sum over a sum since (HV ) f is501
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one element of a matrix-vector multiply. In order to simplify the construction of the matrix for502

the Helmholtz problem, only the diagonal terms of HV are treated implicitly. Therefore, H is503

separated into a diagonal and off-diagonal matrix:504

H = Hd +Ho f f . (36)

Equation (34) can now be approximated by:505

φ (n+1)−ρ(n)

∆t
+

1
2

{
∇ · (HV )(n)+∇ · (HdV )(n+1)+∇ · (Ho f fV )`

}
= 0 (37)

where superscript ` denotes lagged values taken from a previous iteration or from a previous stage506

of a Runge-Kutta scheme. This was the approach taken by Weller and Shahrokhi (2014). However,507

the numerical solution of equation (37) turns out to be unstable when using a large time-step on508

highly non-orthogonal meshes associated with terrain following layers over steep orography. Im-509

proved stability and energy conservation can be achieved by splitting H into a diagonal component510

which would be correct on an orthogonal grid and a non-orthogonal correction:511

H = Hc +Hcorr (38)

where the diagonal matrix Hc = |S f |/|d f | and the non-orthogonal correction is Hcorr = H−Hc.512

The orthogonal part, Hc, can be treated implicitly in the Helmholtz equation:513

φ (n+1)−ρ(n)

∆t
+

1
2

{
∇ · (HV )(n)+∇ · (HcV )(n+1)+∇ · (HcorrV )`

}
= 0. (39)

This form is used for the solutions of the Euler equations in this paper and is stable, with good514

energy conservation for all of the tests presented.515
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Schär, C., D. Leuenberger, O. Fuhrer, D. Lüthi, and C. Girard, 2002: A new terrain-following548

vertical coordinate formulation for atmospheric prediction models. Mon. Wea. Rev., 130, 2459–549

2480.550

Simon, J. S., K. A. Lundquist, and F. K. Chow, 2012: Application of the immersed boundary551

method to simulations of flow over steep, mountainous terrain. 15th Conf. on Mountain Met.,552

Steamboat, CO.553

Steppeler, J., H.-W. Bitzer, M. Minotte, and L. Bonaventura, 2002: Nonhydrostatic atmospheric554

modeling using a z-coordinate representation. Mon. Wea. Rev., 130, 2143–2149.555

Steppeler, J., R. Hess, U. Schättler, and L. Bonaventura, 2003: Review of numerical methods for556

nonhydrostatic weather prediction models. Meteor. Atmos. Phys., 82, 287–301.557

Steppeler, J., S.-H. Park, and A. Dobler, 2013: Forecasts covering one month using a cut-cell558

model. Geosci. Model Dev., 6, 875–882.559

Thuburn, J., and C. Cotter, 2012: A framework for mimetic discretization of the rotating shallow-560

water equations on arbitrary polygonal grids. SIAM J. Sci. Comp., 34 (3), B203–B225.561

29



Webster, S., A. Brown, D. Cameron, and C. Jones, 2003: Improvements to the representation of562

orography in the Met Office Unified Model. Quart. J. Roy. Meteor. Soc., 129, 1989–2010.563

Weller, H., and A. Shahrokhi, 2014: Curl free pressure gradients over orography in a solution of564

the fully compressible Euler equations with implicit treatment of acoustic and gravity waves.565

Mon. Wea. Rev., 142, 4439–4457.566

Weller, H., H. G. Weller, and A. Fournier, 2009: Voronoi, Delaunay, and block-structured mesh567

refinement for solution of the shallow-water equations on the sphere. Mon. Wea. Rev., 137,568

4208–4224.569

Yamazaki, H., and T. Satomura, 2010: Nonhydrostatic atmospheric modeling using a combined570

Cartesian grid. Mon. Wea. Rev., 138, 3932–3945.571

Zängl, G., 2012: Extending the numerical stability limit of terrain-following coordinate models572

over steep slopes. Mon. Wea. Rev., 140, 3722–3733.573

30



LIST OF TABLES574

Table 1. Minimum and maximum tracer densities (kg m−3) and `2 error norms, defined575

by equation (13), at t = 10000s in the horizontal and terrain following tracer576

advection tests using centred linear and cubic upwind-biased schemes. For the577

horizontal advection test, `2 error norms, minimum and maximum values are578

given for the fourth order scheme using the modified code from Schär et al.579

(2002). . . . . . . . . . . . . . . . . . . . . . 32580

Table 2. Spatial and temporal resolutions used in the gravity waves test. The resolution581

of ∆z = 300m has the same parameters as the original test case specified by582

Schär et al. (2002). At other resolutions, the vertical resolution is prescribed,583

and horizontal and temporal resolutions are calculated to preserve the same584

aspect ratio as the original test case. . . . . . . . . . . . . . 33585

Table 3. Cell area ratios of BTF and cut cell grids used in the gravity waves and thermal586

advection tests. Cell sizes are almost uniform on BTF grids, but for the cut cell587

grids the cell area ratio gives an indication of the smallest cell sizes. . . . . . 34588

31



TABLE 1. Minimum and maximum tracer densities (kg m−3) and `2 error norms, defined by equation (13), at

t = 10000s in the horizontal and terrain following tracer advection tests using centred linear and cubic upwind-

biased schemes. For the horizontal advection test, `2 error norms, minimum and maximum values are given for

the fourth order scheme using the modified code from Schär et al. (2002).

589

590

591

592

Analytic BTF SLEVE Cut cell No terrain

Horizontal Centred linear `2 error 0 0.284 0.0316 0.0304 0.0304

min 0 −0.275 −0.0252 −0.0251 −0.0251

max 1 0.925 0.985 0.985 0.985

Fourth order `2 error 0 0.0938 0.00244 — 0.00234

min 0 −0.0926 −0.00174 — −0.00178

max 1 1.00 0.984 — 0.983

Cubic upwind-biased `2 error 0 0.112 0.0146 0.00784 0.00784

min 0 −0.0464 −0.0106 −0.00674 −0.00674

max 1 0.922 0.982 0.983 0.983

Terrain following Centred linear `2 error 0 0.0338 0.235 0.374 —

min 0 −0.0242 −0.120 −1.26 —

max 1 0.984 0.950 1.11 —

Cubic upwind-biased `2 error 0 0.0207 0.162 0.181 —

min 0 −0.0109 −0.0263 −0.0284 —

max 1 0.983 0.865 0.851 —
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TABLE 2. Spatial and temporal resolutions used in the gravity waves test. The resolution of ∆z = 300m has

the same parameters as the original test case specified by Schär et al. (2002). At other resolutions, the vertical

resolution is prescribed, and horizontal and temporal resolutions are calculated to preserve the same aspect ratio

as the original test case.

593

594

595

596

∆z (m) ∆x (m) ∆t (s)

500 833.3 13.33

300 500 8

250 416.7 6.667

200 333.3 5.333

150 250 4

125 208.3 3.333

100 166.7 2.667

75 125 2

50 83.33 1.333
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TABLE 3. Cell area ratios of BTF and cut cell grids used in the gravity waves and thermal advection tests.

Cell sizes are almost uniform on BTF grids, but for the cut cell grids the cell area ratio gives an indication of the

smallest cell sizes.

597

598

599

∆z (m) max/min cell area ratio

BTF Cut cell

500 1.01 1.68

300 1.01 4.11

250 1.01 3.52

200 1.01 6.04

150 1.01 6.46

125 1.01 6.12

100 1.01 6.22

75 1.01 5.98

50 1.01 6.29
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FIG. 1. Examples of (a) BTF, (b) SLEVE, and (c) a cut cell grid, showing cell edges in the lowest four layers.

The full two dimensional grids are 20 km wide and 20 km high. SLEVE parameters are specified in the resting

atmosphere test in section 4c. The cut cell grid was created by intersecting the terrain surface with a regular grid

as described in section 2. Axes are in units of m.
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FIG. 2. Illustration of a cut cell grid (a) before, and (b) after construction. The terrain surface, denoted by a

heavy dotted line, intersects a uniform rectangular grid comprising six cells, c1, . . . ,c6. The cell vertices, marked

by open circles, are moved to the points at which the terrain intersects vertical cell edges, marked by filled

circles. Cells that have no volume are removed. Where a cell has two vertices occupying the same point, the

zero-length edge that joins those vertices is removed. In this illustration, cells c5 and c6 are removed because

they have no volume, and the zero-length edge at point q is removed to create a triangular cell, c4. Point p is

moved down because it is within 2∆z/5 of the surface, avoiding the creation of a thin cell.
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1FIG. 3. Tracer contours advected in a terrain following velocity field at t = 0s, 5000 s and 10000 s using the

centred linear scheme on (a) the BTF grid, and (b) the cut cell grid with contour intervals every 0.1. Errors at

t = 10000s are shown for (c) the the centred linear scheme on the BTF grid, (d) the centred linear scheme on
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profile is also shown immediately above the x axis.
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different stability profiles, with panel (a) showing the placement of the inversion layer in the two profiles. The

low inversion is positioned so that it intersects the terrain, shown immediately above the x axis. In each test,

the inversion layer has a Brunt-Väisälä frequency N = 0.02s−1, and N = 0.01s−1 elsewhere. Panel (b) shows
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formulation. Results for the high inversion test are shown with solid lines, the low inversion test with dashed

lines.

666

667

668

669

670

671

672

673

40



0

200

400

600

−5000 0 5000 10000

0

200

400

600

−5000 0 5000 10000

0

200

400

600

−5000 0 5000 10000

1

(a) (b) (c)

FIG. 5. Cut cell grids used for the gravity waves and thermal advection tests at (a) ∆z= 300m, (b) ∆z= 200m,

and (c) ∆z = 150m. The mountain peak h0 = 250m. At ∆z = 300m and ∆z = 200m, the grid creation process

has merged small cells with the cells in the layer above but, at ∆z = 150m, small cells have been retained. The

full two dimensional grids are 300 km wide and 30 km high. Axes are in units of m.
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FIG. 8. Error in potential temperature (measured in K) in the thermal advection test at a resolution of ∆z= 50m
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686

687

688

689

44


